JPS6342454B2 - - Google Patents

Info

Publication number
JPS6342454B2
JPS6342454B2 JP9992181A JP9992181A JPS6342454B2 JP S6342454 B2 JPS6342454 B2 JP S6342454B2 JP 9992181 A JP9992181 A JP 9992181A JP 9992181 A JP9992181 A JP 9992181A JP S6342454 B2 JPS6342454 B2 JP S6342454B2
Authority
JP
Japan
Prior art keywords
signal
output
circuit
ppm
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9992181A
Other languages
Japanese (ja)
Other versions
JPS581350A (en
Inventor
Koji Ishida
Tatsuo Numata
Tadashi Noguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP9992181A priority Critical patent/JPS581350A/en
Priority to US06/392,130 priority patent/US4497063A/en
Publication of JPS581350A publication Critical patent/JPS581350A/en
Publication of JPS6342454B2 publication Critical patent/JPS6342454B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H40/00Arrangements specially adapted for receiving broadcast information
    • H04H40/18Arrangements characterised by circuits or components specially adapted for receiving
    • H04H40/27Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95
    • H04H40/36Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving
    • H04H40/45Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving for FM stereophonic broadcast systems receiving
    • H04H40/72Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving for FM stereophonic broadcast systems receiving for noise suppression
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D1/00Demodulation of amplitude-modulated oscillations
    • H03D1/22Homodyne or synchrodyne circuits
    • H03D1/2209Decoders for simultaneous demodulation and decoding of signals composed of a sum-signal and a suppressed carrier, amplitude modulated by a difference signal, e.g. stereocoders
    • H03D1/2236Decoders for simultaneous demodulation and decoding of signals composed of a sum-signal and a suppressed carrier, amplitude modulated by a difference signal, e.g. stereocoders using a phase locked loop

Description

【発明の詳細な説明】 本発明はFMステレオ復調装置に関し、特にサ
ブ信号の復調に際しサブキヤリヤ信号とコンポジ
ツト信号との乗算をなすようにしたFMステレオ
復調装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an FM stereo demodulator, and more particularly to an FM stereo demodulator that multiplies a subcarrier signal and a composite signal when demodulating a subsignal.

FMステレオ信号の復調に際して38KHzの矩形
状サブキヤリヤ信号によりコンポジツト信号をス
イツチングして左右チヤンネル信号を分離するよ
うにした回路方式がある。第1図はかかる復調方
式のブロツク図であり、FM―IF(中間周波)信
号はFM検波器1によりコンポジツト信号に変換
され、不要成分を除去するLPF(ローパスフイル
タ)2を介してスイツチング回路3に印加され
る。LPF2の出力に含有される19KHzのパイロツ
ト信号をPLL(フエイズロツクドループ)回路4
において抽出し、このパイロツト信号に位相同期
した38KHzの矩形波サブキヤリヤ信号が、先のス
イツチング回路3のスイツチング信号として用い
られている。このスイツチング出力からオーデイ
オ成分である左右チヤンネル信号が夫々分離導出
されるもので、そのためにLPF5及び6が設け
られている。
There is a circuit system that separates left and right channel signals by switching a composite signal using a 38KHz rectangular subcarrier signal when demodulating an FM stereo signal. FIG. 1 is a block diagram of such a demodulation system. An FM-IF (intermediate frequency) signal is converted into a composite signal by an FM detector 1, and then sent to a switching circuit 3 via an LPF (low-pass filter) 2 that removes unnecessary components. is applied to The 19KHz pilot signal contained in the output of LPF2 is transferred to PLL (phase locked loop) circuit 4.
A 38 KHz rectangular wave subcarrier signal extracted in the pilot signal and phase-synchronized with this pilot signal is used as a switching signal in the switching circuit 3 described above. Left and right channel signals, which are audio components, are separated and derived from this switching output, and LPFs 5 and 6 are provided for this purpose.

