JP7355980B1 - Ultra-high purity oxygen production method and ultra-high purity oxygen production equipment - Google Patents

Ultra-high purity oxygen production method and ultra-high purity oxygen production equipment Download PDF

Info

Publication number
JP7355980B1
JP7355980B1 JP2023070607A JP2023070607A JP7355980B1 JP 7355980 B1 JP7355980 B1 JP 7355980B1 JP 2023070607 A JP2023070607 A JP 2023070607A JP 2023070607 A JP2023070607 A JP 2023070607A JP 7355980 B1 JP7355980 B1 JP 7355980B1
Authority
JP
Japan
Prior art keywords
oxygen
rectification column
nitrogen
heat exchanger
main heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023070607A
Other languages
Japanese (ja)
Inventor
献児 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority to JP2023070607A priority Critical patent/JP7355980B1/en
Application granted granted Critical
Publication of JP7355980B1 publication Critical patent/JP7355980B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04321Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04436Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system
    • F25J3/04454Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system a main column system not otherwise provided, e.g. serially coupling of columns or more than three pressure levels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04612Heat exchange integration with process streams, e.g. from the air gas consuming unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/08Separating gaseous impurities from gases or gaseous mixtures or from liquefied gases or liquefied gaseous mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/20Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/72Refluxing the column with at least a part of the totally condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/50Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/04Recovery of liquid products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/56Ultra high purity oxygen, i.e. generally more than 99,9% O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/50Separating low boiling, i.e. more volatile components from oxygen, e.g. N2, Ar
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams

Abstract

【課題】水電解による副生酸素から低沸点成分を除去し超高純度酸素を低コストで得ることができる超高純度酸素製造方法を提供する。【解決手段】超高純度酸素製造方法は、低沸点成分を不純物として含む原料酸素が主熱交換器1の温端から導入され、冷却された後に酸素精留塔5に導入され、酸素精留塔5の下部から前記低沸点成分が除去された製品超高純度酸素としてガスまたは液体として導出される工程を含む。【選択図】図1An object of the present invention is to provide a method for producing ultra-high purity oxygen that can remove low-boiling point components from by-product oxygen produced by water electrolysis and obtain ultra-high purity oxygen at low cost. [Solution] In the method for producing ultra-high purity oxygen, raw oxygen containing low boiling point components as impurities is introduced from the warm end of a main heat exchanger 1, cooled, and then introduced into an oxygen rectification column 5, where oxygen rectification is carried out. The method includes a step in which the low-boiling point components are removed from the lower part of the column 5 and the ultra-high purity oxygen product is discharged as a gas or liquid. [Selection diagram] Figure 1

Description

本発明は、超高純度酸素製造方法及び超高純度酸素製造装置に関する。特に、不純物濃度がppbレベル以下に制御された、超高純度酸素の製造に関する。 The present invention relates to a method for producing ultra-high purity oxygen and an apparatus for producing ultra-high purity oxygen. In particular, it relates to the production of ultra-high purity oxygen with impurity concentrations controlled below the ppb level.

酸素中不純物として、メタン等の高沸点成分及びアルゴン等の低沸点成分が、ppbレベル以下に制御された高純度酸素の需要が、特に半導体産業向けにある。
不純物を除去する方法として、触媒と吸着材を併用する方法や、酸素を液化して精留操作によって分離する深冷分離法が知られているが、特にアルゴン不純物については化学的に不活性であることや、分子サイズが酸素分子と極めて近いことから吸着法や分子ふるいで除去することは困難であり、深冷分離法が適当である。
超高純度酸素を得る方法として、空気分離装置から供給される液化酸素(例えば特許文献1参照)または酸素ガス(例えば特許文献2参照)を精留する方法、または空気を精留する精留塔から高沸点成分が除去された酸素含有液を導出し、酸素精留塔でアルゴンを除去する方法が知られている。
特許文献3では、複式精留システムにおいて超高純度酸素を製造する方法であり、特許文献4では、単式窒素精留システムにおいて超高純度酸素を製造する方法である。
There is a demand for high-purity oxygen in which high-boiling point components such as methane and low-boiling point components such as argon are controlled to below the ppb level as impurities in oxygen, especially for the semiconductor industry.
Methods for removing impurities include methods that use a combination of catalysts and adsorbents, and cryogenic separation methods that liquefy oxygen and separate it by rectification, but argon impurities in particular are chemically inert. It is difficult to remove by adsorption method or molecular sieve because the molecular size is very similar to oxygen molecules, and cryogenic separation method is suitable.
As a method for obtaining ultra-high purity oxygen, there is a method of rectifying liquefied oxygen (see, for example, Patent Document 1) or oxygen gas (see, for example, Patent Document 2) supplied from an air separation device, or a rectification column that rectifies air. A method is known in which an oxygen-containing liquid from which high-boiling components have been removed is derived from the oxygen-containing liquid, and argon is removed in an oxygen rectification column.
Patent Document 3 is a method for producing ultra-high purity oxygen in a double rectification system, and Patent Document 4 is a method for producing ultra-high purity oxygen in a single nitrogen rectification system.

しかしながら、超高純度酸素製造の原料として、水を電気分解して水素を発生する際の副生酸素を原料とする場合がある。この水電気分解由来の酸素は、大気成分を原料とする空気分離装置から得られる酸素とは異なり、大気由来のメタン等の高沸点成分を含まない一方、水に溶解していた低沸点成分を若干含む。水中の低沸点不純物は、窒素ガスや酸素ガスを利用したバブリング法等によって低減することが可能であるが、高水準の不純物除去およびその安定度の観点から、深冷分離法によって制御することが望ましい。
従来技術では、酸素ガスの深冷分離では、特許文献2に記載の技術の適用が妥当であるが、複数の熱交換器や圧縮機を利用する窒素熱媒サイクルのコストが高く、より低コストの技術開発が必要であった。
However, as a raw material for producing ultra-high purity oxygen, by-product oxygen when hydrogen is generated by electrolyzing water is sometimes used as a raw material. Unlike oxygen obtained from air separation equipment that uses atmospheric components as raw materials, this oxygen derived from water electrolysis does not contain high-boiling components such as methane derived from the atmosphere, but it does not contain low-boiling components dissolved in water. Includes some. Low-boiling impurities in water can be reduced by bubbling methods using nitrogen gas or oxygen gas, but from the viewpoint of high-level impurity removal and stability, it is possible to control them by cryogenic separation. desirable.
In the conventional technology, it is appropriate to apply the technology described in Patent Document 2 for cryogenic separation of oxygen gas, but the cost of the nitrogen heat medium cycle that uses multiple heat exchangers and compressors is high, and a lower cost method is required. technology development was necessary.

特許第3929799号Patent No. 3929799 特開2021-55890号公報Japanese Patent Application Publication No. 2021-55890 米国特許第5,049,173号U.S. Patent No. 5,049,173 国際出願公開WO2014/173496 A2International Application Publication WO2014/173496 A2

本開示は、水電解による副生酸素から低沸点成分を除去し超高純度酸素を低コストで得ることができる超高純度酸素製造方法及び超高純度酸素装置を提供する。 The present disclosure provides an ultra-high-purity oxygen production method and an ultra-high-purity oxygen apparatus that can remove low-boiling point components from by-product oxygen by water electrolysis and obtain ultra-high purity oxygen at low cost.

本開示は、水電解による副生酸素から低沸点成分を除去し超高純度酸素を低コストで得ることができる超高純度酸素製造方法及び超高純度酸素製造装置を提供する。 The present disclosure provides an ultra-high purity oxygen production method and an ultra-high purity oxygen production apparatus that can remove low boiling point components from by-product oxygen by water electrolysis and obtain ultra-high purity oxygen at low cost.

