JPH0399190A - Method of manufacturing oxygen - Google Patents
Method of manufacturing oxygenInfo
- Publication number
- JPH0399190A JPH0399190A JP1236748A JP23674889A JPH0399190A JP H0399190 A JPH0399190 A JP H0399190A JP 1236748 A JP1236748 A JP 1236748A JP 23674889 A JP23674889 A JP 23674889A JP H0399190 A JPH0399190 A JP H0399190A
- Authority
- JP
- Japan
- Prior art keywords
- oxygen
- column
- hydrocarbon
- rectification
- product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title claims abstract description 81
- 239000001301 oxygen Substances 0.000 title claims abstract description 81
- 229910052760 oxygen Inorganic materials 0.000 title claims abstract description 81
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 238000000926 separation method Methods 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims abstract description 4
- 238000001816 cooling Methods 0.000 claims description 2
- 229930195733 hydrocarbon Natural products 0.000 abstract description 37
- 150000002430 hydrocarbons Chemical class 0.000 abstract description 37
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 abstract description 27
- 229910001882 dioxygen Inorganic materials 0.000 abstract description 26
- 239000007788 liquid Substances 0.000 abstract description 13
- 239000004215 Carbon black (E152) Substances 0.000 abstract description 12
- 239000012535 impurity Substances 0.000 abstract description 3
- 230000001174 ascending effect Effects 0.000 abstract 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 50
- 229910052757 nitrogen Inorganic materials 0.000 description 21
- 229910001873 dinitrogen Inorganic materials 0.000 description 8
- 239000007789 gas Substances 0.000 description 6
- 238000004821 distillation Methods 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 241000951471 Citrus junos Species 0.000 description 1
- 238000004887 air purification Methods 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/04309—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
- F25J3/04315—Lowest pressure or impure nitrogen, so-called waste nitrogen expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04303—Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
- F25J3/04393—Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/0443—A main column system not otherwise provided, e.g. a modified double column flowsheet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/20—Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/90—Details relating to column internals, e.g. structured packing, gas or liquid distribution
- F25J2200/94—Details relating to the withdrawal point
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/52—Separating high boiling, i.e. less volatile components from oxygen, e.g. Kr, Xe, Hydrocarbons, Nitrous oxides, O3
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/20—Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、酸素の製造方法に関し、特に炭化水素等の不
純物の含有量の少ない高純度酸素を製造する方法に関す
る。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing oxygen, and particularly to a method for producing high-purity oxygen with a low content of impurities such as hydrocarbons.
第3図は、下部塔1及び上部塔2からなる複精留塔3を
用いて空気を液化分離し、窒素,酸素を製造する従来の
一般的な系統を示すものである。FIG. 3 shows a conventional general system in which air is liquefied and separated using a double rectification column 3 consisting of a lower column 1 and an upper column 2 to produce nitrogen and oxygen.
圧縮された後に公知の前処理設備により精製された原料
空気GAは、その大部分が主熱交換器4で後述の各柚ガ
スと熱交換を行い液化点付近まで冷却されて管5から下
部塔1の底部に導入される。Most of the raw air GA that has been compressed and purified by a known pre-treatment facility undergoes heat exchange with each yuzu gas described below in the main heat exchanger 4, is cooled to near the liquefaction point, and is passed through the pipe 5 to the lower column. 1 is introduced at the bottom.
また原料空気の一部Gaは、主熱交換器4で中間温度ま
で冷却された後に管6に分岐し、膨張タービン7で膨張
し、装置に必要な寒冷を発生した後に上部塔2の中段に
導入される。Part of the feed air, Ga, is cooled down to an intermediate temperature in the main heat exchanger 4, branched into a pipe 6, expanded in an expansion turbine 7, and generated the cooling necessary for the equipment, before being transferred to the middle stage of the upper tower 2. be introduced.