ここで、スイツチング信号である38KHzのサブ
キヤリヤ信号は第2図Aに示す如き矩形波である
ために、これをフーリエ級数に展開すると、 F(t)=4/πsinωSt+4/3πsin3ωSt +4/5πsin5ωSt+ ……(1) と表わされる。ここにωSはサブキヤリヤ信号の
角周波数である。このように、F(t)の周波数
スペクトラムは第2図Bに示す如く38KHzの基本
波の他に114KHz,190KHz,……等の奇数次高調
波を含んでいることになる。
Here, since the 38KHz subcarrier signal, which is the switching signal, is a rectangular wave as shown in Figure 2A, when it is expanded into a Fourier series, F(t)=4/πsinω S t+4/3πsin3ω S t +4/ It is expressed as 5πsin5ω S t+ ...(1). Here, ω S is the angular frequency of the subcarrier signal. In this way, the frequency spectrum of F(t) includes odd harmonics such as 114 KHz, 190 KHz, . . . in addition to the fundamental wave of 38 KHz, as shown in FIG. 2B.

かかる周波数スペクトラムを有するスイツチン
グ信号F(t)によりFM検波出力をスイツチン
グすれば、両信号の乗算がなされることになる
が、出力部のLPF5及び6の通過帯域を0〜15K
Hzとすれば、この乗算によりステレオ出力に現わ
れる検波器出は第2図Cの如くなる。つまり、メ
イン信号(0〜15KHz)とサブ信号(38±15K
Hz)の他に、114±15KHz,190±15KHz,……に
ある信号(雑音や近接妨害波等)も復調されて出
力される。
If the FM detection output is switched using the switching signal F(t) having such a frequency spectrum, both signals will be multiplied, but the passband of LPF 5 and 6 in the output section will be changed from 0 to 15K.
Hz, the detector output appearing in the stereo output by this multiplication becomes as shown in FIG. 2C. That is, the main signal (0~15KHz) and the sub signal (38±15KHz)
Hz), signals at 114±15KHz, 190±15KHz, etc. (noise, proximity interference waves, etc.) are also demodulated and output.

かかる欠点を防ぐために、FM検波器1の出力
に、第2図Dに示すように114KHz,190KHz,…
…付近で減衰量の大きいLPFを付加する必要が
生じる。しかし、114KHzはコンポジツト信号成
分に接近しているために、このLPFにより第2
図Eに示す如くコンポジツト信号の遅延特性が平
坦でなくなつたり、振幅特性が平坦でなくなつた
りし、ステレオ復調出力の歪やセパレーシヨン特
性が悪化することになる。
In order to prevent this drawback, the output of the FM detector 1 is set to 114KHz, 190KHz, . . . as shown in FIG. 2D.
...It becomes necessary to add an LPF with a large amount of attenuation in the vicinity. However, since 114KHz is close to the composite signal component, this LPF
As shown in FIG. E, the delay characteristics of the composite signal are no longer flat, the amplitude characteristics are no longer flat, and the distortion and separation characteristics of the stereo demodulated output are deteriorated.

本発明の目的は上記欠点を排除して特性の良好
なステレオ復調装置を提供することである。
An object of the present invention is to eliminate the above-mentioned drawbacks and provide a stereo demodulation device with good characteristics.

本発明によるFMステレオ復調装置は、FM検
波出力に含まれるステレオパイロツト信号と同期
した正弦波状のサブキヤリヤ信号を発生する手段
と、高周波のパルス信号を正弦波サブキヤリヤ信
号によりパルス位置変調したパルス列信号を発生
する変調手段と、このパルス列信号とFM検波出
力との乗算をなす手段とを含み、この乗算出力か
ら左右チヤンネル信号を分離導出するようにした
ことを特徴とする。
The FM stereo demodulator according to the present invention includes means for generating a sinusoidal subcarrier signal synchronized with the stereo pilot signal included in the FM detection output, and a means for generating a pulse train signal in which a high frequency pulse signal is pulse position modulated by the sinusoidal subcarrier signal. The present invention is characterized in that it includes modulation means for multiplying this pulse train signal by an FM detection output, and left and right channel signals are separated and derived from the multiplication output.

以下に図面を用いて本発明を説明する。 The present invention will be explained below using the drawings.

