JPS58190680A - Method of liquefying and separating air - Google Patents

Method of liquefying and separating air

Info

Publication number
JPS58190680A
JPS58190680A JP7320082A JP7320082A JPS58190680A JP S58190680 A JPS58190680 A JP S58190680A JP 7320082 A JP7320082 A JP 7320082A JP 7320082 A JP7320082 A JP 7320082A JP S58190680 A JPS58190680 A JP S58190680A
Authority
JP
Japan
Prior art keywords
column
argon
air
nitrogen
rectification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7320082A
Other languages
Japanese (ja)
Other versions
JPH0440627B2 (en
Inventor
達郎 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP7320082A priority Critical patent/JPS58190680A/en
Publication of JPS58190680A publication Critical patent/JPS58190680A/en
Publication of JPH0440627B2 publication Critical patent/JPH0440627B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は空気液化分離方法、特にアルゴンを同時に採
取するに好適な空気液化分離方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air liquefaction separation method, and particularly to an air liquefaction separation method suitable for simultaneously collecting argon.

一般にアルゴンの製造は、空気液化分離装置の複精留塔
の上部塔からアルゴン含量の多い酸素を原料ガスとして
抜き出し、これを粗アルゴン塔に送り、粗アルゴン塔で
精留して粗アルゴンとし、この粗アルゴン中の酸素を除
去したのち高純アルゴン塔で精留し、高純アルゴンを得
る方法によって行われている。このようなアルゴン製造
を伴う空気液化分離方法としては、例えば第1図に示し
たような製造装置を用いるものが知られている。
Generally, argon production involves extracting oxygen with a high argon content as a raw material gas from the upper column of a double rectification column in an air liquefaction separation device, sending it to a crude argon column, and rectifying it in the crude argon column to produce crude argon. After removing oxygen from the crude argon, it is rectified in a high-purity argon column to obtain high-purity argon. As an air liquefaction separation method involving the production of argon, a method using, for example, a production apparatus as shown in FIG. 1 is known.

図示しない圧縮機で約3 Kf/、:mlに圧縮された
原料空気は、管1からリパーシング熱交換器2に導入さ
れ、ここで冷却されて、原料空気中の水、炭酸ガスが除
去され、はぼ3 V4/cjの空気の飽和温度となって
、管3を通り、上部塔4a、凝縮器4h下部塔4Cより
なる複精留塔4の下部塔4Cの下部に送られる。下部塔
4Cでは空気の予備精留が行われ、下部塔4C頂部から
は液化窒素が抜き出され、管5を経て上部塔4aの頂部
に導かれ、下部塔4C中段からは不純液化窒素が抜き出
され、管6を経て上部塔4&の中間段に導かれ、また下
部塔4c底部からは液化空気が管7から抜き出され、上
部塔4aの中間段に導がれ、それぞれ還流液として上部
塔4a内を流下し、凝縮器4bにて上部塔4aの還流液
の気化と下部塔4cの上昇ガスの液化が行われ、これに
よって上部塔4a、下部塔4cでの精留が進む。そして
、上部塔4a頂部から管8に窒素ガスが、上部塔4a中
関段がら管9に不純窒素ガスが、また上部塔4aの下部
がら管10GC酸素ガスがそれぞれ抜き出され、リバー
シング熱交換器2に送られる。ここで原料空気と熱交換
して加温され、常温のガスとして取シ出される。
The raw air compressed to about 3 Kf/ml by a compressor (not shown) is introduced from the pipe 1 to the reparsing heat exchanger 2, where it is cooled and water and carbon dioxide in the raw air are removed. The air reaches a saturation temperature of 3 V4/cj and is sent through pipe 3 to the lower part of lower column 4C of double rectification column 4, which consists of upper column 4a, condenser 4h, and lower column 4C. Preliminary rectification of air is performed in the lower column 4C, and liquefied nitrogen is extracted from the top of the lower column 4C and guided to the top of the upper column 4a via a pipe 5. Impure liquefied nitrogen is extracted from the middle of the lower column 4C. Liquefied air is extracted from the bottom of the lower column 4c through a tube 7 and guided to the intermediate stage of the upper column 4a through a pipe 6, and the liquefied air is taken out from the bottom of the lower column 4c and introduced to the intermediate stage of the upper column 4a. The gas flows down in the column 4a, and the reflux liquid in the upper column 4a is vaporized in the condenser 4b, and the rising gas in the lower column 4c is liquefied, thereby proceeding with rectification in the upper column 4a and the lower column 4c. Then, nitrogen gas is extracted from the top of the upper column 4a into the pipe 8, impure nitrogen gas is extracted from the middle stage tube 9 of the upper column 4a, and oxygen gas is extracted from the lower column 10GC of the upper column 4a, and the reversing heat exchange is performed. Sent to vessel 2. Here, it is heated by exchanging heat with the raw material air and taken out as a gas at room temperature.