下部塔1内で精留され、下部塔1底部に分離した酸素富
化液化空気(以下、液化空気という)LAは、塔底部か
ら管8に導出されて過冷器9,減圧弁】Oを経て減圧し
た後に上部塔2の中段に導入される。一方下部塔1の頂
部に分離した窒素ガスは、管11に導出されて凝縮蒸発
器12に導入され、後述の液化酸素と熱交換を行い液化
して液化窒素LNとなり管13に導出される。この液化
窒素LNは、一部が下部塔1の還流液となり、残部が管
14から過冷器9,減圧弁15を経て上部塔2の上部に
導入され、上部塔2の還流液となる。Oxygen-enriched liquefied air (hereinafter referred to as liquefied air) LA that has been rectified in the lower column 1 and separated at the bottom of the lower column 1 is led out from the bottom of the column to a pipe 8, and is passed through a subcooler 9 and a pressure reducing valve]O. After being depressurized, it is introduced into the middle stage of the upper column 2. On the other hand, the nitrogen gas separated at the top of the lower column 1 is led out to a pipe 11 and introduced into a condensing evaporator 12, where it undergoes heat exchange with liquefied oxygen, which will be described later, and is liquefied to become liquefied nitrogen LN, which is led out to a pipe 13. A part of this liquefied nitrogen LN becomes the reflux liquid of the lower column 1, and the remainder is introduced into the upper part of the upper column 2 from the pipe 14 via the subcooler 9 and the pressure reducing valve 15, and becomes the reflux liquid of the upper column 2.
前記原料空気の一部Ga,液化空気LA及び液化窒素L
Nは、上部塔2内の精留操作により、塔底部の液化酸素
LOと塔頂部の窒素ガスGNとに分離する。塔底部の液
化酸素LOは、その一部が製品液化酸素PLOとして管
16により採取され、液化酸素LOの残部は、前記凝縮
蒸発器12て前記窒素ガスと熱交換を行い気化して酸素
ガスとなり、上部塔2の上昇ガスとなる。この酸素ガス
の一部は、凝縮蒸発器12の直上に設けられた管17か
ら製品酸素ガスPGOとして導出され、主熱交換器4で
温度回復して採取される。Part of the raw material air Ga, liquefied air LA and liquefied nitrogen L
N is separated into liquefied oxygen LO at the bottom of the column and nitrogen gas GN at the top of the column by a rectification operation in the upper column 2. A part of the liquefied oxygen LO at the bottom of the column is collected as a product liquefied oxygen PLO through a pipe 16, and the remainder of the liquefied oxygen LO is vaporized into oxygen gas by exchanging heat with the nitrogen gas in the condensing evaporator 12. , becomes the rising gas of the upper column 2. A part of this oxygen gas is led out as product oxygen gas PGO from a pipe 17 provided directly above the condensing evaporator 12, and is collected after recovering its temperature in the main heat exchanger 4.
また上部塔頂部の窒素ガスGNは、管18に導出されて
過冷器9,主熱交換器4を経て導出される。さらに上部
塔中段上部からは、管19により排ガスWGが導出され
、同様に過冷器9,主熱交換器4を経て導出される。Further, the nitrogen gas GN at the top of the upper column is led out to a pipe 18, and is led out through a subcooler 9 and a main heat exchanger 4. Furthermore, the exhaust gas WG is led out from the middle upper part of the upper column through a pipe 19, and is similarly led out through a subcooler 9 and a main heat exchanger 4.
上述の猜留操作において、原料空気GA中に僅かに含有
されるアセチレンやメタン等の炭化水素は、上記精留操
作により主に液中に濃縮されるため、下部塔1底部の液
化空気LAや上部塔2底部の液化酸素LO中に炭化水素
が濃縮されることになる。従って、上述のごとく精留操
作を行い上部塔2底部から採取した製品酸素(液化酸素
PLO,酸素ガスPGO)は、高濃度の炭化水素を含有
することになるため、例えば半導体製造工程向けの高純
度酸素としてそのまま用いることができなかった。その
ため、高純度の酸素を必要とする場合には、空気戚化分
離装置以後に精製器等を設置して炭化水素等を除去する
必要があり、高純度酸素の製造コストを高くする一因と
なっていた。In the above-mentioned distillation operation, hydrocarbons such as acetylene and methane that are slightly contained in the feed air GA are mainly concentrated in the liquid by the above-mentioned rectification operation, so the liquefied air LA and the liquefied air at the bottom of the lower column 1 are Hydrocarbons will be concentrated in the liquefied oxygen LO at the bottom of the upper column 2. Therefore, the product oxygen (liquefied oxygen PLO, oxygen gas PGO) collected from the bottom of the upper column 2 through the rectification operation as described above contains a high concentration of hydrocarbons. It could not be used directly as pure oxygen. Therefore, if high-purity oxygen is required, it is necessary to install a purifier after the air purification separation device to remove hydrocarbons, etc., which is one of the factors that increases the production cost of high-purity oxygen. It had become.