第3図は本発明の原理を説明するブロツク図で
あり、FM検波器1による検波出力はLPF2を介
して乗算器3の入力となる。検波出力はまた38K
Hzの正弦波状サブキヤリヤを発生するサブキヤリ
ヤ信号発生器7に入力されて、パイロツト信号に
同期した正弦波の38KHz信号が発生される。この
38KHzのサブキヤリヤ信号を入力とするPPM(パ
ルス位置変調)回路8が設けられており、略
500KHz以上の高周波のクロツクパルス信号が当
該正弦波サブキヤリヤ信号によりパルス変調され
てPPM信号となる。このPPM信号出力が乗算器
3の他入力となり、FM検波出力と乗算される。
この乗算出力のオーデイオ成分がLPF5,6に
より夫々導出されて左右チヤンネル信号に分離復
調されることになる。
FIG. 3 is a block diagram illustrating the principle of the present invention, in which the detected output from the FM detector 1 is input to the multiplier 3 via the LPF 2. Detection output is also 38K
The signal is input to a subcarrier signal generator 7 which generates a sine wave subcarrier of Hz, and a 38KHz sine wave signal synchronized with the pilot signal is generated. this
A PPM (pulse position modulation) circuit 8 that receives a 38KHz subcarrier signal as input is provided.
A high-frequency clock pulse signal of 500 KHz or more is pulse-modulated by the sine wave subcarrier signal to become a PPM signal. This PPM signal output becomes the other input to the multiplier 3, and is multiplied by the FM detection output.
The audio components of this multiplication output are derived by the LPFs 5 and 6, respectively, and are separated and demodulated into left and right channel signals.

第4図A〜Fは第3図の回路の動作及び特性を
示す図であり、先ずAは38KHzの正弦波サブキヤ
リヤ信号波形であり、Bはこのサブキヤリヤ信号
によりパルス変調されたPPMパルス列信号波形
である。このPPM波の周波数スペクトラムを考
えると、変調波であるサブキヤリヤ信号の周波数
である38KHz成分を有し、またその他にPPM波
のキヤリヤ周波数付近及びその奇数次高調波付近
における変調度に応じた分布となるが、これら
38KHz成分以外の周波数成分はPPM波のキヤリ
ヤを約500KHz以上の高周波に選定すれば、図C
のようになる。
FIGS. 4A to 4F are diagrams showing the operation and characteristics of the circuit shown in FIG. be. Considering the frequency spectrum of this PPM wave, it has a 38KHz component, which is the frequency of the subcarrier signal that is the modulated wave, and also has a distribution according to the modulation degree near the carrier frequency of the PPM wave and its odd-numbered harmonics. However, these
For frequency components other than the 38KHz component, if the carrier of the PPM wave is selected as a high frequency of approximately 500KHz or higher, Figure C
become that way.

従つて、FM検波出力のうち乗算によるステレ
オ復調出力に現れるのは、メイン信号(0〜15K
Hz)とサブ信号(23〜53KHz)と、更にはPPM
波のキヤリヤ周波数付近及びその奇数倍の周波数
付近の妨害波や雑音に限られることになり、よつ
て復調出力の周波数スペクトラムはDの如くな
る。その結果、LPF2の特性は高周波のPPM波
のキヤリヤ周波数付近から上を遮断すればよいか
ら、Eに示すように高域まで平坦なLPF特性と
することができ、その遅延特性もFに示す如く平
坦とすることが可能となる。従つて、FM検波出
力は振幅と遅延が平坦な状態で復調されることに
なり、歪やセパレーシヨンの悪化がなくなる。ま
た、FM検波器1の出力の周波数特性が高域まで
伸びていない場合には、LPF2は省略可能とな
る。
Therefore, out of the FM detection output, what appears in the stereo demodulation output by multiplication is the main signal (0 to 15K).
Hz) and sub-signal (23~53KHz) and even PPM
This is limited to interference waves and noise near the carrier frequency of the wave and odd multiples thereof, and therefore the frequency spectrum of the demodulated output becomes as shown in D. As a result, since the characteristics of LPF2 need only be to cut off the high-frequency PPM wave from around the carrier frequency, it is possible to obtain an LPF characteristic that is flat up to the high frequency range as shown in E, and its delay characteristic is also as shown in F. It becomes possible to make it flat. Therefore, the FM detection output is demodulated with flat amplitude and delay, eliminating deterioration of distortion and separation. Furthermore, if the frequency characteristics of the output of the FM detector 1 do not extend to high frequencies, the LPF 2 can be omitted.