本開示の超高純度酸素製造装置(A1、A2、A3)は、
原料空気および原料酸素が導入される主熱交換器(1)と、
前記主熱交換器(1)で熱交換された原料空気が導入される底部(21)を有する第一(中圧)精留塔(2)と、
前記第一精留塔(2)の塔頂(23)から導出された窒素富化ガスを凝縮する少なくとも一つの窒素凝縮器(3)と、
前記窒素凝縮器(3)で凝縮された窒素富化ガスおよび/または前記第一精留塔(2)の塔頂(23)から導出された窒素富化ガスを、サブクーラ(8)で冷却された後で、導入される塔頂(43)を有する第二(低圧)精留塔(4)と、
前記窒素凝縮器(3)の気相から導出されるガスを前記主熱交換器(1)に部分的に通過させた後で導入される膨張タービン(92)と、
前記主熱交換器(1)で熱交換された前記原料酸素が導入される塔頂(53)あるいは精製部(52)を有する酸素精留塔(5)と、
前記酸素精留塔(5)の底部(51)の下方に配置され、前記主熱交換器で冷却された原料空気の一部、前記主熱交換器で冷却された原料酸素の一部、窒素精留塔を構成する中圧精留塔から導出される液またはガスの内一つ以上を熱媒として(例えば、前記第一精留塔(2)の底部(21)から導出される酸素富化液を熱媒として)、液化酸素を蒸発させる酸素蒸発器(6)と、
前記第一精留塔(2)の底部(21)から導出される酸素富化液と、前記窒素凝縮器(3)で凝縮された精製ガスおよび/または前記第一精留塔(2)の塔頂(23)から導出された精製ガスと、前記第二精留塔(4)の塔頂(43)から導出される窒素富化ガスとを、熱交換するサブクーラ(8)と、
を備えていてもよい。
The ultra-high purity oxygen production apparatus (A1, A2, A3) of the present disclosure includes:
a main heat exchanger (1) into which feed air and feed oxygen are introduced;
a first (medium pressure) rectification column (2) having a bottom (21) into which the feed air heat exchanged in the main heat exchanger (1) is introduced;
at least one nitrogen condenser (3) for condensing the nitrogen-enriched gas derived from the top (23) of the first rectification column (2);
The nitrogen-enriched gas condensed in the nitrogen condenser (3) and/or the nitrogen-enriched gas derived from the top (23) of the first rectification column (2) is cooled in a subcooler (8). a second (low pressure) rectification column (4) having a column top (43) introduced after the
an expansion turbine (92) introduced after partially passing the gas derived from the gas phase of the nitrogen condenser (3) through the main heat exchanger (1);
an oxygen rectification column (5) having a column top (53) or a purification section (52) into which the raw material oxygen heat-exchanged in the main heat exchanger (1) is introduced;
A portion of the feed air cooled by the main heat exchanger, a portion of the feed oxygen cooled by the main heat exchanger, and nitrogen disposed below the bottom (51) of the oxygen rectification column (5). One or more of the liquids or gases discharged from the medium-pressure rectification column constituting the rectification column is used as a heat medium (for example, the oxygen-rich fraction derived from the bottom (21) of the first rectification column (2) is used as a heating medium). an oxygen evaporator (6) that evaporates liquefied oxygen (using liquefied liquid as a heating medium);
The oxygen-enriched liquid derived from the bottom (21) of the first rectification column (2) and the purified gas condensed in the nitrogen condenser (3) and/or the first rectification column (2) a subcooler (8) that exchanges heat between the purified gas led out from the tower top (23) and the nitrogen-enriched gas led out from the tower top (43) of the second rectification tower (4);
may be provided.

前記超高純度酸素製造装置(A1、A2、A3)は、
前記酸素精留塔(5)の塔頂(53)から導出される低沸点成分含有酸素ガスを凝縮する酸素凝縮器(7)を備えていてもよい。
The ultra-high purity oxygen production equipment (A1, A2, A3) is
It may be provided with an oxygen condenser (7) that condenses the oxygen gas containing low-boiling components derived from the top (53) of the oxygen rectification column (5).

前記超高純度酸素製造装置(A1、A2、A3)は、
前記原料空気を、主熱交換器(1)を介して前記第一精留塔(2)の底部(21)の気相あるいは精製部(22)の下部へ導入する原料空気配管ライン(L1)と、
前記第一精留塔(2)の底部(21)から導出される酸素富化液を、前記サブクーラ(8)を介して、前記第二精留塔(4)の精留部(42)の中間段へ導入する第一酸素富化液配管ライン(L21a)と、
前記第一精留塔(2)の塔頂(23)から導出される窒素富化ガスを、前記窒素凝縮器(3)へ送り、前記塔頂(23)から導出される配管ライン(L231)へ合流する凝縮配管ライン(L23)と、
前記第一精留塔(2)の塔頂(23)から導出される窒素富化ガスを、前記サブクーラ(8)を介して、第二精留塔(4)の塔頂(43)へ導入する第一循環ガス配管ライン(L231)と、
前記窒素凝縮器(3)の気相から導出されるガスを、前記主熱交換器(1)に部分的に通過させ、次いで膨張タービン(92)で使用され、再び、前記主熱交換器(1)を通過させる第一廃ガス配管ライン(L31)と、
前記第二精留塔(4)の塔頂(43)から導出される窒素富化ガスを、前記サブクーラ(8)を介して、前記主熱交換器(1)に通過させる製品窒素ガス配管ライン(L43)と、
前記原料酸素を、前記主熱交換器(1)を介して前記酸素精留塔(5)の塔頂(53)あるいは精留部(52)へ導入する原料酸素配管ライン(L10)と、
前記原料酸素を、前記原料酸素配管ライン(L10)の主熱交換器(1)の途中から分岐し、前記膨張タービン(92)へ接続される前の前記第一廃ガス配管ライン(L31)へ合流する分岐原料酸素配管ライン(L11)と、
前記酸素精留塔(5)の塔頂(53)から導出される低沸点成分含有酸素ガスを、廃ガス配管ライン(L31)へ合流させる、あるいは前記主熱交換器(1)に通過させる第二廃ガス配管ライン(L53)と、
前記第一精留塔(2)の底部(21)から導出される酸素富化液を、前記酸素蒸発器(6)へ導入し、前記第二精留塔(4)の精留部(42)の中間段へ導入する、あるいは、前記酸素精留塔(5)の塔頂(53)から導出される低沸点成分含有酸素ガスを凝縮する酸素凝縮器(7)の冷熱液部(71)へ導入するための第二酸素富化液配管ライン(L21b)と、
前記酸素凝縮器(7)の冷熱液部(71)から導出される酸素富化液を、前記第二精留塔(4)の精留部(42)の中間段へ導入する第二循環ガス配管ライン(L71)と、
前記酸素凝縮器(7)の塔頂(73)から導出されるガスを、前記第二精留塔(4)の精留部(42)の中間段へ導入する第三循環ガス配管ライン(L73)と、
前記酸素蒸発器(6)の蒸発液部(61)から超高純度酸素(液)を取り出す超高純度酸素取出配管ライン(L61)と、
を備えていてもよい。
The ultra-high purity oxygen production equipment (A1, A2, A3) is
A feed air piping line (L1) that introduces the feed air into the gas phase of the bottom (21) of the first rectification column (2) or the lower part of the purification section (22) via the main heat exchanger (1). and,
The oxygen-enriched liquid derived from the bottom (21) of the first rectification column (2) is passed through the subcooler (8) to the rectification section (42) of the second rectification column (4). a first oxygen-enriched liquid piping line (L21a) introduced into the intermediate stage;
A piping line (L231) that sends the nitrogen-enriched gas led out from the top (23) of the first rectification column (2) to the nitrogen condenser (3) and is led out from the top (23). A condensing piping line (L23) that joins the
The nitrogen-enriched gas derived from the top (23) of the first rectification column (2) is introduced into the top (43) of the second rectification column (4) via the subcooler (8). a first circulating gas piping line (L231),
The gas drawn off from the gas phase of the nitrogen condenser (3) is partially passed through the main heat exchanger (1) and then used in the expansion turbine (92) and again into the main heat exchanger (1). 1) a first waste gas piping line (L31) that passes through the
A product nitrogen gas piping line that allows the nitrogen-enriched gas derived from the top (43) of the second rectification column (4) to pass through the main heat exchanger (1) via the subcooler (8). (L43) and
a raw material oxygen piping line (L10) that introduces the raw material oxygen to the top (53) of the oxygen rectification column (5) or the rectification section (52) via the main heat exchanger (1);
The raw material oxygen is branched from the main heat exchanger (1) of the raw material oxygen piping line (L10) to the first waste gas piping line (L31) before being connected to the expansion turbine (92). A branch raw material oxygen piping line (L11) that joins,
The oxygen gas containing low-boiling components derived from the top (53) of the oxygen rectification column (5) is joined to the waste gas piping line (L31) or passed through the main heat exchanger (1). Two waste gas piping lines (L53),
The oxygen-enriched liquid drawn out from the bottom (21) of the first rectification column (2) is introduced into the oxygen evaporator (6), and the rectification section (42) of the second rectification column (4) is introduced into the oxygen evaporator (6). ), or the cold liquid section (71) of the oxygen condenser (7) that condenses the oxygen gas containing low-boiling components introduced from the top (53) of the oxygen rectification column (5). a second oxygen-enriched liquid piping line (L21b) for introducing the
A second circulating gas that introduces the oxygen-enriched liquid derived from the cold liquid section (71) of the oxygen condenser (7) into the intermediate stage of the rectification section (42) of the second rectification column (4). Piping line (L71) and
A third circulating gas piping line (L73) introduces the gas led out from the top (73) of the oxygen condenser (7) into the intermediate stage of the rectification section (42) of the second rectification column (4). )and,
an ultra-high purity oxygen extraction piping line (L61) for extracting ultra-high purity oxygen (liquid) from the evaporation liquid section (61) of the oxygen evaporator (6);
may be provided.

