JP2000258054A - Method and apparatus for manufacturing low purity oxygen - Google Patents

Method and apparatus for manufacturing low purity oxygen

Info

Publication number
JP2000258054A
JP2000258054A JP11061574A JP6157499A JP2000258054A JP 2000258054 A JP2000258054 A JP 2000258054A JP 11061574 A JP11061574 A JP 11061574A JP 6157499 A JP6157499 A JP 6157499A JP 2000258054 A JP2000258054 A JP 2000258054A
Authority
JP
Japan
Prior art keywords
oxygen
fraction
low
liquid fraction
pressure column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11061574A
Other languages
Japanese (ja)
Other versions
JP4177507B2 (en
Inventor
Yasuhiro Murata
康浩 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP06157499A priority Critical patent/JP4177507B2/en
Publication of JP2000258054A publication Critical patent/JP2000258054A/en
Application granted granted Critical
Publication of JP4177507B2 publication Critical patent/JP4177507B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/0446Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • F25J2200/06Processes or apparatus using separation by rectification in a dual pressure main column system in a classical double column flow-sheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/90Details relating to column internals, e.g. structured packing, gas or liquid distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/52Oxygen production with multiple purity O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/42One fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/52One fluid being oxygen enriched compared to air, e.g. "crude oxygen"
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Abstract

PROBLEM TO BE SOLVED: To improve an oxygen recovery by introducing a first oxygen enriched liquid fraction as a rising gas, introducing a second oxygen enriched liquid fraction as a circulating liquid, separating it into a low purity oxygen fraction and a tower bottom liquid fraction, and recovering the separated low purity oxygen fraction as a product oxygen. SOLUTION: Compressed, refined and cooled raw material air sucked from a route 10 is introduced into a high pressure tower 1, and divided into a first nitrogen fraction and a first oxygen enriched fraction. The air is divided into the separated first nitrogen fraction and the first oxygen enriched liquid fraction. After the first liquid fraction is vaporized, the vaporized fraction is introduced as a rising gas to a lower portion of a mixing tower 3, the second fraction is pressure raised, then introduced as a circulating liquid to an upper portion of the tower 3, divided into a low purity oxygen fraction and a tower bottom liquid fraction, and the separated low purity oxygen fraction is recovered as a product oxygen.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低純度酸素の製造
方法及び装置に関し、詳しくは、低温で空気を蒸留分離
して低純度酸素を製品として回収するプロセスであっ
て、圧縮機を使用することなく比較的高圧力の製品低純
度酸素を製造するための方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for producing low-purity oxygen, and more particularly to a process for recovering low-purity oxygen as a product by distilling and separating air at a low temperature, using a compressor. The present invention relates to a method and an apparatus for producing a product low-purity oxygen at a relatively high pressure without the need.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】低純度
酸素は、ガス化複合発電(IGCC)や、直接・溶融還
元製鋼及びガラス溶融等で使用される。これらのアプリ
ケーションでは、大量の酸素を消費することから、特に
動力原単位が低いことが要求される。
BACKGROUND OF THE INVENTION Low-purity oxygen is used in integrated gasification combined cycle (IGCC), direct smelting reduction steelmaking and glass melting. These applications require a particularly low power consumption due to the large consumption of oxygen.

【0003】Camberleinらによる米国特許第
5291737号明細書、Straubらによる米国特
許第5454227号明細書には、動力原単位の低減を
目的とした低純度酸素製造プロセスが記載されている。
US Pat. No. 5,291,737 to Camberlein et al. And US Pat. No. 5,454,227 to Straub et al. Describe low purity oxygen production processes aimed at reducing power consumption.

【0004】米国特許第5291737号明細書記載の
プロセスでは、製品酸素より酸素純度の高い液化酸素を
低圧蒸留塔から抜き出し、ポンプで圧縮した後、mix
ing column(ミキシング塔)で原料空気の一
部と気液接触させることにより、原料空気と同程度の圧
力の低純度酸素を製造するようにしている。
In the process described in US Pat. No. 5,291,737, liquefied oxygen having a higher oxygen purity than product oxygen is extracted from a low-pressure distillation column, compressed with a pump, and then mixed.
A low-purity oxygen having a pressure equivalent to that of the raw air is produced by bringing a part of the raw air into gas-liquid contact with an ing column (mixing tower).

【0005】しかし、このプロセスでは、全空気量の約
30%の空気をミキシング塔に導入して液化酸素と気液
接触させて液化させるため、高圧蒸留塔に供給する原料
空気量が減少する。その結果、高圧塔の上昇ガスが少な
くなり、主凝縮器で液化する量が減少するため、低圧蒸
留塔における還流窒素量が減少してL/Vが低下し、精
留効率が悪化して製品酸素の回収率が低下するととも
に、得られる窒素の純度も低下してしまう。
However, in this process, about 30% of the total amount of air is introduced into the mixing tower and liquefied by gas-liquid contact with liquefied oxygen, so that the amount of raw air supplied to the high-pressure distillation tower is reduced. As a result, the amount of gas rising in the high-pressure column is reduced, and the amount of liquefaction in the main condenser is reduced. As a result, the amount of reflux nitrogen in the low-pressure distillation column is reduced, L / V is reduced, and the rectification efficiency is deteriorated. As the oxygen recovery rate decreases, the purity of the obtained nitrogen also decreases.

【0006】すなわち、このプロセスでは、製品酸素の
圧縮動力は低減できるが、原料空気圧縮機の動力が増加
する。さらに、このプロセスでは、得られる窒素の純度
も低いため、ガス化複合発電(IGCC)のように、一
定純度以上の窒素を製品として必要とする設備には不適
当である。
That is, in this process, the power for compressing product oxygen can be reduced, but the power for the raw air compressor increases. Further, this process has a low purity of the obtained nitrogen, and therefore is not suitable for equipment that requires nitrogen of a certain purity or higher as a product, such as integrated gasification combined cycle (IGCC).

【0007】また、米国特許第5454227号明細書
記載のプロセスでは、低圧蒸留塔底部から抜き出した液
化酸素をポンプで圧縮してミキシング塔に供給し、原料
空気の一部と気液接触させるようにしている。この空気
には、膨張タービンで膨張させた空気と膨張バルブで減
圧させた空気とを使用している。
In the process described in US Pat. No. 5,454,227, liquefied oxygen extracted from the bottom of the low-pressure distillation column is compressed by a pump, supplied to a mixing column, and brought into gas-liquid contact with a part of the raw air. ing. As the air, air expanded by an expansion turbine and air depressurized by an expansion valve are used.