第3図の回路ブロツクにおける復調原理を簡単
に数式を用いて説明する。いま、左右チヤンネル
信号をL(t),R(t)とすると、メイン及びサ
ブ信号はそれぞれM(t)=L(t)+R(t),S
(t)=L(t)−R(t)と表わされる。従つて、
サブキヤリヤ信号をsinωStとするとFM検波出
力であるコンポジツト信号C(t)は、 C(t)=M(t)+S(t)sinωSt ……(2) となる。尚、パイロツト信号成分は簡略化のため
省略している。そして、PPM波の主成分はsinωS
tであるからPPM回路8の出力は直流分を考慮
して、1/2±sinωStとすれば、乗算器3の1対の 出力は、 υL(t)=(1/2+sinωSt)・C(t)……(3) υR(t)=(1/2−sinωSt)・C(t)……(4) となる。従つて、(2),(3)式を変形整理すれば、 υL(t)=1/2{M(t)+S(t)} +{1/2S(t)+M(t)}sinωSt −1/2S(t)cos2ωSt ……(5) υR(t)=1/2{M(t)−S(t)} +{1/2S(t)−M(t)}sinωSt +1/2S(t)cos2ωSt ……(6) となる。これらυL(t)及びυR(t)をLPF5及び
6を夫夫通すことによりオーデイオ成分のみが導
出されるから、各LPF5,6の出力υL′(t),
υR′(t)は、 υL′(t)=1/2{M(t)+S(t)} =L(t) ……(7) υR′(t)=1/2{M(t)+S(t)} =R(t) ……(8) となつて、左右チヤンネル信号が分離復調される
ことになる。
The demodulation principle in the circuit block of FIG. 3 will be briefly explained using mathematical formulas. Now, if the left and right channel signals are L(t) and R(t), the main and sub signals are M(t)=L(t)+R(t), S, respectively.
It is expressed as (t)=L(t)-R(t). Therefore,
When the subcarrier signal is sinω S t , the composite signal C(t) which is the FM detection output is as follows: C(t)=M(t)+S(t) sinω S t (2). Note that the pilot signal component is omitted for simplicity. And the main component of the PPM wave is sinω S
t, the output of the PPM circuit 8 is 1/2±sinω S t considering the DC component, then the pair of outputs of the multiplier 3 is υ L (t) = (1/2 + sinω S t )・C(t)……(3) υ R (t)=(1/2−sinω S t)・C(t)……(4) Therefore, by rearranging equations (2) and (3), υ L (t)=1/2{M(t)+S(t)} +{1/2S(t)+M(t)}sinω S t −1/2S(t)cos2ω S t ……(5) υ R (t)=1/2{M(t)−S(t)} +{1/2S(t)−M(t) }sinω S t + 1/2S (t) cos2ω S t ...(6). Since only the audio component is derived by passing these υ L (t) and υ R (t) through LPFs 5 and 6, the output of each LPF 5 and 6 is υ L ′ (t),
υ R ′(t) is υ L ′(t)=1/2{M(t)+S(t)} =L(t) ……(7) υ R ′(t)=1/2{M (t)+S(t)} =R(t) (8) Thus, the left and right channel signals are separated and demodulated.

第5図は本発明に用いる乗算器3の一実施例で
あり、ダブルバランス型の差動回路構成であつ
て、1対の差動トランジスタTr1,Tr2の両ベー
ス間にFM検波出力であるコンポジツト信号を印
加している。抵抗R6,R7は両トランジスタのエ
ミツタ抵抗であり、抵抗R5は共用エミツタ抵抗
でありマトリツクス回路を構成する。抵抗R1
R2によりベースバイアスV1が両トランジスタに
印加されている。
FIG. 5 shows an embodiment of the multiplier 3 used in the present invention, which has a double-balanced differential circuit configuration, and has an FM detection output between the bases of a pair of differential transistors T r1 and T r2 . A certain composite signal is being applied. Resistors R 6 and R 7 are emitter resistors of both transistors, and resistor R 5 is a shared emitter resistor, forming a matrix circuit. Resistance R 1 ,
A base bias V 1 is applied to both transistors by R 2 .

トランジスタTr1のコレクタ出力を電流源とす
る差動トランジスタTr3,Tr4が設けられており、
またトランジスタTr2のコレクタ出力を電流源と
する差動トランジスタTr5,Tr6が設けられてい
る。そしてトランジスタTr3とTr6のベースに正
相のPPM波が、またトランジスタTr4とTr5のベ
ースに逆相のPPM波がそれぞれ印加されており、
これらトランジスタのベースバイアスV2が抵抗
R3,R4により各ベースに印加されている。トラ
ンジスタTr3とTr5のコレクタが共通コレクタ抵
抗R8に接続されてこの抵抗R8から左チヤンネル
信号が得られ、トランジスタTr4とTr6のコレク
タが共通コレクタ抵抗R9に接続されてこの抵抗
R9から右チヤンネル信号が得られる。
Differential transistors T r3 and T r4 are provided, which use the collector output of the transistor T r1 as a current source.
Also provided are differential transistors T r5 and T r6 whose current sources are the collector output of the transistor T r2 . Then, a positive-phase PPM wave is applied to the bases of transistors T r3 and T r6 , and an opposite-phase PPM wave is applied to the bases of transistors T r4 and T r5 , respectively.
The base bias V 2 of these transistors is the resistance
It is applied to each base by R 3 and R 4 . The collectors of transistors T r3 and T r5 are connected to a common collector resistor R 8 from which the left channel signal is obtained, and the collectors of transistors T r4 and T r6 are connected to a common collector resistor R 9 from which the left channel signal is obtained.
Right channel signal is obtained from R9 .

いま、トランジスタTr2のエミツタ電圧をVE
すると、トランジスタTr1のエミツタ電圧はVE
C(t)となる。従つて、両トランジスタTr1
Tr2のコレクタ電流IC1(t),IC2(t)は、 IC1(t)= R0VE+(R0+R5)・C(t)/R0 2+2R0R5 ……(9) IC2(t)=R0・VE−R5・C(t)/R0 2+2R0・R5
…(10) となる。尚、R0=R6=R7としている。そして、
スイツチングのためのPPM波は高周波成分を省
略すれば、前述のように1/2±AsinωStであるか ら、(A≦1/2でありPPM波の変調度により定ま る定数)抵抗R8,R9に流れる電流のうちオーデ
イオ成分IL(t),IR(t)は、 IL(t)=1/R0 2+2R0・R5{R0・VE+R0/2・M (t) +A/2(R0+2R5)・S(t)} ……(11) IR(t)=1/R0 2+2R0・R5{R0・VE+R0/2M(t
) −A/2(R0+2R5)・S(t)} ……(12) となる。ここで、R0=2A・R5/(1−A)と
すれば、 IL(t) =1−A/4R5{2VE+M(t)+S(t)} ……(13) IR(t) =1−A/4R5{2VE+M(t)−S(t)} ……(14) となつて、左右チヤンネル出力が得られることに
なる。
Now, if the emitter voltage of transistor T r2 is V E , then the emitter voltage of transistor T r1 is V E +
It becomes C(t). Therefore, both transistors T r1 ,
The collector currents I C1 (t) and I C2 (t) of T r2 are I C1 (t) = R 0 V E + (R 0 + R 5 )・C (t)/R 0 2 +2R 0 R 5 ... (9) I C2 (t)=R 0・V E −R 5・C(t)/R 0 2 +2R 0・R 5
…(10) becomes. Note that R 0 =R 6 =R 7 . and,
If the high frequency component is omitted, the PPM wave for switching is 1/2 ± Asinω S t as described above, so the resistance R 8 (A≦1/2 and a constant determined by the modulation degree of the PPM wave), The audio components I L (t) and I R (t) of the current flowing through R 9 are: I L (t) = 1/R 0 2 +2R 0・R 5 {R 0・V E +R 0 /2・M (t) +A/2(R 0 +2R 5 )・S(t)} ...(11) I R (t)=1/R 0 2 +2R 0・R 5 {R 0・V E +R 0 /2M( t
) −A/2(R 0 +2R 5 )・S(t)} ...(12) Here, if R 0 =2A・R 5 /(1-A), I L (t) = 1-A/4R 5 {2V E +M(t)+S(t)} ...(13) I R (t) = 1-A/4R 5 {2V E +M(t)-S(t)} (14) Thus, left and right channel outputs are obtained.

第6図は第3図における38KHzサブキヤリヤ信
号発生器7の具体例の回路ブロツク図であり、パ
イロツト信号は位相比較器10に入力され、分周
器11からの19KHz矩形波と位相比較される。こ
の比較出力はLPF12とDCアンプ13とを介し
てVCO(電圧制御発振器)14へ入力される。
VCO14は76KHzで発振しており、分周器15
により38KHzでデユーテイが50%の矩形波とな
る。従来のステレオ復調用のPLL回路では、こ
の分周器15の出力をスイツチング信号としてい
たが、本発明では、これをLPF16により38KHz
の正弦波信号とし、これをPPM回路8へ印加し
て用いると共に、リミツタ17で再び38KHzの矩
形波に変換して分周器11へ入力している。こう
することにより、19KHzのパイロツト信号と同期
した正弦波サブキヤリヤ信号が得られることにな
る。
FIG. 6 is a circuit block diagram of a specific example of the 38 KHz subcarrier signal generator 7 in FIG. This comparison output is input to a VCO (voltage controlled oscillator) 14 via an LPF 12 and a DC amplifier 13.
VCO14 is oscillating at 76KHz, and frequency divider 15
This results in a square wave with a duty of 50% at 38KHz. In the conventional PLL circuit for stereo demodulation, the output of the frequency divider 15 was used as a switching signal, but in the present invention, this is converted to 38KHz by the LPF 16.
This sine wave signal is applied to the PPM circuit 8 for use, and is again converted into a 38 KHz rectangular wave by the limiter 17 and input to the frequency divider 11. By doing this, a sine wave subcarrier signal synchronized with the 19KHz pilot signal is obtained.

第7図は第3図におけるPPM回路8の具体例
を示す回路ブロツク図であり、サブキヤリヤ信号
を入力とするVCO18が設けられており、この
VCO18からはサブキヤリヤで変調したFM波が
出力されることになる。これがトリガ回路19で
トリガパルスに変換され、単安定マルチバイブレ
ータ20のトリガ信号となる。この単安定マルチ
バイブレータ20の出力がPPM信号となる。
FIG. 7 is a circuit block diagram showing a specific example of the PPM circuit 8 in FIG.
The VCO 18 outputs an FM wave modulated by the subcarrier. This is converted into a trigger pulse by the trigger circuit 19, and becomes a trigger signal for the monostable multivibrator 20. The output of this monostable multivibrator 20 becomes a PPM signal.

第8図A〜Dは第7図の回路の各動作波形図で
あり、Aはサブキヤリヤ信号、BはVCO18の
出力、Cはトリガパルス、Dは単安定マルチバイ
ブレータの出力であつてPPM波を夫々示してい
る。
8A to 8D are operation waveform diagrams of the circuit in FIG. 7, where A is the subcarrier signal, B is the output of the VCO 18, C is the trigger pulse, and D is the output of the monostable multivibrator, which is a PPM wave. shown respectively.