そこで本発明は、精製器等を用いずに、空気液化分離装
置のみでも炭化水素等の不純物の含有量の少ない高純度
酸素を得ることのできる酸素の製造方法を提供すること
を目的としている。Therefore, an object of the present invention is to provide a method for producing oxygen that can obtain high purity oxygen with a low content of impurities such as hydrocarbons using only an air liquefaction separation device without using a purifier or the like.
上記した目的を達成するために、本発明の酸素の製造方
法の第1の構成は、原料空気を圧縮し、猜製,冷却して
複精留塔に導入し、精留分離を行い酸素を製造する方法
において、前記複精留塔の上部塔底部より1乃至数段高
い精留段位置から製品酸素を導出することを特徴として
いる。In order to achieve the above object, the first configuration of the oxygen production method of the present invention is to compress the raw air, boil it, cool it, and introduce it into a double rectification column, perform rectification separation and extract oxygen. The manufacturing method is characterized in that the product oxygen is derived from a rectification stage position one to several stages higher than the upper bottom of the double rectification tower.
また、本発明の第2の構成は、前記複精留塔の下部塔底
部より1乃至数段高い精留段位置から液化空気を導出し
て上部塔に導入することを特徴としている。Further, the second configuration of the present invention is characterized in that liquefied air is led out from a rectification stage position one to several stages higher than the bottom of the lower column of the double rectification column and introduced into the upper column.
さらに、前記上部塔及び/又は下部塔は、前記製品酸素
の導出部もしくは液化空気の導出部より下方に適数の精
留段を付設したものであることを特徴としている。Furthermore, the upper column and/or the lower column are characterized in that an appropriate number of rectification stages are attached below the product oxygen outlet or liquefied air outlet.
上記第1の構成によれば、炭化水素等の濃度の低い位置
の酸素を製品として導出することができ、炭化水素含有
量の少ない高純度酸素を得ることができる。また第2の
構成によれば、下部塔から上部塔に導入する液化空気中
の炭化水素等の濃度を低くすることができ、上部塔内の
炭化水素等の濃度を低くして採取する製品酸素中の炭化
水素等の量を低減できる。According to the first configuration, oxygen at a location where the concentration of hydrocarbons or the like is low can be derived as a product, and high purity oxygen with a low hydrocarbon content can be obtained. Further, according to the second configuration, it is possible to lower the concentration of hydrocarbons, etc. in the liquefied air introduced from the lower column to the upper column, and the product oxygen collected by lowering the concentration of hydrocarbons, etc. in the upper column. The amount of hydrocarbons etc. inside can be reduced.
以下、本発明を図面に示す実施例に基づいて、さらに詳
細に説明する。尚、以下の説明において前記第3図に示
した従来例と同一要素のものには同一符号を付して詳細
な説明を省略する。Hereinafter, the present invention will be explained in more detail based on embodiments shown in the drawings. In the following description, the same elements as those of the conventional example shown in FIG.
まず第1図は、本発明の第1実施例を示すもので、前記
第3図に示す空気液化分離装置と同様の構成の装置に本
発明の前記第1の構成を適用したものである。First, FIG. 1 shows a first embodiment of the present invention, in which the first configuration of the present invention is applied to an apparatus having the same configuration as the air liquefaction separation apparatus shown in FIG. 3.
本発明においては、前記同様の精留操作により上部塔2
の下部に分離した液化酸素LOを、上部塔2底部から管
16に導出する液化酸素LOと、凝縮蒸発器12で気化
して該凝縮蒸発器12の直上から管17に導出する酸素
ガスGOと、底部から数段上の情留段位置20から管2
1により導出する製品酸素ガスPGO及び管22により
導出する製品液化酸素PLOの4系統により上部塔2か
ら導出している。In the present invention, the upper column 2 is
The liquefied oxygen LO separated at the bottom of the upper column 2 is led out to the pipe 16 from the bottom of the upper column 2, and the oxygen gas GO is vaporized in the condensing evaporator 12 and led out to the pipe 17 from directly above the condensing evaporator 12. , from the information stage position 20 several stages above the bottom to the pipe 2
Product oxygen gas PGO is led out through pipe 22, and product liquefied oxygen PLO is led out through pipe 22 from the upper column 2 through four systems.