そして、アルゴン凝縮器11が設けられた粗アルゴン塔
12には、上部塔4aの中間段からアルゴンj〜/j%
、窒素/X以下、残部酸素↓シなるアルゴン原料ガスが
管13を経て導入される。
The crude argon column 12 equipped with the argon condenser 11 receives argon j~/j% from the intermediate stage of the upper column 4a.
, nitrogen/X or less, and the remainder oxygen ↓, an argon source gas is introduced through the pipe 13.

アルゴン凝縮器11には、精留塔4の下部塔4c底部か
ら抜き出された液化空気の一部が管7から分岐されて、
管14を経て導入され、ここでアルゴン原料ガスが凝縮
され、還流液として粗アルゴン塔12内を流下し、精留
が行われる。これにょり5〜23%、酸#c/〜3%、
窒素/〜3%根度の粗アルゴンが管15に導出され、以
下図示しない公知のアルゴン精製工程に送られ、高純ア
ルゴンが採取される。アルゴン凝縮器11に導入された
液化空気は、気化し、管16を経て精留#!r4の上部
塔4aの中間段に送り込まれる。
A part of the liquefied air extracted from the bottom of the lower column 4c of the rectification column 4 is branched from the pipe 7 to the argon condenser 11.
The argon raw material gas is introduced through a pipe 14, where it is condensed, and flows down the crude argon column 12 as a reflux liquid, where it is rectified. This liquid 5-23%, acid #c/~3%,
Nitrogen/crude argon having a concentration of 3% is led out to a pipe 15 and sent to a known argon purification process (not shown below) to collect high purity argon. The liquefied air introduced into the argon condenser 11 is vaporized and passed through the pipe 16 for rectification #! It is sent to the intermediate stage of the upper column 4a of r4.

そして、これら装置の運転に必要な寒冷を補うために1
管3から圧縮低温空気の一部が管17に分岐され、リバ
ーシング熱交換器2にて再熱され、さらに膨張タービン
18で断熱膨張されたのち、管19から精留塔4の上部
塔4aの中間段に送り込まれる。
In order to compensate for the cold required to operate these devices, 1
A part of the compressed low-temperature air is branched from the pipe 3 to the pipe 17, reheated in the reversing heat exchanger 2, further adiabatically expanded in the expansion turbine 18, and then sent from the pipe 19 to the upper column 4a of the rectification column 4. is sent to the intermediate stage.

ところで、以上のようなアルゴン採取を伴う空気液化分
離法においては、膨張タービン18で断熱膨張した低温
低圧空気は、下部塔4cで予備精留を受けていない空気
とほぼ同一組成のガスであシ、しかもガス状で上部塔4
龜に吹き込まれるので、上部塔4aの精留効果を悪くし
ている。また、アルゴン凝縮器11で気化したガスも同
様にほぼ空気と同一組成であシ、しかもガス状で上部塔
4aに吹き込まれるので、同様に上部塔4aの精留条件
を悪化させている。このため、このような空気液化分離
方法は、酸素の分離効率が悪く、特にアルゴン採取のよ
うに精留に厳しい条件を必要とする場合には、上記の上
部塔へのガスの吹き込みは、非常に好ましくない操作で
ある。
By the way, in the air liquefaction separation method that involves argon extraction as described above, the low-temperature, low-pressure air adiabatically expanded in the expansion turbine 18 is a gas with almost the same composition as the air that has not undergone preliminary rectification in the lower column 4c. , and in gaseous form in the upper column 4
Since it is blown into the barrel, the rectifying effect of the upper column 4a is deteriorated. Further, the gas vaporized in the argon condenser 11 similarly has almost the same composition as air, and is blown into the upper column 4a in gaseous form, which similarly deteriorates the rectification conditions in the upper column 4a. For this reason, this type of air liquefaction separation method has poor oxygen separation efficiency, and especially when strict conditions are required for rectification such as argon extraction, it is extremely difficult to blow gas into the upper column. This is an undesirable operation.

この発明は上記事情に鑑みてなされたもので、上部塔で
の精留効果が格段に向上し、アルゴンの増産が可能とな
り、しかも酸素の収率あるいは純度の向上が計られるア
ルゴン採取を伴う空気液化分離方法を提供することを目
的とし、粗アルゴン塔のアルゴン凝縮器の冷却源として
、精留塔の下部塔から取シ出した液化窒素を用い、ここ
で気化した窒素ガスを熱交換器にて加温したのち、膨張
タービンにて断熱膨張させ、さらに熱交換器にて加温し
て常温の窒素ガスとして採取することを特徴とするもの
である。
This invention was made in view of the above circumstances, and it significantly improves the rectification effect in the upper column, making it possible to increase the production of argon, and also improve the yield or purity of oxygen. In order to provide a liquefaction separation method, the liquefied nitrogen extracted from the lower column of the rectification column is used as a cooling source for the argon condenser of the crude argon column, and the nitrogen gas vaporized here is sent to the heat exchanger. This method is characterized by heating the nitrogen gas in the air, then adiabatically expanding it in an expansion turbine, and further heating it in a heat exchanger to collect nitrogen gas at room temperature.

以下、図面を参照してこの発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

142図は、この発明の空気液化分離方法の一例に用い
られる装置を示すもので、第1図に示したものと同一構
成部分には同一符号を付して、その説明を省略する。
FIG. 142 shows an apparatus used in an example of the air liquefaction separation method of the present invention, and the same components as those shown in FIG.

精留塔4の下部塔4cの上部から抜き出された液化窒素
は、管20を経て、粗アルゴン塔12のアルゴン凝縮器
11に冷却縁として送られる。液化窒素は、ここでアル
ゴン原料ガスと熱交換して気化し、窒素ガスとなる。こ
の際、アルゴン#縮器11でのアルゴン原料ガスと液化
窒素との温度差を従来のアルゴン原料ガスと液化空気と
の温度差と同一とすると、気化した窒素ガスの圧力は、
約/S〜/−となる。この/S匂/−の窒素ガスは、ア
ルゴン凝縮器11から管21を経て、リバーシング熱交
換器2の再熱系に送られて再熱されたのち、膨張タービ
ン18で断熱膨張して約aコKf/−の圧力となり、再
び管22を経てIJ パージング熱交換器2に送られ、
原料空気と熱交換して運転に必要な寒冷を補い自からは
常温となって導出される。
The liquefied nitrogen extracted from the upper part of the lower column 4c of the rectification column 4 is sent via a pipe 20 to the argon condenser 11 of the crude argon column 12 as a cooling edge. Here, the liquefied nitrogen exchanges heat with the argon source gas and is vaporized to become nitrogen gas. At this time, assuming that the temperature difference between the argon source gas and liquefied nitrogen in the argon condenser 11 is the same as the temperature difference between the conventional argon source gas and liquefied air, the pressure of the vaporized nitrogen gas is:
Approximately /S~/-. This /S odor/- nitrogen gas is sent from the argon condenser 11 through the pipe 21 to the reheating system of the reversing heat exchanger 2 where it is reheated, and then adiabatically expanded in the expansion turbine 18 to approximately The pressure becomes Kf/-, and it is sent to the IJ purging heat exchanger 2 via the pipe 22 again.
It exchanges heat with the raw air to compensate for the coldness required for operation, and is emitted from the air at room temperature.

このような空気液化分離方法によれば、原料空気全臘を
下部塔4cK導入して予備精留を行い、膨張タービン1
8の運転に空気を使用せず、さらに粗アルゴン塔12の
アルゴン凝縮器11の冷却源に下部塔4c上部から抜き
出した液化窒素を用い、アルゴン凝縮器11で気化した
中圧窒素ガスを膨張タービン180運転に利用して寒冷
補給を行うようにし、上部塔4aへのガスの吹き込みを
行わないようKしたので、上部塔4aの精留条件が悪化
せず、精留効率が高められ、と九に伴ってアルゴンの収
率も増大する。
According to such an air liquefaction separation method, all the raw material air is introduced into the lower column 4 cK, preliminary rectification is performed, and the expansion turbine 1
8, air is not used for the operation, and the liquefied nitrogen extracted from the upper part of the lower column 4c is used as the cooling source for the argon condenser 11 of the crude argon column 12, and the medium-pressure nitrogen gas vaporized in the argon condenser 11 is transferred to the expansion turbine. By using the 180°C operation for cold replenishment and not blowing gas into the upper column 4a, the rectification conditions in the upper column 4a are not deteriorated and the rectification efficiency is increased. The yield of argon increases accordingly.

なお、上記の実施例では、膨張タービン18へ供給され
るアルゴン#縮器11からの窒素ガスの圧力が低いので
、発生寒冷が従来法に比べて少なくなり、不足する場合
がある。この場合は、下部塔4C上部から中圧窒素を一
部抜き出してアルゴン凝縮器11からの中圧窒素に合流
させてもよい。
In the above embodiment, since the pressure of the nitrogen gas from the argon condenser 11 supplied to the expansion turbine 18 is low, the amount of cold generated is less than in the conventional method, and there may be a shortage. In this case, part of the medium pressure nitrogen may be extracted from the upper part of the lower column 4C and combined with the medium pressure nitrogen from the argon condenser 11.

また、粗アルゴンを液体で採取するときや粗アルゴンを
増産する場合には、運転に必要な寒冷がさらに多くなり
、上述の下部塔4C上部から中圧窒素を多量に抜き出す
必要が生ずる。これはアルゴン増産を阻害することにな
るので、このような−合には系外から液化酸素、液化窒
素などの寒冷源を補給する。さらに、装置の熱バランス
のために、F部塔4C上部から抜き出した中圧窒素をア
ルゴン凝縮器11で発生した中圧窒素と別系統でリバー
シング熱交換器2に送り、再熱し、別の膨張タービ/に
導入して、下部塔4cの圧力で膨張させることもできる
Furthermore, when extracting crude argon in liquid form or increasing production of crude argon, more refrigeration is required for operation, making it necessary to extract a large amount of medium-pressure nitrogen from the upper part of the lower column 4C. This will inhibit the increase in argon production, so in such cases, a cold source such as liquefied oxygen or liquefied nitrogen is supplied from outside the system. Furthermore, in order to maintain the heat balance of the equipment, the medium-pressure nitrogen extracted from the upper part of the F column 4C is sent to the reversing heat exchanger 2 in a separate system from the medium-pressure nitrogen generated in the argon condenser 11, where it is reheated and It can also be introduced into an expansion turbine and expanded under the pressure of the lower column 4c.

