JP3299069B2 - Air low-temperature separation apparatus and separation method - Google Patents

Air low-temperature separation apparatus and separation method

Info

Publication number
JP3299069B2
JP3299069B2 JP06597795A JP6597795A JP3299069B2 JP 3299069 B2 JP3299069 B2 JP 3299069B2 JP 06597795 A JP06597795 A JP 06597795A JP 6597795 A JP6597795 A JP 6597795A JP 3299069 B2 JP3299069 B2 JP 3299069B2
Authority
JP
Japan
Prior art keywords
gas
helium
rectification
liquid
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06597795A
Other languages
Japanese (ja)
Other versions
JPH08261645A (en
Inventor
孝 長村
正臣 藤田
次郎 清水
俊三 佐々木
陽一 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide Japan GK
Original Assignee
Air Liquide Japan GK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide Japan GK filed Critical Air Liquide Japan GK
Priority to JP06597795A priority Critical patent/JP3299069B2/en
Publication of JPH08261645A publication Critical patent/JPH08261645A/en
Application granted granted Critical
Publication of JP3299069B2 publication Critical patent/JP3299069B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/044Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04624Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using integrated mass and heat exchange, so-called non-adiabatic rectification, e.g. dephlegmator, reflux exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/30Processes or apparatus using separation by rectification using a side column in a single pressure column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/32Processes or apparatus using separation by rectification using a side column fed by a stream from the high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/80Processes or apparatus using other separation and/or other processing means using membrane, i.e. including a permeation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/04Mixing or blending of fluids with the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/30Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光ファイバー製造工程
や光ガラス製造工程等で使用されるヘリウムガスを少な
くとも窒素ガスと共に経済的に製造する技術の改良に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in technology for economically producing helium gas used in an optical fiber manufacturing process or optical glass manufacturing process together with at least nitrogen gas.

【0002】[0002]

【従来の技術】一般に、光ファイバー製造工程や半導体
製造工程等では酸素(O2)、窒素(N2)、ヘリウム(H
e)が使用されているが、その中でもヘリウムは自然界
の空気中に5.2PPMしか存在しないため、自然界の
空気からは経済的に引き合う価格で分離することはでき
ず、限られた地域から出る天然ガスから分離され、液化
されて日本に輸入されているのが現状である。そこで、
近年では、上記光ファイバー製造工程等で使用された後
のヘリウム(He)を再度精製して循環利用することが
要望されており、このような要望に対して、従来では、
特開平5−172457号公報等において開示されてい
るように、製造工程で回収された不純物を含むヘリウム
ガスを冷却する工程、冷却により液化した不純物とヘリ
ウムガスとを分離する工程、気液分離された液体成分を
排出する工程とを経てヘリウムを精製する方法、或い
は、特開平6−210157号公報等で開示されている
ように、製造工程で回収された不純物を含むヘリウムガ
スを圧縮して冷却したのち濾過工程に導入して、冷却さ
れたヘリウムガス中の油、水分、粒状物を除去したの
ち、更に、膜分離システム、吸着システム等から選択的
に構成される精製装置に導入し、ヘリウムガス中の不純
高沸点成分を除去してヘリウムを精製する方法が提案さ
れている。
2. Description of the Related Art Generally, oxygen (O 2 ), nitrogen (N 2 ), helium (H
e) is used, of which helium is only present at 5.2 PPM in the natural air and cannot be separated from natural air at economically attractive prices and leaves limited areas At present, it is separated from natural gas, liquefied, and imported into Japan. Therefore,
In recent years, it has been demanded that helium (He) after being used in the optical fiber manufacturing process and the like be purified again and recycled.
As disclosed in JP-A-5-172457 and the like, a step of cooling helium gas containing impurities collected in a manufacturing process, a step of separating impurities liquefied by cooling from helium gas, and a step of gas-liquid separation. For purifying helium through the step of discharging the liquid component, or compressing and cooling helium gas containing impurities recovered in the manufacturing process as disclosed in JP-A-6-210157. After that, the mixture is introduced into a filtration step to remove oil, moisture, and particulate matter in the cooled helium gas, and further introduced into a purification device selectively configured from a membrane separation system, an adsorption system, and the like. There has been proposed a method of purifying helium by removing impure high-boiling components in gas.

【0003】[0003]

【発明が解決しようとする課題】従来のヘリウム再精製
方法のいずれも、ヘリウム80%以上含有し、残りの不
純物として空気を含んでいる原料ガスを対象としたもの
であり、製品としてヘリウムだけが製造されるものであ
るため、ヘリウム以外の窒素や酸素を得るためには別途
製造設備が必要で、しかも、再精製の対象外となったヘ
リウム50%以下含有する低濃度ヘリウムガスは他の不
純物と共に排ガスとして処理されているのが現状であ
る。本発明は、上述の実情に鑑みて為されたものであっ
て、排ガスとして処理されている低濃度ヘリウムガスを
有効利用して、製造工程で再使用可能なヘリウムガスを
少なくとも窒素と共に経済的に製造することのできる空
気低温分離装置及びその分離方法を提供する点に目的を
有する。
All of the conventional helium refining methods are directed to a raw material gas containing 80% or more of helium and containing air as the remaining impurity. Since it is manufactured, a separate manufacturing facility is required to obtain nitrogen and oxygen other than helium, and low-concentration helium gas containing 50% or less of helium, which has been excluded from repurification, has other impurities. At present, it is treated as exhaust gas. The present invention has been made in view of the above-described circumstances, and effectively utilizes low-concentration helium gas that has been treated as exhaust gas to economically produce helium gas that can be reused in a manufacturing process together with at least nitrogen. It is an object to provide a low-temperature air separation apparatus and a separation method that can be manufactured.

【0004】[0004]

【課題を解決するための手段】上記目的を達成する為の
本発明による空気低温分離装置の特徴構成は、請求項1
に記載したごとく、低濃度ヘリウムと空気との混合原料
ガスを圧縮する圧縮手段と、該圧縮手段で圧縮された混
合原料ガスを液化点付近まで冷却する冷却手段と、該冷
却手段で冷却された混合原料ガスを精留分離して少なく
とも液体窒素を製品として取り出す精留塔と、当該精留
塔の頂部から取り出された窒素とヘリウムの混合ガスを
凝縮する凝縮器と、該凝縮器で凝縮液化された液体窒素
を分離する気液分離器と、該気液分離器で気液分離され
た未凝縮気体を精留してヘリウムガスを製品として取り
出すヘリウム粗精留塔とを備え、 前記ヘリウム粗精留塔
には、前記ヘリウム粗精留塔内に導入された未凝縮気体
の窒素分を前記精留塔から得られた液体窒素との間接熱
交換によって凝縮液化させる凝縮器が設けられており、
前記精留塔から得られた液体窒素の一部を、前記ヘリウ
ム粗精留塔の前記凝縮器に導入される前に過冷却するた
めの過冷却器と、前記過冷却器で過冷却された液体窒素
を大気圧以下にまで膨張させる膨張弁とが設けられてい
る点にある。
Means for Solving the Problems] Features Configuration of Air cryogenic separation apparatus according to the present invention for achieving the above object, according to claim 1
As described in the above, compression means for compressing the mixed raw material gas of low-concentration helium and air, cooling means for cooling the mixed raw material gas compressed by the compression means to near the liquefaction point, and cooled by the cooling means A rectification tower that rectifies and separates the mixed raw material gas to extract at least liquid nitrogen as a product, a condenser that condenses a mixed gas of nitrogen and helium that is taken out from the top of the rectification tower, and condenses and liquefies the condenser. comprising a gas-liquid separator, and a helium Sosei tower for taking out the uncondensed gas to and rectification helium gas to gas-liquid separation in the gas-liquid separator as a product for separating the liquid nitrogen, the helium crude Rectification tower
The uncondensed gas introduced into the helium crude fractionator
Heat of liquid nitrogen with liquid nitrogen obtained from the rectification column
A condenser that condenses and liquefies by replacement is provided,
Part of the liquid nitrogen obtained from the rectification column is
Subcooling before being introduced into the condenser of the crude rectification column.
A supercooler, and liquid nitrogen supercooled by the subcooler.
And an expansion valve for expanding the pressure to below atmospheric pressure .