他の開示の超高純度酸素製造装置(B1、B2)は、
原料空気および原料酸素が導入される主熱交換器(1)と、
前記主熱交換器(1)で熱交換された原料空気が導入される底部(21)を有する窒素精留塔(2)と、
前記窒素精留塔(2)の塔頂(23)から導出された窒素富化ガスを凝縮する第一窒素凝縮器(3)と、
前記窒素精留塔(2)の塔頂(23)から導出された窒素富化ガスを凝縮する第二窒素凝縮器(30)と、
前記第一窒素凝縮器(3)の気相から導出されるガスを前記主熱交換器(1)に部分的に通過させた後で導入される膨張タービン(92)と、
前記膨張タービン(92)と連結され、前記第二窒素凝縮器(30)の気相から導出されるガスを圧縮するコンプレッサー(91)と、
前記主熱交換器(1)で熱交換された前記原料酸素が導入される塔頂(53)あるいは精製部(52)を有する酸素精留塔(5)と、
前記酸素精留塔(5)の底部(51)の下方に配置され、前記窒素精留塔(2)の底部(21)から導出される酸素富化液を熱媒として、液化酸素を蒸発させる酸素蒸発器(6)と、
を備えていてもよい。
Other disclosed ultra-high purity oxygen production devices (B1, B2) include:
a main heat exchanger (1) into which feed air and feed oxygen are introduced;
a nitrogen rectification column (2) having a bottom part (21) into which the raw air heat exchanged in the main heat exchanger (1) is introduced;
a first nitrogen condenser (3) that condenses the nitrogen-enriched gas derived from the top (23) of the nitrogen rectification column (2);
a second nitrogen condenser (30) that condenses the nitrogen-enriched gas derived from the top (23) of the nitrogen rectification column (2);
an expansion turbine (92) introduced after partially passing the gas derived from the gas phase of the first nitrogen condenser (3) through the main heat exchanger (1);
a compressor (91) connected to the expansion turbine (92) and compressing gas derived from the gas phase of the second nitrogen condenser (30);
an oxygen rectification column (5) having a column top (53) or a purification section (52) into which the raw material oxygen heat-exchanged in the main heat exchanger (1) is introduced;
Disposed below the bottom (51) of the oxygen rectification column (5), evaporating liquefied oxygen using an oxygen-enriched liquid derived from the bottom (21) of the nitrogen rectification column (2) as a heat medium. an oxygen evaporator (6);
may be provided.

前記超高純度酸素製造装置(B1、B2)は、
前記原料空気を、主熱交換器(1)を介して前記窒素精留塔(2)の底部(21)の気相あるいは精留部(22)の下部へ導入する原料空気配管ライン(L1)と、
前記窒素精留塔(2)の底部(21)から導出される酸素富化液を、前記第二窒素凝縮器(30)の冷熱液部(不図示)へ導入する第一酸素富化液配管ライン(L21a)と、
前記窒素精留塔(2)の塔頂(23)から導出される窒素富化ガスを、前記第一窒素凝縮器(3)へ送り、前記塔頂(23)へ戻す第一凝縮配管ライン(L231)と、
前記窒素精留塔(2)の塔頂(23)から導出される窒素富化ガスを、前記第二窒素凝縮器(30)へ送り、前記塔頂(23)へ戻す第二凝縮配管ライン(L232)と、
前記窒素精留塔(2)の塔頂(23)から導出される窒素富化ガスを、前記主熱交換器(1)に通過させる製品窒素ガス配管ライン(L23)と、
前記窒素精留塔(2)の精留部(22)から導出される酸素含有液を、前記酸素精留塔(5)の塔頂(53)あるいは精留部(52)へ導入する酸素含有液配管ライン(L22)と、
前記第一窒素凝縮器(3)の塔頂の気相(31)から導出されるガスを、前記主熱交換器(1)に部分的に通過させ、次いで膨張タービン(92)で使用され、再び、前記主熱交換器(1)に通過させる第一廃ガス配管ライン(L31)と、
前記第二窒素凝縮器(30)の塔頂の気相(301)から導出されるガスを、前記コンプレッサー(91)で圧縮させ、次いで前記主熱交換器(1)に部分的に通過させ、前記窒素精留塔(2)の精留部(22)の下部へ導入するリサイクルガス配管ライン(L301)と、
前記原料酸素を、主熱交換器(1)を介して前記酸素精留塔(5)の塔頂(53)あるいは精留部(52)へ導入する原料酸素配管ライン(L10)と、
前記原料酸素を、前記原料酸素配管ライン(L10)の主熱交換器(1)の途中から分岐し、前記膨張タービン(92)へ接続される前の前記第一廃ガス配管ライン(L31)へ合流する分岐原料酸素配管ライン(L11)と、
前記酸素精留塔(5)の塔頂(53)から導出される低沸点成分含有酸素ガスを、廃ガス配管ライン(L31)へ合流させる、あるいは前記主熱交換器(1)を通過させる第二廃ガス配管ライン(L53)と、
前記窒素精留塔(2)の底部(21)から導出される酸素富化液を、前記酸素蒸発器(6)へ導入し、前記第二窒素凝縮器(30)の冷熱液部(不図示)へ導入するための第二酸素富化液配管ライン(L21b)と、
前記酸素蒸発器(6)の蒸発液部(61)から超高純度酸素(液)を取り出す超高純度酸素取出配管ライン(L61)と、
を備えていてもよい。
The ultra-high purity oxygen production equipment (B1, B2) is
A feed air piping line (L1) that introduces the feed air into the gas phase of the bottom (21) of the nitrogen rectification column (2) or the lower part of the rectification section (22) through the main heat exchanger (1). and,
A first oxygen-enriched liquid pipe that introduces the oxygen-enriched liquid derived from the bottom (21) of the nitrogen rectification column (2) into the cold liquid section (not shown) of the second nitrogen condenser (30). Line (L21a) and
A first condensing piping line ( L231) and
A second condensing piping line ( L232) and
a product nitrogen gas piping line (L23) that allows the nitrogen-enriched gas derived from the top (23) of the nitrogen rectification column (2) to pass through the main heat exchanger (1);
The oxygen-containing liquid derived from the rectification section (22) of the nitrogen rectification column (2) is introduced into the top (53) or rectification section (52) of the oxygen rectification column (5). Liquid piping line (L22),
the gas withdrawn from the gas phase (31) at the top of said first nitrogen condenser (3) is partially passed through said main heat exchanger (1) and then used in an expansion turbine (92); A first waste gas piping line (L31) that is passed through the main heat exchanger (1) again;
The gas derived from the gas phase (301) at the top of the second nitrogen condenser (30) is compressed by the compressor (91), and then partially passed through the main heat exchanger (1), a recycled gas piping line (L301) introduced into the lower part of the rectification section (22) of the nitrogen rectification column (2);
a raw oxygen piping line (L10) that introduces the raw material oxygen to the top (53) of the oxygen rectification column (5) or the rectification section (52) via the main heat exchanger (1);
The raw material oxygen is branched from the main heat exchanger (1) of the raw material oxygen piping line (L10) to the first waste gas piping line (L31) before being connected to the expansion turbine (92). A branch raw material oxygen piping line (L11) that joins,
The oxygen gas containing low-boiling components derived from the top (53) of the oxygen rectification column (5) is joined to the waste gas piping line (L31) or passed through the main heat exchanger (1). Two waste gas piping lines (L53),
The oxygen-enriched liquid derived from the bottom (21) of the nitrogen rectification column (2) is introduced into the oxygen evaporator (6), and the cold liquid section (not shown) of the second nitrogen condenser (30) ) a second oxygen-enriched liquid piping line (L21b) for introducing into the
an ultra-high purity oxygen extraction piping line (L61) for extracting ultra-high purity oxygen (liquid) from the evaporation liquid section (61) of the oxygen evaporator (6);
may be provided.

前記超高純度酸素製造装置(A1、A2、A3、B1、B2)の前記酸素蒸発器(6)は、前記主熱交換器(1)で冷却された原料空気の一部、前記主熱交換器(1)で冷却された原料酸素の一部、前記中圧精留塔(4)から導出される酸素含有液または液化窒素のうち1つ以上を熱媒として利用してもよい。
前記超高純度酸素製造装置(A1、A2、A3、B1)は、
流量測量器、圧力測定器、温度測定器、液レベル測定器などの各種計測器と、
制御弁、仕切弁などの各種弁と、
各要素間を連結する配管と、
を有していてもよい。
The oxygen evaporator (6) of the ultra-high purity oxygen production apparatus (A1, A2, A3, B1, B2) is configured to absorb a portion of the raw air cooled by the main heat exchanger (1), One or more of a part of the raw oxygen cooled in the reactor (1), an oxygen-containing liquid discharged from the medium-pressure rectification column (4), or liquefied nitrogen may be used as a heat medium.
The ultra-high purity oxygen production equipment (A1, A2, A3, B1) is
Various measuring instruments such as flow rate measuring instruments, pressure measuring instruments, temperature measuring instruments, liquid level measuring instruments, etc.
Various valves such as control valves and gate valves,
Piping that connects each element,
It may have.

(作用効果)
(1)窒素ガスを製造する空気分離装置や窒素発生装置に酸素精留塔を組み合わせ、従来技術より少ない機器構成で効率的に水電気分解による副生酸素を超高純度酸素に生成することができる。
(2)特に、主熱交換器で原料酸素を液化するプロセスは、特許文献2で見られるような酸素ガスの精製方法と異なり、空気分離装置の主熱交換器冷端部で酸素を液化するに足る低温を十分に確保できるからこそ可能となるものである。
(3)サイクル窒素圧縮機や専用の主熱交換器を要する従来法に比べると、1装置あたり設備投資コストで大きなコストダウンが図れると同時に、サイクル窒素圧縮機に要する電力も削減することができた。
(4)水電気分解装置を使用する半導体製造プロセスにおいて有用である。
(effect)
(1) By combining an oxygen rectification column with an air separation device or nitrogen generator that produces nitrogen gas, it is possible to efficiently generate ultra-high-purity oxygen from water electrolysis by-product oxygen with less equipment than conventional technology. can.
(2) In particular, the process of liquefying feedstock oxygen in the main heat exchanger is different from the oxygen gas purification method as seen in Patent Document 2, in which oxygen is liquefied at the cold end of the main heat exchanger of the air separation device. This is possible because it is possible to secure a sufficiently low temperature.
(3) Compared to the conventional method, which requires a cycle nitrogen compressor and a dedicated main heat exchanger, it is possible to significantly reduce the capital investment cost per device, and at the same time, it is possible to reduce the electricity required for the cycle nitrogen compressor. Ta.
(4) It is useful in semiconductor manufacturing processes that use water electrolyzers.