即ち、下部塔1から導入される液化空気LAと液化窒素
LN、及び膨張タービン7を経て導入される原料空気G
aの一部は、上部塔2内で精留されて上部塔2の下部に
酸素が分離し、上部に窒素が分離する。ここで、上部塔
2下部に存?′Eしている酸素は、各精留段を流丁する
流下液としての液化酸素と、上昇ガスとしての酸素ガス
であり、塔底部まで流下した液化酸素は、塔底部に設け
られた前記凝縮蒸発器12で気化して塔内を上昇する酸
素ガスとなる。このとき、原料空気GA中に含まれる炭
化水素は、そのほとんどが塔内を流下する流下液、即ち
液化酸素中に同伴されて塔底部に流下し、その一部が凝
縮蒸発器12で酸素と共に気化して上昇する酸素ガスG
O中に同伴される。That is, liquefied air LA and liquefied nitrogen LN introduced from the lower column 1, and feed air G introduced via the expansion turbine 7.
A part of a is rectified in the upper column 2, and oxygen is separated in the lower part of the upper column 2, and nitrogen is separated in the upper part. Here, is it located at the bottom of the upper tower 2? The oxygen flowing through each rectification stage is liquefied oxygen as a flowing liquid flowing through each rectification stage and oxygen gas as a rising gas.The liquefied oxygen that has flowed down to the bottom of the column is It is vaporized in the evaporator 12 and becomes oxygen gas that rises inside the tower. At this time, most of the hydrocarbons contained in the feed air GA are entrained in the flowing liquid flowing down in the tower, that is, liquefied oxygen, and flow down to the bottom of the tower, and a part of it flows together with oxygen in the condensing evaporator 12. Oxygen gas G that vaporizes and rises
Accompanied by O.
この酸素ガスGO中に同伴された炭化水素は、情留棚で
流下液と接触することにより流下液中に取込まれるので
、数段の精留を行うことでそのほとんどを除去すること
ができる。また上部塔2の上方から流下する流下液中の
炭化水素量は、そのほとんどが原料空気GA中に含まれ
ていた炭化水素であり、塔底部直上で上記炭化水素を同
伴して上昇する酸素ガスGoと接触する部分の精留段を
除いては極微量の炭化水素しか含有していない。The hydrocarbons entrained in this oxygen gas GO are taken into the flowing liquid by contact with the flowing liquid in the distillation shelf, so most of them can be removed by performing several stages of rectification. . In addition, the amount of hydrocarbons in the liquid flowing down from above the upper column 2 is mostly the hydrocarbons contained in the feed air GA, and the oxygen gas that rises along with the hydrocarbons just above the bottom of the column. Except for the rectification stage in contact with Go, it contains only a trace amount of hydrocarbons.
従って、上記のごとく製品酸素ガスPGO及び製品液化
酸素PLOの導出部(管21,22)を底部から1乃至
数段上の精留段位置20とすることにより、該製品酸素
中の炭化水素量を従来よりも大幅に低減することができ
る。Therefore, by setting the outlet portions (pipes 21, 22) of the product oxygen gas PGO and product liquefied oxygen PLO to the rectification stage position 20 one to several stages above the bottom as described above, the amount of hydrocarbons in the product oxygen can be significantly reduced compared to conventional methods.
この製品酸素の導出位置は、従来の上部塔2をそのまま
利用して塔底部から1乃至数段上の精留段部分に導出部
を設けることも可能であるが、精留条件に変動を来たし
て酸素濃度が低下することがある。従って、製品酸素の
導出部より下方に適数の補助精留棚を付設し、製品酸素
の導出部より上方で所定の精留操作を完了し、該導出部
では所定の酸素純度を得られるようするとともに、凝縮
蒸発器12で気化して上昇する酸素ガスGO中に含まれ
る炭化水素を補助精留棚で分離するように形成すること
が好ましい。この補助精留棚の段数は、処理量や所望す
る酸素純度により異なるが通常は1〜
3段で十分である。Regarding the lead-out position of this product oxygen, it is possible to use the conventional upper column 2 as is and provide a lead-out part in the rectification stage section one to several stages above the bottom of the tower, but this would change the rectification conditions. oxygen concentration may decrease. Therefore, an appropriate number of auxiliary rectification shelves are installed below the product oxygen outlet so that the prescribed rectification operation can be completed above the product oxygen outlet and the desired oxygen purity can be obtained at the outlet. At the same time, it is preferable to form the auxiliary rectification shelf so that hydrocarbons contained in the oxygen gas GO that vaporizes and rises in the condensing evaporator 12 are separated. The number of stages in this auxiliary rectification shelf varies depending on the throughput and desired oxygen purity, but usually 1 to 3 stages is sufficient.
また、従来と同様に上部塔底部から導出する液化酸素L
O及び酸素ガスGOは、炭化水素の濃縮量を所定値以下
に保つためのもので、装置の操作条件により適宜な量を
導出すればよい。In addition, as in the past, liquefied oxygen L is drawn out from the bottom of the upper column.