以上説明したようK、この発明の空気液化分離方法は、
粗アルゴン塔凝縮器の冷却源として精留塔下部塔から取
り出し九液化窒素を用い、ここで気化した窒素ガスを熱
交換器にて加温したのち、膨張タービンにて断熱膨張さ
せ、再び熱交換器に送り加温して常温の窒素ガスとして
導出するものであるので、従来のアルゴン採取を伴う空
気液化分離方法に比べて、上部塔へのガスの吹き込みが
なく、これによる上部塔の精留条件の悪化が防止され、
アルゴンの収率が向上し、アルゴンの増産が可能となる
。また、上部塔の精留条件が改善されるので酸素の収率
も向上し、製品酸素の電力原単位の低下あるいは酸素純
度の同上が計られる。
As explained above, the air liquefaction separation method of this invention is
As a cooling source for the crude argon column condenser, liquefied nitrogen extracted from the lower column of the rectification column is used, and the vaporized nitrogen gas is heated in a heat exchanger, then adiabatically expanded in an expansion turbine, and heat exchanged again. Since this method is sent to a vessel and heated, it is extracted as room-temperature nitrogen gas, so compared to the conventional air liquefaction separation method that involves extraction of argon, there is no need to blow gas into the upper column. Deterioration of conditions is prevented,
The yield of argon improves, making it possible to increase argon production. In addition, since the rectification conditions in the upper column are improved, the yield of oxygen is also improved, and the power consumption of product oxygen is reduced or the purity of oxygen is improved.

さらに、粗アルゴン塔のアルゴン凝縮器の冷却源に液化
空気を使わないので、アルゴン凝縮器でのアセチレンな
どの炭化水素の濃縮がおこらず、運転保安上有利となる
などの利点がある。
Furthermore, since liquefied air is not used as a cooling source for the argon condenser of the crude argon column, there is no condensation of hydrocarbons such as acetylene in the argon condenser, which is advantageous in terms of operational safety.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のアルゴン採取を伴う空気液化分離方法に
用いられる装置を示す概略構成図、第2図はこの発明の
空気液化分離方法の一例に用いられる装置を示す概略構
成図である。 1・・・・・・管、2・・・・・・リパーンング熱交換
器、3・・・・・・管、4・・・・・・精留塔、4a・
・・・・・下部塔、4b・・・・・・凝m器、4c・・
・・・・下m塔、11・・・・・・アルゴン凝縮器、1
2・・・・・・粗アルゴン塔、18・・・・・・膨張タ
ービン、20.21.22・・・・・・管。 出願人 日本酸素株式会社
FIG. 1 is a schematic configuration diagram showing an apparatus used in a conventional air liquefaction separation method involving argon extraction, and FIG. 2 is a schematic configuration diagram showing an apparatus used in an example of the air liquefaction separation method of the present invention. DESCRIPTION OF SYMBOLS 1...Pipe, 2...Repanning heat exchanger, 3...Pipe, 4...Rectification column, 4a.
...Lower tower, 4b...Condenser, 4c...
... Lower m tower, 11 ... Argon condenser, 1
2...crude argon column, 18...expansion turbine, 20.21.22...tube. Applicant Nippon Sanso Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 空気液化分離装置の精留塔にて酸素、窒素を分離すると
ともに精留塔の上部塔中間段より抜き出したアルゴン用
原料ガスを粗アルゴン塔に送シ精留分離してアルゴンを
採取する空気液化分離方法において、前記精留塔の下部
塔より抜き出した液化窒素により粗アルゴン塔凝縮器を
冷却せしめるとともに気化した窒素ガスを熱交換器にて
加温したのち膨張タービンにて断熱膨張させ、ついで熱
交換器に送り、常温の窒素ガスとして導出せしめること
を特徴とする空気液化分離方法。
Air liquefaction: Oxygen and nitrogen are separated in the rectification column of the air liquefaction separation device, and the raw material gas for argon extracted from the middle stage of the upper column of the rectification column is sent to the crude argon column, where it is rectified and separated to collect argon. In the separation method, the crude argon column condenser is cooled by the liquefied nitrogen extracted from the lower column of the rectification column, and the vaporized nitrogen gas is heated in a heat exchanger and adiabatically expanded in an expansion turbine. An air liquefaction separation method characterized by sending the air to an exchanger and releasing it as nitrogen gas at room temperature.
JP7320082A 1982-04-30 1982-04-30 Method of liquefying and separating air Granted JPS58190680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7320082A JPS58190680A (en) 1982-04-30 1982-04-30 Method of liquefying and separating air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7320082A JPS58190680A (en) 1982-04-30 1982-04-30 Method of liquefying and separating air