実施形態1の超高純度酸素製造装置を示す図である。1 is a diagram showing an ultra-high purity oxygen production apparatus according to Embodiment 1. FIG. 実施形態2の超高純度酸素製造装置を示す図である。FIG. 2 is a diagram showing an ultra-high purity oxygen production apparatus according to a second embodiment. 実施形態3の超高純度酸素製造装置を示す図である。FIG. 7 is a diagram showing an ultra-high purity oxygen production apparatus according to Embodiment 3. 実施形態4の超高純度酸素製造装置を示す図である。FIG. 7 is a diagram showing an ultra-high purity oxygen production apparatus according to Embodiment 4. 実施形態5の超高純度酸素製造装置を示す図である。FIG. 7 is a diagram showing an ultra-high purity oxygen production apparatus according to Embodiment 5.

以下に本開示のいくつかの実施形態について説明する。以下に説明する実施形態は、本開示の一例を説明するものである。本開示は以下の実施形態になんら限定されるものではなく、本開示の要旨を変更しない範囲において実施される各種の変形形態も含む。なお、以下で説明される構成の全てが本開示の必須の構成であるとは限らない。上流や下流はガス流の流れ方向を基準にしている。 Some embodiments of the present disclosure will be described below. The embodiment described below describes an example of the present disclosure. The present disclosure is not limited to the following embodiments in any way, and includes various modifications that are implemented within the scope of the gist of the present disclosure. Note that not all of the configurations described below are essential configurations of the present disclosure. Upstream and downstream are based on the direction of gas flow.

(実施形態1)
実施形態1の超高純度酸素装置A1を図1を用いて説明する。
超高純度酸素装置A1は、主熱交換器1と、中圧精留塔2と、窒素凝縮器3と、低圧精留塔4と、膨張タービン92と、酸素精留塔5と、酸素蒸発器6と、サブクーラ8と、を備える空気分装置を構成する。
主熱交換器1は、原料空気および原料酸素が温端から導入され冷端から導出され、製品窒素ガス、廃ガスが冷端から導入され温端から導出される。原料空気は所定の不純物、水分除去が行われる。原料酸素は、水電気分解の副生成物の酸素であり、低沸点成分(例えば、窒素やアルゴン)を不純物として含む。原料酸素の酸素濃度は、99.99%程度である。
酸素中の低沸点成分を深冷分離法で除去するには、まず酸素を液化してから精留塔内で酸素を含有する蒸気流と熱と物質を交換し、液相に酸素を濃縮しつつ低沸点成分を除去するのが望ましく、そのために本実施形態では主熱交換器1で原料酸素の少なくとも一部を液化してから酸素精留塔5に原料酸素を供給する。
(Embodiment 1)
The ultra-high purity oxygen device A1 of Embodiment 1 will be explained using FIG. 1.
The ultra-high purity oxygen device A1 includes a main heat exchanger 1, a medium-pressure rectifier 2, a nitrogen condenser 3, a low-pressure rectifier 4, an expansion turbine 92, an oxygen rectifier 5, and an oxygen evaporator. An air separation device includes a container 6 and a subcooler 8.
In the main heat exchanger 1, raw material air and raw material oxygen are introduced from the hot end and extracted from the cold end, and product nitrogen gas and waste gas are introduced from the cold end and extracted from the warm end. Predetermined impurities and moisture are removed from the raw air. The raw material oxygen is oxygen that is a byproduct of water electrolysis, and contains low boiling point components (for example, nitrogen and argon) as impurities. The oxygen concentration of the raw material oxygen is about 99.99%.
To remove low-boiling components in oxygen by cryogenic separation, the oxygen is first liquefied and then heat and substances are exchanged with an oxygen-containing vapor stream in a rectification column to concentrate the oxygen into the liquid phase. It is desirable to remove low-boiling point components at the same time, and for this purpose, in this embodiment, at least a part of the raw oxygen is liquefied in the main heat exchanger 1, and then the raw oxygen is supplied to the oxygen rectification column 5.

(実施形態1)
実施形態1の超高純度酸素製造装置A1を図1を用いて説明する。
超高純度酸素製造装置A1は、主熱交換器1と、中圧精留塔2と、窒素凝縮器3と、低圧精留塔4と、膨張タービン92と、酸素精留塔5と、酸素蒸発器6と、サブクーラ8と、を備える空気分装置を構成する。
主熱交換器1は、原料空気および原料酸素が温端から導入され冷端から導出され、製品窒素ガス、廃ガスが冷端から導入され温端から導出される。原料空気は所定の不純物、水分除去が行われる。原料酸素は、水電気分解の副生成物の酸素であり、低沸点成分(例えば、窒素やアルゴン)を不純物として含む。原料酸素の酸素濃度は、99.99%程度である。
酸素中の低沸点成分を深冷分離法で除去するには、まず酸素を液化してから精留塔内で酸素を含有する蒸気流と熱と物質を交換し、液相に酸素を濃縮しつつ低沸点成分を除去するのが望ましく、そのために本実施形態では主熱交換器1で原料酸素の少なくとも一部を液化してから酸素精留塔5に原料酸素を供給する。
(Embodiment 1)
The ultra-high purity oxygen production apparatus A1 of Embodiment 1 will be explained using FIG. 1.
The ultra-high purity oxygen production apparatus A1 includes a main heat exchanger 1, a medium pressure rectification column 2, a nitrogen condenser 3, a low pressure rectification column 4, an expansion turbine 92, an oxygen rectification column 5, and an oxygen rectification column 5. An air separation device includes an evaporator 6 and a subcooler 8.
In the main heat exchanger 1, raw material air and raw material oxygen are introduced from the hot end and extracted from the cold end, and product nitrogen gas and waste gas are introduced from the cold end and extracted from the warm end. Predetermined impurities and moisture are removed from the raw air. The raw material oxygen is oxygen that is a byproduct of water electrolysis, and contains low boiling point components (for example, nitrogen and argon) as impurities. The oxygen concentration of the raw material oxygen is about 99.99%.
To remove low-boiling components in oxygen by cryogenic separation, the oxygen is first liquefied and then heat and substances are exchanged with an oxygen-containing vapor stream in a rectification column to concentrate the oxygen into the liquid phase. It is desirable to remove low-boiling point components at the same time, and for this purpose, in this embodiment, at least a part of the raw oxygen is liquefied in the main heat exchanger 1, and then the raw oxygen is supplied to the oxygen rectification column 5.

窒素凝縮器3は、中圧精留塔2の塔頂23から導出された窒素富化ガスを凝縮する。第一廃ガス配管ラインL31は、窒素凝縮器3の気相から導出されるガスを、主熱交換器1に部分的に通過させ、次いで膨張タービン92で使用され、再び、主熱交換器1に通過させる配管ラインである。 The nitrogen condenser 3 condenses the nitrogen-enriched gas derived from the top 23 of the medium pressure rectification column 2. The first waste gas piping line L31 allows the gas drawn off from the gas phase of the nitrogen condenser 3 to partially pass through the main heat exchanger 1 and then to be used in the expansion turbine 92 and again to the main heat exchanger 1. This is a piping line that is passed through.

低圧精留塔4は、窒素凝縮器3で凝縮された窒素富化ガスおよび/または中圧精留塔2の塔頂23から導出された窒素富化ガスを、サブクーラ8で冷却された後で、導入される塔頂43、精留部42を有する。製品窒素ガス配管ラインL43は、低圧第二精留塔4の塔頂43から導出される窒素富化ガスを、サブクーラ8を介して、主熱交換器1に通過させる配管ラインである。 The low-pressure rectification column 4 cools the nitrogen-enriched gas condensed in the nitrogen condenser 3 and/or the nitrogen-enriched gas derived from the top 23 of the medium-pressure rectification column 2 after being cooled in the subcooler 8. , a column top 43 for introduction, and a rectification section 42. The product nitrogen gas piping line L43 is a piping line that allows the nitrogen-enriched gas derived from the top 43 of the low-pressure second rectification column 4 to pass through the main heat exchanger 1 via the subcooler 8.

膨張タービン92は、窒素凝縮器3の気相から導出されるガスを主熱交換器1に部分的に通過させた後で導入される。膨張タービン92で使用された後のガスは、再び主熱交換器1へ送られ、廃ガスとして導出される。 The expansion turbine 92 is introduced after the gases drawn off from the gas phase of the nitrogen condenser 3 have been partially passed through the main heat exchanger 1 . After being used in the expansion turbine 92, the gas is sent to the main heat exchanger 1 again and discharged as waste gas.

酸素精留塔5は、主熱交換器1で熱交換された原料酸素が導入される塔頂53あるいは精製部52を有する。原料酸素配管ラインL10は、原料酸素を、主熱交換器1を介して酸素精留塔5の塔頂53あるいは精留部52へ導入する配管ラインである。第二廃ガス配管ラインL53は、酸素精留塔5の塔頂53から導出される低沸点成分含有酸素ガスを、膨張タービン92より下流で主熱交換器1より上流の廃ガス配管ラインL31へ合流させる配管ラインである。 The oxygen rectification column 5 has a column top 53 or a purification section 52 into which the raw oxygen heat exchanged in the main heat exchanger 1 is introduced. The raw material oxygen piping line L10 is a piping line that introduces raw material oxygen into the top 53 of the oxygen rectification column 5 or the rectification section 52 via the main heat exchanger 1. The second waste gas piping line L53 transfers the oxygen gas containing low boiling point components derived from the top 53 of the oxygen rectification column 5 to the waste gas piping line L31 downstream from the expansion turbine 92 and upstream from the main heat exchanger 1. This is a pipe line to join.