O and oxygen gas GO are used to maintain the concentrated amount of hydrocarbons below a predetermined value, and may be derived in appropriate amounts depending on the operating conditions of the apparatus.
上記第1図に示す装置を用いて5350 NrTII/
hの原料空気を処理し、
〈A〉.上部塔の底部から200Nrrt’/hの酸素
ガスと、50Nryl’/hの液化酸素を導出した場合
、(従来法)
(B).上部塔の底部より1段上の精留段から200N
rr?/hの酸素ガスと、同じく2段上、の精留段から
50Nrrl’/hの液化酸素を導出した場合、
(C).上部塔の底部より3段上の精留段から200N
rr?/hの酸素ガスと、同じく4段上の精留?から5
0Nrri’/hの液化酸素を導出した場合、
のそれぞれについて採取したFl!素中の炭化水素量[
y■1、pplll]を本発明者が試算した結果を第1
表に示す。5350 NrTII/ using the apparatus shown in Fig. 1 above.
Processing the raw air of h, <A>. When 200 Nrrt'/h of oxygen gas and 50 Nryl'/h of liquefied oxygen are extracted from the bottom of the upper column, (Conventional method) (B). 200N from the rectification stage one stage above the bottom of the upper column
rr? /h of oxygen gas and 50Nrrl'/h of liquefied oxygen from the same rectification stage two stages above, (C). 200N from the rectification stage 3 stages above the bottom of the upper column
rr? /h of oxygen gas and the same 4th step higher rectification? from 5
When liquefied oxygen of 0Nrri'/h is derived, Fl! collected for each of ! Amount of hydrocarbons in the element [
The results of the inventor's trial calculation of
Shown in the table.
第1表
さらに、第1図に想lg!線X1で示すように、下部塔
1塔底より1乃至数段上の精留段から液化空気LAを導
出して上部塔2へ導出するとともに、上部塔2下部の下
から1乃至数段上の精留段から酸素ガス及び液化酸素を
導出する場合は、一層含有する炭化水素類の低減を図る
ことができる。Table 1 In addition, Figure 1 shows the results! As shown by the line When oxygen gas and liquefied oxygen are derived from the rectification stage, it is possible to further reduce the amount of hydrocarbons contained.
次に第2図は、いわゆる窒素塔(下部塔)31と酸素塔
(上部塔)32とからなる複精留塔に本発明の前記第2
の構成を適用したー実施例を示すものである。Next, FIG. 2 shows that the second rectification column of the present invention is installed in a double rectification column consisting of a so-called nitrogen column (lower column) 31 and an oxygen column (upper column) 32.
This example shows an example in which the configuration is applied.
圧力8. 5kg/cgffG , 5 4 0
0 Nrrr/ hの原料空気GAが、管33から主熱
交換器34を経て約167℃まで冷却された後、管35
を経て窒素塔31の底部に導入される。窒素塔31の頂
部からは、管36により一部の窒素ガスが製品窒素ガス
PGNとして導出され、管37,主熱交換器34を経て
県外に導出される。また窒素ガスの残部ONは、その一
部が凝縮器38で液化し、残部が管39を経て凝縮蒸発
器40で液化し、管41で前記凝縮器38で液化した液
化窒素と合流した後に管42を経て窒素塔31の還流液
となる。Pressure 8. 5kg/cgffG, 5 4 0
After the raw air GA of 0 Nrrr/h is cooled to about 167°C from the pipe 33 through the main heat exchanger 34, it is cooled to about 167°C.
The nitrogen gas is introduced into the bottom of the nitrogen column 31 through . A portion of the nitrogen gas is led out from the top of the nitrogen column 31 through a pipe 36 as a product nitrogen gas PGN, and is led out of the prefecture via a pipe 37 and a main heat exchanger 34. Further, when the remaining nitrogen gas is turned ON, a part of it is liquefied in the condenser 38, the remaining part is liquefied in the condensing evaporator 40 through the pipe 39, and the remaining part is liquefied in the condenser evaporator 40 in the pipe 41. 42 and becomes the reflux liquid of the nitrogen column 31.