【0008】したがって、このプロセスにおいても、前
記同様に、高圧蒸留塔に供給する原料空気が減少するた
め、低圧蒸留塔に供給する還流窒素が減少し、製品回収
率が低下する。また、このプロセスでは、高圧に圧縮し
た原料空気の一部を膨張バルブで減圧してからミキシン
グ塔に供給するようにしているため、減圧による動力の
ロスを生じる。
Accordingly, also in this process, as in the above, since the amount of feed air supplied to the high-pressure distillation column is reduced, the amount of reflux nitrogen supplied to the low-pressure distillation column is reduced, and the product recovery rate is reduced. Further, in this process, a part of the raw air compressed to a high pressure is reduced in pressure by the expansion valve and then supplied to the mixing tower, so that a power loss occurs due to the reduced pressure.

【0009】そこで本発明は、比較的高圧力の低純度酸
素を製造するプロセスにおいて、酸素回収率の向上や圧
縮機に要する動力費の削減により原単位の低減が図れ、
さらに、同時に得られる窒素の純度低下も防止すること
ができる低純度酸素の製造方法及び装置を提供すること
を目的としている。
Accordingly, the present invention can reduce the unit consumption by improving the oxygen recovery rate and reducing the power cost required for the compressor in the process of producing low-purity oxygen at a relatively high pressure.
It is another object of the present invention to provide a method and an apparatus for producing low-purity oxygen, which can prevent a decrease in the purity of nitrogen obtained at the same time.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明の低純度酸素の製造方法は、高圧塔、低圧塔
及びミキシング塔を有する三塔式蒸留設備に原料空気を
導入して低温蒸留することにより、少なくとも低純度酸
素を製品として分離回収する低純度酸素の製造方法にお
いて、圧縮,精製,冷却した原料空気を前記高圧塔に導
入して第一窒素留分と第一酸素富化液留分とに分離する
第一蒸留工程と、該第一蒸留工程で分離した第一窒素留
分と第一酸素富化液留分とを前記低圧塔に導入して第二
窒素留分と第二酸素富化液留分とに分離する第二蒸留工
程と、前記第一酸素富化液留分を気化した後に前記ミキ
シング塔の下部に上昇ガスとして導入するとともに、前
記第二酸素富化液留分を昇圧した後に前記ミキシング塔
の上部に還流液として導入し、低純度酸素留分と塔底液
留分とに分離する第三蒸留工程と、該第三蒸留工程で分
離した低純度酸素留分を製品として回収する製品回収工
程とを含むことを特徴としている。
In order to achieve the above object, the method for producing low-purity oxygen according to the present invention comprises introducing a raw air into a three-column distillation apparatus having a high-pressure column, a low-pressure column and a mixing column to reduce the temperature. In a method for producing low-purity oxygen, wherein at least low-purity oxygen is separated and recovered as a product by distillation, compressed, purified, and cooled raw material air is introduced into the high-pressure column to separate the first nitrogen fraction and the first oxygen-enriched air. A first distillation step of separating into a liquid fraction, and introducing the first nitrogen fraction and the first oxygen-enriched liquid fraction separated in the first distillation step into the low-pressure column to form a second nitrogen fraction. A second distillation step of separating into a second oxygen-enriched liquid fraction, and introducing the first oxygen-enriched liquid fraction into the lower portion of the mixing tower as a rising gas after vaporizing the second oxygen-enriched liquid fraction; After raising the pressure of the liquid fraction, a reflux liquid is formed at the top of the mixing tower. A third distillation step of introducing and separating into a low-purity oxygen fraction and a bottom liquid fraction, and a product recovery step of recovering the low-purity oxygen fraction separated in the third distillation step as a product. Features.

【0011】さらに、本発明の低純度酸素の製造方法
は、前記第一酸素富化液留分の気化を前記第一窒素留分
との熱交換により行うことを特徴としている。また、気
化されてミキシング塔に導入される前記第一酸素富化液
留分を高圧塔の塔底から少なくとも1理論段上から抜き
出すこと、ミキシング塔に導入する前記第二酸素富化液
留分を低圧塔の塔底から少なくとも1理論段上から抜き
出すとともに、低圧塔の塔底部から高純度の酸素ガスを
抜き出すことを特徴としている。さらに、前記ミキシン
グ塔の塔底から抜き出した塔底液留分を該塔底液留分の
酸素濃度に対応する位置で前記低圧塔に導入すること、
前記ミキシング塔の中間部から液を抜き出し、該液の酸
素濃度に対応する位置で前記低圧塔に導入することを特
徴としている。
Further, the method for producing low-purity oxygen of the present invention is characterized in that the first oxygen-enriched liquid fraction is vaporized by heat exchange with the first nitrogen fraction. Extracting the first oxygen-enriched liquid fraction vaporized and introduced into the mixing tower from at least one theoretical plate from the bottom of the high-pressure column; and introducing the second oxygen-enriched liquid fraction introduced into the mixing tower. Is extracted from at least one theoretical plate above the bottom of the low-pressure column, and high-purity oxygen gas is extracted from the bottom of the low-pressure column. Further, introducing the bottom liquid fraction extracted from the bottom of the mixing tower to the low-pressure column at a position corresponding to the oxygen concentration of the bottom liquid fraction,
A liquid is extracted from an intermediate portion of the mixing tower, and introduced into the low-pressure column at a position corresponding to the oxygen concentration of the liquid.

