JPS581350A - Fm stereophonic demodulator - Google Patents

Fm stereophonic demodulator

Info

Publication number
JPS581350A
JPS581350A JP9992181A JP9992181A JPS581350A JP S581350 A JPS581350 A JP S581350A JP 9992181 A JP9992181 A JP 9992181A JP 9992181 A JP9992181 A JP 9992181A JP S581350 A JPS581350 A JP S581350A
Authority
JP
Japan
Prior art keywords
signal
output
ppm
subcarrier
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9992181A
Other languages
Japanese (ja)
Other versions
JPS6342454B2 (en
Inventor
Koji Ishida
石田 弘二
Tatsuo Numata
沼田 龍男
Tadashi Noguchi
義 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Corp
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corp, Pioneer Electronic Corp filed Critical Pioneer Corp
Priority to JP9992181A priority Critical patent/JPS581350A/en
Priority to US06/392,130 priority patent/US4497063A/en
Publication of JPS581350A publication Critical patent/JPS581350A/en
Publication of JPS6342454B2 publication Critical patent/JPS6342454B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H40/00Arrangements specially adapted for receiving broadcast information
    • H04H40/18Arrangements characterised by circuits or components specially adapted for receiving
    • H04H40/27Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95
    • H04H40/36Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving
    • H04H40/45Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving for FM stereophonic broadcast systems receiving
    • H04H40/72Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving for FM stereophonic broadcast systems receiving for noise suppression
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D1/00Demodulation of amplitude-modulated oscillations
    • H03D1/22Homodyne or synchrodyne circuits
    • H03D1/2209Decoders for simultaneous demodulation and decoding of signals composed of a sum-signal and a suppressed carrier, amplitude modulated by a difference signal, e.g. stereocoders
    • H03D1/2236Decoders for simultaneous demodulation and decoding of signals composed of a sum-signal and a suppressed carrier, amplitude modulated by a difference signal, e.g. stereocoders using a phase locked loop

Abstract

PURPOSE:To eliminate the influence of noise by performing multiplication by using a switching signal which is close to a composite signal frequency range and has not any unnecessary frequency component, and thus performing stereophonic demodulation. CONSTITUTION:The detection output of an FM detector 1 is supplied to a multiplier 3 through an LPF2. The detection output is also supplied to a subcarrier signal generator 7 which generates a 38KHz sine-wave subcarrier, thereby generating the 38KHz sine-wave signal which synchronizes with a pilot signal. Once inputting this subcarrier signal, a PPM (pulse-position modulation) circuit 8 imposes pulse-position modulation upon a >= about 500KHz high-frequency clock pulse signal by the sine-wave subcarrier signal to obtain a PPM signal. This PPM signal output is led to the other input terminal of the multiplier 3, where it is multiplied by the FM detection output. Audio components of this multiplication output are extracted through LPF (low-pass filter) 5 and 6 and then separated and demodulated into a left and a right channel signal.

Description

【発明の詳細な説明】 本発萌はFMステレオ復調装置に関し、特にサブ信号の
復調に際しサブキャリヤ信号とコンポジット信号との乗
算をなすようにしたFMステレオ復調装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an FM stereo demodulation device, and more particularly to an FM stereo demodulation device that multiplies a subcarrier signal and a composite signal when demodulating a subsignal.

FMステレオ信号の復調に際して38KH2の矩形状サ
ブキャリヤ信号によシコンポジット信号をスイッチング
して左右チャンネル信号を分離するようにした回路方式
がある。第1図はかかる復調方式のブロック図であり、
FM−IF(中間周波)信号はFM検波器1によりコン
ポジット信号に変換され、不要成分を除去するLPF 
(ローパスフィルタ)2を介してスイッチング回路3に
印加される。LPF2の出力に含有される19KHzの
パイロット信号をPLL (フェイズロックドループ)
回路4において抽出し、このパイロット信号に位相同期
した38KH2の矩形波サブキャリヤ信号が、先のスイ
ッチング回路3のスイッチング信号として用いられてい
る。このスイッチング出力からオーディオ成分である左
右チャンネル信号が夫々分離導出されるもので、そのた
めにLPF 5及び6が設けられている。
There is a circuit system that separates left and right channel signals by switching a composite signal using a 38KH2 rectangular subcarrier signal when demodulating an FM stereo signal. FIG. 1 is a block diagram of such a demodulation method,
The FM-IF (intermediate frequency) signal is converted into a composite signal by an FM detector 1, and an LPF removes unnecessary components.
It is applied to the switching circuit 3 via the (low-pass filter) 2. PLL (phase locked loop) the 19KHz pilot signal contained in the output of LPF2
A 38KH2 rectangular wave subcarrier signal extracted in the circuit 4 and phase-synchronized with this pilot signal is used as a switching signal in the switching circuit 3 described above. Left and right channel signals, which are audio components, are separated and derived from this switching output, and LPFs 5 and 6 are provided for this purpose.

ここで、スイッチング信号である38KH2のサブキャ
リヤ信号は第2図(4)に示す如き矩形波であるために
、これをフーリエ級数に展開すると、F(t) −7d
nω8t+3.gl13ωst+g血5ω8t+・・・
・・・(1)と表わされる。ここにω8はサブキャリヤ
信号の角周波数である。このようにs ’p’(t)の
周波数スペクトラムは第2図(B)に示す如(38KH
zの基本波の他に114KHz、 190KH2,・由
・・等の奇数次高調波を含んでいることにな゛る。
Here, since the subcarrier signal of 38KH2 which is the switching signal is a rectangular wave as shown in Fig. 2 (4), if this is expanded into a Fourier series, F(t) -7d
nω8t+3. gl13ωst+g blood5ω8t+...
...It is expressed as (1). Here, ω8 is the angular frequency of the subcarrier signal. In this way, the frequency spectrum of s'p'(t) is as shown in Figure 2 (B) (38KH
In addition to the fundamental wave of z, it includes odd harmonics such as 114KHz, 190KH2, etc.

かかる周波数スペクトラムを有するスイッチング信号F
(i)jこよシFM検波出力をスイッチングすれば、両
信号の乗算がなされることになるが、出力部のLPF 
5及び6の通過帯域を0〜15KHzとすれば、この乗
算によりステレオ出力に現われる検波器出力は第2図(
0)の如くなる。っまシ、メイン信号(0〜15KHz
 )とサブ信号(38±15KH2)の他に、114±
15KHz 、 190±15KH2、−”’にある信
号(靴音や近接妨害波等)も復調されて出力される。
A switching signal F having such a frequency spectrum
(i) If the j-koyoshi FM detection output is switched, both signals will be multiplied, but the LPF of the output section
If the passbands of 5 and 6 are 0 to 15 KHz, the detector output that appears in the stereo output by this multiplication is shown in Figure 2 (
0). Main signal (0~15KHz)
) and sub signal (38±15KH2), 114±
Signals at 15KHz, 190±15KH2, -'' (shoe sounds, proximity interference waves, etc.) are also demodulated and output.

かかる欠点を防ぐために、 FM検波器1の出力に、第
2図(D)に示すように114KHz 、 190KH
z + ”曲付近で減衰量の大きいLPFを付加する必
要が生じる。
In order to prevent this drawback, the output of the FM detector 1 is set to 114KHz and 190KH as shown in FIG. 2(D).
It becomes necessary to add an LPF with a large amount of attenuation near the z+'' song.

しかし、114KH2はコンポジット信号成分に接近し
ているために、とのLPFによシ第2図(E)に示す如
くコンポジット信号の遅延特性が平坦でなくなったり、
振幅特性が平坦でなくなったシし、ステレオ復調出力の
歪やセパレーション特性が悪化することになる。
However, since 114KH2 is close to the composite signal component, the delay characteristics of the composite signal are not flat as shown in Figure 2 (E) due to the LPF.
The amplitude characteristics are no longer flat, and the distortion and separation characteristics of the stereo demodulated output deteriorate.

本発明の目的は上記欠点を排除して特性の良好なステレ
オ復調装置を提供することである。
An object of the present invention is to eliminate the above-mentioned drawbacks and provide a stereo demodulation device with good characteristics.

本発明によるFMステレオ復調装置はspM検波出力に
含まれるステレオパイロット信号と同期した正弦波状の
サブキャリヤ信号を発生する手段と、高周波のパルス信
号を正弦波サブキャリヤ信号によシパルス位置変調した
パルス列信号を発生する変調手段と、このパルス列信号
とFM検波出力との乗算をなす手段とを含み、この乗算
出方から左右チャンネル信号を分離導出するようにした
ことを特徴とする。
The FM stereo demodulator according to the present invention includes means for generating a sinusoidal subcarrier signal synchronized with a stereo pilot signal included in an spM detection output, and a pulse train signal obtained by pulse position modulating a high frequency pulse signal with a sinusoidal subcarrier signal. The present invention is characterized in that it includes modulation means for generating a pulse train signal and means for multiplying this pulse train signal by an FM detection output, and left and right channel signals are separately derived from this multiplication method.

以下に図面を用いて本発明を説明する。The present invention will be explained below using the drawings.

第3図は本発明の詳細な説明するブロック図であり、F
M検波器1による検波出力はLPF 2を介して乗算器
30入力となる。検波出力はまた38KHzの正弦波状
サブキャリヤを発生するサブキャリヤ信号発生器7に入
力されて、パイロット信号に同期した正弦波の38KH
z信号が発生される。乙の38KH2のサブキャリヤ信
号を入力とするPPM (パルス位置変調)回路8が設
けられており、略500KHz以上の高周波のクロック
−(ルス信号が当該正弦波−サブキャリヤ信号によシパ
ルス変調されてPPM信号となる。このPPM信号出力
が乗算器3の個入力となり、 FM検波出力と乗算され
る。この乗算出力のオーディオ成分がLPF5,6によ
り夫々導出されて左右チャンネル信号に分離復調される
ことになる。
FIG. 3 is a block diagram illustrating the present invention in detail;
The detected output from the M detector 1 is input to the multiplier 30 via the LPF 2. The detection output is also input to a subcarrier signal generator 7 which generates a 38KHz sinusoidal subcarrier, and generates a sinusoidal 38KH signal synchronized with the pilot signal.
A z signal is generated. A PPM (Pulse Position Modulation) circuit 8 is provided which receives the 38KH2 subcarrier signal as input, and a high frequency clock signal of approximately 500KHz or more is pulse-modulated by the sine wave subcarrier signal. This becomes a PPM signal. This PPM signal output becomes the input of the multiplier 3 and is multiplied by the FM detection output. The audio components of this multiplication output are respectively derived by LPFs 5 and 6 and separated and demodulated into left and right channel signals. become.

第4図囚〜(F)は第3図の回路の動作及び特性を示す
図でオシ、先ず(4)は38KHzの正弦波サブキャリ
ヤ信号波形で1.(B)はこのサブキャリヤ信号により
パルス変調され九PPMパルス列信号波形である。この
PPM波の周波数スペクトラムを考えると、変調波であ
るサブキャリヤ信号の周波数である38KHz成分を有
し、またその他にPPM波のキャリヤ周波数付近及びそ
の奇数次高調波付近における変調度に応じた分布となる
が、これら38KHz成分以外の周波数成分はPPM波
のキャリヤを約500KH2以上の高周波に選定すれば
、図(0)のようになる。
4-(F) are diagrams showing the operation and characteristics of the circuit of FIG. 3. First, (4) is a 38 KHz sine wave subcarrier signal waveform. (B) is a 9 PPM pulse train signal waveform pulse modulated by this subcarrier signal. Considering the frequency spectrum of this PPM wave, it has a 38 KHz component which is the frequency of the subcarrier signal which is the modulated wave, and also has a distribution according to the modulation degree near the carrier frequency of the PPM wave and its odd harmonics. However, if the carrier of the PPM wave is selected as a high frequency of approximately 500 KH2 or higher, frequency components other than these 38 KHz components will be as shown in Figure (0).

従って、FM検波出力のうち乗算によるステレオ復調出
力に現れるのは、メイン信号(θ〜15KH2)とサブ
信号(23〜53KH3)と、更にはPPM波のキャリ
ヤ周波数付近及びその奇数倍の周波数付近の妨害波や雑
シこ限られることにカリ、よって復調出力の周波数スペ
クトラムは(D)の如くなる。その結果、LPF2の特
性は高周波のP−PM波のキャリヤ周波数付近から上を
遮断すればよいから、(E)に示すように高域まで平坦
なLPF特性とすることができ、その遅延特性4(F)
に示す如く平坦とすることが可能となる。従って、FM
検波出力は振幅と遅延が平坦な状態で復調されることに
なり、歪やセパレーションの悪化がなく表る。また、P
M検波器1の出力の周波数特性が高域まで伸びていない
場合には、LPF 2は省略可能となる。
Therefore, among the FM detection outputs, what appears in the stereo demodulation output by multiplication are the main signal (θ~15KH2), the sub signal (23~53KH3), and the frequencies near the carrier frequency of the PPM wave and odd multiples thereof. Since interference waves and noise are limited, the frequency spectrum of the demodulated output is as shown in (D). As a result, since the characteristics of LPF 2 only need to be cut off from the vicinity of the carrier frequency of the high-frequency P-PM wave, it is possible to obtain an LPF characteristic that is flat up to the high frequency range as shown in (E), and its delay characteristic 4 (F)
It is possible to make it flat as shown in the figure. Therefore, F.M.
The detected output is demodulated with flat amplitude and delay, and appears without deterioration of distortion or separation. Also, P
If the frequency characteristics of the output of the M detector 1 do not extend to high frequencies, the LPF 2 can be omitted.