酸素蒸発器6は、酸素精留塔5の底部51の下方に配置され、中圧精留塔2の底部21から導出される酸素富化液を熱媒として、液化酸素を蒸発させる。第二酸素富化液配管ラインL21bは、中圧精留塔2の底部21から導出される酸素富化液を、酸素蒸発器6へ導入し、低圧精留塔4の精留部42の中間段へ導入するための配管ラインである。超高純度酸素取出配管ラインL61は、酸素蒸発器6の蒸発液部61から超高純度酸素(液)を取り出す配管ラインである。 The oxygen evaporator 6 is disposed below the bottom 51 of the oxygen rectification column 5 and evaporates liquefied oxygen using the oxygen-enriched liquid derived from the bottom 21 of the medium pressure rectification column 2 as a heat medium. The second oxygen-enriched liquid piping line L21b introduces the oxygen-enriched liquid derived from the bottom 21 of the medium pressure rectification column 2 to the oxygen evaporator 6, and This is a piping line for introducing into the stage. The ultra-high purity oxygen extraction piping line L61 is a piping line that extracts ultra-high purity oxygen (liquid) from the evaporated liquid section 61 of the oxygen evaporator 6.

酸素精留塔5に蒸気流を供給するために酸素蒸発器6が酸素精留塔5の下方に配置される。酸素蒸発器6は、酸素精留塔5の底部51から供給される液化酸素を蒸発してその蒸気流を酸素精留塔5の底部51に供給する。熱媒として原料酸素の一部を利用する。別実施形態として、主熱交換器1から供給される原料空気の一部や、中圧精留塔2から供給される酸素含有液または液化窒素の一部を利用してもよい。
熱媒として使用されたガスは、液化されて低圧精留塔4の還流液や主熱交換器1やサブクーラ8の冷媒として使用されてもよい。熱媒として使用された液は、サブクールされるので、減圧時の蒸発損失が低減される。
An oxygen evaporator 6 is arranged below the oxygen rectification column 5 to supply a vapor flow to the oxygen rectification column 5 . The oxygen evaporator 6 evaporates the liquefied oxygen supplied from the bottom 51 of the oxygen rectification column 5 and supplies the vapor stream to the bottom 51 of the oxygen rectification column 5 . Part of the raw material oxygen is used as a heat medium. As another embodiment, a part of the feed air supplied from the main heat exchanger 1 or a part of the oxygen-containing liquid or liquefied nitrogen supplied from the medium pressure rectification column 2 may be used.
The gas used as a heat medium may be liquefied and used as a reflux liquid in the low-pressure rectification column 4 or as a refrigerant in the main heat exchanger 1 or subcooler 8. Since the liquid used as a heating medium is subcooled, evaporation loss during depressurization is reduced.

サブクーラ8は、中圧精留塔2の底部21から導出される酸素富化液と、窒素凝縮器3で凝縮された精製ガスおよび/または中圧精留塔2の塔頂23から導出された精製ガスと、低圧精留塔4の塔頂43から導出される窒素富化ガスとを熱交換する。 The subcooler 8 contains the oxygen-enriched liquid drawn out from the bottom 21 of the medium pressure rectification column 2, the purified gas condensed in the nitrogen condenser 3, and/or the purified gas drawn out from the top 23 of the medium pressure rectification column 2. Heat exchange is performed between the purified gas and the nitrogen-enriched gas derived from the top 43 of the low-pressure rectification column 4.

(実施形態2)
実施形態2の超高純度酸素装置A2を図2を用いて説明する。
超高純度酸素装置A2は、実施形態1の超高純度酸素装置A1と異なる構成を中心に説明し、同じ構成は説明を省略あるいは簡単にする。同じ符号は同じ機能を有する。超高純度酸素装置A2は、酸素精留塔5の塔頂53から導出される低沸点成分含有酸素ガスを凝縮する酸素凝縮器7を備える。
(Embodiment 2)
The ultra-high purity oxygen device A2 of Embodiment 2 will be explained using FIG. 2.
The ultra-high-purity oxygen device A2 will be mainly explained with a different configuration from the ultra-high-purity oxygen device A1 of Embodiment 1, and the explanation of the same configuration will be omitted or simplified. Like symbols have the same function. The ultra-high purity oxygen device A2 includes an oxygen condenser 7 that condenses oxygen gas containing low-boiling components derived from the top 53 of the oxygen rectification column 5.

(実施形態2)
実施形態2の超高純度酸素製造装置A2を図2を用いて説明する。
超高純度酸素製造装置A2は、実施形態1の超高純度酸素製造装置A1と異なる構成を中心に説明し、同じ構成は説明を省略あるいは簡単にする。同じ符号は同じ機能を有する。超高純度酸素製造装置A2は、酸素精留塔5の塔頂53から導出される低沸点成分含有酸素ガスを凝縮する酸素凝縮器7を備える。
(Embodiment 2)
The ultra-high purity oxygen production apparatus A2 of Embodiment 2 will be explained using FIG. 2.
The ultra-high-purity oxygen production apparatus A2 will be mainly explained with a different configuration from the ultra-high-purity oxygen production apparatus A1 of Embodiment 1, and the explanation of the same configurations will be omitted or simplified. Like symbols have the same function. The ultra-high purity oxygen production apparatus A2 includes an oxygen condenser 7 that condenses oxygen gas containing low-boiling components derived from the top 53 of the oxygen rectification column 5.

超高純度酸素の回収率を向上するために、酸素凝縮器7を酸素精留塔5の上方に配置する。これにより、超高純度酸素の純度を維持しながら、供給される原料酸素に対して回収可能な超高純度酸素量を向上することができる。酸素凝縮器7の冷媒としては、中圧精留塔2あるいは低圧精留塔4から供給される酸素含有液、液化窒素、酸素蒸発器6で凝縮された液化原料空気を利用することができる。また外部から液化窒素または液化空気を供給することもできる。 In order to improve the recovery rate of ultra-high purity oxygen, an oxygen condenser 7 is placed above the oxygen rectification column 5. This makes it possible to increase the amount of ultra-high purity oxygen that can be recovered from the supplied raw material oxygen while maintaining the purity of the ultra-high purity oxygen. As the refrigerant for the oxygen condenser 7, an oxygen-containing liquid supplied from the medium pressure rectification column 2 or the low pressure rectification column 4, liquefied nitrogen, or liquefied feed air condensed in the oxygen evaporator 6 can be used. It is also possible to supply liquefied nitrogen or liquefied air from the outside.

(実施形態3)
実施形態3の超高純度酸素装置A3を図3を用いて説明する。
超高純度酸素装置A3は、実施形態2の超高純度酸素装置A2と異なる構成を中心に説明し、同じ構成は説明を省略あるいは簡単にする。同じ符号は同じ機能を有する。超高純度酸素装置A3は、分岐原料酸素配管ラインL11を備える。分岐原料酸素配管ラインL11は、原料酸素を、原料酸素配管ラインL10の主熱交換器1の途中から分岐し、膨張タービン92へ接続される前の第一廃ガス配管ラインL31へ合流する配管ラインである。
(Embodiment 3)
The ultra-high purity oxygen device A3 of Embodiment 3 will be explained using FIG. 3.
The ultra-high purity oxygen device A3 will be mainly explained with a different configuration from the ultra-high purity oxygen device A2 of the second embodiment, and the explanation of the same configuration will be omitted or simplified. Like symbols have the same function. The ultra-high purity oxygen device A3 includes a branch raw material oxygen piping line L11. The branch raw material oxygen piping line L11 is a piping line that branches raw material oxygen from the middle of the main heat exchanger 1 of the raw material oxygen piping line L10 and joins the first waste gas piping line L31 before being connected to the expansion turbine 92. It is.

(実施形態3)
実施形態3の超高純度酸素製造装置A3を図3を用いて説明する。
超高純度酸素製造装置A3は、実施形態2の超高純度酸素製造装置A2と異なる構成を中心に説明し、同じ構成は説明を省略あるいは簡単にする。同じ符号は同じ機能を有する。超高純度酸素製造装置A3は、分岐原料酸素配管ラインL11を備える。分岐原料酸素配管ラインL11は、原料酸素を、原料酸素配管ラインL10の主熱交換器1の途中から分岐し、膨張タービン92へ接続される前の第一廃ガス配管ラインL31へ合流する配管ラインである。
(Embodiment 3)
The ultra-high purity oxygen production apparatus A3 of Embodiment 3 will be explained using FIG. 3.
The ultra-high-purity oxygen production apparatus A3 will be mainly described with a focus on different configurations from the ultra-high-purity oxygen production apparatus A2 of Embodiment 2, and explanations of the same configurations will be omitted or simplified. Like symbols have the same function. The ultra-high purity oxygen production apparatus A3 includes a branched raw material oxygen piping line L11. The branch raw material oxygen piping line L11 is a piping line that branches raw material oxygen from the middle of the main heat exchanger 1 of the raw material oxygen piping line L10 and joins the first waste gas piping line L31 before being connected to the expansion turbine 92. It is.