一方窒素塔31の底部からは、原料空気G A Il1
に同伴された炭化水素が濃縮した液化空気LAが管44
に導出され、減圧弁45を経て前記凝縮器38で気化し
て排ガスWGとなり、管45から主熱交換器34,管4
6を経て膨張タービン47に導入され、装置に必要な寒
冷を発生した後に管48から再び主熱交換器34を経て
系外に導出される。On the other hand, from the bottom of the nitrogen column 31, raw air G A Il1
The liquefied air LA in which the hydrocarbons entrained in the
It passes through the pressure reducing valve 45 and is vaporized in the condenser 38 to become the exhaust gas WG, which is then passed from the pipe 45 to the main heat exchanger 34 and into the pipe 4.
6 to an expansion turbine 47, and after generating the necessary refrigeration for the device, it is led out of the system through a pipe 48 again via the main heat exchanger 34.
そして、窒素塔31の底部の原料空気GAの導入段より
高い精留段49の位置からは、炭化水素の少ない液化空
気PAが管50に導出され、減圧弁51で減圧した後に
酸素塔32の頂部に導入される。From the rectification stage 49 at the bottom of the nitrogen tower 31, which is higher than the feed air GA introduction stage, the liquefied air PA containing less hydrocarbons is led out to the pipe 50, and after being depressurized by the pressure reducing valve 51, it is transferred to the oxygen tower 32. introduced at the top.
製品となる酸素は、酸素塔32の底部から管52により
30Nry?/hの製品液化酸素PLOが、また凝縮蒸
発器40の直上からは管53により120NrI1l/
hの製品酸素ガスPGOがそれぞれ導出されており、製
品酸素ガスPGOは、主熱交換器34を経て温度回復し
た後に採取される。また酸素塔32の頂部からは管54
により排窒素WNが専出され、膨張タービン55を経て
前記排ガスWGの管48に合流して県外に導出される。Oxygen to be a product is delivered from the bottom of the oxygen tower 32 through a pipe 52 at a rate of 30 Nry? /h of product liquefied oxygen PLO, and from directly above the condenser evaporator 40, 120NrI 1l/h is supplied via pipe 53.
Product oxygen gas PGO of h is derived, respectively, and the product oxygen gas PGO is collected after temperature recovery through the main heat exchanger 34. A pipe 54 is also connected from the top of the oxygen tower 32.
The exhaust nitrogen WN is exclusively extracted, passes through the expansion turbine 55, joins the exhaust gas WG pipe 48, and is led out of the prefecture.
上記第2図に示す装置を用いて上記条件で原料空気を処
理し、
(D).窒素塔からの液化空気の導出を窒素塔底部から
行った場合、(従来法)
(E).窒素塔底部より1段上の精留段から液化空気を
導出した場合、
(F).窒素塔底部より1段上の精留段から液化空気を
導出し、酸素塔底部より1段上の精留段から酸素ガスを
、同じく2段上の精留段から液化酸素を導出した場合、
のそれぞれについて採取した酸素中の炭化水素量[vo
l.ppmlを本発明者が試算した結果を第2表に示す
。The raw air is treated under the above conditions using the apparatus shown in FIG. 2, and (D). When liquefied air is discharged from the nitrogen tower from the bottom of the nitrogen tower, (conventional method) (E). When liquefied air is led out from the rectification stage one stage above the bottom of the nitrogen column, (F). When liquefied air is led out from a rectification stage one stage above the bottom of the nitrogen tower, oxygen gas is led out from a rectification stage one stage above the bottom of the oxygen tower, and liquefied oxygen is led out from a rectification stage two stages above, The amount of hydrocarbons in the oxygen sampled for each [vo
l. Table 2 shows the results of the trial calculation of ppml by the present inventor.
第2表
このように、上記両実施例において、それぞれの炭化水
素低減手段を組合せて、即ち第1図に想像線X1で示す
ように下部塔1の底部より高い精留段位置から液化空気
LAを導出することもできる。また第2図に想像線x2
,x3で示すように製品酸素ガスPGO及び製品液化酸
素PLOの導出位置を酸素塔32の底部より高い精留段
位置とすることができ、それぞれ両塔において炭化水素
低減手段を用いた場合は、製品酸素中の炭化水素含有量
をさらに低減することができる。Table 2 Thus, in both of the above embodiments, the respective hydrocarbon reduction means are combined, that is, the liquefied air LA is discharged from the rectification stage position higher than the bottom of the lower column 1, as shown by the imaginary line X1 in FIG. It is also possible to derive In addition, imaginary line x2 is shown in Figure 2.
As shown by , The hydrocarbon content in the product oxygen can be further reduced.
尚、製品として採取する酸素は、液化酸素,酸素ガスの
いずれか一方でもよい。Note that the oxygen collected as a product may be either liquefied oxygen or oxygen gas.