【0012】また、本発明の低純度酸素の製造装置は、
圧縮,精製,冷却されて導入される原料空気を蒸留して
塔上部の第一窒素留分と塔下部の第一酸素富化液留分と
に分離する高圧塔と、該高圧塔で分離した第一窒素留分
と第一酸素富化液留分とを導入して蒸留することにより
塔上部の第二窒素留分と塔下部の第二酸素富化液留分と
に分離する低圧塔と、前記高圧塔から前記第一酸素富化
液留分を抜き出す第一酸素富化液留分抜出経路と、該第
一酸素富化液留分抜出経路に抜き出した第一酸素富化液
留分を気化するリボイラ/コンデンサと、前記低圧塔か
ら前記第二酸素富化液留分を抜き出す第二酸素富化液留
分抜出経路と、該第二酸素富化液留分抜出経路に抜き出
した第二酸素富化液留分を昇圧する液ポンプと、前記リ
ボイラ/コンデンサで気化した第一酸素富化留分及び前
記液ポンプで昇圧された第二酸素富化液留分とを導入し
て蒸留することにより塔上部の低純度酸素留分と塔底部
の塔底液留分とに分離するミキシング塔と、該ミキシン
グ塔で分離した前記低純度酸素留分を製品として回収す
る製品回収経路とを備えたことを特徴としている。
Further, the apparatus for producing low-purity oxygen of the present invention comprises:
A high-pressure column in which the raw material air introduced after being compressed, purified and cooled is distilled to be separated into a first nitrogen fraction at the top of the column and a first oxygen-enriched liquid fraction at the bottom of the column, and the high-pressure column is used for separation. A low-pressure column that separates into a second nitrogen fraction at the top of the column and a second oxygen-enriched liquid fraction at the bottom of the column by introducing and distilling the first nitrogen fraction and the first oxygen-enriched liquid fraction; A first oxygen-enriched liquid fraction extraction path for extracting the first oxygen-enriched liquid fraction from the high-pressure column, and a first oxygen-enriched liquid extracted to the first oxygen-enriched liquid fraction extraction path Reboiler / condenser for vaporizing a fraction, a second oxygen-enriched liquid fraction withdrawal path for extracting the second oxygen-enriched liquid fraction from the low-pressure column, and a second oxygen-enriched liquid fraction withdrawal path A liquid pump for increasing the pressure of the second oxygen-enriched liquid fraction withdrawn with the first oxygen-enriched fraction vaporized by the reboiler / condenser and the liquid pump A mixing tower that separates into a low-purity oxygen fraction at the top of the tower and a bottoms liquid fraction at the bottom of the tower by introducing and distilling the obtained second oxygen-enriched liquid fraction, and separated by the mixing tower. A product recovery path for recovering the low-purity oxygen fraction as a product.

【0013】さらに、本発明の低純度酸素の製造装置
は、前記第一酸素富化液留分抜出経路が高圧塔の塔底か
ら少なくとも1理論段上に設けられていること、前記第
二酸素富化液留分抜出経路が低圧塔の塔底から少なくと
も1理論段上に設けられるとともに、最下段精留段の下
に低圧塔底部に分離した高純度の酸素ガスを抜き出す高
純度酸素抜出経路が設けられていることを特徴としてい
る。
Further, in the apparatus for producing low-purity oxygen of the present invention, the first oxygen-enriched liquid fraction extraction path is provided at least one theoretical plate above the bottom of the high-pressure column. An oxygen-enriched liquid fraction extraction path is provided at least one theoretical stage above the bottom of the low-pressure column, and high-purity oxygen that extracts high-purity oxygen gas separated at the bottom of the low-pressure column below the lowermost rectification stage It is characterized in that an extraction path is provided.

【0014】また、前記ミキシング塔の塔底部に分離し
た塔底液留分を抜き出し、前記低圧塔の中部に還流液と
して導入する第一酸素還流経路を備えていること、前記
ミキシング塔の中段から液を抜き出し、前記低圧塔の中
部より下方の位置に還流液として導入する第二酸素還流
経路を備えていることを特徴とし、さらに、前記リボイ
ラ/コンデンサがドライタイプであることを特徴として
いる。
Further, a first oxygen reflux path for extracting a bottom liquid fraction separated at the bottom of the mixing tower and introducing it as a reflux liquid into the center of the low-pressure tower is provided. It is characterized in that a second oxygen recirculation path for extracting the liquid and introducing it as a reflux liquid below the middle part of the low-pressure column is provided, and the reboiler / condenser is of a dry type.

【0015】[0015]

【発明の実施の形態】図1は本発明の一形態例を示す系
統図である。この系統図に示す装置は、高圧塔1、低圧
塔2及びミキシング塔3を有するとともに、空気を低温
蒸留するための付帯設備である原料空気圧縮機4、前処
理設備5、主熱交換器6、主凝縮器7、過冷器8、リボ
イラ/コンデンサ9等の各種機器、各種弁及び配管を備
えた三塔式蒸留設備である。
FIG. 1 is a system diagram showing one embodiment of the present invention. The apparatus shown in this system diagram has a high-pressure column 1, a low-pressure column 2, and a mixing column 3, and has a raw material air compressor 4, a pretreatment facility 5, and a main heat exchanger 6, which are auxiliary facilities for low-temperature distillation of air. , A main condenser 7, a subcooler 8, a reboiler / condenser 9, etc., and a three-tower distillation apparatus equipped with various valves and piping.

【0016】以下、低純度酸素を製造する手順に基づい
て本形態例を説明する。まず、経路10から吸入された
102000Nm/hの原料空気は、原料空気圧縮4
で6.0kg/cm abs.に圧縮され、アフタークー
ラー11で40℃に冷却された後、前処理設備5で二酸
化炭素や水分等の不純物を除去されて精製される。この
原料空気は、経路12から経路13と経路14とに分岐
し、一方の経路13に分岐した原料空気は、空気予冷器
15を通ってからブロワー16で更に圧縮され、アフタ
ークーラー17及び空気予冷器15で冷却される。さら
に、この原料空気は、経路18から主熱交換器6を通っ
て中間温度に冷却された後、経路19を通って前記ブロ
ワー16に直結した膨張タービン20に導入され、膨張
してプラントに必要な寒冷を発生する。膨張して低圧状
態となったこの原料空気は、経路21を通って低圧塔2
の所定の位置に導入される。他方の経路14に分岐した
原料空気は、主熱交換器6で露点温度付近まで冷却され
た後、経路22を通って高圧塔1の下部に導入される。
The present embodiment will be described below based on a procedure for producing low-purity oxygen. First, the raw material air of 102000 Nm 3 / h sucked from the passage 10 is compressed by the raw air compression 4
6.0 kg / cm 2 abs. After cooling to 40 ° C. in the aftercooler 11, the pretreatment equipment 5 removes impurities such as carbon dioxide and moisture to purify the product. The raw material air is branched from a path 12 to a path 13 and a path 14, and the raw material air branched to one path 13 is further compressed by a blower 16 after passing through an air precooler 15, and is further compressed by an aftercooler 17 and an air precooler. It is cooled in the vessel 15. Further, the feed air is cooled from the passage 18 through the main heat exchanger 6 to an intermediate temperature, and then introduced into the expansion turbine 20 directly connected to the blower 16 through the passage 19, expanded and required for the plant. It produces cold. The raw material air expanded to a low pressure state passes through a path 21 and passes through the low pressure tower 2.
Is introduced at a predetermined position. The raw material air branched to the other path 14 is cooled to near the dew point temperature in the main heat exchanger 6, and then introduced into the lower part of the high-pressure column 1 through the path 22.