このように、本発明によればコンポジツト信号
周波数域に近い不要周波数成分を有しないスイツ
チング信号を用いて乗算を行つてステレオ復調を
なす方式であるから、雑音や妨害の影響を受ける
ことがなく、またコンポジツト信号成分に対して
悪影響を与えるLPFを用いることがないので特
性の良い高品質のステレオ復調が可能となる。
As described above, according to the present invention, since stereo demodulation is performed by performing multiplication using a switching signal that does not have unnecessary frequency components close to the composite signal frequency range, it is not affected by noise or interference. Furthermore, since an LPF that adversely affects composite signal components is not used, high-quality stereo demodulation with good characteristics is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のFMステレオ復調装置のブロツ
ク図、第2図は第1図の装置の動作特性を説明す
る図、第3図は本発明の原理を示すブロツク図、
第4図は第3図の回路ブロツクの動作特性を説明
する図、第5図は第3図の乗算器の回路例を示す
図、第6図は第3図のサブキヤリヤ信号発生器の
ブロツク図、第7図は第3図のPPM回路のブロ
ツク図、第8図は第7図の回路の動作波形図であ
る。 主要部分の符号の説明、1…FM検波器、3…
乗算器、7…38KHzサブキヤリヤ発生器、8…
PPM回路。
FIG. 1 is a block diagram of a conventional FM stereo demodulation device, FIG. 2 is a diagram explaining the operating characteristics of the device in FIG. 1, and FIG. 3 is a block diagram showing the principle of the present invention.
4 is a diagram explaining the operating characteristics of the circuit block in FIG. 3, FIG. 5 is a diagram showing a circuit example of the multiplier in FIG. 3, and FIG. 6 is a block diagram of the subcarrier signal generator in FIG. 3. , FIG. 7 is a block diagram of the PPM circuit of FIG. 3, and FIG. 8 is an operating waveform diagram of the circuit of FIG. 7. Explanation of symbols of main parts, 1...FM detector, 3...
Multiplier, 7...38KHz subcarrier generator, 8...
PPM circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 ステレオパイロツト信号と同期した正弦波状
のサブキヤリヤ信号を発生する手段と、高周波の
パルス信号を前記正弦波状のサブキヤリヤ信号に
よりパルス位置変調したパルス列信号を発生する
変調手段と、前記パルス列信号と前記FM検波出
力との乗算をなす乗算手段とを含み、この乗算出
力から左右チヤンネル信号を分離導出するように
したことを特徴とするFMステレオ復調装置。
1 means for generating a sinusoidal subcarrier signal synchronized with a stereo pilot signal; modulation means for generating a pulse train signal by pulse position modulating a high frequency pulse signal with the sinusoidal subcarrier signal; and the pulse train signal and the FM detection. What is claimed is: 1. An FM stereo demodulator comprising: multiplication means for performing multiplication with an output, and separating and deriving left and right channel signals from the multiplication output.
JP9992181A 1981-06-26 1981-06-26 Fm stereophonic demodulator Granted JPS581350A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9992181A JPS581350A (en) 1981-06-26 1981-06-26 Fm stereophonic demodulator
US06/392,130 US4497063A (en) 1981-06-26 1982-06-25 FM stereo demodulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9992181A JPS581350A (en) 1981-06-26 1981-06-26 Fm stereophonic demodulator

Publications (2)

Publication Number Publication Date
JPS581350A JPS581350A (en) 1983-01-06
JPS6342454B2 true JPS6342454B2 (en) 1988-08-23

Family

ID=14260230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9992181A Granted JPS581350A (en) 1981-06-26 1981-06-26 Fm stereophonic demodulator

Country Status (1)

Country Link
JP (1) JPS581350A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0299050U (en) * 1989-01-27 1990-08-07

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966239A (en) * 1982-10-08 1984-04-14 Trio Kenwood Corp Stereophonic demodulating circuit
JPS6232644U (en) * 1985-08-12 1987-02-26
JPS62102074A (en) * 1985-10-30 1987-05-12 株式会社日立製作所 Method of separating gas
JPS62141485A (en) * 1985-12-16 1987-06-24 日本酸素株式会社 Manufacture of nitrogen having high purity
JPH02293576A (en) * 1989-05-08 1990-12-04 Hitachi Ltd Air separator
US5114452A (en) * 1990-06-27 1992-05-19 Union Carbide Industrial Gases Technology Corporation Cryogenic air separation system for producing elevated pressure product gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0299050U (en) * 1989-01-27 1990-08-07

Also Published As

Publication number Publication date
JPS581350A (en) 1983-01-06

Similar Documents

Publication Publication Date Title
JPS583424B2 (en) Stereo Fukugo Shingo Hatsuseihouhou Oyobi Souchi
JPS6342454B2 (en)
US4164624A (en) Demodulation circuits of FM stereophonic receivers
JPS593905B2 (en) MPX Fukuchiyoukino Pilot
JPS6342453B2 (en)
JPH0412655B2 (en)
JPS5853805B2 (en) Pilot signal removal device
US4497063A (en) FM stereo demodulator
JPS6256705B2 (en)
US4362906A (en) FM Receiver
JPH031856B2 (en)
JPS6342455B2 (en)
JPS581352A (en) Fm stereophonic demodulator
US5091943A (en) Fm stereo receiving device
JPH0313771B2 (en)
JPS636179B2 (en)
JPH037168B2 (en)
JPS6240896B2 (en)
JPS60153647A (en) Fm stereophonic receiver
JP2777717B2 (en) FM broadcast receiver
JPH0424669Y2 (en)
JPH033975B2 (en)
CA1057357A (en) Compatible am stereophonic receivers
JPH0332250B2 (en)
JPH0311138B2 (en)