以上説明したように、本発明の酸素の製造方法は、複精
留塔の上部塔底部より1乃至数段高い桔留段位置から製
品酸素を導出するから、あるいは複精留塔の下部塔底部
より1乃至数段高い精留段位置から液化空気を導出して
上部塔に導入するから、又は上記手段を組合せて用いる
から、炭化水素の含有量の少ない製品酸素を得ることが
でき、精製器等を用いずに極めて高純度の酸素を得るこ
とが可能である。As explained above, in the method for producing oxygen of the present invention, the product oxygen is derived from the barrier stage position that is one to several stages higher than the upper bottom of the double rectification column, or Since liquefied air is led out from a rectification stage one to several stages higher and introduced into the upper column, or by using a combination of the above methods, product oxygen with a low hydrocarbon content can be obtained, and the refiner It is possible to obtain extremely high purity oxygen without using.
また、上記製品酸素の導出部より下方の精留段の分を新
たに付加した精留塔を用いることにより、製品酸素の導
出部部分の精留条件を従来と略同等にすることができ、
窒素.アルゴンによる酸素純度の低下等も防止すること
ができる。In addition, by using a rectification column with a newly added rectification stage below the product oxygen delivery section, the rectification conditions at the product oxygen delivery section can be made approximately the same as in the past.
nitrogen. It is also possible to prevent a decrease in oxygen purity due to argon.
第1図は下部塔及び上部塔からなる複精留塔に本発明を
適用したー実施例を示す系統図、第2図は窒素塔及び酸
素塔からなる複精留塔に本発明を適用したー実施例を示
す系統図、第3図は従来の一般的な複粕留塔を用いた窒
素,酸素製造装置の一例を示す系統図である。
1・・・下部塔 2・・・上部塔 3・・・複桔留
塔4,34・・・主熱交換器 12.40・・・凝縮
蒸発器 20・・・底部から数段上の精留段位置21
.53・・・製品酸素ガス導出用の管 22,52・
・・製品液化酸素導出用の管 31・・・窒素塔32
・・・酸素塔 49・・・精留段 50・・・炭化
水素の少ない液化空気導出用の管
気 PGO・・・製品酸素ガス
化酸素
LA・・・液化空
PLO・・・製品液
第1圓
d
λ番Figure 1 is a system diagram showing an example in which the present invention was applied to a double rectification column consisting of a lower column and an upper column, and Figure 2 is a system diagram showing an example in which the present invention was applied to a double rectification column consisting of a nitrogen column and an oxygen column. FIG. 3 is a system diagram showing an example of a conventional nitrogen and oxygen production apparatus using a conventional double lees distillation column. 1...Lower column 2...Upper column 3...Double distillation column 4, 34...Main heat exchanger 12.40...Condensing evaporator 20...Refining several stages above the bottom Stop position 21
.. 53... Pipe for deriving product oxygen gas 22, 52.
... Pipe for deriving product liquefied oxygen 31 ... Nitrogen tower 32
... Oxygen tower 49 ... Rectification stage 50 ... Pipe air for delivering liquefied air with less hydrocarbons PGO ... Product oxygen gasification Oxygen LA ... Liquefied air PLO ... Product liquid No. 1 Round d λ number
Claims (1)
し、精留分離を行い酸素を製造する方法において、前記
複精留塔の上部塔底部より1乃至数段高い精留段位置か
ら製品酸素を導出することを特徴とする酸素の製造方法
。 2、原料空気を圧縮し、精製、冷却して複精留塔に導入
し、精留分離を行い酸素を製造する方法において、前記
複精留塔の下部塔底部より1乃至数段高い精留段位置か
ら液化空気を導出して上部塔に導入することを特徴とす
る酸素の製造方法。 3、前記上部塔及び/又は下部塔は、前記製品酸素の導
出部もしくは液化空気の導出部より下方に適数の精留段
を付設したものであることを特徴とする請求項1又は2
記載の酸素の製造方法。[Claims] 1. In a method for compressing raw air, purifying it, cooling it, introducing it into a double rectification column, and performing rectification separation to produce oxygen, 1. A method for producing oxygen, characterized in that product oxygen is derived from a rectification stage that is several steps higher. 2. In a method in which raw air is compressed, purified, cooled, introduced into a double rectification column, and subjected to rectification separation to produce oxygen, the rectification is carried out one to several stages higher than the bottom of the lower column of the double rectification column. A method for producing oxygen, characterized in that liquefied air is led out from a stage position and introduced into an upper column. 3. Claim 1 or 2, wherein the upper column and/or the lower column are provided with an appropriate number of rectification stages below the product oxygen outlet or liquefied air outlet.