Publications (2)

Publication Number Publication Date
JPS58190680A true JPS58190680A (en) 1983-11-07
JPH0440627B2 JPH0440627B2 (en) 1992-07-03

Family

ID=13511263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7320082A Granted JPS58190680A (en) 1982-04-30 1982-04-30 Method of liquefying and separating air

Country Status (1)

Country Link
JP (1) JPS58190680A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6475883A (en) * 1987-09-17 1989-03-22 Toyo Sanso Kk Manufacture of superhigh purity oxygen
JPH06244683A (en) * 1993-02-15 1994-09-02 Toshiba Corp D latch circuit with reset function

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501359A (en) * 1973-05-11 1975-01-08
JPS5315993A (en) * 1976-07-27 1978-02-14 Tokyo Kikaika Kougiyou Kk Method of sealing up tray
JPS5760166A (en) * 1980-09-30 1982-04-10 Nippon Oxygen Co Ltd Argon producing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501359A (en) * 1973-05-11 1975-01-08
JPS5315993A (en) * 1976-07-27 1978-02-14 Tokyo Kikaika Kougiyou Kk Method of sealing up tray
JPS5760166A (en) * 1980-09-30 1982-04-10 Nippon Oxygen Co Ltd Argon producing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6475883A (en) * 1987-09-17 1989-03-22 Toyo Sanso Kk Manufacture of superhigh purity oxygen
JPH06244683A (en) * 1993-02-15 1994-09-02 Toshiba Corp D latch circuit with reset function

Also Published As

Publication number Publication date
JPH0440627B2 (en) 1992-07-03

Similar Documents

Publication Publication Date Title
KR20190110431A (en) Nitrogen production method and nitrogen production apparatus
US4834785A (en) Cryogenic nitrogen generator with nitrogen expander
JPH06257939A (en) Distilling method at low temperature of air
EP1086345B1 (en) Process and apparatus for the production of nitrogen by cryogenic distillation using a dephlegmator
CN110803689A (en) Argon recovery method and device for removing carbon monoxide and integrating high-purity nitrogen by rectification method
JP3737611B2 (en) Method and apparatus for producing low purity oxygen
KR101238063B1 (en) Nitrogen generating device and apparatus for use therefor
US3807185A (en) Helium-enriched helium-hydrogen mixture from ammonia synthesis vent gas using regenerators to congeal residual nitrogen
JPH10115486A (en) Low temperature distilling method of raw air to manufacture high pressure nitrogen
JP4230213B2 (en) Air liquefaction separation apparatus and method
JPS58190680A (en) Method of liquefying and separating air
CN211198612U (en) Argon recovery device for removing carbon monoxide and integrating high-purity nitrogen by rectification method
JP4520667B2 (en) Air separation method and apparatus
JPS61243273A (en) Air liquefying separating method
JPH11173753A (en) Method and device for manufacturing nitrogen and argon from air
JPH1163812A (en) Manufacture and device for low-purity oxygen
JP2001336876A (en) Method and system for producing nitrogen
JPH1163811A (en) Method and device for manufacturing low impurity oxygen
CN211198611U (en) Argon recovery device for removing carbon monoxide by rectification method
JPH07127971A (en) Argon separator
JPH0195280A (en) Chilling separating method and device for carbon monoxide
JP2000258054A (en) Method and apparatus for manufacturing low purity oxygen
KR100193515B1 (en) Manufacturing apparatus and method for separating nitrogen from air by deep cooling method
JPS62141485A (en) Manufacture of nitrogen having high purity
JPH0563716B2 (en)