【0017】高圧塔1では、塔内を上昇するガスと、塔
頂部の主凝縮器7で凝縮して塔内を下降する液との気液
接触によって第一蒸留工程が行われ、塔頂部の第一窒素
留分と、塔底部の第一酸素富化液留分とに分離する。高
圧塔1の頂部から経路23に抜き出された第一窒素留
分、即ち窒素ガスは、その一部が経路24を通って主凝
縮器7に導入され、後述する低圧塔底部の第二酸素富化
液留分と熱交換することにより凝縮して液化窒素とな
り、経路25に導出し、その一部が経路26に分岐して
高圧塔1の頂部に還流液として戻される。また、経路2
3から経路27に進んだ窒素ガスは、前記リボイラ/コ
ンデンサ9で高圧塔底部からの第一酸素富化液留分と熱
交換することにより凝縮して液化窒素となり、経路28
に導出し、その一部が前記経路26から高圧塔1の還流
液として戻される。
In the high-pressure column 1, the first distillation step is performed by gas-liquid contact between the gas rising in the column and the liquid condensed in the main condenser 7 at the top and descending in the column. It is separated into a first nitrogen fraction and a first oxygen-enriched liquid fraction at the bottom of the column. A part of the first nitrogen fraction, that is, nitrogen gas, extracted from the top of the high-pressure column 1 to the path 23 through the path 24 is introduced into the main condenser 7, and the second oxygen fraction at the bottom of the low-pressure column, which will be described later. By heat exchange with the enriched liquid fraction, it is condensed to liquefied nitrogen, which is led out to a passage 25, and a part thereof is branched to a passage 26 and returned to the top of the high-pressure column 1 as a reflux liquid. Route 2
The nitrogen gas which has proceeded from 3 to the path 27 is condensed into liquefied nitrogen by exchanging heat with the first oxygen-enriched liquid fraction from the bottom of the high pressure column in the reboiler / condenser 9,
And a part thereof is returned from the passage 26 as a reflux liquid of the high-pressure column 1.

【0018】還流液となる以外の液化窒素47000N
/hは、前記経路25,28から経路29に合流
し、前記過冷器8で冷却された後、経路30を通り、膨
張弁31で低圧塔2の圧力1.3kg/cm abs.に
減圧された後、経路32を通って低圧塔2の頂部に還流
液として導入される。
Liquefied nitrogen other than reflux liquid 47000N
m 3 / h joins the path 29 from the paths 25 and 28 and is cooled by the subcooler 8, passes through the path 30, passes through the path 30, and the pressure of the low-pressure tower 2 is 1.3 kg / cm 2 abs at the expansion valve 31 . After passing through the path 32, the liquid is introduced into the top of the low-pressure column 2 as a reflux liquid.

【0019】一方、前記高圧塔1の底部に分離した酸素
分約40%の第一酸素富化液留分は、経路33に抜き出
されて経路34と経路35とに分岐する。経路34に分
岐した23000Nm/hの第一酸素富化液留分は、
過冷器8で冷却された後、経路36を通り、膨張弁37
で低圧塔2の圧力1.3kg/cm abs.に減圧さ
れ、経路38を通って低圧塔2の中上部に還流液として
導入される。また、経路33から経路35に続く第一酸
素富化液留分抜出経路に分岐した27400Nm /h
の第一酸素富化液留分は、膨張弁39で2.6kg/c
abs.に減圧された後、経路40を経て前記リボイ
ラ/コンデンサ9に導入され、高圧塔頂部からの前記窒
素ガスと熱交換することによりガス化し、経路41を通
って前記ミキシング塔3の底部に上昇ガスとして導入さ
れる。
On the other hand, oxygen separated at the bottom of the high-pressure column 1
The first oxygen-enriched liquid fraction of about 40% is withdrawn to the passage 33.
Then, the path branches to a path 34 and a path 35. Minutes on path 34
23,000Nm3/ H of the primary oxygen-enriched liquid fraction
After being cooled by the subcooler 8, it passes through the path 36,
And the pressure of the low pressure tower 2 is 1.3 kg / cm2 abs. Decompressed
Through the passage 38 as a reflux liquid in the upper middle part of the low-pressure column 2.
be introduced. Also, the first acid following the route 33 to the route 35
27400Nm branched to the distillate extraction route 3/ H
Of the first oxygen-enriched liquid fraction at the expansion valve 39 is 2.6 kg / c
m2 abs. After the pressure has been reduced to
Into the condenser / condenser 9 from the top of the high pressure tower.
Gasification by heat exchange with raw gas
Is introduced into the bottom of the mixing tower 3 as rising gas.
It is.

【0020】なお、本形態例では、リボイラ/コンデン
サ9として、液浸漬型ではなく、ドライ型のリボイラ/
コンデンサを使用している。すなわち、液浸漬型の場合
は、気化側の液体が液ヘッドによって過冷却状態となる
ため、この分、気化圧力を低くしなければならないが、
ドライタイプの場合には、このようなことがないので、
気化圧力を高めることができる。したがって、ミキシン
グ塔3に導入する第一酸素富化液留分の気化圧力を高く
することができるので、ミキシング塔3の運転圧力を高
めることができ、最終的にミキシング塔3から回収する
製品低純度酸素ガスの圧力を高くすることができる。し
かも、ドライタイプは、液浸漬型に比べて保有液量が少
ないので、装置の起動時間を短縮できる効果もある。
In this embodiment, the reboiler / condenser 9 is not a liquid immersion type but a dry type reboiler / condenser.
A capacitor is used. That is, in the case of the liquid immersion type, since the liquid on the vaporization side is supercooled by the liquid head, the vaporization pressure must be reduced accordingly,
In the case of dry type, there is no such thing,
The vaporization pressure can be increased. Therefore, the vaporization pressure of the first oxygen-enriched liquid fraction introduced into the mixing tower 3 can be increased, so that the operating pressure of the mixing tower 3 can be increased, and the product recovered from the mixing tower 3 can be reduced. The pressure of the pure oxygen gas can be increased. In addition, the dry type has a smaller amount of retained liquid than the liquid immersion type, and thus has the effect of shortening the startup time of the apparatus.

【0021】前記低圧塔2では、前記経路32,38か
らそれぞれ導入される還流液と、塔底部の主凝縮器7で
気化した上昇ガスとの気液接触によって第二蒸留工程が
行われ、塔頂部の第二窒素留分と、塔底部の第二酸素富
化液留分とに分離する。
In the low-pressure column 2, a second distillation step is performed by gas-liquid contact between the reflux liquid introduced from each of the channels 32 and 38 and the rising gas vaporized in the main condenser 7 at the bottom of the column. It is separated into a second nitrogen fraction at the top and a second oxygen-enriched liquid fraction at the bottom of the column.