The method for producing oxygen as described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1236748A JP2917031B2 (en) | 1989-09-12 | 1989-09-12 | Oxygen production method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1236748A JP2917031B2 (en) | 1989-09-12 | 1989-09-12 | Oxygen production method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0399190A true JPH0399190A (en) | 1991-04-24 |
JP2917031B2 JP2917031B2 (en) | 1999-07-12 |
Family
ID=17005205
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1236748A Expired - Fee Related JP2917031B2 (en) | 1989-09-12 | 1989-09-12 | Oxygen production method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2917031B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0640802A1 (en) * | 1993-08-23 | 1995-03-01 | The Boc Group, Inc. | Air separation |
EP0697575A1 (en) * | 1994-08-17 | 1996-02-21 | The Boc Group, Inc. | Cryogenic rectification method and apparatus |
EP0593703B2 (en) † | 1992-04-13 | 2001-06-20 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Ultra-high purity nitrogen and oxygen generator and process |
JP2016188751A (en) * | 2015-03-30 | 2016-11-04 | 大陽日酸株式会社 | Nitrogen and oxygen manufacturing method, and nitrogen and oxygen manufacturing device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4320397A1 (en) * | 2021-04-09 | 2024-02-14 | Linde GmbH | Method and plant for low temperature fractionation of air |
-
1989
- 1989-09-12 JP JP1236748A patent/JP2917031B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0593703B2 (en) † | 1992-04-13 | 2001-06-20 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Ultra-high purity nitrogen and oxygen generator and process |
EP0640802A1 (en) * | 1993-08-23 | 1995-03-01 | The Boc Group, Inc. | Air separation |
EP0697575A1 (en) * | 1994-08-17 | 1996-02-21 | The Boc Group, Inc. | Cryogenic rectification method and apparatus |
JP2016188751A (en) * | 2015-03-30 | 2016-11-04 | 大陽日酸株式会社 | Nitrogen and oxygen manufacturing method, and nitrogen and oxygen manufacturing device |
Also Published As
Publication number | Publication date |
---|---|
JP2917031B2 (en) | 1999-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5609040A (en) | Process and plant for producing carbon monoxide | |
US2762208A (en) | Separation of the constituents of air | |
US5509271A (en) | Process and installation for the separation of a gaseous mixture | |
JP5655104B2 (en) | Air separation method and air separation device | |
KR20000011251A (en) | Method and apparatus for carrying out cryogenic rectification of feed air to produce oxygen | |
JPH06207775A (en) | Low-temperature air separating method for manufacturing nitrogen having no carbon monoxide | |
KR100313616B1 (en) | Multiple column nitrogen generators with oxygen coproduction | |
US6178774B1 (en) | Process and plant for the combined production of an ammonia synthesis mixture and carbon monoxide | |
US3469410A (en) | Process and apparatus for the removal of traces of impurities from carbon dioxide | |
JPH02272289A (en) | Method for separating air | |
JPH05296651A (en) | Apparatus for producing nitrogen/oxygen of ultrahigh purity | |
JPH06210162A (en) | Ultralow temperature fractionation system with thermally unified argon column | |
US4057407A (en) | Method and apparatus for recovering argon from an air fractionating process | |
US8555673B2 (en) | Method and device for separating a mixture of at least hydrogen, nitrogen, and carbon monoxide by cryogenic distillation | |
EP0283213A2 (en) | Process for the Recovery of Argon | |
JP7355980B1 (en) | Ultra-high purity oxygen production method and ultra-high purity oxygen production equipment | |
JP2005529222A (en) | Plant unit and method for fractionating and purifying synthesis gas | |
JPH0399190A (en) | Method of manufacturing oxygen | |
JP3181546B2 (en) | Method and apparatus for producing nitrogen and argon from air | |
CN212842469U (en) | Single-tower cryogenic rectification argon recovery system with argon circulation and hydrogen circulation | |
JPH06207776A (en) | Method and equipment for manufacturing nitrogen and oxygen | |
JPH0412391B2 (en) | ||
JP3720863B2 (en) | Air liquefaction separation method | |
JP3282040B2 (en) | Ultra high purity oxygen sampling method and apparatus | |
JP2000258054A (en) | Method and apparatus for manufacturing low purity oxygen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |