JPS62141485A - Manufacture of nitrogen having high purity - Google Patents

Manufacture of nitrogen having high purity

Info

Publication number
JPS62141485A
JPS62141485A JP60283721A JP28372185A JPS62141485A JP S62141485 A JPS62141485 A JP S62141485A JP 60283721 A JP60283721 A JP 60283721A JP 28372185 A JP28372185 A JP 28372185A JP S62141485 A JPS62141485 A JP S62141485A
Authority
JP
Japan
Prior art keywords
column
nitrogen
sub
rectification
rectification column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60283721A
Other languages
Japanese (ja)
Inventor
昭二 高橋
英行 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP60283721A priority Critical patent/JPS62141485A/en
Publication of JPS62141485A publication Critical patent/JPS62141485A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/0443A main column system not otherwise provided, e.g. a modified double column flowsheet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/20Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/54Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the low pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/90Details relating to column internals, e.g. structured packing, gas or liquid distribution
    • F25J2200/94Details relating to the withdrawal point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/42Nitrogen or special cases, e.g. multiple or low purity N2
    • F25J2215/44Ultra high purity nitrogen, i.e. generally less than 1 ppb impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/42Separating low boiling, i.e. more volatile components from nitrogen, e.g. He, H2, Ne
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/44Separating high boiling, i.e. less volatile components from nitrogen, e.g. CO, Ar, O2, hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、空気の液化精留法によって窒素を採取する窒
素製造装置に係り、殊に半導体製造に使用される窒素ガ
スを製造するに適した装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a nitrogen production device that extracts nitrogen by an air liquefaction rectification method, and is particularly suitable for producing nitrogen gas used in semiconductor manufacturing. The invention relates to a device that

〔従来の技術〕[Conventional technology]

不活性ガスとしての窒素は多くのn某分野で利用されて
いるが、この大部分は空気を液化精留づることによって
採取されている。即ち、原わ1空気を圧縮し、水分、炭
酸ガス等の不純物を除去した後、冷却し液化して精留に
より分1!II ?lるものである。一般に半導体yJ
造用どして使用される窒素ガスは、液体窒素を製造づる
空気弁1IiIl装置から冑られた液体窒素を半)踵体
製)告丁揚に供給し、これをガス化して消費しているが
、近時中箱留塔式の比較的小型の窒素製造猛;Nを半導
体製造分野に隣接して設置し、高純頂窒素ガスをパイピ
ングにJ:す=  3 − 供給Jるようになってきた。
Nitrogen as an inert gas is used in many fields, but most of it is extracted by liquefying and rectifying air. That is, raw air is compressed, water, carbon dioxide, and other impurities are removed, then it is cooled, liquefied, and rectified into a fraction of air. II? It is something that can be done. Generally semiconductor yJ
The nitrogen gas used for manufacturing is supplied from the air valve 1IiIl device that produces liquid nitrogen to the semi-heel body, which is then gasified and consumed. However, recently, a relatively small box-type nitrogen production unit has been installed adjacent to the semiconductor manufacturing field, and high-purity top nitrogen gas has been supplied through piping. It's here.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