【0022】塔頂部からは、第二窒素留分である窒素ガ
ス79650Nm/hが経路42に抜き出され、過冷
器8での熱交換により昇温した後、経路43を通って主
熱交換器6で原料空気と熱交換することにより常温まで
昇温し、経路44から製品窒素として抜き出される。本
形態例のプロセスでは、原料空気の全量を高圧塔1に導
入していることから、低圧塔2の頂部還流液化窒素量を
多くすることができるため、低圧塔頂部の窒素濃度は9
9.3%であり、製品窒素ガスとして十分に使用可能で
ある。
From the top of the tower, nitrogen gas 79650 Nm 3 / h, which is a second nitrogen fraction, is withdrawn through a passage 42, heated by heat exchange in a subcooler 8, and then passed through a passage 43 to obtain main heat. The heat is exchanged with the raw material air in the exchanger 6 to raise the temperature to room temperature, and is extracted from the path 44 as product nitrogen. In the process of the present embodiment, since the entire amount of the raw material air is introduced into the high-pressure column 1, the amount of liquefied nitrogen refluxed at the top of the low-pressure column 2 can be increased.
It is 9.3% and can be sufficiently used as product nitrogen gas.

【0023】低圧塔2の底部の第二酸素富化液留分は、
酸素濃度98%の液化酸素であり、66000Nm
hが第二酸素富化液留分抜出経路である経路45に抜き
出され、液ポンプ46で2.6kg/cm abs.に圧
縮された後、経路47を通ってミキシング塔3の頂部に
還流液として供給される。
The second oxygen-enriched liquid fraction at the bottom of the low pressure column 2 is
Oxygen concentration was 98% of the liquid oxygen, 66000Nm 3 /
h is withdrawn through a passage 45 which is a second oxygen-enriched liquid fraction withdrawal passage, and 2.6 kg / cm 2 abs. After being compressed, the mixture is supplied to the top of the mixing tower 3 through a path 47 as a reflux liquid.

【0024】ミキシング塔3では、前記経路41から導
入された上昇ガスと、上記経路47から導入された還流
液とが気液接触することにより第三蒸留工程が行われ、
塔頂部の低純度酸素留分と、塔底部の塔底液留分とに分
離する。塔頂部の低純度酸素留分は、酸素濃度95%の
低純度酸素であり、製品回収経路となる頂部の経路48
から22350Nm/hが抜き出され、主熱交換器6
で常温まで昇温した後、経路49を通ってブロワー50
で所定圧力に圧縮されて経路51から取り出される。
In the mixing tower 3, a third distillation step is performed by bringing the ascending gas introduced from the path 41 into a gas-liquid contact with the reflux liquid introduced from the path 47,
It is separated into a low-purity oxygen fraction at the top and a bottoms liquid fraction at the bottom. The low-purity oxygen fraction at the top of the tower is low-purity oxygen having an oxygen concentration of 95%, and is a top path 48 which is a product recovery path.
22350 Nm 3 / h from the main heat exchanger 6
After raising the temperature to normal temperature through
Is compressed to a predetermined pressure and taken out of the path 51.

【0025】ミキシング塔3の底部から第一酸素還流経
路である経路52に抜き出された塔底液留分は、膨張弁
53で低圧塔2の圧力に減圧された後、経路54を通
り、塔底液留分の酸素濃度に対応した位置の低圧塔中部
に導入される。また、ミキシング塔3の中間部からは、
塔内を下降する液の一部が第二酸素還流経路である経路
55に抜き出され、膨張弁56で低圧塔2の圧力に減圧
された後、経路57を通り、該液の酸素濃度に対応した
位置の低圧塔中部より下方に導入される。
The bottom liquid fraction withdrawn from the bottom of the mixing tower 3 to the path 52, which is the first oxygen reflux path, is reduced to the pressure of the low-pressure tower 2 by the expansion valve 53, and then passes through the path 54. It is introduced into the lower pressure column at a position corresponding to the oxygen concentration of the bottom liquid fraction. Also, from the middle part of the mixing tower 3,
A part of the liquid descending in the column is withdrawn to a path 55 which is a second oxygen recirculation path, reduced to the pressure of the low-pressure tower 2 by an expansion valve 56, and then passed through a path 57 to the oxygen concentration of the liquid. It is introduced below the middle part of the low pressure column at the corresponding position.

【0026】上述のように、高圧塔1から抜き出した第
一酸素富化液留分を気化してミキシング塔3の上昇ガス
として用いることにより、原料空気のほとんどを高圧塔
1に供給することができるので、低圧塔2の頂部還流液
化窒素量を多くすることができる。これにより、低圧塔
2のL/Vが改善されて精留効率が向上し、製品低純度
酸素の回収率が増加するとともに、低圧塔2から抜き出
す窒素の純度も向上させることができる。したがって、
本形態例プロセスは、大量の低純度酸素と共に、一定純
度以上の窒素ガスを大量に必要とするガス化複合発電に
も好適に用いることができる。
As described above, most of the raw material air can be supplied to the high-pressure column 1 by vaporizing the first oxygen-enriched liquid fraction extracted from the high-pressure column 1 and using it as the rising gas of the mixing column 3. Therefore, the amount of liquefied nitrogen at the top of the low-pressure column 2 can be increased. Thereby, the L / V of the low-pressure column 2 is improved, the rectification efficiency is improved, the recovery rate of the product low-purity oxygen is increased, and the purity of the nitrogen extracted from the low-pressure column 2 can be improved. Therefore,
The process of this embodiment can be suitably used for combined gasification power generation, which requires a large amount of nitrogen gas of a certain purity or more together with a large amount of low-purity oxygen.

【0027】また、高圧塔1からミキシング塔3に供給
する第一酸素富化液留分の気化を、高圧塔1から抜き出
した第一窒素留分との熱交換で行うことにより、第一酸
素富化液留分の気化を、他の加熱源を用意することなく
効率よく行えるとともに、第一窒素留分を液化させて高
圧塔1や低圧塔2の還流液として使用することができ
る。さらに、ミキシング塔3から抜き出した液を、低圧
塔2の酸素濃度に対応した位置に供給することにより、
低圧塔2の運転を乱すことなく安定した効率のよい蒸留
操作を行うことができる。
The first oxygen-enriched liquid fraction to be supplied from the high-pressure column 1 to the mixing column 3 is vaporized by heat exchange with the first nitrogen fraction extracted from the high-pressure column 1 so that the first oxygen-enriched liquid fraction is vaporized. Evaporation of the enriched liquid fraction can be performed efficiently without preparing another heating source, and the first nitrogen fraction can be liquefied and used as a reflux liquid of the high-pressure column 1 or the low-pressure column 2. Further, by supplying the liquid extracted from the mixing tower 3 to a position corresponding to the oxygen concentration of the low-pressure tower 2,
A stable and efficient distillation operation can be performed without disturbing the operation of the low pressure column 2.