(実施形態4)
実施形態4の超高純度酸素装置B1を図4を用いて説明する。
超高純度酸素装置B1は、主熱交換器1と、窒素精留塔2と、第一窒素凝縮器3と、第二窒素凝縮器30と、膨張タービン92と、コンプレッサー91と、酸素精留塔5と、酸素蒸発器6と、を備える。実施形態1から3との相違は、単式の窒素精留塔で、2つの窒素凝縮器と、リサイクルガス用のコンプレッサーを備える。異なる構成を主に説明する。
(Embodiment 4)
The ultra-high purity oxygen device B1 of Embodiment 4 will be explained using FIG. 4.
The ultra-high purity oxygen device B1 includes a main heat exchanger 1, a nitrogen rectifier 2, a first nitrogen condenser 3, a second nitrogen condenser 30, an expansion turbine 92, a compressor 91, and an oxygen rectifier. It includes a column 5 and an oxygen evaporator 6. The difference from Embodiments 1 to 3 is a single nitrogen rectification column equipped with two nitrogen condensers and a compressor for recycled gas. The different configurations will be mainly explained.

(実施形態4)
実施形態4の超高純度酸素製造装置B1を図4を用いて説明する。
超高純度酸素製造装置B1は、主熱交換器1と、窒素精留塔2と、第一窒素凝縮器3と、第二窒素凝縮器30と、膨張タービン92と、コンプレッサー91と、酸素精留塔5と、酸素蒸発器6と、を備える。実施形態1から3との相違は、単式の窒素精留塔で、2つの窒素凝縮器と、リサイクルガス用のコンプレッサーを備える。異なる構成を主に説明する。
(Embodiment 4)
The ultra-high purity oxygen production apparatus B1 of Embodiment 4 will be explained using FIG. 4.
The ultra-high purity oxygen production apparatus B1 includes a main heat exchanger 1, a nitrogen rectification column 2, a first nitrogen condenser 3, a second nitrogen condenser 30, an expansion turbine 92, a compressor 91, and an oxygen purification unit. A distillation column 5 and an oxygen evaporator 6 are provided. The difference from Embodiments 1 to 3 is a single nitrogen rectification column equipped with two nitrogen condensers and a compressor for recycled gas. The different configurations will be mainly explained.

原料空気配管ラインL1は、原料空気を、主熱交換器1を介して窒素精留塔2の底部21の気相あるいは精製部22の下部へ導入する配管ラインである。第一酸素富化液配管ラインL21aは、窒素精留塔2の底部21から導出される酸素富化液を、第二窒素凝縮器30の冷熱液部(不図示)へ導入する配管ラインである。第一凝縮配管ラインL231は、窒素精留塔2の塔頂23から導出される窒素富化ガスを、第一窒素凝縮器3へ送り、塔頂23へ戻す配管ラインである。第二凝縮配管ラインL232は、窒素精留塔2の塔頂23から導出される窒素富化ガスを、第二窒素凝縮器30へ送り、塔頂23へ戻す配管ラインである。製品窒素ガス配管ラインL23は、窒素精留塔2の塔頂23から導出される窒素富化ガスを、主熱交換器1に通過させ、製品窒素ガスとして導出する配管ラインである。 The raw air piping line L1 is a piping line that introduces raw air through the main heat exchanger 1 into the gas phase at the bottom 21 of the nitrogen rectification column 2 or into the lower part of the purification section 22. The first oxygen-enriched liquid piping line L21a is a piping line that introduces the oxygen-enriched liquid led out from the bottom 21 of the nitrogen rectification column 2 into the cold liquid section (not shown) of the second nitrogen condenser 30. . The first condensing piping line L231 is a piping line that sends the nitrogen-enriched gas derived from the top 23 of the nitrogen rectification column 2 to the first nitrogen condenser 3 and returns it to the top 23. The second condensing piping line L232 is a piping line that sends the nitrogen-enriched gas derived from the top 23 of the nitrogen rectification column 2 to the second nitrogen condenser 30 and returns it to the top 23. The product nitrogen gas piping line L23 is a piping line that allows the nitrogen-enriched gas derived from the top 23 of the nitrogen rectification column 2 to pass through the main heat exchanger 1, and is derived as product nitrogen gas.

第一廃ガス配管ラインL31は、第一窒素凝縮器3の塔頂の気相31から導出されるガスを、主熱交換器1に部分的に通過させ、次いで膨張タービン92で使用され、再び、主熱交換器1に通過させる配管ラインである。リサイクルガス配管ラインL301は、第二窒素凝縮器30の塔頂の気相301から導出されるガスを、コンプレッサー91で圧縮させ、次いで主熱交換器1に部分的に通過させ、窒素精留塔2の精留部22の下部へ導入する配管ラインである。原料酸素配管ラインL10は、原料酸素を、主熱交換器1を介して酸素精留塔5の塔頂53へ導入する配管ラインである。第二廃ガス配管ラインL53は、酸素精留塔5の塔頂53から導出される低沸点成分含有酸素ガスを、廃ガス配管ラインL31へ合流させる配管ラインである。第二酸素富化液配管ラインL21bは、窒素精留塔2の底部21から導出される酸素富化液を、酸素蒸発器6へ導入し、第二窒素凝縮器30の冷熱液部(不図示)へ導入するため配管ラインである。超高純度酸素取出配管ラインL61は、酸素蒸発器6の蒸発液部61から超高純度酸素(液)を取り出す配管ラインである。 The first waste gas piping line L31 allows the gas drawn off from the gaseous phase 31 at the top of the first nitrogen condenser 3 to partially pass through to the main heat exchanger 1 and then used in the expansion turbine 92 and again , are piping lines that are passed through the main heat exchanger 1. The recycled gas piping line L301 compresses the gas derived from the gas phase 301 at the top of the second nitrogen condenser 30 with the compressor 91, then partially passes it through the main heat exchanger 1, and then passes it through the nitrogen rectification column. This is a piping line introduced into the lower part of the rectifying section 22 of No. 2. The raw material oxygen piping line L10 is a piping line that introduces raw material oxygen to the top 53 of the oxygen rectification column 5 via the main heat exchanger 1. The second waste gas piping line L53 is a piping line that joins the low-boiling point component-containing oxygen gas derived from the top 53 of the oxygen rectification column 5 to the waste gas piping line L31. The second oxygen-enriched liquid piping line L21b introduces the oxygen-enriched liquid derived from the bottom 21 of the nitrogen rectification column 2 to the oxygen evaporator 6, and supplies the cold liquid part (not shown) of the second nitrogen condenser 30 ) is a piping line for introduction to the The ultra-high purity oxygen extraction piping line L61 is a piping line that extracts ultra-high purity oxygen (liquid) from the evaporated liquid section 61 of the oxygen evaporator 6.

(実施形態5)
実施形態5の超高純度酸素装置B2を図5を用いて説明する。実施形態5は、実施形態4と基本構成は同じである。異なる点は、原料酸素配管ラインL10と、酸素含有液配管ラインL22である。
原料酸素配管ラインL10は、原料酸素を、主熱交換器1を介して酸素精留塔5の精留部52の中間段へ導入する配管ラインである。酸素含有液配管ラインL22は、窒素精留塔2の精留部22の中間段(原料空気導入配管ラインL1よりも上方位置)から導出される酸素含有液を、酸素精留塔5の塔頂53へ導入する配管ラインである。
即ち、酸素精留塔5の中間段に原料酸素を導入し、酸素精留塔5の塔頂53には、窒素精留塔2の中間段からの酸素含有液を供給する。酸素含有液は大気由来の高沸点不純物を含まないように、窒素精留塔の原料空気供給段より上段から導出される。この構成によって、原料酸素を凝縮するための液を酸素精留塔に供給することができると同時に、窒素精留塔由来の酸素を高純度酸素に精製することが可能となって、高純度酸素の需要に対して、水電解装置と窒素発生装置の稼働率を最適化しながら高純度酸素を製造することができる。例えば、水素需要が少ない一方で高純度酸素需要が大量にある場合に、水電解装置由来の酸素を高純度酸素に精製しながら、高純度酸素の不足分を窒素精留塔からの酸素含有液を酸素精留塔で精製することによって得る。こうすることで、大電力を消費する水電解装置を高純度酸素需要に合わせて稼働する必要がなくなり、電力消費量を最適化することができる。
(Embodiment 5)
The ultra-high purity oxygen device B2 of Embodiment 5 will be explained using FIG. 5. The fifth embodiment has the same basic configuration as the fourth embodiment. The difference is the raw material oxygen piping line L10 and the oxygen-containing liquid piping line L22.
The raw material oxygen piping line L10 is a piping line that introduces raw material oxygen into the intermediate stage of the rectification section 52 of the oxygen rectification column 5 via the main heat exchanger 1. The oxygen-containing liquid piping line L22 transfers the oxygen-containing liquid led out from the intermediate stage (position above the raw air introduction piping line L1) of the rectifying section 22 of the nitrogen rectifying column 2 to the top of the oxygen rectifying column 5. This is a piping line introduced into 53.
That is, feed oxygen is introduced into the intermediate stage of the oxygen rectification column 5, and the oxygen-containing liquid from the intermediate stage of the nitrogen rectification column 2 is supplied to the top 53 of the oxygen rectification column 5. The oxygen-containing liquid is led out from a stage above the feed air supply stage of the nitrogen rectification column so as not to contain high-boiling point impurities derived from the atmosphere. With this configuration, it is possible to supply the liquid for condensing the raw material oxygen to the oxygen rectification column, and at the same time, it is possible to refine the oxygen derived from the nitrogen rectification column into high-purity oxygen. It is possible to produce high-purity oxygen while optimizing the operating rate of the water electrolyzer and nitrogen generator to meet the demand for oxygen. For example, when the demand for hydrogen is low but the demand for high-purity oxygen is large, the oxygen from the water electrolyzer is purified into high-purity oxygen, and the shortage of high-purity oxygen is replaced with oxygen-containing liquid from the nitrogen rectification column. is obtained by purifying it in an oxygen rectification column. This eliminates the need to operate a water electrolysis device that consumes a large amount of power in accordance with the demand for high-purity oxygen, making it possible to optimize power consumption.

