JPS636179B2 - - Google Patents

Info

Publication number
JPS636179B2
JPS636179B2 JP57016541A JP1654182A JPS636179B2 JP S636179 B2 JPS636179 B2 JP S636179B2 JP 57016541 A JP57016541 A JP 57016541A JP 1654182 A JP1654182 A JP 1654182A JP S636179 B2 JPS636179 B2 JP S636179B2
Authority
JP
Japan
Prior art keywords
signal
stereo
output
multiplication
rectangular wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57016541A
Other languages
Japanese (ja)
Other versions
JPS58134546A (en
Inventor
Tadashi Noguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP1654182A priority Critical patent/JPS58134546A/en
Publication of JPS58134546A publication Critical patent/JPS58134546A/en
Publication of JPS636179B2 publication Critical patent/JPS636179B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H40/00Arrangements specially adapted for receiving broadcast information
    • H04H40/18Arrangements characterised by circuits or components specially adapted for receiving
    • H04H40/27Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95
    • H04H40/36Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving
    • H04H40/45Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving for FM stereophonic broadcast systems receiving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/1646Circuits adapted for the reception of stereophonic signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H40/00Arrangements specially adapted for receiving broadcast information
    • H04H40/18Arrangements characterised by circuits or components specially adapted for receiving
    • H04H40/27Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95
    • H04H40/36Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving
    • H04H40/45Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving for FM stereophonic broadcast systems receiving
    • H04H40/72Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving for FM stereophonic broadcast systems receiving for noise suppression

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Stereo-Broadcasting Methods (AREA)

Description

【発明の詳細な説明】 本発明はステレオ復調装置に関し、特に矩形波
サブキヤリヤ信号とステレオコンポジツト信号と
の乗算によつて左右チヤンネル信号の分離をなす
ようにしたFMステレオマルチプレツクス復調装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a stereo demodulator, and more particularly to an FM stereo multiplex demodulator that separates left and right channel signals by multiplying a rectangular wave subcarrier signal and a stereo composite signal.

FM検波力であるステレオコンポジツト信号を
矩形波サブキヤリヤ信号によりスイツチングして
左右チヤンネル信号を分離するようにした回路方
式がある。第1図はかかる復調方式のブロツク図
であり、FM―IF(中間周波)信号はFM検波器1
によりコンポジツト信号に変換され、不要成分を
除去するLPF(ローパスフイールタ)2を介して
スイツチング回路3に印加される。LPF2の出
力に含有される19kHzのパイロツト信号をPLL
(フエイズロツクドループ)回路4において抽出
し、このパイロツト信号に位相同期した38kHzの
矩形波サブキヤリヤ信号が、先のスイツチング回
路3のスイツチング信号として用られている。こ
のスイツチング出力からオーデイオ成分である左
右チヤンネル信号が夫々分離導出されるもので、
そのためにLPF5及び6が設けられている。
There is a circuit system that separates left and right channel signals by switching a stereo composite signal, which is the FM detection power, using a rectangular wave subcarrier signal. Figure 1 is a block diagram of such a demodulation system, and the FM-IF (intermediate frequency) signal is transmitted to the FM detector 1.
The signal is converted into a composite signal and applied to a switching circuit 3 via an LPF (low pass filter) 2 that removes unnecessary components. PLL the 19kHz pilot signal contained in the output of LPF2.
A 38 kHz rectangular wave subcarrier signal extracted in the (phase-locked loop) circuit 4 and phase-synchronized with this pilot signal is used as a switching signal in the switching circuit 3 described above. The left and right channel signals, which are audio components, are separated and derived from this switching output.
For this purpose, LPFs 5 and 6 are provided.

ここで、スイツチング信号である38kHzのサブ
キヤリヤ信号は第2図Aに示す如き矩形波である
ために、これをフーリエ級数に展開すると、 F(t)=4/πsinωSt+4/3πsin3ωSt+4
/5πsin5ωSt+……(1) と表わされる。ここにωSはサブキヤリヤ信号の
角周波数である。このように、F(t)の周波数
スペクトラムは第2図B示す如く38kHzの基本波
の他に、114kHz、190kHz、……等の奇数次高調
波を含んでいることになる。
Here, since the 38kHz subcarrier signal which is the switching signal is a rectangular wave as shown in Figure 2A, if this is expanded into a Fourier series, F(t)=4/πsinω S t+4/3πsin3ω S t+4
/5πsin5ω S t+...(1) Here, ω S is the angular frequency of the subcarrier signal. In this way, the frequency spectrum of F(t) includes odd harmonics such as 114kHz, 190kHz, . . . in addition to the fundamental wave of 38kHz, as shown in FIG. 2B.

かかる周波数スペクトラムを有するスイツチン
グ信号F(t)によりFM検波出力をスイツチン
グすれば、両信号の乗算がなされることになる
が、出力部のLPF5及び6の通過帯域を0〜15k
Hzとすれば、この乗算によりステレオ出力に現わ
れる検波器出力は第2図Cの如くなる。つまりメ
イン信号(0〜15kHz)とサブ信号(38±15kHz)
の他に114±15kHz、190±15kHz、……にある信
号(雑や近接妨害波等)も復調されて出力され
る。
If the FM detection output is switched using the switching signal F(t) having such a frequency spectrum, both signals will be multiplied.
Hz, the detector output appearing in the stereo output by this multiplication becomes as shown in FIG. 2C. In other words, main signal (0~15kHz) and sub signal (38±15kHz)
In addition, signals at 114±15kHz, 190±15kHz, etc. (miscellaneous, nearby interference waves, etc.) are also demodulated and output.

かかる欠点を防ぐために、FM検波器1の出力
に、第2図Dに示すように114kHz、190kHz、…
…付近で減衰量の大きいLPFを付加する必要が
生じる。しかし、114kHzはコンポジツト信号成
分に接近しているために、このLPFにより第2
図Eに示す如くコンポジツト信号の遅延特性が平
坦でなくなつたり、振幅特性が平坦でなくなつた
りし、ステレオ復調出力の歪やセパレーシヨン特
性が悪化する。
In order to prevent this drawback, the output of the FM detector 1 is set to 114kHz, 190kHz,... as shown in Figure 2D.
...It becomes necessary to add an LPF with a large amount of attenuation in the vicinity. However, since 114kHz is close to the composite signal component, this LPF
As shown in FIG. E, the delay characteristics of the composite signal are no longer flat, the amplitude characteristics are no longer flat, and the distortion and separation characteristics of the stereo demodulated output are deteriorated.

本発明の目的は上記欠点を排除して特性の良好
なステレオ復調装置を提供することである。
An object of the present invention is to eliminate the above-mentioned drawbacks and provide a stereo demodulation device with good characteristics.

本発明によるステレオ装置は、ステレオコンポ
ジツト信号から分離したステレオパイロツト信号
に同期した乗算信号を上記ステレオコンポジツト
信号に乗算せしめて得られるチヤンネル信号と上
記ステレオコンポジツト信号とを相加して復調チ
ヤンネル信号を得るステレオ復調回路において、
上記乗算信号は、上記ステレオコンポジツト信号
のサブキヤリア信号と同一位相かつ同一周期Tの
第1矩形波信号と、上記第1矩形波信号に同期し
かつ上記サブキヤリア信号の2倍の周波数でかつ
上記第1矩形波信号に対してT/8の位相差を有
する周波数成分を含む第2矩形波信号とを含むこ
とを特徴としている。
The stereo apparatus according to the present invention generates a demodulated channel by adding the channel signal obtained by multiplying the stereo composite signal by a multiplication signal synchronized with the stereo pilot signal separated from the stereo composite signal and the stereo composite signal. In the stereo demodulation circuit that obtains the signal,
The multiplication signal includes a first rectangular wave signal having the same phase and the same period T as the subcarrier signal of the stereo composite signal, and a first rectangular wave signal that is synchronized with the first rectangular wave signal, has twice the frequency of the subcarrier signal, and has the same period T as the subcarrier signal of the stereo composite signal. The second rectangular wave signal includes a frequency component having a phase difference of T/8 with respect to the first rectangular wave signal.

以下に図面を用いて本発明を説明する。 The present invention will be explained below using the drawings.

第3図は本発明の原理を示すブロツク図であ
り、FM検波出力であるステレオコンポジツト信
号C(t)は乗算回路1及び2に夫々入力される
と共に加算回路3及び4の各1入力となつてい
る。乗算回路1及び2においては、第1矩形波信
号としての乗算信号U1(t)及びU2(t)と先の
ステレオコンポジツト信号C(t)とがそれぞれ
乗算される。これら乗算出力v1(t)及びv2(t)
は加算回路3及び4の各1入力となると共に、乗
算回路5及び6に夫々入力される。乗算回路5及
び6においては、第2矩形波信号としての乗算信
号U3(t)と先の乗算出力v1(t)及びv2(t)と
が夫々乗算されて、これら乗算出力v3(t),v4
(t)が加算回路3及び4の各1入力となつてい
る。そして、これら加算回路3及び4の出力から
左右チヤンネル信号出力vL(t)及びuR(t)が
夫々導出されるようになされている。
FIG. 3 is a block diagram showing the principle of the present invention, in which the stereo composite signal C(t), which is the FM detection output, is input to multiplier circuits 1 and 2, respectively, and one input to each of adder circuits 3 and 4. It's summery. In the multiplication circuits 1 and 2, the multiplication signals U 1 (t) and U 2 (t) as the first rectangular wave signals are multiplied by the previous stereo composite signal C(t), respectively. These multiplication outputs v 1 (t) and v 2 (t)
are input to each of adder circuits 3 and 4, and are input to multiplier circuits 5 and 6, respectively. In the multiplication circuits 5 and 6, the multiplication signal U 3 (t) as a second rectangular wave signal is multiplied by the previous multiplication outputs v 1 (t) and v 2 (t), respectively, and these multiplication outputs v 3 (t), v 4
(t) serves as one input to each of adder circuits 3 and 4. The left and right channel signal outputs v L (t) and u R (t) are derived from the outputs of these adder circuits 3 and 4, respectively.

上述した各乗算信号U1(t)〜U3(t)は、
PLL(フエイズロツクドループ)回路7により得
られるものであり、ステレオコンポジツト信号中
の19kHzステレオパイロツト信号に同期した矩形
波信号であり、第4図に38kHzサブキヤリア信号
とこれら各乗算信号U1(t)〜U3(t)との位相
関係が示されている。
Each of the multiplication signals U 1 (t) to U 3 (t) described above is
This signal is obtained by a PLL (phase locked loop) circuit 7, and is a rectangular wave signal synchronized with the 19kHz stereo pilot signal in the stereo composite signal . t) to U 3 (t) is shown.

乗算信号U1(t)及びU2(t)は、38kHzサブ
キヤリヤ信号の矩形波信号であつて、19kHzのス
テレオパイロツト信号と同期しかつこのパイロツ
ト信号周波数の2倍の基本波を有する正逆相矩形
波である。また、乗算信号U3(t)は、矩形波信
号U1(t),U2(t)に対しこの矩形波信号周期T
の1/8だけずれてステレパイロツト信号周波数
の4倍(76kHz=2ωS)の基本波を有する矩形波
信号である。
The multiplication signals U 1 (t) and U 2 (t) are rectangular wave signals of 38 kHz subcarrier signals, and have positive and negative phases that are synchronized with a 19 kHz stereo pilot signal and have a fundamental wave twice the frequency of this pilot signal. It is a square wave. Moreover, the multiplication signal U 3 (t) is calculated by applying the square wave signal period T to the square wave signals U 1 (t) and U 2 (t).
This is a rectangular wave signal having a fundamental wave shifted by 1/8 of the frequency of the stereo pilot signal and having a fundamental wave four times the frequency of the stereo pilot signal (76 kHz=2ω S ).

これら乗算用の矩形波信号U1(t)〜U3(t)
は、第5図に示すPLL回路7により発生される。
すなわち、コンポジツト信号中の19kHzステレオ
パイロツト信号は位相比較器71の1入力とな
り、1/2分周器72の出力と位相比較される。
この位相比較出力はローパスフイルター73、
DCアンプ74を介してVCO(電圧制御型発振器)
75の制御信号となる。このVCO75は304kHz
のパルス列信号を発生しており、この出力は2個
のD―FF(デイレイドフリツプフロツプ)76,
77によるリングカウンタの入力となつている。
すなわちVCO75の出力はD―FF76,77の
トリガ入力とされ、D―FF77の出力がD―
FF76のデータ入力となり、D―FF76のQ出
力がD―FF77のデータ入力となつている。そ
して、D―FF76のQ出力はD―FF78のトリ
ガ入力とされて1/2分周される。このD―FF
78のQ、出力が乗算信号U1(t)及びU2(t)
となつており、D―FF77のQ出力が乗算信号
U3(t)となる。尚、D―FF77の出力は信
号U4(t)として出力されており、D―FF78
の出力が先の1/2分周器72の入力となる。
Square wave signals U 1 (t) to U 3 (t) for these multiplications
is generated by the PLL circuit 7 shown in FIG.
That is, the 19kHz stereo pilot signal in the composite signal becomes one input of the phase comparator 71, and is compared in phase with the output of the 1/2 frequency divider 72.
This phase comparison output is passed through a low pass filter 73,
VCO (voltage controlled oscillator) via DC amplifier 74
75 control signals. This VCO75 is 304kHz
It generates a pulse train signal, and this output is sent to two D-FF (delayed flip-flop) 76,
77 serves as an input to a ring counter.
In other words, the output of VCO75 is used as the trigger input for D-FF76 and 77, and the output of D-FF77 is used as the trigger input for D-FF76 and D-FF77.
It becomes the data input of FF76, and the Q output of D-FF76 becomes the data input of D-FF77. Then, the Q output of the D-FF 76 is used as a trigger input of the D-FF 78, and the frequency is divided into 1/2. This D-FF
78 Q, output is multiplication signal U 1 (t) and U 2 (t)
The Q output of D-FF77 is the multiplication signal.
It becomes U 3 (t). Note that the output of D-FF77 is output as signal U 4 (t), and D-FF78
The output becomes the input to the 1/2 frequency divider 72 mentioned above.

第6図は、第5図のPLL回路7の各部信号波
形であり、19kHzパイロツト信号に同期したVCO
75の304kHzパルス列信号が発生されている。
このVCO75の出力がD―FF76,77のリン
グカウンタにより1/4分周されて76kHz(19×
4kHz)の矩形波に変換されて、各D―FF76,
77のQ、出力は図示の如き信号として得られ
る。D―FF76のQ出力を1/2分周するD―
FF78Q、出力が図に示す信号U1(t),U2
(t)なる38kHzを基本波とする正逆相信号であ
る。
Figure 6 shows the signal waveforms of each part of the PLL circuit 7 in Figure 5, and the VCO synchronized with the 19kHz pilot signal.
75 304kHz pulse train signals are generated.
The output of this VCO75 is divided into 1/4 by the ring counter of D-FF76 and 77 to 76kHz (19×
4kHz) square wave, each D-FF76,
77, the output is obtained as a signal as shown in the figure. D-Divide the Q output of FF76 into 1/2
FF78Q, the output is the signal U 1 (t), U 2 shown in the figure.
(t) is a positive and negative phase signal with a fundamental wave of 38kHz.

かかる構成において、ステレオコンポジツト信
号C(t)を、 C(t)=L(t)+R(t)+{L(t)−R(
t)sinωSt……(2) とすると、各乗算信号U1(t)〜U3(t)は次式
で表わされる。尚、L(t)、(t)は左右チヤン
ネル信号を夫々示す。
In such a configuration, the stereo composite signal C(t) is expressed as C(t)=L(t)+R(t)+{L(t)−R(
t) sinω S t (2), each multiplication signal U 1 (t) to U 3 (t) is expressed by the following equation. Note that L(t) and (t) indicate left and right channel signals, respectively.

U1(t)=(4/π)sinωSt+(4/3π)sin3
ωSt+(4/5π)sin5ωSt+………(3) U2(t)=(4/π)sinωSt−(4/3π)sin3
ωSt−(4/5π)sin5ωSt+………(4) U3(t)=(4/π)sin2ωS(t−T/8)+(4/3
π)sin6ωS(t−T/8)+(4/5π)sin10ωS(t
−T/
8)+… ……(5) ここに、T=2π/ωSであり、ωSは38kHzサブキ
ヤリヤの角周波数である。
U 1 (t) = (4/π) sinω S t + (4/3π) sin3
ω S t+(4/5π) sin5ω S t+……(3) U 2 (t)=(4/π) sinω S t−(4/3π) sin3
ω S t−(4/5π) sin5ω S t+……(4) U 3 (t)=(4/π) sin2ω S (t−T/8)+(4/3
π) sin6ω S (t-T/8)+(4/5π) sin10ω S (t
-T/
8) +... (5) Here, T=2π/ω S , and ω S is the angular frequency of the 38kHz subcarrier.

乗算回路1,2の出力v1(t),v2(t)は、 v1(t)=C(t)・U1(t) ……(6) v2(t)=C(t)・U2(t) ……(7) であり、乗算回路5,6の出力v3(t),v4(t)
は次式となる。
The outputs v 1 (t) and v 2 (t) of the multiplier circuits 1 and 2 are as follows: v 1 (t)=C(t)・U 1 (t) ……(6) v 2 (t)=C(t )・U 2 (t) ...(7), and the outputs of multiplier circuits 5 and 6 are v 3 (t), v 4 (t)
is the following formula.

v3(t)=C(t)・U1(t)・U3(t)=C(t)・
(4/π)〔(√2−1)sinωSt −{(√2+1)/3}sin3ωSt−{(√2+1)
/5}sin5ωSt+{(√2−1)/7}sin7ωSt+…
…〕
……(8) v4(t)=C(t)・U2(t)・U3(t)=C(t)・
(4/π)〔(√2−1)sinωSt −{(√2+1)/3}sin3ωSt−{(√2+1)
/5}sin5ωSt+{(√2−1)/7}sin7ωSt+…
…〕
……(9) 従つて、加算回路3及び4においてC(t),v1
(t),v3(t)及びC(t),v2(t),v4(t)を
夫々4√2:π(√2+1):πの比で加算するこ
とにより、各加算出力v1(t)及びvR(t)は、 vL(t)=4√2C(t)+π(√2+1)v1(t)+
πv3(t) =4√2C(t){1+2sinωSt+(2/7)
sin7ωSt +(2/9)sin9ωSt+……} ……(10) vR(t)=4√2C(t)+π(√2+1)v2(t)+
πv4(t) =4√2C(t){1−2sinωSt−(2/7)
sin7ωSt −(2/9)sin9ωSt+……} ……(11) となる。これらvL(t),vR(t)におけるオーデ
イオ成分のみを考えれば、 vL(t)=8√2L(t) ……(12) vR(t)8√2R(t) ……(13) となつて、左右チヤンネル信号が分離導出される
ことになる。(10)、(11)式にて示される加算信号に
は、サブキヤリヤ信号の3次、5次の高調波成分
が含まれていないために、これら高調波成分によ
るビード妨害が発生しない。
v 3 (t)=C(t)・U 1 (t)・U 3 (t)=C(t)・
(4/π) [(√2−1) sinω S t −{(√2+1)/3} sin3ω S t−{(√2+1)
/5}sin5ω S t+{(√2-1)/7}sin7ω S t+…
…]
……(8) v 4 (t)=C(t)・U 2 (t)・U 3 (t)=C(t)・
(4/π) [(√2−1) sinω S t −{(√2+1)/3} sin3ω S t−{(√2+1)
/5}sin5ω S t+{(√2-1)/7}sin7ω S t+…
…]
...(9) Therefore, in adder circuits 3 and 4, C(t), v 1
(t), v 3 (t) and C(t), v 2 (t), v 4 (t) in the ratio of 4√2:π(√2+1):π, each addition output v 1 (t) and v R (t) are v L (t)=4√2C(t)+π(√2+1)v 1 (t)+
πv 3 (t) =4√2C(t) {1+2sinω S t+(2/7)
sin7ω S t + (2/9) sin9ω S t+...} ...(10) v R (t)=4√2C(t)+π(√2+1)v 2 (t)+
πv 4 (t) =4√2C(t) {1−2sinω S t−(2/7)
sin7ω S t − (2/9) sin9ω S t+...} ...(11) Considering only the audio components in v L (t) and v R (t), v L (t)=8√2L(t)...(12) v R (t)8√2R(t)... (13) Thus, the left and right channel signals are derived separately. Since the addition signals shown by equations (10) and (11) do not include the third and fifth harmonic components of the subcarrier signal, bead interference due to these harmonic components does not occur.

第7図は第3図の回路の一具体例を示す回路図
であり、スイツチング素子Sw1とSw3とが乗算回
路1を、スイツチング素子Sw2とSw4とが乗算回
路2を夫々構成しており、またスイツチング素子
Sw5とSw7とが乗算回路5を、スイツチング素子
Sw6とSw8とが乗算回路6を夫々構成している。
オペアンプOP1と抵抗R7とにより、またオペアン
プOP2と抵抗R8とにより夫々加算回路3及び4が
構成されている。スイツチング素子Sw1とSw4
が乗算信号U1(t)によりスイツチングされ、ス
イツチング素子Sw2とSw3とが乗算信号U2(t)
によりスイツチングされる。スイツチング素子
Sw5とSw8とが乗算信号U3(t)によりスイツチ
ングされ、またスイツチング素子Sw6とSw7とが
乗算信号U3(t)の逆相信号U4(t)によりスイ
ツチングされる。
FIG. 7 is a circuit diagram showing a specific example of the circuit shown in FIG. 3, in which switching elements Sw 1 and Sw 3 constitute a multiplication circuit 1, and switching elements Sw 2 and Sw 4 constitute a multiplication circuit 2. It also has a switching element.
Sw 5 and Sw 7 form the multiplier circuit 5 and the switching element
Sw 6 and Sw 8 constitute a multiplication circuit 6, respectively.
Addition circuits 3 and 4 are configured by the operational amplifier OP 1 and the resistor R 7 , and by the operational amplifier OP 2 and the resistor R 8 , respectively. Switching elements Sw 1 and Sw 4 are switched by the multiplication signal U 1 (t), and switching elements Sw 2 and Sw 3 are switched by the multiplication signal U 2 (t).
Switching is performed by switching element
Sw 5 and Sw 8 are switched by the multiplication signal U 3 (t), and switching elements Sw 6 and Sw 7 are switched by the opposite phase signal U 4 (t) of the multiplication signal U 3 (t).

かかる構成において、セパレーシヨン(左右チ
ヤンネル信号の分離度)最良でかつ合成比率を最
適とするには、 R1=R2、R3=R4、R5=R6 4√2R1=π(√2+1)R3=πR5
……(14) なる関係に各抵抗R1〜R6を選定すれば良い。
In such a configuration, in order to achieve the best separation (separation degree of left and right channel signals) and optimal combination ratio, R 1 = R 2 , R 3 = R 4 , R 5 = R 6 4√2R 1 = π( √2+1)R 3 =πR 5 }
...(14) Each resistor R 1 to R 6 should be selected so as to satisfy the following relationship.

第8図は第3図の回路の他の具体例を示す図で
あり、乗算回路として平衡差動型のスイツチ回路
を用いており、トランジスタQ14,Q15のベース
にはコンポジツト信号C(t)が印加され、抵抗
R1,R3,R4及びR2,R5,R6によりそれぞれ加算
比率が決定される。トランジスタQ1〜Q4及びQ5
〜Q8が2重平衡型差動スイツチ回路であり、38k
Hz矩形波U1(t),U2(t)によりスイツチされ
る。トランジスタQ1〜Q4の出力は、左右スイツ
チング出力端子に接続され、トランジスタQ5
Q8の出力は、トランジスタQ9〜Q12よりなる2重
平衡差動スイツチ回路へ入力され、この回路で
76kHz矩形波U3(t),U4(t)によりスイツチさ
れて、左右チヤンネル出力端にて合成される。
FIG. 8 is a diagram showing another specific example of the circuit in FIG. 3 , in which a balanced differential type switch circuit is used as the multiplier circuit, and a composite signal C (t ) is applied and the resistance
The addition ratio is determined by R 1 , R 3 , R 4 and R 2 , R 5 , R 6 . Transistors Q 1 to Q 4 and Q 5
~ Q8 is a double balanced differential switch circuit, 38k
It is switched by Hz rectangular waves U 1 (t) and U 2 (t). The outputs of transistors Q 1 to Q 4 are connected to the left and right switching output terminals, and the outputs of transistors Q 5 to Q 4 are connected to the left and right switching output terminals.
The output of Q 8 is input to a double balanced differential switch circuit consisting of transistors Q 9 to Q 12 .
The 76kHz rectangular waves U 3 (t) and U 4 (t) are switched and combined at the left and right channel output ends.

この回路では、 R3=R4、8R1/{π(√2+1)−4} R5/R3=R6/R4=R2/R1=√2+1)}
……(15) がセパレーシヨン最良でビート妨害を除去し得る
条件となる。
In this circuit, R 3 = R 4 , 8R 1 / {π(√2+1)−4} R 5 /R 3 = R 6 /R 4 = R 2 /R 1 =√2+1)}
...(15) is the condition for achieving the best separation and eliminating beat interference.

尚、本発明は第3図に示す原理図に限定される
ことなく、本発明の趣旨を逸脱しない範囲におい
て種々の構成が可能である。
Note that the present invention is not limited to the principle diagram shown in FIG. 3, and various configurations are possible without departing from the spirit of the present invention.

例えば、第3図において乗算回路5及び6では
コンポジツト信号C(t)に乗算信号U1(t),U2
(t)及び乗算信号U2(t),U3(t)を乗算する
ようにPLL回路からこれらの乗算信号U1(t)〜
U3(t)及びU2(t)〜U3(t)を発生するよう
にしてもよい。
For example, in FIG. 3, the multiplier circuits 5 and 6 output the composite signal C(t) and the multiplier signals U 1 (t), U 2
(t) and the multiplication signals U 2 (t) and U 3 (t) from the PLL circuit.
U 3 (t) and U 2 (t) to U 3 (t) may be generated.

また、(6)式のv1(t)=C(t)・v1(t)と(8)式
のv3(t)=C(t)・U1(t)・U3(t)とを(√2
+1):の比で加算した場を考えてみると、その
加算出力v5(t)は v5(t)=C(t)・(4/π){2√2sinωst +2√2/7sin7ωst ……} ……(16) となり、上式を更に展開すると、 v5(t)=8√2/π[{L(t)−R(t)}+{L
(t) +R(t)}sinωst−{L(t)+R(t)}sin7
ωst
……] ……(17) となる。上式から明らかなように、オーデイオ信
号成分はステレオサブ信号であり、しかもサブキ
ヤリア信号の第3次及び第5の高調波成分は含ま
れない。
Also, v 1 (t)=C(t)・v 1 (t) in equation (6) and v 3 (t)=C(t)・U 1 (t)・U 3 (t ) and (√2
+1): Considering the field added with the ratio of:, the added output v 5 (t) is v 5 (t) = C(t)・(4/π) {2√2 sinωst +2√2/7 sin7ωst … …} …(16) Then, by further expanding the above equation, v 5 (t)=8√2/π[{L(t)−R(t)}+{L
(t) +R(t)}sinωst−{L(t)+R(t)}sin7
ωst
……] ……(17) becomes. As is clear from the above equation, the audio signal component is a stereo sub-signal, and does not include the third and fifth harmonic components of the subcarrier signal.

従つて、(17)式で示す加算信号v5(t)から得
られるステレオサブ信号と、コンポジツト信号中
のメイン信号とを1:8√2/πで加算及び減算
するようにマトリクス回路に通すことにより、左
右ステレオ信号を得ることができる。
Therefore, the stereo sub-signal obtained from the addition signal v 5 (t) shown in equation (17) and the main signal in the composite signal are passed through a matrix circuit so as to be added and subtracted at a ratio of 1:8√2/π. By doing so, left and right stereo signals can be obtained.

尚、(7)式のv2=C(t)・U2(t)と(9)式のv4
(t)=C(t)・U2(t)・U3(t)とを上記のとお
り所定比で加算しても同様のサブ信号が得られる
ことは勿論である。
Furthermore, v 2 = C(t)・U 2 (t) in equation (7) and v 4 in equation (9)
Of course, a similar sub-signal can be obtained by adding (t)=C(t)·U 2 (t)·U 3 (t) at a predetermined ratio as described above.

このように、本発明によればスイツチング信号
(乗算信号)に含まれるサブキヤリヤ信号周波数
の3倍、5倍の高調波によるビート妨害を除去で
きる利点がある。またスイツチング方式を採るこ
とにより、S/Nや歪、セパーレーシヨン等の特
性を最良にすることができFMステレオマルチプ
レツクス復調回路に用いて好適である。
As described above, the present invention has the advantage of being able to eliminate beat interference caused by harmonics three times or five times the subcarrier signal frequency included in the switching signal (multiplying signal). Furthermore, by adopting the switching method, characteristics such as S/N, distortion, and separation can be optimized, making it suitable for use in an FM stereo multiplex demodulation circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のステレオ復調装置のブロツク
図、第2図は第1図の装置の特性を説明する図、
第3図は本発明の原理を示すブロツク図、第4図
は第3図のブロツクにおける動作波形図、第5図
は第3図のブロツクのPLL回路の具体例を示す
図、第6図は第5図の回路の各部波形図、第7図
及び第8図は第3図のブロツクの具体例を夫々示
す回路図である。 主要部分の符号の説明、1,2,5,6……乗
算回路、3,4……加算回路、7……PLL回路。
Fig. 1 is a block diagram of a conventional stereo demodulation device, Fig. 2 is a diagram explaining the characteristics of the device in Fig. 1,
FIG. 3 is a block diagram showing the principle of the present invention, FIG. 4 is an operation waveform diagram of the block in FIG. 3, FIG. 5 is a diagram showing a specific example of the PLL circuit of the block in FIG. 3, and FIG. The waveform diagram of each part of the circuit in FIG. 5, and FIGS. 7 and 8 are circuit diagrams showing specific examples of the blocks in FIG. 3, respectively. Explanation of the symbols of the main parts: 1, 2, 5, 6...multiplication circuit, 3, 4...addition circuit, 7...PLL circuit.

Claims (1)

【特許請求の範囲】 1 ステレオコンポジツト信号から分離したステ
レオパイロツト信号に同期した乗算信号を前記ス
テレオコンポジツト信号に乗算せしめて得られる
チヤンネル信号と前記ステレオコンポジツト信号
とを相加して復調チヤンネル信号を得るステレオ
復調回路であつて、 前記乗算信号は、前記ステレオコンポジツト信
号のサブキヤリア信号と同一位相かつ同一周期T
の第1矩形波信号と、前記第1矩形波信号に同期
しかつ前記サブキヤリア信号の2倍の周波数でか
つ前記第1矩形波信号に対してT/8の位相差を
有する周波数成分を含む第2矩形波信号とを含む
ことを特徴するステレオ復調装置。
[Claims] 1. A channel signal obtained by multiplying the stereo composite signal by a multiplication signal synchronized with a stereo pilot signal separated from the stereo composite signal and the stereo composite signal are added to form a demodulated channel. A stereo demodulation circuit for obtaining a signal, wherein the multiplied signal has the same phase and the same period T as the subcarrier signal of the stereo composite signal.
a first rectangular wave signal, and a frequency component that is synchronized with the first rectangular wave signal, has a frequency twice that of the subcarrier signal, and has a phase difference of T/8 with respect to the first rectangular wave signal. A stereo demodulator characterized in that it includes two rectangular wave signals.
JP1654182A 1982-02-04 1982-02-04 Stereophonic demodulating device Granted JPS58134546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1654182A JPS58134546A (en) 1982-02-04 1982-02-04 Stereophonic demodulating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1654182A JPS58134546A (en) 1982-02-04 1982-02-04 Stereophonic demodulating device

Publications (2)

Publication Number Publication Date
JPS58134546A JPS58134546A (en) 1983-08-10
JPS636179B2 true JPS636179B2 (en) 1988-02-08

Family

ID=11919120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1654182A Granted JPS58134546A (en) 1982-02-04 1982-02-04 Stereophonic demodulating device

Country Status (1)

Country Link
JP (1) JPS58134546A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3962551A (en) * 1974-03-28 1976-06-08 Motorola, Inc. Methods and systems for providing stereo decoding signals
JPS5415170A (en) * 1977-07-05 1979-02-03 Nippon Electric Co Wiring board structure
JPS5648738A (en) * 1979-09-28 1981-05-02 Hitachi Ltd Stereophonic demodulation system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3962551A (en) * 1974-03-28 1976-06-08 Motorola, Inc. Methods and systems for providing stereo decoding signals
JPS5415170A (en) * 1977-07-05 1979-02-03 Nippon Electric Co Wiring board structure
JPS5648738A (en) * 1979-09-28 1981-05-02 Hitachi Ltd Stereophonic demodulation system

Also Published As

Publication number Publication date
JPS58134546A (en) 1983-08-10

Similar Documents

Publication Publication Date Title
JPS583424B2 (en) Stereo Fukugo Shingo Hatsuseihouhou Oyobi Souchi
JPS593905B2 (en) MPX Fukuchiyoukino Pilot
JPH0656970B2 (en) Device for controlling gradient compensation circuit
JPS5853805B2 (en) Pilot signal removal device
JPS6342454B2 (en)
JPS636179B2 (en)
JPH0412655B2 (en)
JPH031856B2 (en)
JPH0787041A (en) Pilot signal detection circuit
JPS5841017B2 (en) Multiplex demodulation circuit
JP2777717B2 (en) FM broadcast receiver
JPS6342455B2 (en)
JPS5944828B2 (en) FM receiver
JPS581349A (en) Fm stereophonic demodulator
JPH0453135B2 (en)
JPH033975B2 (en)
JPH0313771B2 (en)
JPS5924208Y2 (en) Interfering signal detection circuit in FM stereo receiver
JPS5944138A (en) Demodulator of frequency modulation stereophonic signal
JPH0311138B2 (en)
JPS581352A (en) Fm stereophonic demodulator
JPH037168B2 (en)
JPS6240896B2 (en)
JP2572973B2 (en) FM stereo noise reduction circuit
JPH03101528A (en) Fm stereo receiver