空気を液化精留して窒素ガスを製造する装置においては
、空気中の不純物は吸着等の手段で除去され、かつ精留
の際分離される。従って不純物の大部分は除去されるの
で純度の高い窒素ガスが得られるが、半導体製造分野で
使用される窒素ガスは更に高純度のものが要求されるよ
うになってきた。即ち、空気中の不純物のうち、従来の
窒素製造装置では製品窒素に水素、ヘリウム、ネオン等
の低沸点成分や一酸化炭素が混入し問題視されるにうに
なってぎた。水素等の低沸点成分や一酸化炭素は通常吸
着により除去は困難であるし、精留操作においても水素
等はこの種の目的で設置されるガス状窒素製造装置にお
いては、その殆んどは分離されず製品窒素に同伴される
。又、−酸化炭素は周知のように窒素と近似した沸点を
もつため、経済的に精留分離することは極めて困九であ
る。
In an apparatus for producing nitrogen gas by liquefying and rectifying air, impurities in the air are removed by means such as adsorption and separated during rectification. Therefore, since most of the impurities are removed, highly pure nitrogen gas can be obtained, but nitrogen gas used in the semiconductor manufacturing field is now required to be even more pure. That is, among the impurities in the air, low boiling point components such as hydrogen, helium, neon, and carbon monoxide are mixed into the product nitrogen in conventional nitrogen production equipment, which has become a problem. Low-boiling components such as hydrogen and carbon monoxide are usually difficult to remove by adsorption, and even in rectification operations, hydrogen and other components are mostly removed in gaseous nitrogen production equipment installed for this type of purpose. It is not separated and is entrained in the product nitrogen. Furthermore, as is well known, carbon oxide has a boiling point similar to that of nitrogen, so it is extremely difficult to economically separate it by rectification.

本発明は、以上に述べl〔不都合を解決して効率よく製
品窒素に混入する水素専の低沸点成分や一酸化炭素を低
減除去して超高Iti度窒素を+!Ij造することを目
的としたものである。
The present invention solves the above-mentioned problems and efficiently reduces and removes the low-boiling components and carbon monoxide of hydrogen that are mixed into the product nitrogen to produce ultra-high Iti nitrogen! The purpose is to create an Ij.

〔問題点を解決するための手段〕[Means for solving problems]

そこで本発明の第1発明は原料空気を圧縮、精製、冷却
し、精留塔に導入して液化精留を行って高純度窒素を製
造する方法において、前記精留塔を主精留塔と副精留塔
で構成し、主精留塔上部からガス状で導出し第1′D、
幅器で液化した窒素の一部を副精留塔中部に導入し、該
副精留塔の窒素よりも高沸点の成分を含む塔底液を一部
放出させ、大部分を第1凝縮器で主精留塔頂部からの窒
素ガスと熱交換して気化させて副精留塔下部へ導入し、
該副精留塔の上昇ガスとすることによって精留を行ない
、該副精留塔の上部附近より高純度の窒素ガスを導出し
、該副精留塔頂部から窒素よりも低沸点の成分を含むガ
スを排出することを特徴とし、第2発明は原オ(I空気
を圧縮、精製、冷却し精留塔に導入して、液化精留を行
って高純度窒素を製造する方法において、前記精留塔を
主精留塔と副精留塔で構成し、主精留塔頂部より数段下
の精留段111段から導出した液化窒素を副精留塔の中
部に導入し、該副精留塔の窒素より高沸点の成分を含む
塔底液を一部放出させ1大部分を第1凝縮器で主精留塔
頂部からの窒素ガスと熱交換して気化させて副精留塔下
部へ導入し、該副精留塔の上昇ガスとすることによって
精留を行ない、前記副精留塔の上部附近より高純度の窒
素ガスを)g出し、主精留塔頂部から窒素よりも低沸点
の成分を含む窒素ガスを導出し、その一部を寒冷回収後
放出するとともに、大部分は第1凝縮器に導入して前記
副精留塔の塔底液と熱交換して液化し、前記主精留塔上
部に導入して該主精留塔の還流液とすることを特徴とす
る。
Therefore, the first aspect of the present invention is a method for producing high-purity nitrogen by compressing, refining, and cooling raw air and introducing it into a rectification column to perform liquefaction rectification, in which the rectification column is used as a main rectification column. It consists of a sub-rectification column, and the gas is extracted from the upper part of the main rectification column.
A portion of the nitrogen liquefied in the width vessel is introduced into the middle of the sub-rectification column, a portion of the bottom liquid containing components with a higher boiling point than nitrogen in the sub-rectification column is discharged, and the majority is transferred to the first condenser. It exchanges heat with nitrogen gas from the top of the main rectification column, vaporizes it, and introduces it into the lower part of the sub-fractionation column.
Rectification is carried out by using the rising gas of the sub-rectification column, leading out high-purity nitrogen gas from near the top of the sub-rectification column, and extracting components with a lower boiling point than nitrogen from the top of the sub-rectification column. The second invention is characterized in that a method for producing high-purity nitrogen by compressing, refining and cooling raw air (I) and introducing it into a rectification column to perform liquefaction rectification, The rectification column is composed of a main rectification column and a sub-rectification column, and the liquefied nitrogen derived from the 111th rectification plate several stages below the top of the main rectification column is introduced into the middle of the sub-rectification column, and A part of the bottom liquid containing components with a boiling point higher than nitrogen in the rectification column is discharged, and most of the liquid is vaporized in the first condenser through heat exchange with nitrogen gas from the top of the main rectification column, and then transferred to the sub-rectification column. The nitrogen gas is introduced into the lower part of the sub-rectification column and is used as the rising gas of the sub-rectification column to carry out rectification.High-purity nitrogen gas is discharged from near the upper part of the sub-reduction column, and is purified from the top of the main rectification column. Nitrogen gas containing low-boiling point components is extracted, a portion of which is cooled and recovered and then released, while the majority is introduced into the first condenser where it is liquefied by exchanging heat with the bottom liquid of the sub-rectification column. , is characterized in that it is introduced into the upper part of the main rectification column and used as a reflux liquid of the main rectification column.

〔実施例〕〔Example〕

第1図は第1発明の一実施例を示すもので、塵埃、炭酸
ガス及び水分を除去した原料空気は、管10より熱交換
器1に導入され、該熱交換器1で後記する管20.2/
Iで熱交換器1へ導入された空気及び窒素ガスによって
冷ノ41され、管11を介して主精留塔2底部に導入さ
れる。主精留塔2底−7一 部に導入された空気は、主精留塔2内を上昇し、管14
J:り導入され流下する液化窒素の還流液とで精留が行
なわれ、微量の窒素よりも低沸点成分を含む窒素ガスが
主精留塔2上部に、酸素富化の液体空気が主精留塔2底
部にそれぞれ分離される。
FIG. 1 shows an embodiment of the first invention, in which raw air from which dust, carbon dioxide, and moisture have been removed is introduced into a heat exchanger 1 through a pipe 10, and a pipe 20 (to be described later) is introduced into the heat exchanger 1. .2/
It is cooled by air and nitrogen gas introduced into the heat exchanger 1 at I, and introduced into the bottom of the main rectification column 2 via a pipe 11. The air introduced into the bottom-7 part of the main rectification column 2 rises inside the main rectification column 2 and passes through the pipe 14.
J: Rectification is performed with the reflux liquid of liquefied nitrogen introduced into the column and flowing down. Nitrogen gas containing a trace amount of components with a lower boiling point than nitrogen is placed in the upper part of the main rectification column 2, and oxygen-enriched liquid air is placed in the main rectification column 2. It is separated into two bottoms of the distillation column.

主精留塔2上部の窒素ガスは、管12を介して主精留塔
2の第1凝縮器3に導入されて凝縮され、管13から導
出してその一部は管15により分岐され、大部分は管1
4より還流液として主精留塔2上部に導入され、主精留
塔2内の前記空気を精留する。
The nitrogen gas in the upper part of the main rectification column 2 is introduced into the first condenser 3 of the main rectification column 2 via a pipe 12 and condensed, and is led out from a pipe 13 and a part of it is branched by a pipe 15. Mostly tube 1
4 is introduced into the upper part of the main rectification column 2 as a reflux liquid, and the air inside the main rectification column 2 is rectified.

一方、管13から分岐された液化窒素の一部は、管15
より副精留塔4の中部に導入されて精留しつつ塔内を流
下して底部に溜り管16より導出され、その一部は管2
3により分岐され、大部分は管17にて第1凝縮器3に
導入され、管12より凝縮器3に導入される主精留塔2
上部の窒素ガスと熱交換してガス化され管1Bにて副精
留塔3下部に導入されて副精留塔4の上昇ガスと4Tす
、管15、管21より導入される液化窒素の環流液によ
って精留が行なわれる。そして、副精留塔4I口部より
数段下の上部精留段棚段上から高純度の窒素ガスが管1
9を介して取り出される。
On the other hand, a part of the liquefied nitrogen branched from the pipe 13 is transferred to the pipe 15.
It is introduced into the middle part of the sub-rectification column 4, flows down inside the column while being rectified, and is led out from the bottom through the sump pipe 16, and a part of it flows into the pipe 2.
3, most of which is introduced into the first condenser 3 through pipe 17, and into the main rectification column 2 which is introduced into the condenser 3 through pipe 12.
The liquefied nitrogen gas is exchanged with the upper nitrogen gas to be gasified and introduced into the lower part of the sub-rectification column 3 through the pipe 1B, and the rising gas from the sub-rectification tower 4 and the liquefied nitrogen introduced through the pipes 15 and 21 are Rectification is carried out using the reflux liquid. Then, high purity nitrogen gas flows into pipe 1 from the top of the upper rectifying stage several stages below the mouth of sub-rectifying column 4I.
9.

主精留塔2底部の液体空気は管20にて導出され、副精
留塔4の第2凝縮器5に導入され、副精留塔4を上がし
て管19より取出されて第2凝縮器5に導入される窒素
ガスを液化して、管20より熱交換器1を通り、管10
J:り導入される原料空気と熱交換して寒冷を回収した
後拮出される。
The liquid air at the bottom of the main rectifying column 2 is led out through a pipe 20, introduced into the second condenser 5 of the sub-rectifying column 4, raised up the sub-rectifying column 4, and taken out through a pipe 19 to the second condenser. The nitrogen gas introduced into the condenser 5 is liquefied, passes through the heat exchanger 1 through the pipe 20, and is transferred to the pipe 10.
J: After exchanging heat with the introduced raw material air and recovering cold air, it is discharged.

また、第2凝縮器5にて管20よりの液体空気で凝縮さ
れた液化窒素は、管21から副精留塔4頂部に導入され
、還流液となって管15より導入される液化窒素の還流
液とともに、副精留塔4内を上品する窒素ガスを精留し
て、副精留塔4頂部より、水素等の低沸点成分を主成分
とするガスが管22で取出され、管20に合流して排出
され、一方この精留作用にて副精留塔4底部に溜る液体
窒素は一酸化炭素等の高沸点成分を濃縮して含むので、
この液化窒素の一部を、管16より分岐する管23を介
して管20に排出することによって取り除く。高純度と
なった窒素ガスは、管19より導出され分岐して管24
を介して熱交換器1に導入され、原料空気と熱交換され
て高純度の製品窒素ガスとして採取される。
In addition, the liquefied nitrogen condensed in the second condenser 5 with the liquid air from the pipe 20 is introduced from the pipe 21 to the top of the sub-rectification column 4, and becomes a reflux liquid, which is then added to the liquefied nitrogen introduced from the pipe 15. Together with the reflux liquid, the nitrogen gas flowing through the sub-rectification column 4 is rectified, and a gas containing mainly low-boiling components such as hydrogen is taken out from the top of the sub-rectification column 4 through a pipe 22. The liquid nitrogen that accumulates at the bottom of the sub-rectification column 4 due to this rectification action contains concentrated high-boiling components such as carbon monoxide.
A portion of this liquefied nitrogen is removed by discharging into pipe 20 via pipe 23 branching from pipe 16. The highly purified nitrogen gas is led out from the pipe 19 and branched into the pipe 24.
The nitrogen gas is introduced into the heat exchanger 1 through the air, where it is heat exchanged with the raw material air and collected as a high-purity product nitrogen gas.

なお、管20J:り排出される空気及び低沸点成分ガス
の一部は、熱交換器1の手前で分岐され、管25を介し
゛て熱交換器1の一部を通って膨張タービン6に導入さ
れ膨張して低圧、低ii1+!ど<’にっで熱交換器1
の手前で再び管20に合流して熱交換器1に導入されて
、原料空気の寒冷源として用いられる。
Note that part of the air and low boiling point component gas discharged through the pipe 20J is branched before the heat exchanger 1, passes through a part of the heat exchanger 1 via the pipe 25, and is sent to the expansion turbine 6. Introduced and expanded, low pressure, low ii1+! Do<'Nide Heat Exchanger 1
It joins the pipe 20 again before the air is introduced into the heat exchanger 1, and is used as a cooling source for the raw air.

第2図は第2発明の一実施例を示ず〜bので、第1図と
同一構成要件には同符F)を伺して説明する。
Since FIG. 2 does not show an embodiment of the second invention, the same components as those in FIG. 1 will be described using the same reference numerals F).

本実施例に用いられる主精留jハ30は第1図の主精留
塔2上部に、さらに数段の精留段棚段30aを設(プた
もので、主精留塔30頂にて十がする空気を精留し、水
素等の低)11:虚成分を分離し一酸化炭素等の窒素J
ζすb高沸点成分と機部の酸素を含むようになった液体
窒素を1E精留塔30頂部より数段下の精留段棚段30
 aの下部から管31にで導出し、副精留塔4の中部に
導入するようになすとともに、水素等の窒素よりも低沸
点成分を含む窒素ガスを主精留塔30頂部より管12を
介して導出し、その一部を管32にて分岐し、第2凝縮
器5から導出された主精留塔30底部からの酸素富化空
気と管20で合流させ、熱交換器1の寒冷源として用い
て排出される。
The main rectifying column 30 used in this embodiment has several rectifying plate trays 30a installed above the main rectifying column 2 in FIG. 11: Separate the imaginary components such as hydrogen and nitrogen such as carbon monoxide.
ζSb The liquid nitrogen containing high boiling point components and oxygen from the machine section is transferred to a rectification plate plate 30 several stages below the top of the 1E rectification column 30.
A is led out from the bottom of the main rectification column 30 through a pipe 31 and introduced into the middle part of the sub-rectification column 4, and nitrogen gas containing a component with a boiling point lower than nitrogen, such as hydrogen, is led out from the top of the main rectification column 30 through a pipe 12. A part of the air is branched at a pipe 32 and combined with the oxygen-enriched air from the bottom of the main rectification column 30 led out from the second condenser 5 through a pipe 20 to cool the heat exchanger 1. used as a source and discharged.

また、大部分の窒素ガスは第1凝縮器3へ導入し、管1
7より第1凝縮器3に導入される副精留塔4底部の液化
窒素によって凝縮され、還流液として管14より主精留
塔30の上部へ導入され、。
Also, most of the nitrogen gas is introduced into the first condenser 3, and the pipe 1
7 into the first condenser 3, and is condensed by liquefied nitrogen at the bottom of the sub-rectification column 4, and introduced into the upper part of the main rectification column 30 through a pipe 14 as a reflux liquid.

上がしてくる原料空気を精留する。The rising raw material air is rectified.

また副精留塔4を上品して精留された高純度の窒素ガス
は、副精留塔4の頂部附近より管19を介し導出されて
大部分は第2凝縮器5に送られ、一部は管24にて分岐
されて熱交換器1に導入される原料空気と熱交換して寒
冷を回収しIC後高純度の製品窒素ガスどして採取され
る。その伯は第1図に示す実施例と同様である。
Further, the high-purity nitrogen gas that has been purified and rectified in the sub-rectification column 4 is led out from near the top of the sub-rectification column 4 via a pipe 19, and most of it is sent to the second condenser 5. The cold air is branched off at a pipe 24 and exchanged with the raw material air introduced into the heat exchanger 1 to recover the cold, and after IC, it is collected as a high-purity product nitrogen gas. The number is similar to the embodiment shown in FIG.

〔発明の効果〕〔Effect of the invention〕

本発明は以上の如く、原r1空気を圧縮、精留、冷却し
て精留塔に導入し、液化精留を行ない高純度窒素ガスを
製造するにあたって、主精留塔の外に副精留塔を別途付
設し、従来そのまま製品窒素ガスとしていた主精留1バ
」一部の窒素ガスを、副精留塔底部の液体窒素で液化し
、主精留塔の還流液とするとともに、一部を副精留塔で
再精留して(It沸点成分を分離排出し、かつ副精留塔
底部の液体窒素を一部排出することににす、液体窒素中
の高沸点成分の濃縮を防止して、高純度の製品窒素ガス
を得ることかできる。
As described above, the present invention compresses, rectifies, and cools raw R1 air and introduces it into a rectification column to perform liquefaction rectification to produce high-purity nitrogen gas. A separate column was installed to liquefy some of the nitrogen gas in the main rectification column, which was conventionally used as product nitrogen gas, with liquid nitrogen at the bottom of the sub-rectification column, and use it as the reflux liquid in the main rectification column. The high boiling point components in the liquid nitrogen are concentrated by re-rectifying it in the sub-rectification column (separating and discharging the boiling point components and discharging a portion of the liquid nitrogen at the bottom of the sub-rectification column). It is possible to obtain high purity product nitrogen gas.

また、第2発明は上記の効果の内、低沸点成分の分離に
ついては、主精留塔の上部にさらに複数段の精留段補設
を設り、主精留塔頂部から導出される低沸点成分を含む
窒素ガスの一部を排出することで、J:り純庶の高い製
品窒素ガスを得ることができる。
In addition, among the above effects, the second invention has the effect of separating low boiling point components by further installing a plurality of additional rectification stages at the top of the main rectification column, and reducing the By discharging a portion of the nitrogen gas containing boiling point components, a product nitrogen gas with high J: purity can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1発明に係る高純度窒素製造方法の
一実施例を説明するための系統図、第2図は第2発明に
係る高純度窒素製造方法の一実施例を説明するための系
統図である。 1・・・熱交換器  2,30・・・主精留塔  3・
・・第1凝縮器  4・・・副精留塔  5・・・第2
凝縮器6・・・膨張タービン
FIG. 1 is a system diagram for explaining an embodiment of the high-purity nitrogen production method according to the first invention, and FIG. 2 is a system diagram for explaining an embodiment of the high-purity nitrogen production method according to the second invention. This is a system diagram for 1... Heat exchanger 2, 30... Main rectification column 3.
...First condenser 4...Sub-rectification column 5...Second
Condenser 6...expansion turbine

Claims (1)

【特許請求の範囲】 1、原料空気を圧縮、精製、冷却し、精留塔に導入して
液化精留を行って高純度窒素を製造する方法において、
前記精留塔を主精留塔と副精留塔で構成し、主精留塔上
部からガス状で導出し第1凝縮器で液化した窒素の一部
を副精留塔中部に導入し、該副精留塔の窒素よりも高沸
点の成分を含む塔底液を一部放出させ、大部分を第1凝
縮器で主精留塔頂部からの窒素ガスと熱交換して気化さ
せて副精留塔下部へ導入し、該副精留塔の上昇ガスとす
ることによって精留を行ない、該副精留塔の上部附近よ
り高純度の窒素ガスを導出し、該副精留塔頂部から窒素
よりも低沸点の成分を含むガスを排出することを特徴と
する高純度窒素製造方法。 2、前記高純度窒素を前記副精留塔の頂部より数段下の
上部精留段棚段上からガス状で導出することを特徴とす
る特許請求範囲第1項記載の高純度窒素製造方法。 3、原料空気を圧縮、精製、冷却し精留塔に導入して、
液化精留を行って高純度窒素を製造する方法において、
前記精留塔を主精留塔と副精留塔で構成し、主精留塔頂
部より数段下の精留段棚段から導出した液化窒素を副精
留塔の中部に導入し、該副精留塔の窒素より高沸点の成
分を含む塔底液を一部放出させ、大部分を第1凝縮器で
主精留塔頂部からの窒素ガスと熱交換して気化させて副
精留塔下部へ導入し、該副精留塔の上昇ガスとすること
によって精留を行ない、前記側精留塔の上部附近より高
純度の窒素ガスを導出し、主精留塔頂部から窒素よりも
低沸点の成分を含む窒素ガスを導出し、その一部を寒冷
回収後放出するとともに、大部分は第1凝縮器に導入し
て前記側精留塔の塔底液と熱交換して液化し、前記主精
留塔上部に導入して該主精留塔の還流液とすることを特
徴とする高純度窒素製造方法。 4、前記高純度窒素を前記副精留塔の頂部より導出する
ことを特徴とする特許請求範囲第3項記載の高純度窒素
製造方法。
[Claims] 1. A method for producing high-purity nitrogen by compressing, refining, and cooling raw air and introducing it into a rectification column to perform liquefaction rectification,
The rectifying column is composed of a main rectifying column and a sub-rectifying column, and a part of the nitrogen which is led out in gaseous form from the upper part of the main rectifying column and liquefied in the first condenser is introduced into the middle part of the sub-rectifying column, Part of the bottom liquid containing components with a higher boiling point than nitrogen in the sub-rectification column is discharged, and most of it is vaporized in the first condenser by exchanging heat with nitrogen gas from the top of the main rectification column. The nitrogen gas is introduced into the lower part of the rectifying column and is used as the rising gas of the sub-rectifying column to carry out rectification, and high-purity nitrogen gas is led out near the top of the sub-rectifying column, and from the top of the sub-rectifying column. A high-purity nitrogen production method characterized by discharging a gas containing components with a lower boiling point than nitrogen. 2. The high-purity nitrogen production method according to claim 1, characterized in that the high-purity nitrogen is led out in gaseous form from above an upper rectification plate several stages below the top of the sub-rectification column. . 3. Compress, refine, and cool the raw air and introduce it into the rectification column.
In a method of producing high purity nitrogen by liquefaction rectification,
The rectifying column is composed of a main rectifying column and a sub-rectifying column, and the liquefied nitrogen drawn out from the rectifying plate tray several stages below the top of the main rectifying column is introduced into the middle part of the sub-rectifying column, and Part of the bottom liquid containing components with a higher boiling point than nitrogen in the sub-rectification column is discharged, and most of it is vaporized in the first condenser by heat exchange with nitrogen gas from the top of the main rectification column, resulting in sub-rectification. Nitrogen gas is introduced into the lower part of the column and used as the rising gas of the sub-rectification column to carry out rectification, and high-purity nitrogen gas is led out from near the top of the side rectification column, and from the top of the main rectification column it is purified by nitrogen gas. Nitrogen gas containing low boiling point components is extracted, a part of which is cooled and recovered and then released, while the majority is introduced into the first condenser where it is liquefied by heat exchange with the bottom liquid of the side rectification column. A method for producing high-purity nitrogen, characterized in that the nitrogen is introduced into the upper part of the main rectification column and used as a reflux liquid of the main rectification column. 4. The high-purity nitrogen production method according to claim 3, wherein the high-purity nitrogen is led out from the top of the sub-rectification column.
JP60283721A 1985-12-16 1985-12-16 Manufacture of nitrogen having high purity Pending JPS62141485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60283721A JPS62141485A (en) 1985-12-16 1985-12-16 Manufacture of nitrogen having high purity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60283721A JPS62141485A (en) 1985-12-16 1985-12-16 Manufacture of nitrogen having high purity

Publications (1)

Publication Number Publication Date
JPS62141485A true JPS62141485A (en) 1987-06-24

Family

ID=17669227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60283721A Pending JPS62141485A (en) 1985-12-16 1985-12-16 Manufacture of nitrogen having high purity