(実施形態5)
実施形態5の超高純度酸素製造装置B2を図5を用いて説明する。実施形態5は、実施形態4と基本構成は同じである。異なる点は、原料酸素配管ラインL10と、酸素含有液配管ラインL22である。
原料酸素配管ラインL10は、原料酸素を、主熱交換器1を介して酸素精留塔5の精留部52の中間段へ導入する配管ラインである。酸素含有液配管ラインL22は、窒素精留塔2の精留部22の中間段(原料空気導入配管ラインL1よりも上方位置)から導出される酸素含有液を、酸素精留塔5の塔頂53へ導入する配管ラインである。
即ち、酸素精留塔5の中間段に原料酸素を導入し、酸素精留塔5の塔頂53には、窒素精留塔2の中間段からの酸素含有液を供給する。酸素含有液は大気由来の高沸点不純物を含まないように、窒素精留塔の原料空気供給段より上段から導出される。この構成によって、原料酸素を凝縮するための液を酸素精留塔に供給することができると同時に、窒素精留塔由来の酸素を高純度酸素に精製することが可能となって、高純度酸素の需要に対して、水電解装置と窒素発生装置の稼働率を最適化しながら高純度酸素を製造することができる。例えば、水素需要が少ない一方で高純度酸素需要が大量にある場合に、水電解装置由来の酸素を高純度酸素に精製しながら、高純度酸素の不足分を窒素精留塔からの酸素含有液を酸素精留塔で精製することによって得る。こうすることで、大電力を消費する水電解装置を高純度酸素需要に合わせて稼働する必要がなくなり、電力消費量を最適化することができる。
(Embodiment 5)
The ultra-high purity oxygen production apparatus B2 of Embodiment 5 will be explained using FIG. 5. The fifth embodiment has the same basic configuration as the fourth embodiment. The difference is the raw material oxygen piping line L10 and the oxygen-containing liquid piping line L22.
The raw material oxygen piping line L10 is a piping line that introduces raw material oxygen into the intermediate stage of the rectification section 52 of the oxygen rectification column 5 via the main heat exchanger 1. The oxygen-containing liquid piping line L22 transfers the oxygen-containing liquid led out from the intermediate stage (position above the raw air introduction piping line L1) of the rectifying section 22 of the nitrogen rectifying column 2 to the top of the oxygen rectifying column 5. This is a piping line introduced into 53.
That is, feed oxygen is introduced into the intermediate stage of the oxygen rectification column 5, and the oxygen-containing liquid from the intermediate stage of the nitrogen rectification column 2 is supplied to the top 53 of the oxygen rectification column 5. The oxygen-containing liquid is led out from a stage above the feed air supply stage of the nitrogen rectification column so as not to contain high-boiling point impurities derived from the atmosphere. With this configuration, it is possible to supply the liquid for condensing the raw material oxygen to the oxygen rectification column, and at the same time, it is possible to refine the oxygen derived from the nitrogen rectification column into high-purity oxygen. It is possible to produce high-purity oxygen while optimizing the operating rate of the water electrolyzer and nitrogen generator to meet the demand for oxygen. For example, when the demand for hydrogen is low but the demand for high-purity oxygen is large, the oxygen from the water electrolyzer is purified into high-purity oxygen, and the shortage of high-purity oxygen is replaced with oxygen-containing liquid from the nitrogen rectification column. is obtained by purifying it in an oxygen rectification column. This eliminates the need to operate a water electrolysis device that consumes a large amount of power in accordance with the demand for high-purity oxygen, making it possible to optimize power consumption.

(別実施形態)
(1)特に明示していないが、各配管ラインに圧力調整装置、流量制御装置などが設置され、圧力調整または流量調整が行われていてもよい。
(2)特に明示していないが、各ラインに制御弁、仕切弁などが設置されていてもよい。
(3)特に明示していないが、各塔に圧力調整装置、温度測定装置などが設置され、圧力調整または温度調整が行われていてもよい。
(Another embodiment)
(1) Although not explicitly stated, a pressure regulator, a flow rate controller, etc. may be installed in each piping line to adjust the pressure or flow rate.
(2) Although not explicitly stated, a control valve, gate valve, etc. may be installed in each line.
(3) Although not explicitly stated, each tower may be equipped with a pressure regulator, a temperature measuring device, etc. to adjust the pressure or temperature.

1 熱交換器
2 中圧精留塔
3 窒素凝縮器
4 低圧精留塔
5 酸素精留塔
6 酸素蒸発器
7 酸素凝縮器
8 サブクーラ
91 コンプレッサー
92 膨張タービン
1 Heat exchanger 2 Medium pressure rectification column 3 Nitrogen condenser 4 Low pressure rectification column 5 Oxygen rectification column 6 Oxygen evaporator 7 Oxygen condenser 8 Subcooler 91 Compressor 92 Expansion turbine

Claims (8)

主熱交換器、窒素精留塔、窒素凝縮器、酸素精留塔、酸素蒸発器を備える空気分離装置を用いる超高純度酸素製造方法であって、
低沸点成分を不純物として含む原料酸素が主熱交換器の温端から導入され、冷却されて少なくとも一部液化された後に酸素精留塔に導入され、酸素精留塔の下部あるいは酸素蒸発器から前記低沸点成分が除去された超高純度酸素としてガスまたは液体として導出される工程と、
前記酸素蒸発器において、前記主熱交換器で冷却された原料空気の一部、前記主熱交換器で冷却された原料酸素の一部、窒素精留塔を構成する中圧精留塔から導出される液またはガスの内一つ以上を熱媒として利用して、酸素精留塔の底部から供給される液化酸素を蒸発し、その蒸気流を酸素精留塔の底部に供給する工程と、
を含む、
超高純度酸素製造方法。
A method for producing ultra-high purity oxygen using an air separation device comprising a main heat exchanger, a nitrogen rectifier, a nitrogen condenser, an oxygen rectifier, and an oxygen evaporator, the method comprising:
Feed oxygen containing low-boiling components as impurities is introduced from the hot end of the main heat exchanger, cooled and at least partially liquefied, and then introduced into the oxygen rectification column, where it is fed from the bottom of the oxygen rectification column or from the oxygen evaporator. A step of deriving ultra-high purity oxygen from which the low-boiling point components have been removed as a gas or liquid;
In the oxygen evaporator, a part of the feed air cooled by the main heat exchanger, a part of the feed oxygen cooled by the main heat exchanger, and a part of the feed air cooled by the main heat exchanger are derived from a medium pressure rectification column constituting a nitrogen rectification column. evaporating the liquefied oxygen supplied from the bottom of the oxygen rectification column using one or more of the liquids or gases as a heating medium, and supplying the vapor stream to the bottom of the oxygen rectification column;
including,
Ultra-high purity oxygen production method.
前記酸素精留塔の上方あるいは頂部に備えてある酸素凝縮器において、中圧精留塔から供給される液化窒素または酸素含有液、空気分離装置の外部から供給される液体窒素または液化空気を冷媒として利用して、前記酸素精留塔から供給される低沸点成分含有酸素流を液化し、その還流液として酸素精留塔の頂部に供給する工程を、
さらに含む、
請求項1に記載の超高純度酸素製造方法。
In the oxygen condenser installed above or at the top of the oxygen rectification column, liquefied nitrogen or an oxygen-containing liquid supplied from the medium-pressure rectification column, liquid nitrogen or liquefied air supplied from outside the air separation device, is used as a refrigerant. a step of liquefying the oxygen stream containing low-boiling components supplied from the oxygen rectification column and supplying it to the top of the oxygen rectification column as the reflux liquid;
In addition, including
The method for producing ultra-high purity oxygen according to claim 1.
前記主熱交換器の途中から導出され原料酸素の一部を膨張タービンで膨張して冷却されたのちに、再度主熱交換器に供給される工程を、さらに含む、
請求項1に記載の超高純度酸素製造方法。
The method further includes a step in which a part of the raw material oxygen extracted from the middle of the main heat exchanger is expanded in an expansion turbine, cooled, and then supplied to the main heat exchanger again.
The method for producing ultra-high purity oxygen according to claim 1.
原料空気および原料酸素が導入される主熱交換器と、
前記主熱交換器で熱交換された原料空気が導入される底部を有する第一精留塔と、
前記第一精留塔の塔頂から導出された窒素富化ガスを凝縮する少なくとも一つの窒素凝縮器と、
前記窒素凝縮器で凝縮された窒素富化ガスおよび/または前記第一精留塔の塔頂から導出された窒素富化ガスを、サブクーラで冷却された後で、導入される塔頂を有する第二精留塔と、
前記主熱交換器で熱交換された前記原料酸素が導入される塔頂あるいは精製部を有する酸素精留塔と、
前記酸素精留塔の底部の下方に配置され、前記主熱交換器で冷却された原料空気の一部、前記主熱交換器で冷却された原料酸素の一部、窒素精留塔を構成する中圧精留塔から導出される液またはガスの内一つ以上を熱媒として、液化酸素を蒸発させる酸素蒸発器と、
前記第一精留塔の底部から導出される酸素富化液と、前記窒素凝縮器で凝縮された精製ガスおよび/または前記第一精留塔の塔頂から導出された精製ガスと、前記第二精留塔の塔頂から導出される窒素富化ガスとを、熱交換するサブクーラと、
を備える、
超高純度酸素製造装置。
a main heat exchanger into which feed air and feed oxygen are introduced;
a first rectification column having a bottom portion into which the raw air heat exchanged with the main heat exchanger is introduced;
at least one nitrogen condenser that condenses the nitrogen-enriched gas derived from the top of the first rectification column;
The nitrogen-enriched gas condensed in the nitrogen condenser and/or the nitrogen-enriched gas derived from the top of the first rectification column is cooled in a subcooler and then introduced into a second column having a column top. two rectification towers,
an oxygen rectification column having a column top or a purification section into which the raw material oxygen heat-exchanged in the main heat exchanger is introduced;
A part of the feed air cooled by the main heat exchanger, a part of the feed oxygen cooled by the main heat exchanger, and a nitrogen rectification column are arranged below the bottom of the oxygen rectification column. an oxygen evaporator that evaporates liquefied oxygen using one or more of the liquid or gas derived from the medium pressure rectification column as a heat medium;
an oxygen-enriched liquid derived from the bottom of the first rectification column; a purified gas condensed in the nitrogen condenser and/or a purified gas derived from the top of the first rectification column; a subcooler that exchanges heat with the nitrogen-enriched gas derived from the top of the two rectification columns;
Equipped with
Ultra-high purity oxygen production equipment.
前記窒素凝縮器の気相から導出されるガスを前記主熱交換器に部分的に通過させた後で導入される膨張タービンを備える、
請求項4に記載の超高純度酸素製造装置。
an expansion turbine introduced after partially passing the gas derived from the gas phase of the nitrogen condenser through the main heat exchanger;
The ultra-high purity oxygen production apparatus according to claim 4.
前記酸素精留塔の塔頂から導出される低沸点成分含有酸素ガスを凝縮する酸素凝縮器を備える、
請求項4に記載の超高純度酸素製造装置。
comprising an oxygen condenser that condenses oxygen gas containing low boiling point components derived from the top of the oxygen rectification column;
The ultra-high purity oxygen production apparatus according to claim 4.
前記原料酸素を、前記主熱交換器を介して前記酸素精留塔の塔頂あるいは精留部へ導入する原料酸素配管ラインと、
前記原料酸素を、前記原料酸素配管ラインの前記主熱交換器の途中から分岐し、前記膨張タービンへ接続される前の配管ラインへ合流する分岐原料酸素配管ラインと、
前記酸素蒸発器の蒸発液部から超高純度酸素を取り出す超高純度酸素取出配管ラインと、
を備える、
請求項に記載の超高純度酸素製造装置。
a raw oxygen piping line that introduces the raw material oxygen to the top or rectification section of the oxygen rectification column via the main heat exchanger;
a branched raw material oxygen piping line that branches the raw material oxygen from the middle of the main heat exchanger in the raw material oxygen piping line and joins the piping line before being connected to the expansion turbine;
an ultra-high purity oxygen extraction piping line for extracting ultra-high purity oxygen from the evaporated liquid section of the oxygen evaporator;
Equipped with
The ultra-high purity oxygen production apparatus according to claim 5 .
原料空気および原料酸素が導入される主熱交換器と、
前記主熱交換器で熱交換された原料空気が導入される底部を有する窒素精留塔と、
前記窒素精留塔の塔頂から導出された窒素富化ガスを凝縮する第一窒素凝縮器と、
前記窒素精留塔の塔頂から導出された窒素富化ガスを凝縮する第二窒素凝縮器と、
前記第一窒素凝縮器の気相から導出されるガスを前記主熱交換器に部分的に通過させた後で導入される膨張タービンと、
前記第二窒素凝縮器の気相から導出されるガスを圧縮するコンプレッサーと、
前記主熱交換器で熱交換された前記原料酸素が導入される塔頂あるいは精製部を有する酸素精留塔と、
前記酸素精留塔の底部の下方に配置され、前記主熱交換器で冷却された原料空気の一部、前記主熱交換器で冷却された原料酸素の一部、窒素精留塔から導出される液またはガスの内一つ以上を熱媒として、液化酸素を蒸発させる酸素蒸発器と、
を備える、
超高純度酸素製造装置。
a main heat exchanger into which feed air and feed oxygen are introduced;
a nitrogen rectification column having a bottom portion into which the raw air heat exchanged with the main heat exchanger is introduced;
a first nitrogen condenser that condenses the nitrogen-enriched gas derived from the top of the nitrogen rectification column;
a second nitrogen condenser that condenses the nitrogen-enriched gas derived from the top of the nitrogen rectification column;
an expansion turbine introduced after partially passing the gas derived from the gas phase of the first nitrogen condenser through the main heat exchanger;
a compressor that compresses gas derived from the gas phase of the second nitrogen condenser;
an oxygen rectification column having a column top or a purification section into which the raw material oxygen heat-exchanged in the main heat exchanger is introduced;
A portion of the feed air cooled by the main heat exchanger, a portion of the feed oxygen cooled by the main heat exchanger, and a portion of the feed air cooled by the main heat exchanger, which is disposed below the bottom of the oxygen rectification column, and which is extracted from the nitrogen rectification column. an oxygen evaporator that evaporates liquefied oxygen using one or more of liquids or gases as a heat medium;
Equipped with
Ultra-high purity oxygen production equipment.
JP2023070607A 2023-04-24 2023-04-24 Ultra-high purity oxygen production method and ultra-high purity oxygen production equipment Active JP7355980B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023070607A JP7355980B1 (en) 2023-04-24 2023-04-24 Ultra-high purity oxygen production method and ultra-high purity oxygen production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023070607A JP7355980B1 (en) 2023-04-24 2023-04-24 Ultra-high purity oxygen production method and ultra-high purity oxygen production equipment

Publications (1)

Publication Number Publication Date
JP7355980B1 true JP7355980B1 (en) 2023-10-04

Family

ID=88198221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023070607A Active JP7355980B1 (en) 2023-04-24 2023-04-24 Ultra-high purity oxygen production method and ultra-high purity oxygen production equipment

Country Status (1)

Country Link
JP (1) JP7355980B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204193A (en) 2008-02-26 2009-09-10 Air Water Inc Manufacturing method of extra-pure oxygen
CN210512327U (en) 2019-08-13 2020-05-12 安徽加力气体有限公司 High-purity liquid oxygen production device
WO2022253456A1 (en) 2021-06-01 2022-12-08 Linde Gmbh Method and plant for producing ammonia

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204193A (en) 2008-02-26 2009-09-10 Air Water Inc Manufacturing method of extra-pure oxygen
CN210512327U (en) 2019-08-13 2020-05-12 安徽加力气体有限公司 High-purity liquid oxygen production device
WO2022253456A1 (en) 2021-06-01 2022-12-08 Linde Gmbh Method and plant for producing ammonia

Similar Documents

Publication Publication Date Title
JP4450886B2 (en) High purity oxygen production method and apparatus
EP2963368B1 (en) Air separation method and air separation apparatus
TWI687633B (en) Oxygen production system and oxygen production method
JPH07305953A (en) Cryogenic rectifying system for manufacturing low-purity oxygen
JPH05296651A (en) Apparatus for producing nitrogen/oxygen of ultrahigh purity
CN110803689A (en) Argon recovery method and device for removing carbon monoxide and integrating high-purity nitrogen by rectification method
JPH0914832A (en) Method and equipment for manufacturing ultra-high purity oxygen
JP5685168B2 (en) Low purity oxygen production method and low purity oxygen production apparatus
JPH11325717A (en) Separation of air
JPH07151458A (en) Method and equipment for preparing gaseous oxygen and/or nitrogen under pressure
US8528363B2 (en) Process and apparatus for the separation of air by cryogenic distillation
JP7355980B1 (en) Ultra-high purity oxygen production method and ultra-high purity oxygen production equipment
JP2005529222A (en) Plant unit and method for fractionating and purifying synthesis gas
JP5032407B2 (en) Nitrogen production method and apparatus
JP2006284075A (en) Air separating method and its device
JPH06207776A (en) Method and equipment for manufacturing nitrogen and oxygen
JP4787796B2 (en) Air separation method and apparatus
JP4177507B2 (en) Method and apparatus for producing low purity oxygen
JP3181546B2 (en) Method and apparatus for producing nitrogen and argon from air
JP5027173B2 (en) Argon production method and apparatus thereof
JP7329714B1 (en) Nitrogen production method and apparatus
JPH1163812A (en) Manufacture and device for low-purity oxygen
JPH0399190A (en) Method of manufacturing oxygen
JPH11325716A (en) Separation of air
JPH03158693A (en) Nitrogen gas and oxygen gas manufacturing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230428

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230822

R150 Certificate of patent or registration of utility model

Ref document number: 7355980

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150