【0005】本発明の空気低温分離装置の特徴構成によ
れば、光ファイバー製造工程や光ガラス製造工程等で回
収された低濃度ヘリウムと空気との混合原料ガスを液化
点付近まで冷却した状態で精留塔に導入することによ
り、低濃度ヘリウムを空気と混合することによって混合
原料ガス中のヘリウムの濃度が低下しても、ヘリウムの
一次濃縮工程となる該精留塔での精留分離によって、混
合原料ガス中のヘリウム、窒素、酸素を効率良く分離す
ることができ、その過程で製出された少なくとも液体窒
素を製品として該精留塔から取り出すことができる。そ
して、前記精留塔の頂部から取り出された窒素とヘリウ
ムの混合ガスを、ヘリウムの二次濃縮工程となる凝縮器
及び気液分離器に導入することにより、窒素とヘリウム
の混合ガスから窒素分を凝縮液化させて分離して、ヘリ
ウムの純度を高めることができる。更に、気液分離手段
で分離された未凝縮気体を、ヘリウムの三次濃縮工程と
なるヘリウム粗精留塔に導入することにより、該ヘリウ
ム粗精留塔での精留によって未凝縮気体中の窒素分を分
離させてさらに純度の高いヘリウムガスを製出すること
ができる。また、前記ヘリウム粗精留塔に設けられた凝
縮器にて、ヘリウム粗精留塔内に導入された未凝縮気体
と液体窒素とを間接熱交換させることにより、窒素とヘ
リウムの混合ガスから未凝縮気体の窒素分を効率よく凝
縮液化させることができる。また、ヘリウム粗精留塔の
凝縮器に導入される前に、過冷却器で過冷却された液体
窒素を大気圧以下にまで膨張させることによって、ヘリ
ウム粗精留塔の凝縮器で必要な極低温の冷熱源を簡単に
得ることができる。
According to the characteristic structure of the low-temperature air separation apparatus of the present invention,
In the optical fiber manufacturing process, optical glass manufacturing process, etc.
Liquefied mixed source gas of low concentration helium and air collected
Into the rectification column while cooling to near the point.
Mixed by mixing low-concentration helium with air.
Even if the concentration of helium in the source gas decreases,
By the rectification separation in the rectification column, which is the primary concentration step, mixing
Efficient separation of helium, nitrogen, and oxygen in the mixture gas
At least the liquid nitrogen produced in the process.
Element can be removed from the rectification column as a product. So
And nitrogen and helium removed from the top of the rectification column.
Helium secondary condensing process
Nitrogen and helium
From the mixed gas to separate and condense and liquefy nitrogen.
Um purity can be increased. Furthermore, gas-liquid separation means
The uncondensed gas separated in
Helium crude rectification column
The nitrogen content in the uncondensed gas is separated by rectification in
To produce helium gas with higher purity
Can be. Further, the helium crude rectification column provided with
Uncondensed gas introduced into the helium crude rectification column by the condenser
And indirect heat exchange between liquid nitrogen and
Efficiently condenses the nitrogen content of the uncondensed gas from the
It can be condensed. The helium crude fractionation tower
Liquid supercooled by a subcooler before being introduced into the condenser
By expanding the nitrogen below atmospheric pressure, the helicopter
Cryogenic cooling source required for the rectifier
Obtainable.

【0006】以上の結果、本発明の空気低温分離装置の
特徴構成によれば、光ファイバー製造工程や光ガラス製
造工程等での使用後に排ガスとして処理されている低濃
度ヘリウムガスを有効利用して、製造工程で再使用可能
な純度のヘリウムガスを少なくとも窒素と共に効率良く
製造することができ、しかも、ヘリウム粗精留塔から製
出されるヘリウムの純度を効率良く高めることができ、
さらに、ヘリウム粗精留塔内に導入された未凝縮気体の
窒素分凝縮液化を一層効率よく行うことができるととも
に、設備面でも有利に実施することができる。
As a result, the air cryogenic separation apparatus of the present invention has
According to the characteristic configuration, optical fiber manufacturing process and optical glass
Low concentration that is treated as exhaust gas after use in the manufacturing process, etc.
Helium gas can be effectively used and reused in the manufacturing process
High purity helium gas with at least nitrogen efficiently
It can be manufactured, and is manufactured from a helium crude rectification column.
The purity of helium can be increased efficiently,
Furthermore, the uncondensed gas introduced into the helium crude fractionator
Nitrogen condensation and liquefaction can be performed more efficiently
In addition, it can be implemented advantageously in terms of equipment.

【0007】本発明の空気低温分離方法の第1特徴構成
は、請求項2に記載したごとく、低濃度ヘリウムと空気
との混合原料ガスを圧縮手段で圧縮し、この圧縮された
混合原料ガスを冷却手段で液化点付近まで冷却したのち
精留塔の下部に導入し、該精留塔で混合原料ガスから精
留分離されて頂部から取り出された窒素とヘリウムの混
合ガスを凝縮器を経て気液分離器に導入し、該気液分離
器で気液分離された液体窒素を還流液として前記精留塔
の精留部最上段に導入し、前記気液分離器で気液分離さ
れた未凝縮気体をヘリウム粗精留塔の下部に導入し、該
ヘリウム粗精留塔で精留分離されたヘリウムガスを頂部
より製品して取り出すとともに、前記精留塔の精留部最
上段より数段下の精留部から液体窒素を製品として取り
出し、前記精留塔の前記精留部から取り出された液体窒
素の一部を、過冷却器で過冷却し、前記過冷却器で過冷
却された液体窒素を膨張弁で大気圧以下にまで膨張させ
た上で、前記ヘリウム粗精留塔内に設けられた凝縮器に
導入する点にある。
[0007] The first characterizing feature of the air low-temperature separation method of the present invention, as set forth in claim 2, compressing the mixed raw material gas of low concentration of helium and air compression means, the compressed mixed feed gas After cooling to the vicinity of the liquefaction point by the cooling means, the mixture is introduced into the lower part of the rectification tower, and the mixed gas of nitrogen and helium which is rectified and separated from the mixed raw material gas and taken out from the top by the rectification tower is passed through a condenser. The liquid nitrogen is introduced into a liquid separator, and the liquid nitrogen gas-liquid separated by the gas-liquid separator is introduced as a reflux liquid into the rectification section at the uppermost stage of the rectification column. The condensed gas is introduced into the lower part of the helium crude rectification column, and the helium gas rectified and separated in the helium crude rectification column is produced and taken out from the top, and several stages from the top of the rectification part of the rectification column removed liquid nitrogen as a product from the rectification unit below the rectification column Liquid nitrogen taken from the rectification unit
Part of the element is subcooled by a subcooler, and then subcooled by the subcooler.
Expand the cooled liquid nitrogen to below atmospheric pressure with an expansion valve
Then, the condenser provided in the helium crude rectification column
The point is to introduce .

【0008】本発明の空気低温分離方法の第1特徴構成
によれば、光ファイバー製造工程や光ガラス製造工程等
で回収された低濃度ヘリウムと空気との混合原料ガスを
液化点付近まで冷却した状態で精留塔に導入することに
より、低濃度ヘリウムを空気と混合することによって混
合原料ガス中のヘリウムの濃度が低下しても、ヘリウム
の一次濃縮工程となる該精留塔での精留分離時に混合原
料ガス中のヘリウム、窒素、酸素を効率良く分離するこ
とができ、その過程で製出された液体窒素のうち、低沸
点成分を精留分離した後の液体窒素の一部を高沸点成分
である酸素の残留が少ない状態で精留塔の精留部最上段
より数段下の精留部から製品として取り出すことができ
る。次に、前記精留塔の頂部から取り出された窒素とヘ
リウムの混合ガスを、ヘリウムの二次濃縮工程となる凝
縮器及び気液分離器に導入することにより、窒素とヘリ
ウムの混合ガスから窒素分を凝縮液化させて分離して、
ヘリウムの純度を高めるとともに、気液分離器で凝縮液
化された液体窒素を還流液として前記精留塔の精留部最
上段に導入することにより、外部から還流液としての液
体窒素を導入する必要がなく、精留部での精留分離を経
済的に行うことができる。更に、気液分離手段で分離さ
れた未凝縮気体を、ヘリウムの三次濃縮工程となるヘリ
ウム粗精留塔に導入することにより、該ヘリウム粗精留
塔での精留によって未凝縮気体中の窒素分を分離させて
純度の高いヘリウムガスを製出することができる。
た、前記精留塔の精留部最上段より数段下の精留部から
取り出された液体窒素の寒冷に着目して、この液体窒素
を過冷却器で過冷却したのち寒冷源としてヘリウム粗精
留塔の凝縮器に導入することにより、外部から寒冷源と
しての液体窒素を導入することなく、ヘリウム粗精留塔
内に導入された未凝縮気体の窒素分を液体窒素との間接
熱交換によって効率良く凝縮液化させることができる。
さらに、ヘリウム粗精留塔の凝縮器に導入される前に、
過冷却器で過冷却された液体窒素を大気圧以下にまで膨
張させることによって、ヘリウム粗精留塔の凝縮器で必
要な極低温の冷熱源を簡単に得ることができる。
According to the first characteristic configuration of the low-temperature air separation method of the present invention, the mixed raw material gas of low-concentration helium and air collected in the optical fiber manufacturing process, the optical glass manufacturing process, and the like is cooled to near the liquefaction point. Even if the concentration of helium in the mixed raw material gas is reduced by mixing the low-concentration helium with air by introducing into the rectification column, the rectification separation in the rectification column becomes the primary concentration step of helium. Sometimes helium, nitrogen and oxygen in the mixed raw material gas can be efficiently separated, and a part of the liquid nitrogen produced in the process after fractionating and separating low boiling components has a high boiling point. The product can be taken out from the rectification section several stages below the top of the rectification section of the rectification column in a state where the amount of oxygen as a component is small. Next, the mixed gas of nitrogen and helium taken out from the top of the rectification column is introduced into a condenser and a gas-liquid separator which is a secondary helium concentration step, so that the mixed gas of nitrogen and helium is The liquid is condensed and liquefied and separated.
It is necessary to introduce liquid nitrogen as a reflux liquid from the outside by increasing the purity of helium and introducing liquid nitrogen condensed and liquefied in the gas-liquid separator as a reflux liquid to the top of the rectification section of the rectification column. Rectification in the rectification section can be performed economically. Further, the uncondensed gas separated by the gas-liquid separation means is introduced into a helium crude rectification column that is a helium tertiary concentration step, whereby nitrogen in the uncondensed gas is rectified by the helium crude rectification column. The helium gas having high purity can be produced by separating the components. Ma
In addition, from the rectification section several stages below the rectification section top stage of the rectification column
Focusing on the cooling of the extracted liquid nitrogen, this liquid nitrogen
Was supercooled with a supercooler, and crude helium was used as a cold source.
By introducing it to the condenser of the distillation tower, it can
Helium crude rectification column without introducing liquid nitrogen
The nitrogen content of uncondensed gas introduced into
It is possible to efficiently condense and liquefy by heat exchange.
Furthermore, before being introduced into the condenser of the helium crude rectification column,
Expand the liquid nitrogen supercooled by the subcooler to below atmospheric pressure.
Is necessary in the condenser of the helium crude rectification column.
The required cryogenic heat source can be easily obtained.