【0028】ここで、本形態例に示すプロセスと、従来
例として前記米国特許第5291737号明細書記載の
プロセスとにおいて、同条件の低純度酸素を製造する場
合のシミュレーションを行った結果を表1に示す。な
お、酸素製造原単位には、従来例と条件を合わせるた
め、酸素を68kg/cm abs.まで昇圧するための
ブロワー50の動力も含めている。
Here, Table 1 shows the results of simulations for producing low-purity oxygen under the same conditions in the process shown in the present embodiment and the process described in US Pat. No. 5,291,737 as a conventional example. Shown in In addition, in order to match the condition with the conventional example, oxygen is 68 kg / cm 2 abs. The power of the blower 50 for raising the pressure to the maximum is also included.

【0029】[0029]

【表1】 [Table 1]

【0030】上記シミュレーションでは、全ての蒸留塔
に棚段を使用した場合で計算を行ったが、高圧塔1,低
圧塔2,ミキシング塔3の少なくとも1つに充填物を使
用することにより、蒸留塔の圧力損失を少なくすること
ができるので、さらに酸素製造原単位を低減させること
ができる。
In the above simulation, the calculation was performed in the case where trays were used for all the distillation columns, but the distillation was performed by using a packing material in at least one of the high-pressure column 1, the low-pressure column 2, and the mixing column 3. Since the pressure loss in the column can be reduced, the unit oxygen production unit can be further reduced.

【0031】また、本形態例では、高圧塔1の第一酸素
富化液留分の一部をミキシング塔3に供給するようにし
ているが、リボイラ/コンデンサ9における炭化水素の
濃縮を防止するため、図1に破線で示すように、高圧塔
1の塔底から少なくとも1理論段上の精留段1aから経
路35aを通して液を抜き出すようにしてもよい。
In this embodiment, a part of the first oxygen-enriched liquid fraction in the high-pressure column 1 is supplied to the mixing column 3, but the concentration of hydrocarbons in the reboiler / condenser 9 is prevented. Therefore, as shown by the broken line in FIG. 1, the liquid may be extracted from the bottom of the high-pressure column 1 through the path 35a from the rectification stage 1a at least one theoretical stage.

【0032】また、図2に示すように、ミキシング塔3
に還流液として導入する液も、低圧塔2の塔底から数段
上の精留段2aに設けた経路45aで抜き出すととも
に、最下段の精留段2bより下に設けた経路(高純度酸
素抜出経路)58から主熱交換器6,経路59を通し
て、純度の高い酸素ガスを抜き出すこともできる。
As shown in FIG. 2, the mixing tower 3
The liquid to be introduced as a reflux liquid into the rectification stage 2a is withdrawn from the bottom of the low-pressure column 2 through a passage 45a provided in the rectification stage 2a several stages above, and a liquid (high-purity oxygen) provided below the bottom rectification stage 2b. High-purity oxygen gas can also be extracted from the extraction path 58 through the main heat exchanger 6 and the path 59.

【0033】これにより、ミキシング塔3から抜き出す
低純度の酸素と、低圧塔2から抜き出す高純度の酸素と
の純度の異なる2種類の製品酸素を得ることができるの
で、大量の低純度酸素と少量の高純度酸素とを必要とす
る設備、例えば、コレックス(COREX)製鋼法を基
にした新しいグラスルーツ製鋼所等の用途に好適であ
る。
As a result, two types of product oxygen having different purities, that is, low-purity oxygen extracted from the mixing tower 3 and high-purity oxygen extracted from the low-pressure tower 2 can be obtained. It is suitable for use in equipment requiring high-purity oxygen, such as a new grassroots steel mill based on the COREX steelmaking method.

【0034】[0034]

【発明の効果】以上説明したように、本発明によれば、
比較的圧力が高い低純度酸素を効率よく製造でき、回収
率の向上や圧縮機に要する動力費の削減により原単位の
低減が図れる。さらに、比較的高純度の窒素も同時に製
造することが可能であり、低純度の酸素と高純度の酸素
とを同時に製造することも可能である。
As described above, according to the present invention,
Low-purity oxygen with a relatively high pressure can be efficiently produced, and the unit consumption can be reduced by improving the recovery rate and reducing the power cost required for the compressor. Further, relatively high purity nitrogen can be produced at the same time, and low-purity oxygen and high-purity oxygen can be produced simultaneously.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一形態例を示す系統図である。FIG. 1 is a system diagram showing one embodiment of the present invention.

【図2】 変形例を示す要部の系統図である。FIG. 2 is a system diagram of a main part showing a modification.

【符号の説明】[Explanation of symbols]

1…高圧塔、2…低圧塔、3…ミキシング塔、4…原料
空気圧縮機、5…前処理設備、6…主熱交換器、7…主
凝縮器、8…過冷器、9…リボイラ/コンデンサ、15
…空気予冷器、16…ブロワー、20…膨張タービン、
31,37,39…膨張弁、50…ブロワー、53,5
6…膨張弁
DESCRIPTION OF SYMBOLS 1 ... High pressure tower, 2 ... Low pressure tower, 3 ... Mixing tower, 4 ... Raw material air compressor, 5 ... Pretreatment equipment, 6 ... Main heat exchanger, 7 ... Main condenser, 8 ... Supercooler, 9 ... Reboiler / Capacitor, 15
... air precooler, 16 ... blower, 20 ... expansion turbine,
31, 37, 39: expansion valve, 50: blower, 53, 5
6 ... Expansion valve

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 高圧塔、低圧塔及びミキシング塔を有す
る三塔式蒸留設備に原料空気を導入して低温蒸留するこ
とにより、少なくとも低純度酸素を製品として分離回収
する低純度酸素の製造方法において、圧縮,精製,冷却
した原料空気を前記高圧塔に導入して第一窒素留分と第
一酸素富化液留分とに分離する第一蒸留工程と、該第一
蒸留工程で分離した第一窒素留分と第一酸素富化液留分
とを前記低圧塔に導入して第二窒素留分と第二酸素富化
液留分とに分離する第二蒸留工程と、前記第一酸素富化
液留分を気化した後に前記ミキシング塔の下部に上昇ガ
スとして導入するとともに、前記第二酸素富化液留分を
昇圧した後に前記ミキシング塔の上部に還流液として導
入し、低純度酸素留分と塔底液留分とに分離する第三蒸
留工程と、該第三蒸留工程で分離した低純度酸素留分を
製品として回収する製品回収工程とを含むことを特徴と
する低純度酸素の製造方法。
1. A low-purity oxygen production method for separating and recovering at least low-purity oxygen as a product by introducing raw air into a three-column distillation apparatus having a high-pressure tower, a low-pressure tower, and a mixing tower and performing low-temperature distillation. A first distillation step of introducing compressed, purified and cooled raw material air into the high-pressure column to separate it into a first nitrogen fraction and a first oxygen-enriched liquid fraction, and a second distillation step separated in the first distillation step. A second distillation step of introducing a mononitrogen fraction and a first oxygen-enriched liquid fraction into the low-pressure column to separate it into a second nitrogen fraction and a second oxygen-enriched liquid fraction; After evaporating the enriched liquid fraction, it is introduced as a rising gas into the lower part of the mixing tower, and after increasing the pressure of the second oxygen-enriched liquid fraction, it is introduced as a reflux liquid into the upper part of the mixing tower to obtain a low-purity oxygen. A third distillation step of separating into a fraction and a bottoms fraction, A product recovery step of recovering a low-purity oxygen fraction separated in the distillation step as a product.
【請求項2】 前記第一酸素富化液留分の気化を、前記
第一窒素留分との熱交換により行うことを特徴とする請
求項1記載の低純度酸素の製造方法。
2. The method for producing low-purity oxygen according to claim 1, wherein the first oxygen-enriched liquid fraction is vaporized by heat exchange with the first nitrogen fraction.
【請求項3】 前記気化されてミキシング塔に導入され
る第一酸素富化液留分が、前記高圧塔の塔底から少なく
とも1理論段上から抜き出されることを特徴とする請求
項1記載の低純度酸素の製造方法。
3. The high-pressure column according to claim 1, wherein the first oxygen-enriched liquid fraction vaporized and introduced into the mixing column is withdrawn from at least one theoretical plate at the bottom of the high-pressure column. Method for producing low-purity oxygen.
【請求項4】 前記ミキシング塔に導入する第二酸素富
化液留分を、前記低圧塔の塔底から少なくとも1理論段
上から抜き出すとともに、前記低圧塔の塔底部から高純
度の酸素ガスを抜き出すことを特徴とする請求項1記載
の低純度酸素の製造方法。
4. A second oxygen-enriched liquid fraction introduced into the mixing tower is withdrawn from the bottom of the low-pressure column from at least one theoretical plate, and high-purity oxygen gas is removed from the bottom of the low-pressure column. The method for producing low-purity oxygen according to claim 1, wherein the oxygen is extracted.
【請求項5】 前記ミキシング塔の塔底から抜き出した
塔底液留分を、該塔底液留分の酸素濃度に対応する位置
で前記低圧塔に導入することを特徴とする請求項1記載
の低純度酸素の製造方法。
5. The low pressure column according to claim 1, wherein the bottom liquid fraction extracted from the bottom of the mixing tower is introduced into the low pressure column at a position corresponding to the oxygen concentration of the bottom liquid fraction. Method for producing low-purity oxygen.
【請求項6】 前記ミキシング塔の中間部から液を抜き
出し、該液の酸素濃度に対応する位置で前記低圧塔に導
入することを特徴とする請求項1記載の低純度酸素の製
造方法。
6. The method for producing low-purity oxygen according to claim 1, wherein a liquid is withdrawn from an intermediate portion of said mixing tower and introduced into said low-pressure column at a position corresponding to the oxygen concentration of said liquid.
【請求項7】 圧縮,精製,冷却されて導入される原料
空気を蒸留して塔上部の第一窒素留分と塔下部の第一酸
素富化液留分とに分離する高圧塔と、該高圧塔で分離し
た第一窒素留分と第一酸素富化液留分とを導入して蒸留
することにより塔上部の第二窒素留分と塔下部の第二酸
素富化液留分とに分離する低圧塔と、前記高圧塔から前
記第一酸素富化液留分を抜き出す第一酸素富化液留分抜
出経路と、該第一酸素富化液留分抜出経路に抜き出した
第一酸素富化液留分を気化するリボイラ/コンデンサ
と、前記低圧塔から前記第二酸素富化液留分を抜き出す
第二酸素富化液留分抜出経路と、該第二酸素富化液留分
抜出経路に抜き出した第二酸素富化液留分を昇圧する液
ポンプと、前記リボイラ/コンデンサで気化した第一酸
素富化留分及び前記液ポンプで昇圧された第二酸素富化
液留分とを導入して蒸留することにより塔上部の低純度
酸素留分と塔底部の塔底液留分とに分離するミキシング
塔と、該ミキシング塔で分離した前記低純度酸素留分を
製品として回収する製品回収経路とを備えたことを特徴
とする低純度酸素の製造装置。
7. A high-pressure column for distilling compressed, purified, cooled and introduced raw air into a first nitrogen fraction at the top of the column and a first oxygen-enriched liquid fraction at the bottom of the column, By introducing and distilling the primary nitrogen fraction and the primary oxygen-enriched liquid fraction separated in the high-pressure column, a second nitrogen fraction at the top of the column and a second oxygen-enriched liquid fraction at the bottom of the column are formed. A low-pressure column to be separated, a first oxygen-enriched liquid fraction extraction path for extracting the first oxygen-enriched liquid fraction from the high-pressure column, and a first oxygen-enriched liquid fraction extraction path extracted from the first oxygen-enriched liquid fraction extraction path. A reboiler / condenser for evaporating the one oxygen-enriched liquid fraction, a second oxygen-enriched liquid fraction withdrawal path for extracting the second oxygen-enriched liquid fraction from the low-pressure column, and the second oxygen-enriched liquid A liquid pump for increasing the pressure of the second oxygen-enriched liquid fraction withdrawn to the fraction withdrawal path, and a first oxygen-enriched fraction vaporized by the reboiler / condenser and the liquid A mixing tower that separates a low-purity oxygen fraction at the top of the tower and a bottoms liquid fraction at the bottom of the tower by introducing and distilling the second oxygen-enriched liquid fraction pressurized by a pump; and And a product recovery path for recovering the low-purity oxygen fraction separated in step (1) as a product.
【請求項8】 前記第一酸素富化液留分抜出経路が、前
記高圧塔の塔底から少なくとも1理論段上に設けられて
いることを特徴とする請求項7記載の低純度酸素の製造
装置。
8. The low-purity oxygen purifying apparatus according to claim 7, wherein the first oxygen-enriched liquid fraction extraction path is provided at least one theoretical plate above the bottom of the high-pressure column. manufacturing device.
【請求項9】 前記第二酸素富化液留分抜出経路が、前
記低圧塔の塔底から少なくとも1理論段上に設けられて
いるとともに、最下段精留段の下に低圧塔底部に分離し
た高純度の酸素ガスを抜き出す高純度酸素抜出経路が設
けられていることを特徴とする請求項7記載の低純度酸
素の製造装置。
9. The second oxygen-enriched liquid fraction withdrawal path is provided at least one theoretical plate above the bottom of the low-pressure column, and is provided at the bottom of the low-pressure column below the lowermost rectification stage. 8. The apparatus for producing low-purity oxygen according to claim 7, further comprising a high-purity oxygen extracting path for extracting the separated high-purity oxygen gas.
【請求項10】 前記ミキシング塔の塔底部に分離した
塔底液留分を抜き出し、前記低圧塔の中部に還流液とし
て導入する第一酸素還流経路を備えたことを特徴とする
請求項7記載の低純度酸素の製造装置。
10. The apparatus according to claim 7, further comprising a first oxygen reflux path for extracting a bottom liquid fraction separated at the bottom of the mixing tower and introducing it as a reflux liquid into the center of the low-pressure column. Low purity oxygen production equipment.
【請求項11】 前記ミキシング塔の中段から液を抜き
出し、前記低圧塔の中部より下方の位置に還流液として
導入する第二酸素還流経路を備えたことを特徴とする請
求項7記載の低純度酸素の製造装置。
11. The low-purity low-purity system according to claim 7, further comprising a second oxygen reflux path for extracting a liquid from the middle stage of the mixing tower and introducing the liquid as a reflux liquid at a position below the center of the low-pressure column. Oxygen production equipment.
【請求項12】 前記リボイラ/コンデンサがドライタ
イプであることを特徴とする請求項7記載の低純度酸素
の製造装置。
12. The apparatus for producing low-purity oxygen according to claim 7, wherein said reboiler / condenser is of a dry type.
JP06157499A 1999-03-09 1999-03-09 Method and apparatus for producing low purity oxygen Expired - Lifetime JP4177507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06157499A JP4177507B2 (en) 1999-03-09 1999-03-09 Method and apparatus for producing low purity oxygen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06157499A JP4177507B2 (en) 1999-03-09 1999-03-09 Method and apparatus for producing low purity oxygen

Publications (2)

Publication Number Publication Date
JP2000258054A true JP2000258054A (en) 2000-09-22
JP4177507B2 JP4177507B2 (en) 2008-11-05

Family

ID=13175043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06157499A Expired - Lifetime JP4177507B2 (en) 1999-03-09 1999-03-09 Method and apparatus for producing low purity oxygen

Country Status (1)

Country Link
JP (1) JP4177507B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007516405A (en) * 2003-11-10 2007-06-21 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method and facility for supplying high purity oxygen by cryogenic distillation of air
JP2010286216A (en) * 2009-06-15 2010-12-24 Taiyo Nippon Sanso Corp Air separation method and device
CN104964516A (en) * 2015-07-10 2015-10-07 杭州杭氧股份有限公司 Partly-integrated type air separation device matched with IGCC power plant and method achieved through partly-integrated type air separation device
EP3557166A1 (en) 2018-04-19 2019-10-23 Linde Aktiengesellschaft Method for the low-temperature decomposition of air and air separation plant
RU2778193C2 (en) * 2018-04-19 2022-08-15 Линде Акциенгезельшафт Method for cryogenic air separation and air separation installation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007516405A (en) * 2003-11-10 2007-06-21 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method and facility for supplying high purity oxygen by cryogenic distillation of air
JP2010286216A (en) * 2009-06-15 2010-12-24 Taiyo Nippon Sanso Corp Air separation method and device
CN104964516A (en) * 2015-07-10 2015-10-07 杭州杭氧股份有限公司 Partly-integrated type air separation device matched with IGCC power plant and method achieved through partly-integrated type air separation device
EP3557166A1 (en) 2018-04-19 2019-10-23 Linde Aktiengesellschaft Method for the low-temperature decomposition of air and air separation plant
RU2778193C2 (en) * 2018-04-19 2022-08-15 Линде Акциенгезельшафт Method for cryogenic air separation and air separation installation
US11602713B2 (en) 2018-04-19 2023-03-14 Linde Aktiengesellschaft Method for cryogenic separation of air, and air separation plant

Also Published As

Publication number Publication date
JP4177507B2 (en) 2008-11-05

Similar Documents

Publication Publication Date Title
JP5425100B2 (en) Cryogenic air separation method and apparatus
JP4331460B2 (en) Method and apparatus for producing krypton and / or xenon by low temperature air separation
JPH06207775A (en) Low-temperature air separating method for manufacturing nitrogen having no carbon monoxide
JP2001263935A (en) Method for separating air and air separator using the same
JPH102664A (en) Low temperature distillating method for air flow of compressed raw material for manufacturing oxygen products of low purity and high purity
NO169977B (en) PROCEDURE FOR SEPARATING AIR BY CRYOGEN DISTILLATION
JPH06257939A (en) Distilling method at low temperature of air
JP5307055B2 (en) Nitrogen and oxygen production method and nitrogen and oxygen production apparatus.
JPS6367636B2 (en)
JP4401999B2 (en) Air separation method and air separation device
JPH07151458A (en) Method and equipment for preparing gaseous oxygen and/or nitrogen under pressure
JPH10132458A (en) Method and equipment for producing oxygen gas
JP5032407B2 (en) Nitrogen production method and apparatus
JPH1163810A (en) Method and device for manufacturing low purity oxygen
JP4177507B2 (en) Method and apparatus for producing low purity oxygen
JP4230213B2 (en) Air liquefaction separation apparatus and method
JPH07151459A (en) Method and equipment for preparing at least one gas from airunder pressure
JP3748677B2 (en) Method and apparatus for producing low purity oxygen
JP3414947B2 (en) Argon purification method and air separation device
JP5027173B2 (en) Argon production method and apparatus thereof
JP4577977B2 (en) Air liquefaction separation method and apparatus
JP2859663B2 (en) Nitrogen gas and oxygen gas production equipment
JPH11325716A (en) Separation of air
JP7355980B1 (en) Ultra-high purity oxygen production method and ultra-high purity oxygen production equipment
JPH11132652A (en) Method and device for manufacturing low-purity oxygen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term