Country Status (1)

Country Link
JP (1) JPS62141485A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991019142A1 (en) * 1990-05-31 1991-12-12 Kabushiki Kaisha Kobe Seiko Sho Method of and device for producing nitrogen of high purity
US5359857A (en) * 1992-05-08 1994-11-01 Nippon Sanso Corporation Installation for air liquefaction separation and process therefor
JP2006349319A (en) * 2005-06-20 2006-12-28 Taiyo Nippon Sanso Corp Air separator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544906A (en) * 1977-06-15 1979-01-16 Nippon Oil & Fats Co Ltd Production of hard butter and highly stable liquid oil
JPS5736511A (en) * 1980-08-12 1982-02-27 Tokyo Shibaura Electric Co
JPS581350A (en) * 1981-06-26 1983-01-06 Pioneer Electronic Corp Fm stereophonic demodulator
JPS60142183A (en) * 1983-12-28 1985-07-27 日本酸素株式会社 Method of liquefying and separating air

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544906A (en) * 1977-06-15 1979-01-16 Nippon Oil & Fats Co Ltd Production of hard butter and highly stable liquid oil
JPS5736511A (en) * 1980-08-12 1982-02-27 Tokyo Shibaura Electric Co
JPS581350A (en) * 1981-06-26 1983-01-06 Pioneer Electronic Corp Fm stereophonic demodulator
JPS60142183A (en) * 1983-12-28 1985-07-27 日本酸素株式会社 Method of liquefying and separating air

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991019142A1 (en) * 1990-05-31 1991-12-12 Kabushiki Kaisha Kobe Seiko Sho Method of and device for producing nitrogen of high purity
US5359857A (en) * 1992-05-08 1994-11-01 Nippon Sanso Corporation Installation for air liquefaction separation and process therefor
JP2006349319A (en) * 2005-06-20 2006-12-28 Taiyo Nippon Sanso Corp Air separator
JP4519010B2 (en) * 2005-06-20 2010-08-04 大陽日酸株式会社 Air separation device

Similar Documents

Publication Publication Date Title
JPH05296651A (en) Apparatus for producing nitrogen/oxygen of ultrahigh purity
EP0283213B1 (en) Process for the recovery of argon
US3807185A (en) Helium-enriched helium-hydrogen mixture from ammonia synthesis vent gas using regenerators to congeal residual nitrogen
EP0589766A1 (en) Method and apparatus for producing ultra-high purity nitrogen
JPS62141485A (en) Manufacture of nitrogen having high purity
JP3299069B2 (en) Air low-temperature separation apparatus and separation method
US3805537A (en) Helium-enriched helium-hydrogen mixture using methane to scrub out residual nitrogen
JP3737612B2 (en) Method and apparatus for producing low purity oxygen
JP4177507B2 (en) Method and apparatus for producing low purity oxygen
JPH1163812A (en) Manufacture and device for low-purity oxygen
JP2621841B2 (en) Cryogenic separation method and apparatus for carbon monoxide
JP2693220B2 (en) Ultra high purity oxygen production method
JPH0399190A (en) Method of manufacturing oxygen
JPS63118587A (en) Method of recovering argon from ammonia synthesis purge gas
JPS61276680A (en) Method of liquefying and separating air
JP3044564B2 (en) Gas separation method and apparatus
JP2685523B2 (en) Method and apparatus for producing ultra-high purity nitrogen
JPS61243273A (en) Air liquefying separating method
JP3513667B2 (en) Air liquefaction separation method and apparatus
JPH0545051A (en) Apparatus for liquefaction-separation for air and method for collecting argon therein
JPH0413628B2 (en)
JPH03158693A (en) Nitrogen gas and oxygen gas manufacturing device
JPS58190680A (en) Method of liquefying and separating air
KR100193515B1 (en) Manufacturing apparatus and method for separating nitrogen from air by deep cooling method
JPS6166073A (en) Argon purifier