【0009】以上の結果、本発明の空気低温分離方法の
第1特徴構成によれば、光ファイバー製造工程や光ガラ
ス製造工程等での使用後に排ガスとして処理されている
低濃度ヘリウムガスを有効利用して、製造工程で再使用
可能な純度のヘリウムガスを少なくとも窒素と共に効率
良く経済的に製造することができるとともに、精留塔か
ら取り出される製品窒素の純度を高めることができ、ヘ
リウム粗精留塔内に導入された未凝縮気体の窒素分凝縮
液化を一層効率よく行うことができるとともに、設備面
でも有利に実施することができる。
As a result, according to the first characteristic configuration of the low-temperature air separation method of the present invention, low-concentration helium gas, which has been treated as exhaust gas after use in an optical fiber manufacturing process or an optical glass manufacturing process, is effectively used. Te, along with a reusable purity helium gas in the manufacturing process can be manufactured together with at least nitrogen efficiently and economically, it is possible to increase the purity of the product nitrogen taken from the rectification column, f
Nitrogen condensation of uncondensed gas introduced into the crude rectifier
Liquefaction can be performed more efficiently and equipment
However, it can be implemented advantageously.

【0010】本発明の空気低温分離方法の第特徴構成
は、請求項3に記載したごとく、上記空気低温分離方法
1特徴構成において、更に、前記ヘリウム粗精留塔
の頂部から取り出されたヘリウムガスを過冷却器及び冷
却手段に導いて寒冷源として使用したのちに製品とする
点にある。本発明の空気低温分離方法の第2特徴構成に
よれば、ヘリウム粗精留塔の頂部から取り出されたヘリ
ウムガスを過冷却器及び冷却手段に導いてそれらの寒冷
源として使用するから、過冷却器及び熱交手段に対して
外部から別途寒冷源を導入する必要がない。 その結果、
本発明の空気低温分離方法の第2特徴構成によれば、空
気低温分離方法の第1特徴構成の効果に加えて、ヘリウ
ムガス及び窒素をより経済的に製造することができる。
A second characteristic configuration of the low-temperature air separation method according to the present invention is the above-mentioned low-temperature air separation method.
In the first feature structure, and further, in terms of the product after it is used as a cooling source directing helium gas taken from the top of the helium Sosei column to the subcooler and the cooling means. The second characteristic configuration of the low-temperature air separation method of the present invention
According to the helicopter removed from the top of the helium crude fractionator,
Gas to the supercooler and cooling means to cool them
For use as a source, for subcoolers and heat exchange means
There is no need to introduce a separate cold source from outside. as a result,
According to the second characteristic configuration of the low-temperature air separation method of the present invention,
In addition to the effect of the first characteristic configuration of the air / low temperature separation method,
Mugas and nitrogen can be produced more economically.

【0011】本発明の空気低温分離方法の第特徴構成
は、請求項4に記載したごとく、上記空気低温分離方法
の第1と第2特徴構成において、前記ヘリウム粗精留塔
の頂部から取り出されたヘリウムガスを膜分離器で精製
して製品とする点にある。本発明の空気低温分離方法の
第3特徴構成によれば、ヘリウム粗精留塔の頂部から取
り出されたヘリウムガスを膜分離器で精製することによ
り、製品ヘリウムガス中の不純物である高沸点成分を除
去することができる。 本発明の空気低温分離方法の第3
特徴構成によれば、空気低温分離方法の第1と第2特徴
構成の効果に加えて、製品ヘリウムガスの純度化を高め
ることができる。
A third characteristic configuration of the low-temperature air separation method according to the present invention is the above-mentioned low-temperature air separation method.
In the first and second characteristic configurations, the helium gas taken out from the top of the helium crude rectification column is purified by a membrane separator to obtain a product. The air cryogenic separation method of the present invention
According to the third characteristic configuration, the helium crude fractionation column is taken from the top.
The purified helium gas is purified by a membrane separator.
Removes high-boiling components, which are impurities in the product helium gas.
You can leave. Third method of the low-temperature air separation method of the present invention
According to the characteristic configuration, the first and second characteristics of the low-temperature air separation method
In addition to the effect of the configuration, increase the purity of the product helium gas
Can be

【0012】本発明の空気低温分離方法の第特徴構成
は、請求項5に記載したごとく、上記空気低温分離方法
第1〜第特徴構成において、前記膜分離器から取り
出されたヘリウムガスを圧縮し冷却したのち、吸着分離
器で低温分離し、常温に戻して製品とする点にある。
発明の空気低温分離方法の第4特徴構成によれば、膜分
離器から取り出されたヘリウムガスを圧縮し、吸着分離
器で製品ヘリウムガス中の不純物である高沸点成分の吸
着除去に適した低い温度にまで一旦冷却してから吸着分
離器に導入するから、該吸着分離器で製品ヘリウムガス
中の不純物である高沸点成分をより効 率良く低温分離す
ることができる。 本発明の空気低温分離方法の第4特徴
構成によれば、空気低温分離方法の第1〜第3特徴構成
の効果に加えて、製品ヘリウムガスの一層の高純度化を
図ることができる。
[0012] The fourth characteristic feature of the air low-temperature separation method of the present invention, as set forth in claim 5, the air low-temperature separation process
In the first to third characteristic configurations, the helium gas taken out of the membrane separator is compressed and cooled, then separated at a low temperature by an adsorption separator, and returned to room temperature to obtain a product. Book
According to the fourth aspect of the low-temperature air separation method of the present invention,
Helium gas extracted from the separator is compressed and separated by adsorption
Of high-boiling components, which are impurities in the product helium gas,
Once cooled to a low temperature suitable for
The product helium gas is introduced into the separator by the adsorption separator.
To the cryogenic separation more efficient better high-boiling components which is an impurity in the
Can be Fourth feature of the low-temperature air separation method of the present invention
According to the configuration, the first to third characteristic configurations of the low-temperature air separation method
In addition to the effects of
Can be planned.

【0013】本発明の空気低温分離方法の第特徴構成
は、請求項6に記載したごとく、上記空気低温分離方法
第1〜第特徴構成において、前記膜分離器で膜分離
された残りのヘリウムガスを含んだ排ガスを混合原料ガ
スに供給する工程が設けられている点にある。本発明の
空気低温分離方法の第5特徴構成によれば、前記膜分離
器で膜分離された排ガス中にまだ多く残存するヘリウム
ガスを混合原料ガスの一部として再使用することができ
る。 本発明の空気低温分離方法の第5特徴構成によれ
ば、空気低温分離方法の第4特徴構成の効果に加えて、
膜分離器で膜分離された排ガス中に残存するヘリウムガ
スを原料ガスとして再利用することにより、ヘリウムガ
スの回収効率を高めることができる。
[0013] The fifth characteristic configuration of the air low-temperature separation method of the present invention, as set forth in claim 6, the air low-temperature separation process
In the first to fourth characteristic configurations, a step of supplying an exhaust gas containing the remaining helium gas subjected to membrane separation by the membrane separator to the mixed raw material gas is provided. Of the present invention
According to a fifth characteristic configuration of the low-temperature air separation method, the membrane separation is performed.
Helium still remains in the exhaust gas separated by membrane
The gas can be reused as part of the mixed source gas
You. According to the fifth characteristic configuration of the low-temperature air separation method of the present invention.
For example, in addition to the effect of the fourth characteristic configuration of the low-temperature air separation method,
Helium gas remaining in the exhaust gas separated by membrane in the membrane separator
Helium gas by reusing
Can improve the efficiency of collecting waste gas.