第3図の回路ブロックにおける復調原理を簡単に数式を
用いて説明する。いま、左右チャンネル信号をL(t)
 、 R(t)とすると、メイン及びサブ信号はそれぞ
れM(t)−L(t)+ R(t) 、 8(t)−L
(t) −R(t)と表わされる。従って、サブキャリ
ヤ信号を画ω8tとするとFM検波出力であるコンポジ
ット信号0(t)は、 0(t) −M(1+ 8(t)dnω8t・・・・・
・・・・・・・(2)となる。尚、パイロット信号成分
は簡略化のため省略している。そして、 PPM波の主
成分は画ω8tであるからPPM回路8の出力は直流分
を考慮して、■士幽ωstとすれば、乗算器3の1対の
出方は、IL(’) −(2+ −一ω畠t ) ・ 
0(t)  ・曲・ (3)IFa(t)−(Tsin
(daす・0(t) −間−(4)となる。従ってs 
(2) t (3)式を変形整理すれば、1L(t)−
十(M(t)+8 (t) ) + (+5(t)十M
(t))幽ω8t−T8(t)oos2ω8t ・−−
−−−−−−・・・(5)IR(t)一番(M(t)−
8(1) + (+8(t)−M(t))gktω8t
+78(t)cm2ω8t・・・・・・・・・・・・(
6)となる。これらfL(t)及び−t)をLPF 5
及び6を夫夫通すことによりオーディオ成分のみが導出
されるから、各LPF 5 、6の出力t’t、’(t
) *ν、:<*>は、νL(t)−丁(M(t)+ 
8(1) −L(t))・・・(7)tIR′(t)−
丁(M(t) −8<t) ) −R(t)・・・(8
)となって、左右チャンネル信号が分離復調されること
になる。
The demodulation principle in the circuit block of FIG. 3 will be briefly explained using mathematical expressions. Now, the left and right channel signals are L(t)
, R(t), the main and sub signals are M(t)-L(t)+R(t), 8(t)-L, respectively.
(t) −R(t). Therefore, if the subcarrier signal is image ω8t, the composite signal 0(t) which is the FM detection output is 0(t) −M(1+8(t)dnω8t...
......(2). Note that the pilot signal component is omitted for simplification. Then, since the main component of the PPM wave is image ω8t, the output of the PPM circuit 8 takes into account the DC component and assumes ωst, then the output of the pair of multipliers 3 is IL(') − (2+ -1ω Hataket) ・
0(t) ・Song・ (3) IFa(t) − (Tsin
(das・0(t) −distance−(4). Therefore, s
(2) t By rearranging equation (3), we get 1L(t)−
10(M(t)+8(t))+(+5(t)10M
(t)) oos2ω8t-T8(t)oos2ω8t ・--
--------... (5) IR(t) Ichiban(M(t)-
8(1) + (+8(t)-M(t))gktω8t
+78(t)cm2ω8t・・・・・・・・・・・・(
6). These fL(t) and -t) are LPF 5
Since only the audio component is derived by passing through the LPFs 5 and 6, the outputs t't,'(t
) *ν, :<*> is νL(t)−D(M(t)+
8(1) -L(t))...(7)tIR'(t)-
Ding (M(t) -8<t) ) -R(t)...(8
), and the left and right channel signals are separated and demodulated.

第5図は本発明に用いる乗算器3の一実施例であシ、ダ
ブルバランス型の差動回路構成であって、1対の差動ト
ランジスタ’r、!l ’r、2の両ペース間にFM検
波出力であるコンポジット信号を印加している。抵抗R
6,R7は両トランジスタのエミッタ抵抗であり、抵抗
R5は共通エミッタ抵抗であシマトリックス回路を構成
する。抵抗R1、R2によりベースバイアス■1が両ト
ランジスタに印加されている。
FIG. 5 shows an embodiment of the multiplier 3 used in the present invention, which has a double-balanced differential circuit configuration and includes a pair of differential transistors 'r, ! A composite signal, which is an FM detection output, is applied between both paces l'r and 2. Resistance R
6 and R7 are emitter resistors of both transistors, and resistor R5 is a common emitter resistor to form a matrix circuit. A base bias (1) is applied to both transistors by resistors R1 and R2.

トランジスタTτ1のコレクタ出力を電流源とする差動
トランジスタ’r、3;Ty4が設けられておシ、また
トランジスタTr2めコレクタ出力を電流源とする差動
トランジスタ’r、、 t Ty6が設けられている。
A differential transistor 'r, 3; Ty4 is provided that uses the collector output of the transistor Tτ1 as a current source, and a differential transistor 'r, t Ty6 that uses the collector output of the transistor Tr2 as a current source is provided. There is.

そしてトランジスタT−3とT76のベースに正相のP
PM波が二またトランジスタT、4とTTSのベースに
逆相のPPM波がそれぞれ印加されており、これらトラ
ンジスタのベースバイアスv2が抵抗R3、R4により
各ベースに印加されている。トランジスタTr3とTT
Sのコレクタが共通コレクタ抵抗R8に接続されてこの
抵抗R8から左チャンネル信号が得られ、トランジスタ
Tr4とTr6のコレクタが共通コレクタ抵抗R,に接
続されてこの抵抗R9から右チャンネル信号が得られる
And the positive phase P is connected to the bases of transistors T-3 and T76.
Two PM waves are applied, and a PPM wave of opposite phase is applied to the bases of transistors T, 4 and TTS, respectively, and the base bias v2 of these transistors is applied to each base by resistors R3 and R4. Transistors Tr3 and TT
The collector of transistor S is connected to a common collector resistor R8, from which a left channel signal is obtained, and the collectors of transistors Tr4 and Tr6 are connected to a common collector resistor R, from which a right channel signal is obtained.

いま、トランジスタTr2のエミッタ電圧をV、とする
と、トランジスタT71のエミッタ電圧はVB十〇(c
)となる。従って、両トランジスタTl’l + Ty
2のコレクタ電流Iox(t) 、 Io2(t)は、
となる。尚s RO” R6” R7としている。そし
て、スイッチングのためのPPM波は高周波成分を省略
すれば、前述のようにT±A幽(i)atであるから、
(A≦十であpPPM波の変調度により定まる定数)抵
抗R8+ R9に流れる電流のうちオーディオ成分IL
(り 、In(t)は、 となる。ここで、RO−2A−Rs/ (I A )と
すれば、 −A It、(1=頁(2%++M(t)+8(t)) =−
・−us)IB(1)−可(2v11+M(t)−8(
t)) ・・・・−−−(14)となって、左右チャン
ネル出力が得られることになる。
Now, if the emitter voltage of the transistor Tr2 is V, the emitter voltage of the transistor T71 is VB10 (c
). Therefore, both transistors Tl'l + Ty
The collector currents Iox(t) and Io2(t) of 2 are:
becomes. Note that sRO"R6"R7. Then, if the high frequency component is omitted, the PPM wave for switching is T±A(i)at as mentioned above, so
(Constant determined by the modulation degree of pPPM wave when A≦1) Audio component IL of the current flowing through resistor R8+R9
(R, In(t) becomes .Here, if RO-2A-Rs/(IA), -A It, (1=page(2%++M(t)+8(t))= −
・-us) IB(1)-possible(2v11+M(t)-8(
t)) ...---(14), and left and right channel outputs are obtained.

第6図は第3図における38KHzサブキャリヤ信号発
生器7の具体例の回路ブロック図であり、パイロット信
号は位相比較器10に入力され、分局器11からの19
 KHz矩形波と位相比較される。この比較出力はLP
F12とDCアンプ13とを介してVOO(電圧制御発
振器)14へ入力される。VOO14は76KHzで発
振しており、分局器15によfi381G(zでデユー
ティが50−の矩形波となる。従来のステレオ復調用の
PLL回路では、この分局器15の出力をスイッチング
信号としていたが、本発明では、これ□をLPF164
こより38KH,の正弦波信号とし、これを)PPMI
L路、へ印ヵ。し−Cヨい、と共831..ッ2.7で
再び38KH2の矩形波に変換して分局器11へ入力し
ている。こうすることにより、19KH2のパイロット
信号と同期した正弦波サブキャリヤ信号が得られること
になる。
FIG. 6 is a circuit block diagram of a specific example of the 38 KHz subcarrier signal generator 7 in FIG.
The phase is compared with the KHz square wave. This comparison output is LP
The signal is input to VOO (voltage controlled oscillator) 14 via F12 and DC amplifier 13. The VOO14 oscillates at 76 KHz, and the splitter 15 generates a rectangular wave with a duty of 50- at z.In the conventional PLL circuit for stereo demodulation, the output of the splitter 15 was used as a switching signal. , in this invention, this □ is LPF164
This is a sine wave signal of 38KH, which is)
L road, Heinka. Shi-C Yoi, together with 831. .. At step 2.7, the signal is again converted into a 38KH2 rectangular wave and input to the branching unit 11. By doing so, a sine wave subcarrier signal synchronized with the 19KH2 pilot signal can be obtained.

第7図は第3図におけるPPM回路8の具体例を示す回
路ブロック図でアシ、サブキャリヤ信号を入力とするV
OolBが設けられており、このVO018からはサブ
キャリヤで変調したFM波が出力されることになる。こ
れがトリガ回路19でトリガパルスに変換され、単安定
マルチバイブレータ20のトリガ信号となる。この単安
定マルチバイブレータ20の出力がPPM信号となる。
FIG. 7 is a circuit block diagram showing a specific example of the PPM circuit 8 in FIG.
OolB is provided, and FM waves modulated with subcarriers are output from this VO018. This is converted into a trigger pulse by the trigger circuit 19, and becomes a trigger signal for the monostable multivibrator 20. The output of this monostable multivibrator 20 becomes a PPM signal.

第8図囚〜(旬は第7図の回路の各動作波形図であシ、
(4)はサブキャリヤ信号、(B)はVO018の出力
、(0)はトリガパルス、(鵡は単安定マルチバイブレ
ータの出力であってPPM波を夫々示している。
Figure 8 - (This is a diagram of each operation waveform of the circuit in Figure 7.
(4) is the subcarrier signal, (B) is the output of VO018, (0) is the trigger pulse, and (the parrot is the output of the monostable multivibrator, which indicates a PPM wave.

このように、本発明によればコンポジット信号周波数域
に近い不要周波数成分を有しないスイッチング信号を用
いて乗算を行ってステレオ復調をなす方式である力為ら
、雑音や妨害の影響を受けることがなく、またコノポジ
ット信号成分に対して悪影響を与えるLPFを用いるこ
とが々いので特性の良い高品質のステレオ復調が可能と
なる。
As described above, according to the present invention, since stereo demodulation is performed by performing multiplication using a switching signal that does not have unnecessary frequency components close to the composite signal frequency range, it is not affected by noise or interference. Furthermore, since an LPF is often used that has a negative effect on the conoposite signal component, high-quality stereo demodulation with good characteristics is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のPMステレオ復調装置のブロック図、第
2図は第1図の装置の動作特性を説明する図、第3図は
本発明の原理を示すブロック図、第4図は第3図の回路
ブロックの動作特性を説明する図、第5図は第3図の乗
算器の回路例を示す図、第6図は第3図のサブキャリヤ
信号発生器のブロック図、第7図は第3図のPPM回路
のブロック図、第8図は第7図の回路の動作波形図であ
る。 主要部分の符号の説明 1・・・y検波器     3・・・乗算器7・・・3
8KHzサブキャリヤ発生愚8・・・PPM回路 出願人 パイオニア株式会社 代理人  弁理士 藤 村 元 彦
FIG. 1 is a block diagram of a conventional PM stereo demodulation device, FIG. 2 is a diagram explaining the operating characteristics of the device in FIG. 1, FIG. 3 is a block diagram showing the principle of the present invention, and FIG. 5 is a diagram illustrating an example of the circuit of the multiplier in FIG. 3, FIG. 6 is a block diagram of the subcarrier signal generator in FIG. 3, and FIG. FIG. 3 is a block diagram of the PPM circuit, and FIG. 8 is an operating waveform diagram of the circuit of FIG. 7. Explanation of symbols of main parts 1...y detector 3...multiplier 7...3
8KHz subcarrier generation 8... PPM circuit applicant Motohiko Fujimura, agent of Pioneer Corporation, patent attorney

Claims (1)

【特許請求の範囲】[Claims] ステレオパイロット信号と同期した正弦波状のサブキャ
リヤ信号を発生する手段と、高周波のパルス信号を前記
正弦波状のサブキャリヤ信号によりパルス位置変調した
パルス列信号を発生する変調手段と、前記パルス列信号
と前記耐構波出力との乗算をなす乗算手段とを含み、こ
の乗算出力から左右チャンネル信号を分離導出するよう
にしたことを特徴とするへステレオ復調装置。
means for generating a sinusoidal subcarrier signal synchronized with a stereo pilot signal; modulation means for generating a pulse train signal by pulse position modulating a high frequency pulse signal with the sinusoidal subcarrier signal; What is claimed is: 1. A stereo demodulator comprising: multiplication means for performing multiplication with a component output; and left and right channel signals are separated and derived from the multiplication output.
JP9992181A 1981-06-26 1981-06-26 Fm stereophonic demodulator Granted JPS581350A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9992181A JPS581350A (en) 1981-06-26 1981-06-26 Fm stereophonic demodulator
US06/392,130 US4497063A (en) 1981-06-26 1982-06-25 FM stereo demodulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9992181A JPS581350A (en) 1981-06-26 1981-06-26 Fm stereophonic demodulator