【0014】[0014]

【実施例】〔第1実施例〕 図1は、光ファイバー製造工程等で使用されたヘリウム
Heを多く含む(例えば約5%)回収空気と自然界の空
気(自然界の空気中には5.2PPMのヘリウムしか存
在しない)とを原料ガスとして製品ヘリウムガス、製品
窒素ガス、製品酸素ガスを精製分離する空気低温分離装
置及びその分離方法のフローダイヤグラムを示す。
First Embodiment FIG. 1 shows recovered air containing a large amount of helium (for example, about 5%) used in an optical fiber manufacturing process or the like and natural air (5.2 PPM of natural air is contained in natural air). 2 shows a flow diagram of a low-temperature air separation apparatus for purifying and separating product helium gas, product nitrogen gas, and product oxygen gas using helium as a raw material gas, and a method for separating the same.

【0015】そして、光ファイバー製造工程で使用され
たのち回収されたヘリウム(He)を約5%を含む空気
1,000Nm3 /h(100%ヘリウム換算50Nm
3 /h)はフィルター1で除塵されたのち、配管P1を
経て配管P2に導入され、また、自然界の空気1,50
0Nm3 /hはフィルター2で除塵されたのち配管P2
を経て導入され、前記ヘリウム(He)を約5%を含む
空気1,000Nm3/hと合流され、ヘリウム2%含
有する2,500Nm3 /hの混合原料ガス(後述のよ
うに定常状態では2,503Nm3 /hの混合原料ガス
となり、ヘリウム量も約51Nm3 /hに増加する。)
となる。そして、このヘリウム2%含有する2,500
Nm3 /hの混合原料ガスは、圧縮手段の一例である圧
縮機3で約7.3ATAに圧縮され、配管P3を経て予
備冷却手段である冷却器4で約5°Cに冷却され、配管
P4を経て吸着手段の一例である除炭乾燥器5で炭酸ガ
スと水分とが除去されのち、配管P5を経て冷却手段の
一例である熱交換器6に導入され、後述する製品酸素ガ
ス、製品窒素ガス、製品ヘリウムガスおよび廃ガスと向
流状態で間接的に熱交換され、最終的には液化点近くま
で冷却される。
Then, air containing about 5% of helium (He) recovered after being used in the optical fiber manufacturing process is 1,000 Nm 3 / h (50 Nm in terms of 100% helium).
3 / h) is removed by the filter 1 and then introduced into the pipe P2 via the pipe P1.
0Nm 3 / h is pipe P2 after dust is removed by filter 2.
And mixed with air of 1,000 Nm 3 / h containing about 5% of helium (He), and a mixed material gas of 2,500 Nm 3 / h containing 2% of helium (in a steady state as described later, It becomes a mixed source gas of 2,503 Nm 3 / h, and the helium amount also increases to about 51 Nm 3 / h.)
Becomes And 2,500 containing this helium 2%
The mixed raw material gas of Nm 3 / h is compressed to about 7.3 ATA by a compressor 3 which is an example of a compression means, and cooled to about 5 ° C. by a cooler 4 which is a pre-cooling means via a pipe P3. After removing carbon dioxide gas and moisture in a decarburizer / dryer 5 which is an example of an adsorption means via P4, the carbon dioxide gas and water are introduced into a heat exchanger 6 which is an example of a cooling means via a pipe P5. Heat is exchanged indirectly with the nitrogen gas, product helium gas and waste gas in a countercurrent state, and finally cooled to near the liquefaction point.

【0016】この冷却される混合原料ガスの一部は、熱
交換器6の途中から配管P6で取り出され、膨張タービ
ン7で膨張され、低温分離装置(コールドボックス)A
に必要な寒冷を発生させて配管P7を経て低圧精留塔8
の精留部中段に導入され、また、残りの混合原料ガス
は、熱交換器6で更に液化点近く(約−170°C)ま
で冷却されたのち配管P8を経て中圧精留塔9の下部に
導入される。
A part of the mixed raw material gas to be cooled is taken out from the middle of the heat exchanger 6 through a pipe P6, expanded by an expansion turbine 7, and cooled by a low-temperature separation device (cold box) A.
To the low pressure rectification column 8 through the pipe P7
The remaining mixed material gas is further cooled to near the liquefaction point (about -170 ° C.) in the heat exchanger 6 and then passed through the pipe P8 to the intermediate pressure rectification tower 9. Introduced at the bottom.

【0017】この中圧精留塔9の下部に導入された混合
原料ガス中の酸素の大部分と窒素の一部分は精留されて
液化され、中圧精留塔9の底部に酸素濃縮液体として貯
留され、酸素と窒素の残部およびヘリウムのほぼ全ては
中圧精留塔9を上昇し、当該中圧精留塔9の精留部で後
述する還流液と気液接触して精留され、中圧精留塔9の
頂部より窒素とヘリウムの圧力約7ATAの混合ガスが
配管P9で取り出され、凝縮器10に導入される。一
方、後述する低圧精留塔8の底部に貯留する液体酸素が
配管P10により取り出されて凝縮器10に導入され、
両者が互に間接熱交換され、液体酸素は気化されて配管
P11を経て低圧精留塔8に戻され、窒素とヘリウムの
混合ガスは冷却されて凝縮し、配管P12に導かれて気
液分離器11に導入され、底部から窒素99.95%、
ヘリウム0.05%の液体窒素が配管P13を経て導出
され、中圧精留塔9の精留部最上段に戻され前述の還流
液として使用される。一方、前記気液分離器11の頂部
から配管P14を経て窒素90%、ヘリウム10%の混
合ガスが導出され、当該配管P14を経てヘリウム粗精
留塔12の下部に圧力約7ATA、温度約−176°C
で導入される。
Most of the oxygen and part of the nitrogen in the mixed raw material gas introduced into the lower part of the intermediate pressure rectification column 9 are rectified and liquefied, and are formed at the bottom of the medium pressure rectification column 9 as an oxygen-enriched liquid. Almost all of the remaining oxygen and nitrogen and helium are stored in the intermediate-pressure rectification tower 9 and rectified by gas-liquid contact with a reflux liquid described below in the rectification section of the medium-pressure rectification tower 9. A mixed gas of nitrogen and helium at a pressure of about 7 ATA is taken out from the top of the medium pressure rectification column 9 through a pipe P9 and introduced into the condenser 10. On the other hand, liquid oxygen stored at the bottom of the low-pressure rectification column 8 described later is taken out through the pipe P10 and introduced into the condenser 10,
The two are indirectly heat-exchanged with each other, and the liquid oxygen is vaporized and returned to the low-pressure rectification column 8 via the pipe P11. The mixed gas of nitrogen and helium is cooled and condensed, and guided to the pipe P12 for gas-liquid separation. Introduced into the vessel 11, from the bottom 99.95% nitrogen,
Liquid nitrogen of 0.05% helium is led out through the pipe P13, returned to the uppermost stage of the rectification section of the intermediate pressure rectification tower 9, and used as the above-mentioned reflux liquid. On the other hand, a mixed gas of 90% nitrogen and 10% helium is led out from the top of the gas-liquid separator 11 via a pipe P14, and the pressure is about 7 ATA and the temperature is about- 176 ° C
Introduced in.

【0018】前記中圧精留塔9の精留部最上段より数段
下の精留部から配管P15により圧力約7ATAで取り
出された液体窒素は、過冷却器13で後述する製品窒素
ガス、製品窒素ガス、廃棄ガスおよび粗ヘリウムガスと
間接熱交換されて過冷却され、配管P16で取り出さ
れ、一部は配管P17に挿入された膨張弁V1で圧力約
1.25ATAまで膨張され、温度約−194°Cにな
りヘリウム粗精留塔10の精留部中間に位置する凝縮器
aに導入され、前述の配管P14で導入された窒素90
%、ヘリウム10%の混合ガスと間接熱交換される。こ
の間接熱交換によって混合ガス中の窒素分が主に凝縮さ
れて流下し、凝縮器aの下部にある精留部の還流液とな
る。
The liquid nitrogen taken out from the rectification section several steps below the top of the rectification section of the intermediate pressure rectification column 9 at a pressure of about 7 ATA by a pipe P15 is supplied to a subcooler 13 to produce a product nitrogen gas, The product is supercooled by indirect heat exchange with product nitrogen gas, waste gas and crude helium gas, taken out through a pipe P16, partially expanded to a pressure of about 1.25 ATA by an expansion valve V1 inserted into the pipe P17, and heated to a temperature of about 1.25 ATA. -194 ° C., the nitrogen 90 introduced into the condenser a located in the middle of the rectifying section of the helium crude rectifying column 10 and introduced through the pipe P14.
%, Helium 10% indirect heat exchange. By this indirect heat exchange, the nitrogen component in the mixed gas is mainly condensed and flows down, and becomes a reflux liquid in the rectification section below the condenser a.

【0019】前記ヘリウム粗精留塔12の凝縮器aを通
過して上昇する窒素とヘリウムの混合ガスは、凝縮器a
の上部に位置する精留部と該精留部の更に上部に位置す
る凝縮器bにより主に窒素分が凝縮されて流下され、凝
縮器bの下部にあるヘリウム粗精留塔12の全精留部の
還流液となり、最後に、ヘリウム粗精留塔12の底部に
窒素99.95%、ヘリウム0.05%の液体窒素とな
る。この窒素99.95%、ヘリウム0.05%の液体
窒素は、ヘリウム粗精留塔12の底部から配管P18で
導出され、配管P19を経て中圧精留塔9の精留部最上
段に導入され、当該中圧精留塔9の還流液となる。
The mixed gas of nitrogen and helium rising through the condenser a of the helium crude rectification column 12 is supplied to the condenser a.
The nitrogen component is mainly condensed and flows down by the rectification section located above the rectification section and the condenser b located further above the rectification section, and the entire rectification of the helium crude rectification column 12 located below the condenser b It becomes a reflux liquid of the distillation section, and finally, liquid nitrogen of 99.95% of nitrogen and 0.05% of helium is formed at the bottom of the crude rectification column 12 of helium. The liquid nitrogen of 99.95% of nitrogen and 0.05% of helium is led out from the bottom of the helium crude rectification column 12 through a pipe P18, and is introduced into the uppermost rectification section of the medium pressure rectification tower 9 via a pipe P19. Then, it becomes a reflux liquid of the intermediate pressure rectification column 9.

【0020】前記ヘリウム粗精留塔12の凝縮器bの寒
冷源として配管P17より分岐した配管P20により分
配された液体窒素は、当該配管P20に挿入された膨張
弁V2により圧力約0.2ATA(大気圧以下)まで膨
張され、温度約−207°Cに温度降下されて凝縮器b
に導入され、上昇する前記混合ガス中の窒素ガスを主に
凝縮して液体として流下させ、凝縮器bの寒冷源として
使用された後、窒素ガスとなって配管P21により取り
出されたのち熱交換器6に導入され、混合原料ガスとの
間接熱交換によって常温となり、配管P22を経て真空
ポンプ14により大気中に排気される。
The liquid nitrogen distributed by the pipe P20 branched from the pipe P17 as a cold source of the condenser b of the helium crude rectification column 12 has a pressure of about 0.2 ATA (by an expansion valve V2 inserted into the pipe P20). (Atmospheric pressure or lower), the temperature is reduced to about -207 ° C, and the condenser b
The nitrogen gas in the mixed gas that is introduced into the ascending gas is mainly condensed and flows down as a liquid, and is used as a cold source of the condenser b. After being converted into nitrogen gas and taken out by the pipe P21, heat exchange is performed. The gas is introduced into the vessel 6, is brought to room temperature by indirect heat exchange with the mixed raw material gas, and is exhausted to the atmosphere by the vacuum pump 14 via the pipe P22.

【0021】前記配管P14を経てヘリウム粗精留塔1
0の下部に導入されたヘリウム10%、窒素約90%の
混合ガスは、当該ヘリウム粗精留塔10で前述のように
精留されヘリウム約95%、窒素約5%の粗ヘリウムガ
スとなり、温度−204°C圧力約6.9ATAでヘリ
ウム粗精留塔12の頂部より配管P23により取り出さ
れ、過冷却器13の寒冷源として使用されたのち配管P
24で取り出され、熱交換器6で混合原料ガスと向流し
て間接熱交換され、粗ヘリウムガスは常温となり、配管
P25で取り出され、膜分離器15に圧力約6.8AT
Aで約47Nm3 /h導入され、ヘリウム約99%、窒
素約1%のヘリウムガス約44Nm3 /hが圧力約1.
5ATAで配管Pで取り出されヘリウムガス圧縮機16
に導入され、必要な圧力に昇圧して使用先に供給され
る。膜分離器15より出る残りの排気ガス約3Nm3
hは配管P26により配管P2に導入されヘリウム源と
して加えられる。
The helium crude rectification column 1 passes through the pipe P14.
The mixed gas of 10% helium and about 90% nitrogen introduced into the lower part of 0 is rectified by the helium crude rectification column 10 as described above to become a crude helium gas of about 95% helium and about 5% nitrogen, At a temperature of −204 ° C. and a pressure of about 6.9 ATA, it is taken out from the top of the helium crude rectification column 12 by a pipe P23 and used as a cold source of the subcooler 13 and then a pipe P
The crude helium gas is taken out at the pipe P25 and taken out at the pipe P25, and is taken out to the membrane separator 15 at a pressure of about 6.8AT.
Introduced about 47 Nm 3 / h in A, helium about 99%, nitrogen about 1% of the pressure helium gas of about 44 nm 3 / h is about 1.
Helium gas compressor 16 taken out from pipe P by 5ATA
, And the pressure is increased to the required pressure and supplied to the user. About 3 Nm 3 / remaining exhaust gas from the membrane separator 15
h is introduced into the pipe P2 by the pipe P26 and added as a helium source.

【0022】次に、前述のヘリウムを精製分離した低温
装置を利用した酸素ガスと窒素ガスの分離製造について
説明する。前記中圧精留塔9の底部に頂溜した酸素濃縮
液体は、配管P27を経て過冷却器13に導入され、製
品窒素ガス、製品窒素ガス、廃棄ガスおよび粗ヘリウム
ガスと間接熱交換されて過冷却されたのち、過冷却器1
3から配管P28で取り出され、当該配管P28に挿入
された膨張弁V3で膨張されたのち、低圧精留塔8にお
ける前記配管P7の接続位置より下段の精留部に導入さ
れ、前記配管P7を経て導入された混合原料ガスと低圧
精留塔8の中で一緒になり、また、中圧精留塔9の精留
部中段から配管P29で取り出された液体窒素は、過冷
却器13での製品窒素ガス、製品窒素ガス、廃棄ガスお
よび粗ヘリウムガスとの間接熱交換によって過冷却され
たのち、過冷却器13から配管P30で取り出され、当
該配管P30に挿入された膨張弁V4で膨張され、低圧
精留塔8における前記配管P7の接続位置より少し上段
に導入されて還流液となり、また、中圧精留塔9から前
記の配管P15で取り出され過冷却13で過冷却された
液体窒素は配管P16で取り出され、その一部は配管P
17でヘリウム粗精留塔12の凝縮器a、bの寒冷源と
して利用され、残りは配管P31を経て膨張弁V5で膨
張されたのち、低圧精留塔8の精留部最上段に導入され
て還流液として流下し、この還流液と気液接触して精留
されて底部に液体酸素となって貯留される。この貯留さ
れた液体窒素は凝縮器10の寒冷源となって自らは気化
され再び低圧精留塔8に戻され、低圧精留塔8の精留部
最下部より製品酸素ガスとして配管P32により圧力約
1.6ATAで約450Nm3 /hが取り出され、熱交
換器6で混合原料ガスと熱交換して常温となり、更に、
配管P33で取り出されたのち、圧縮機17で圧縮され
て使用先に供給される。
Next, the separation and production of oxygen gas and nitrogen gas using the above-mentioned low-temperature apparatus for purifying and separating helium will be described. The oxygen-enriched liquid collected at the bottom of the intermediate-pressure rectification tower 9 is introduced into the supercooler 13 via a pipe P27, and is indirectly heat-exchanged with product nitrogen gas, product nitrogen gas, waste gas and crude helium gas. After being supercooled, supercooler 1
3 is extracted by a pipe P28, expanded by an expansion valve V3 inserted into the pipe P28, and then introduced into a rectification section of the low-pressure rectification tower 8 which is lower than a connection position of the pipe P7. The mixed raw material gas introduced through the low pressure rectification column 8 together with the mixed raw material gas, and the liquid nitrogen taken out from the middle stage of the rectification section of the medium pressure rectification column 9 through the pipe P29 is passed through the supercooler 13 After being supercooled by indirect heat exchange with the product nitrogen gas, product nitrogen gas, waste gas and crude helium gas, it is taken out from the supercooler 13 by a pipe P30 and expanded by an expansion valve V4 inserted into the pipe P30. Liquid nitrogen which is introduced into the low pressure rectification tower 8 slightly above the connection position of the pipe P7 to become a reflux liquid, and which is taken out of the medium pressure rectification tower 9 by the pipe P15 and supercooled by the supercooling 13 Is piping P Extracted in 6, some of the pipe P
At 17, it is used as a cold source for the condensers a and b of the helium crude rectification column 12, and the remainder is expanded by an expansion valve V 5 via a pipe P 31, and then introduced into the uppermost rectification section of the low-pressure rectification column 8. Then, it flows down as a reflux liquid, is rectified by gas-liquid contact with the reflux liquid, and is stored as liquid oxygen at the bottom. The stored liquid nitrogen becomes a cold source of the condenser 10 and is vaporized by itself and returned to the low-pressure rectification column 8 again. Approximately 450 Nm 3 / h is taken out at about 1.6 ATA, and heat exchange with the mixed raw material gas is carried out in the heat exchanger 6 to reach normal temperature.
After being taken out by the pipe P33, it is compressed by the compressor 17 and supplied to the use destination.