Publications (2)

Publication Number Publication Date
JPS581350A true JPS581350A (en) 1983-01-06
JPS6342454B2 JPS6342454B2 (en) 1988-08-23

Family

ID=14260230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9992181A Granted JPS581350A (en) 1981-06-26 1981-06-26 Fm stereophonic demodulator

Country Status (1)

Country Link
JP (1) JPS581350A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966239A (en) * 1982-10-08 1984-04-14 Trio Kenwood Corp Stereophonic demodulating circuit
JPS6232644U (en) * 1985-08-12 1987-02-26
JPS62102074A (en) * 1985-10-30 1987-05-12 株式会社日立製作所 Method of separating gas
JPS62141485A (en) * 1985-12-16 1987-06-24 日本酸素株式会社 Manufacture of nitrogen having high purity
JPH02293576A (en) * 1989-05-08 1990-12-04 Hitachi Ltd Air separator
JPH04227458A (en) * 1990-06-27 1992-08-17 Union Carbide Ind Gases Technol Corp Cryogenic air separating system for forming boosted product gas

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0299050U (en) * 1989-01-27 1990-08-07

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966239A (en) * 1982-10-08 1984-04-14 Trio Kenwood Corp Stereophonic demodulating circuit
JPS6232644U (en) * 1985-08-12 1987-02-26
JPS62102074A (en) * 1985-10-30 1987-05-12 株式会社日立製作所 Method of separating gas
JPH028235B2 (en) * 1985-10-30 1990-02-22 Hitachi Ltd
JPS62141485A (en) * 1985-12-16 1987-06-24 日本酸素株式会社 Manufacture of nitrogen having high purity
JPH02293576A (en) * 1989-05-08 1990-12-04 Hitachi Ltd Air separator
JPH04227458A (en) * 1990-06-27 1992-08-17 Union Carbide Ind Gases Technol Corp Cryogenic air separating system for forming boosted product gas

Also Published As

Publication number Publication date
JPS6342454B2 (en) 1988-08-23

Similar Documents

Publication Publication Date Title
JPS583424B2 (en) Stereo Fukugo Shingo Hatsuseihouhou Oyobi Souchi
JPS581350A (en) Fm stereophonic demodulator
US4164624A (en) Demodulation circuits of FM stereophonic receivers
JPS5853805B2 (en) Pilot signal removal device
JPH0412655B2 (en)
JPS58184841A (en) Am transmitter
US4497063A (en) FM stereo demodulator
JPS6342453B2 (en)
JP2757377B2 (en) Stereo demodulation circuit
JPS5944828B2 (en) FM receiver
JPS5830249A (en) Fm stereo demodulating circuit
JPS581352A (en) Fm stereophonic demodulator
JPS6342455B2 (en)
JPS60153647A (en) Fm stereophonic receiver
JP2602437B2 (en) Noise suppression device in receiver
JPS636179B2 (en)
JPH037168B2 (en)
JPH0313771B2 (en)
JPH0424669Y2 (en)
JP2777717B2 (en) FM broadcast receiver
JPS6240896B2 (en)
JPH0453135B2 (en)
SU1559416A1 (en) Demodulator of frequency-modulated stereo signal in system with polar modulation
JPS5853806B2 (en) FM stereo signal demodulation method and device
JP2572973B2 (en) FM stereo noise reduction circuit