【0023】低圧精留塔8に導入された混合原料ガスお
よび原料液体は精留部で精留分離され、底部に前述の液
体酸素を、頂部に窒素ガス約980Nm3 /hをそれぞ
れ製出させ、そのうち、製品窒素ガスは圧力約1.3A
TAで配管P34により取り出され、ヘリウム粗精留塔
12の凝縮器aから配管P41で取り出された窒素ガス
と合流する。この合流した窒素ガスは過冷却器13の寒
冷源として使用されたのち配管P35で取り出され、熱
交換器6で混合原料ガスと熱交換して常温となり、更
に、配管P36で取り出されたのち、圧縮機18に導入
されて使用先に供給される。
The mixed raw material gas and raw material liquid introduced into the low-pressure rectification column 8 are rectified and separated in the rectification section, and the above-mentioned liquid oxygen is produced at the bottom, and about 980 Nm 3 / h of nitrogen gas is produced at the top. Of which, the product nitrogen gas has a pressure of about 1.3A
The TA is taken out by the pipe P34 and merges with the nitrogen gas taken out of the condenser a of the helium crude rectification column 12 by the pipe P41. The combined nitrogen gas is used as a cold source of the supercooler 13 and then taken out through a pipe P35, exchanges heat with the mixed raw material gas in the heat exchanger 6 to reach room temperature, and is taken out through a pipe P36. It is introduced into the compressor 18 and supplied to the use destination.

【0024】低圧精留塔8に前述配管P30で液体窒素
が導入された位置より少し上から配管P37で廃ガスが
取り出されて過冷却器13の寒冷源となり、配管P38
で取り出されて熱交換器6で混合原料ガスと熱交換して
常温となり、配管P39で取り出され、切り替え式の除
炭乾燥器5の再生ガスとして使われたのち配管P40で
大気に放出される。
The waste gas is taken out of the low-pressure rectification column 8 from a position slightly above the position where the liquid nitrogen was introduced in the above-mentioned pipe P30 by a pipe P37, and becomes a cold source of the supercooler 13, and becomes a cold source of the pipe P38.
And exchanged heat with the mixed raw material gas in the heat exchanger 6 to reach a normal temperature, taken out by the pipe P39, used as a regenerating gas of the switchable decarburizer / dryer 5, and then released to the atmosphere by the pipe P40. .

【0025】〔第2実施例〕 前述の第1実施例では、製品として取出されたヘリウム
ガスの純度は、ヘリウムHe:99%、窒素N2 :1%
であり、光ガラス製造用として使用できるが、一般に、
その他の用途に使うには純度が低い。そこで、一般用途
に使う高純度ヘリウムガスに精製するにあたっては、図
2に示すように、第1実施例における圧縮機16からヘ
リウムHe:99%、窒素N2 :1%のヘリウムガスを
全部(一部でもよい。)を配管P50で取り出し、熱交
換器6に導入し、向流するヘリウムガス、酸素ガス、窒
素ガス及び廃ガスと間接熱交換させて冷却し、配管P5
1で取り出し、バルブV6〜V9の開閉制御によって一
対の低温吸着器19A,19Bを交互に使用して精製
し、ヘリウムHe:99.9999%の高純度ヘリウム
ガスにし、配管P52で取り出し、熱交換器6に戻して
常温にして、配管P53で取り出し、使用先に供給す
る。その他の構成は、前記第1実施例と同一であり、同
一構成の部位に同一の符号を付記して、それらの説明を
省略する。
[Second Embodiment] In the first embodiment, the purity of helium gas extracted as a product is as follows: helium He: 99%, nitrogen N 2 : 1%.
And can be used for manufacturing light glass, but in general,
Low purity for other uses. Therefore, in purifying the high-purity helium gas used for general use, as shown in FIG. 2, the helium gas of 99% of helium He and 1% of nitrogen N 2 is entirely supplied from the compressor 16 in the first embodiment (FIG. 2). Part may be taken out) through a pipe P50, introduced into a heat exchanger 6, cooled by indirect heat exchange with countercurrent helium gas, oxygen gas, nitrogen gas and waste gas.
1 and purified by alternately using a pair of low-temperature adsorbers 19A and 19B by opening and closing control of valves V6 to V9, to make high-purity helium gas of helium He: 99.9999%, taken out by piping P52, and heat exchange. It is returned to the vessel 6 to be at normal temperature, taken out through the pipe P53, and supplied to the place of use. The rest of the configuration is the same as that of the first embodiment, and the same components are denoted by the same reference numerals, and description thereof is omitted.

【0026】〔第3実施例〕 前述の第1実施例では、ヘリウムHeを2%含有する
2,500Nm3 /hの混合原料ガス(定常状態では
2,503Nm3 /hの混合原料ガス)の一部を熱交換
器6の中間から取り出し、膨張タービン7で膨張させて
冷熱を発生させ、これを低温分離装置(コールドボック
ス)A内の冷熱源として低圧精留塔8に導入していたた
め、冷熱源に使用したガス量だけ製品ヘリウムガスの回
収量が少なくなっていた。そこで、図3に示すように、
ヘリウムHeを2%含有する2,500Nm3 /hの混
合原料ガス(定常状態では2,503Nm3 /hの混合
原料ガス)を熱交換器6に導入し、向流するヘリウムガ
ス、窒素ガス及び廃ガスと間接熱交換させ、その全量を
液化点近くまで冷却して中圧精留塔9に導入し、当該中
圧精留塔9の底部に酸素濃縮液体を、また、中圧精留塔
9の頂部に窒素とヘリウムの混合ガスをそれぞれ作り出
す。そして、中圧精留塔9の底部の酸素濃縮液体を配管
P60で取り出し、過冷却器13に導入して過冷却した
のち配管P61で取り出し、当該配管P61に挿入され
た膨張弁V10で約3ATAの中間圧力まで膨張させて
凝縮器10に導入され、別系統の配管P9で凝縮器10
に導入された窒素とヘリウムの混合ガスと熱交換し、酸
素濃縮液体は廃ガスとなり、配管P62を経て熱交換器
6に導入され、向流する混合原料ガスと熱交換し、熱交
換器6の途中から配管P63で取り出され、膨張タービ
ン20に導入され、中間圧から大気圧に近い圧力まで膨
張されて冷熱を発生させ、配管P64で熱交換器6に戻
し、この低温分離装置(コールドボックス)A内の冷熱
源として使用した後、常温にし、配管P39で取り出
し、以降は第1実施例と同様になる。
[Third Embodiment] In the first embodiment described above, a mixed raw material gas containing helium He of 2% and having a concentration of 2,500 Nm 3 / h (in a steady state, a mixed raw material gas of 2,503 Nm 3 / h) is used. A part was taken out from the middle of the heat exchanger 6 and expanded by the expansion turbine 7 to generate cold heat, which was introduced into the low-pressure rectification column 8 as a cold heat source in the low-temperature separation device (cold box) A. The amount of recovered helium gas was reduced by the amount of gas used for the cold heat source. Therefore, as shown in FIG.
A mixed material gas of 2,500 Nm 3 / h containing 2% of helium He (a mixed material gas of 2,503 Nm 3 / h in a steady state) is introduced into the heat exchanger 6, and helium gas, nitrogen gas and The indirect heat exchange with the waste gas is carried out, and the whole amount is cooled to near the liquefaction point and introduced into the medium pressure rectification column 9. The oxygen-enriched liquid is supplied to the bottom of the medium pressure rectification column 9, At the top of 9, a mixed gas of nitrogen and helium is produced. Then, the oxygen-enriched liquid at the bottom of the intermediate-pressure rectification column 9 is taken out through the pipe P60, introduced into the supercooler 13 and supercooled, then taken out through the pipe P61, and about 3 ATA is introduced through the expansion valve V10 inserted into the pipe P61. Is introduced to the condenser 10 after being expanded to the intermediate pressure of
Exchanges heat with the mixed gas of nitrogen and helium introduced into the heat exchanger, and the oxygen-enriched liquid becomes waste gas, is introduced into the heat exchanger 6 via the pipe P62, and exchanges heat with the mixed raw material gas flowing in the opposite direction. The pipe is taken out from the middle of the pipe P63, introduced into the expansion turbine 20, expanded from the intermediate pressure to a pressure close to the atmospheric pressure to generate cold heat, returned to the heat exchanger 6 via the pipe P64, and cooled by the low-temperature separation device (cold box). ) After being used as a cold heat source in A, it was brought to room temperature, taken out by piping P39, and thereafter the same as in the first embodiment.

【0027】尚、前記中圧精留塔9の頂部より取り出さ
れる窒素とヘリウムの混合ガスは、第1実施例と同様に
凝縮器10、気液分離器11、ヘリウム粗精留塔12、
過冷却器13、熱交換器6、膜分離器15及び圧縮器1
6を通って使用先に供給されるが、第1実施例に比べ
て、回収される製品ヘリウムガスの量を多くできる。ま
た、酸素も同時に必要なら液体酸素のままで、又は、除
炭乾燥器5から配管P40を経て取り出される酸素30
%〜40%の排ガスを膜分離器又は吸着分離器を通して
酸素ガスの状態で供給することもできる。尚、前述の第
1実施例と同一構成の部位に同一の符号を付記して、そ
れらの説明を省略する。
The mixed gas of nitrogen and helium taken out from the top of the medium pressure rectification column 9 is supplied to a condenser 10, a gas-liquid separator 11, a helium crude rectification column 12,
Subcooler 13, heat exchanger 6, membrane separator 15, and compressor 1
Although supplied to the destination through 6, the amount of the recovered product helium gas can be increased as compared with the first embodiment. If oxygen is also required at the same time, the oxygen 30 which is taken out of the decarburizer / dryer 5 via the pipe P40 as liquid oxygen if necessary.
% To 40% of the exhaust gas may be supplied in the form of oxygen gas through a membrane separator or an adsorption separator. The same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

【0028】〔その他の実施例〕 1.上述の各実施例では、ヘリウム約5%を含有する低
濃度ヘリウムと空気との混合原料ガスを例に挙げて説明
したが、回収するヘリウムが高純度(80%)であって
も、それに混合する空気量が大量であり、混合原料ガス
のヘリウム濃度が約15%〜0.05%、好ましくは約
10%〜0.1%にすることができれば、製造工程で再
使用可能な純度のヘリウムガスを少なくとも窒素と共に
効率良く経済的に見合う価格で製造することができる。 2.上述の実施例のように、低濃度ヘリウムと空気との
混合原料ガスからヘリウムと窒素及び酸素を製造する場
合には複式精留塔を用いるが、低濃度ヘリウムと空気と
の混合原料ガスからヘリウムと窒素とを製造する場合に
は単精留塔を用いる。 3.上述の実施例では、二つの凝縮器a,bを備えたヘ
リウム粗精留塔12を例に挙げて説明したが、一つ又は
三つ以上の凝縮器を備えたヘリウム粗精留塔12を用い
て実施してもよい。
[Other Embodiments] In each of the above embodiments, the mixed source gas of low-concentration helium containing about 5% helium and air has been described as an example. However, even if the recovered helium is of high purity (80%), it is mixed with it. If the amount of air generated is large and the helium concentration of the mixed raw material gas can be about 15% to 0.05%, preferably about 10% to 0.1%, helium having a purity that can be reused in the manufacturing process The gas can be produced efficiently and at least economically at a reasonable price with nitrogen. 2. In the case of producing helium, nitrogen and oxygen from a mixed source gas of low-concentration helium and air as in the above-described embodiment, a double rectification column is used. When producing and nitrogen, a single rectification column is used. 3. In the above embodiment, the helium crude rectification column 12 having two condensers a and b has been described as an example, but the helium crude rectification column 12 having one or three or more condensers is described. May be used.

【0029】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
In the claims, reference numerals are provided for convenience of comparison with the drawings, but the present invention is not limited to the configuration of the attached drawings.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施例の空気低温分離装置及びその分離方
法を示すフローダイヤグラム
FIG. 1 is a flow diagram showing a low-temperature air separation apparatus and a separation method thereof according to a first embodiment.

【図2】第2実施例の空気低温分離装置及びその分離方
法を示すフローダイヤグラム
FIG. 2 is a flow diagram showing a low-temperature air separation apparatus and a separation method thereof according to a second embodiment.

【図3】第3実施例の空気低温分離装置及びその分離方
法を示すフローダイヤグラム
FIG. 3 is a flow diagram showing a low-temperature air separation apparatus and a separation method according to a third embodiment.

【符号の説明】[Explanation of symbols]

3 圧縮手段(圧縮機) 4 予備冷却手段(冷却器) 5 吸着手段(除炭乾燥器) 6 冷却手段(熱交換器) 7 膨張タービン 8 低圧精留塔 9 精留塔(中圧精留塔) 10 凝縮器 11 気液分離器 12 ヘリウム粗精留塔 13 過冷却器 14 真空ポンプ 15 膜分離器 16 ヘリウムガス圧縮機 17 酸素ガス圧縮機 18 窒素ガス圧縮機 19A 吸着分離器(低温吸着器) 19B 吸着分離器(低温吸着器) a 凝縮器 b 凝縮器 Reference Signs List 3 compression means (compressor) 4 pre-cooling means (cooler) 5 adsorption means (decarburizer / dryer) 6 cooling means (heat exchanger) 7 expansion turbine 8 low pressure rectification tower 9 rectification tower (medium pressure rectification tower) 10) Condenser 11 Gas-liquid separator 12 Helium crude fractionator 13 Subcooler 14 Vacuum pump 15 Membrane separator 16 Helium gas compressor 17 Oxygen gas compressor 18 Nitrogen gas compressor 19A Adsorption separator (low temperature adsorber) 19B adsorption separator (low temperature adsorber) a condenser b condenser

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐々木 俊三 東京都港区新橋2丁目13番8号 住商フ ァインガス株式会社内 (72)発明者 村上 陽一 東京都港区新橋2丁目13番8号 住商フ ァインガス株式会社内 (56)参考文献 特開 昭62−41572(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25J 1/00 - 5/00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shunzo Sasaki 2-13-8 Shimbashi, Minato-ku, Tokyo Inside Sumisho Finegas Co., Ltd. (72) Inventor Yoichi Murakami 2- 13-8 Shimbashi, Minato-ku, Tokyo Sumisho (56) References JP-A-62-41572 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F25J 1/00-5/00

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 低濃度ヘリウムと空気との混合原料ガス
を圧縮する圧縮手段(3)と、該圧縮手段(3)で圧縮
された混合原料ガスを液化点付近まで冷却する冷却手段
(6)と、該冷却手段(6)で冷却された混合原料ガス
を精留分離して少なくとも液体窒素を製品として取り出
す精留塔(9)と、当該精留塔(9)の頂部から取り出
された窒素とヘリウムの混合ガスを凝縮する凝縮器(1
0)と、該凝縮器(10)で凝縮液化された液体窒素を
分離する気液分離器(11)と、該気液分離器(11)
で気液分離された未凝縮気体を精留してヘリウムガスを
製品として取り出すヘリウム粗精留塔(12)とを備
え、 前記ヘリウム粗精留塔(12)には、前記ヘリウム粗精
留塔(12)内に導入された未凝縮気体の窒素分を前記
精留塔(9)から得られた液体窒素との間接熱交換によ
って凝縮液化させる凝縮器(a,b)が設けられてお
り、 前記精留塔(9)から得られた液体窒素の一部を、前記
ヘリウム粗精留塔(12)の前記凝縮器(a,b)に導
入される前に過冷却するための過冷却器(13)と、前
記過冷却器(13)で過冷却された液体窒素を大気圧以
下にまで膨張させる膨張弁(V2) とが設けられている
空気低温分離装置。
Compression means (3) for compressing a mixed material gas of low-concentration helium and air, and cooling means (6) for cooling the mixed material gas compressed by the compression means (3) to near a liquefaction point. A rectification tower (9) for rectifying and separating at least liquid nitrogen as a product by rectifying and separating the mixed raw material gas cooled by the cooling means (6); and nitrogen extracted from the top of the rectification tower (9). Condenser (1) that condenses a mixed gas of helium and helium
0), a gas-liquid separator (11) for separating liquid nitrogen condensed and liquefied in the condenser (10), and the gas-liquid separator (11)
Bei a helium SoseiTometo (12) for taking out the uncondensed gas to gas-liquid separation in the rectification to helium gas as a product
The helium crude fractionator (12) is provided with the helium crude fraction.
The nitrogen content of the uncondensed gas introduced into the distillation tower (12) is
By indirect heat exchange with liquid nitrogen obtained from the rectification column (9)
Condensers (a, b) for condensing and liquefying
Ri, a portion of the liquid nitrogen obtained from the rectification column (9), wherein
The helium crude rectification tower (12) is led to the condensers (a, b).
A subcooler (13) for subcooling before entering
The liquid nitrogen supercooled by the subcooler (13)
An air low-temperature separation device provided with an expansion valve (V2) that expands downward .
【請求項2】 低濃度ヘリウムと空気との混合原料ガス
を圧縮手段(3)で圧縮し、この圧縮された混合原料ガ
スを冷却手段(6)で液化点付近まで冷却したのち精留
塔(9)の下部に導入し、該精留塔(9)で混合原料ガ
スから精留分離されて頂部から取り出された窒素とヘリ
ウムの混合ガスを凝縮器(10)を経て気液分離器(1
1)に導入し、該気液分離器(11)で気液分離された
液体窒素を還流液として前記精留塔(9)の精留部最上
段に導入し、前記気液分離器(11)で気液分離された
未凝縮気体をヘリウム粗精留塔(12)の下部に導入
し、該ヘリウム粗精留塔(12)で精留分離されたヘリ
ウムガスを頂部より製品して取り出すとともに、前記
精留塔(9)の精留部最上段より数段下の精留部から液
体窒素を製品として取り出し、 前記精留塔(9)の前記精留部から取り出された液体窒
素の一部を、過冷却器 (13)で過冷却し、前記過冷却
器(13)で過冷却された液体窒素を膨張弁(V2)で
大気圧以下にまで膨張させた上で、前記ヘリウム粗精留
塔(12)内に設けられた凝縮器(a,b)に導入する
空気低温分離方法。
2. A mixed raw material gas of low-concentration helium and air is compressed by a compression means (3), and the compressed mixed raw material gas is cooled to a vicinity of a liquefaction point by a cooling means (6). 9), the mixed gas of nitrogen and helium which is rectified and separated from the mixed raw material gas in the rectification column (9) and taken out from the top is passed through a condenser (10) to a gas-liquid separator (1).
1), and the liquid nitrogen gas-liquid separated by the gas-liquid separator (11) is introduced as a reflux liquid into the rectification tower (9) at the uppermost stage of the rectification section. ) the uncondensed gas to gas-liquid separation is introduced into the lower portion of the helium SoseiTometo (12), take out the rectification separated helium gas in the helium SoseiTometo (12) as a product from the top together, the rectifying section liquid nitrogen from the rectification unit under several stages from the top of the rectification column (9) Eject the product was taken out from said rectifying part of the rectification column (9) liquid Nitrification
A part of the element is supercooled by a supercooler (13),
Liquid nitrogen supercooled by the pressure vessel (13) by the expansion valve (V2)
After expanding to below atmospheric pressure, the helium crude rectification
A low-temperature separation method for introducing air into condensers (a, b) provided in a tower (12) .
【請求項3】 前記ヘリウム粗精留塔(12)の頂部か
ら取り出されたヘリウムガスを過冷却器(13)及び冷
却手段(6)に導いて寒冷源として使用したのちに製品
とする請求項2に記載の空気低温分離方法。
3. The helium gas extracted from the top of the helium crude fractionator (12) is introduced into a subcooler (13) and a cooling means (6) and used as a cold source to produce a product. 3. The method for low-temperature separation of air according to 2 .
【請求項4】 前記ヘリウム粗精留塔(13)の頂部か
ら取り出されたヘリウムガスを膜分離器(15)で精製
して製品とする請求項2または3に記載の空気低温分離
方法。
4. The method for low-temperature separation of air according to claim 2, wherein the helium gas taken from the top of the helium crude fractionator (13) is purified by a membrane separator (15) to produce a product.
【請求項5】 前記膜分離器(15)から取り出された
ヘリウムガスを圧縮し冷却したのち、吸着分離器(19
A,19B)で低温分離し、常温に戻して製品とする請
求項4に記載の空気低温分離方法。
5. After compressing and cooling the helium gas taken out of the membrane separator (15), the adsorption separator (19).
The low-temperature air separation method according to claim 4 , wherein the low-temperature separation is performed at A, 19B) and the temperature is returned to room temperature to obtain a product.
【請求項6】 前記膜分離器(15)で膜分離された残
りのヘリウムガスを含んだ排ガスを混合原料ガスに供給
する工程が設けられている請求項又は5に記載の空気
低温分離方法。
6. The low-temperature air separation method according to claim 4 , wherein a step of supplying an exhaust gas containing the remaining helium gas that has undergone membrane separation in the membrane separator (15) to the mixed raw material gas is provided. .
JP06597795A 1995-03-24 1995-03-24 Air low-temperature separation apparatus and separation method Expired - Fee Related JP3299069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06597795A JP3299069B2 (en) 1995-03-24 1995-03-24 Air low-temperature separation apparatus and separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06597795A JP3299069B2 (en) 1995-03-24 1995-03-24 Air low-temperature separation apparatus and separation method

Publications (2)

Publication Number Publication Date
JPH08261645A JPH08261645A (en) 1996-10-11
JP3299069B2 true JP3299069B2 (en) 2002-07-08

Family

ID=13302581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06597795A Expired - Fee Related JP3299069B2 (en) 1995-03-24 1995-03-24 Air low-temperature separation apparatus and separation method

Country Status (1)

Country Link
JP (1) JP3299069B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100873376B1 (en) * 2006-09-19 2008-12-10 조건환 Method and Apparatus for Enriching Neon and/or Helium
KR100867643B1 (en) * 2006-10-23 2008-11-10 조건환 Apparatus for Concentration of Waste Helium
JP6516335B2 (en) * 2017-04-20 2019-05-22 株式会社新領域技術研究所 Target gas treatment system
US10295254B2 (en) * 2017-09-05 2019-05-21 Praxair Technology, Inc. System and method for recovery of non-condensable gases such as neon, helium, xenon, and krypton from an air separation unit
US10408536B2 (en) * 2017-09-05 2019-09-10 Praxair Technology, Inc. System and method for recovery of neon and helium from an air separation unit
CN107514872B (en) * 2017-09-27 2022-11-25 中科瑞奥能源科技股份有限公司 Process and system for recovering helium from flash steam of LNG storage tank
EP4080146A1 (en) * 2021-04-21 2022-10-26 Linde GmbH Method of operating a fabrication plant and fabrication plant
WO2023030686A1 (en) * 2021-09-06 2023-03-09 Linde Gmbh Process and plant for providing a helium- and neon-containing product mixture

Also Published As

Publication number Publication date
JPH08261645A (en) 1996-10-11

Similar Documents

Publication Publication Date Title
CN111065872B (en) System and method for recovering non-condensable gases such as neon, helium, xenon, and krypton from an air separation unit
JP2966999B2 (en) Ultra high purity nitrogen / oxygen production equipment
US5325674A (en) Process for the production of nitrogen by cryogenic distillation of atmospheric air
EP0520738B1 (en) Production of nitrogen of ultra-high purity
CN111033160B (en) Systems and methods for recovering neon and helium from an air separation unit
EP0624767B1 (en) Process and apparatus for producing oxygen
JP2004028572A (en) Air fractionation process and air fractionation installation provided with mixing column and krypton and/or xenon recovery device
US5528906A (en) Method and apparatus for producing ultra-high purity oxygen
JP3299069B2 (en) Air low-temperature separation apparatus and separation method
CA2070498C (en) Cryogenic process for producing ultra high purity nitrogen
EP1219911A2 (en) System and method for producing high purity argon
AU666407B2 (en) Cryogenic air separation process and apparatus
EP0807792B1 (en) Air separation method and apparatus
JP2003028568A (en) Method and apparatus for separating air
JP4177507B2 (en) Method and apparatus for producing low purity oxygen
JP3082092B2 (en) Oxygen purification method and apparatus
JP2001336876A (en) Method and system for producing nitrogen
JPH1163812A (en) Manufacture and device for low-purity oxygen
JP2000018813A (en) Method and device for producing nitrogen
JPH07146065A (en) Manufacture of high-purity nitrogen vapor product
JPS61243273A (en) Air liquefying separating method
JP3563557B2 (en) Air separation method and air separation equipment
JPH10259989A (en) Air separation method and device
JPH05240579A (en) Nitrogen producing device
JPH0486474A (en) Method and device for refining nitrogen

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080419

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080419

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100419

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110419

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees