JPH0195280A - Chilling separating method and device for carbon monoxide - Google Patents

Chilling separating method and device for carbon monoxide

Info

Publication number
JPH0195280A
JPH0195280A JP62253426A JP25342687A JPH0195280A JP H0195280 A JPH0195280 A JP H0195280A JP 62253426 A JP62253426 A JP 62253426A JP 25342687 A JP25342687 A JP 25342687A JP H0195280 A JPH0195280 A JP H0195280A
Authority
JP
Japan
Prior art keywords
gas
liquid
carbon monoxide
evaporator
liquefied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62253426A
Other languages
Japanese (ja)
Other versions
JP2621841B2 (en
Inventor
Yasushi Tomisaka
富阪 泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP62253426A priority Critical patent/JP2621841B2/en
Publication of JPH0195280A publication Critical patent/JPH0195280A/en
Application granted granted Critical
Publication of JP2621841B2 publication Critical patent/JP2621841B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0223H2/CO mixtures, i.e. synthesis gas; Water gas or shifted synthesis gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0252Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0261Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • F25J5/005Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger in a reboiler-condenser, e.g. within a column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/78Refluxing the column with a liquid stream originating from an upstream or downstream fractionator column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/04Mixing or blending of fluids with the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/14External refrigeration with work-producing gas expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/42Quasi-closed internal or closed external nitrogen refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/904External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by liquid or gaseous cryogen in an open loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/32Details on header or distribution passages of heat exchangers, e.g. of reboiler-condenser or plate heat exchangers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

PURPOSE: To separate and refine CO at a high yield in a simple apparatus by cooling a raw material gas, guiding liquefied CO and unliquefied gas in a rectifier, mixing the liquefied CO with hydrogen gas, performing evaporation and cooling the unliquefied gas. CONSTITUTION: A cooled raw material gas via a duct 42 is fed to a high pressure part 61 of a rectifier 6, and cooled by a condenser 63 and most of CO in the gas is liquefied. A gas remaining unliquefied becomes rich in H2 and introduced into a CO evaporator 9 via a duct 43. The liquefied CO is fed to this Co evaporator 9 to evaporate at the tube side and the high pressure H2 rich gas fed to the shell side is cooled and CO in the gas is further liquefied. The liq. CO is brought into contact with a CO gas contg. methane in a low pressure part 62 of the rectifier 6 to refine the gas to a high purity, and the refined gas and liq. CO contg. methane and discharged via the ducts 53, 54 respectively and both are heated in a main heat exchanger 3 and the former is discharged as a product CO gas.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、一酸化炭素(CO)と水素(H2)とを主
成分とする混合ガスからcoを分離するCOの深冷分離
方法およびその装置に関するものである。
Detailed Description of the Invention (Industrial Application Field) This invention relates to a cryogenic separation method for CO for separating CO from a mixed gas containing carbon monoxide (CO) and hydrogen (H2) as main components, and a method for the cryogenic separation of CO. It is related to the device.

(従来技術) 従来、COと1−12とを主成分とする混合ガスからC
Oを分離する深冷分離装置としては、例えば第6図に示
すようなものが知られている。これは、原料ガスにプロ
セス進行用のエネルギーを与える気体圧縮機(図示せず
)と、吸着剤を有する一対の面処理用の吸着精製器2と
、主熱交換器3とCOを分離精製する精溜塔60とから
基本構成されたものである。
(Prior art) Conventionally, carbon was extracted from a mixed gas containing CO and 1-12 as main components.
As a cryogenic separator for separating O, for example, one shown in FIG. 6 is known. This system includes a gas compressor (not shown) that provides energy for the process to the raw material gas, a pair of adsorption purifiers 2 with adsorbents for surface treatment, a main heat exchanger 3, and a main heat exchanger 3 that separates and purifies CO. It basically consists of a rectification column 60.

上記装置によって従来の深冷部は1方法を説明する。原
粗ガスは通常COが30〜70%、メタンなどの炭化水
素が数%以下、炭酸ガス(CO2)および水分が微吊含
まれており、20〜50Kg/dGの圧力で分団プロセ
スに供給される。供給された原料ガスはそのまま゛、ま
たは5℃程度にまで冷却された後、吸着精製器2へ導か
れ、ここでガス中の水分およびCO2が吸着除去される
One method of conventional cryogenic cooling section using the above device will be described. The raw crude gas usually contains 30 to 70% CO, a few percent or less of hydrocarbons such as methane, and a small amount of carbon dioxide (CO2) and water, and is supplied to the fractionation process at a pressure of 20 to 50 kg/dG. Ru. The supplied raw material gas is cooled as it is or cooled to about 5° C. and then guided to the adsorption purifier 2, where moisture and CO2 in the gas are adsorbed and removed.

精製された原料ガスは、導管21を通してコールドボッ
クス18中に設けられた深冷部に送られる。導管21か
らのガスは主熱交換器3に導かれ、ここでその液化湿度
(圧力および組成によって変る)付近まで冷却される。
The purified raw material gas is sent through the conduit 21 to a deep cooling section provided in the cold box 18 . The gas from conduit 21 is led to main heat exchanger 3 where it is cooled to near its liquefied humidity (which varies depending on pressure and composition).

なお、冷却を助けるために冷凍機4が付設されることも
ある。
Note that a refrigerator 4 may be attached to assist cooling.

液化温度まで冷却された原料ガスは、導管22を通して
精溜塔60の底部に設けられたコンデンサ61に導かれ
、ここで原料ガス中のcoの一部は液化する。ついで気
液分離器71で液化留分が除去された後、ガスは3tJ
管23を通して窒素冷却390に導かれ、減圧下の液体
窒素(′a休体2)により−190〜−200℃まで冷
却され、ガス中に8右されるCOの大部分は液化される
。そして気液分離器73に送られて液化留分を除去され
た後、その大部分がN2であるガス留分は導管24を通
して液体CO過冷朗器5から主熱交換器3に送られ、こ
の主熱交換器3において加熱されて系外に排出される。
The raw material gas cooled to the liquefaction temperature is led through the conduit 22 to the condenser 61 provided at the bottom of the rectification column 60, where a portion of the co2 in the raw material gas is liquefied. Then, after the liquefied fraction is removed in the gas-liquid separator 71, the gas is
It is led to nitrogen cooling 390 through pipe 23 and cooled to -190 to -200°C by liquid nitrogen ('a suspension 2) under reduced pressure, and most of the CO present in the gas is liquefied. After being sent to the gas-liquid separator 73 to remove the liquefied fraction, the gas fraction, most of which is N2, is sent from the liquid CO supercooler 5 to the main heat exchanger 3 through the conduit 24. It is heated in this main heat exchanger 3 and discharged to the outside of the system.

このt12ガス中にはCOが7〜10%含有されており
、このCOは無駄に廃棄されることになる。また上記1
」2ガスの濃度をできるだけ高めるため、窒素冷却器9
0での十分な冷却が必要であり、ここで天吊の液体N2
が必要となる。
This t12 gas contains 7 to 10% CO, and this CO will be wasted. Also, 1 above
” 2 In order to increase the concentration of the gas as much as possible, a nitrogen cooler 9
Sufficient cooling at 0 is necessary, and here the ceiling-mounted liquid N2
Is required.

上記気液分離器71で分前された液化留分は、導管25
を通して液体CO過冷M器5に送られて、冷7J]され
た復、2〜3 N9 / cri Gまで減圧され、気
液分151t372に入り、ここで液中に1〜3%の割
合で溶解していたN2分を放出した復、精溜塔60に入
る。精溜塔60の操作圧力は通常、大気圧よりもわずか
に高い0.1〜0.3Kg/CdGである。
The liquefied fraction separated by the gas-liquid separator 71 is transferred to the conduit 25
The liquid CO is sent to the subcooler M unit 5 through the cooling tube, where it is cooled by 7 J], depressurized to 2-3 N9/cri G, and enters the gas-liquid portion 151t372, where it is added to the liquid at a rate of 1-3%. After releasing the dissolved N2, it enters the rectification column 60. The operating pressure of the rectification column 60 is typically 0.1 to 0.3 Kg/CdG, which is slightly higher than atmospheric pressure.

また気液分離器73の液化留分は同様に減圧され、気液
分離器74で目2を放出した後、粘溜塔60へ入る。気
液分離器72および74より11出されるフラッシュガ
スは、約0.2Kg/cMGまで減圧された後導管26
で合流し、液体CO過冷冷7.11器、主熱交換′、!
A3を通って加熱された後、系外へ廃ガスとして湧出さ
れる。
The liquefied fraction in the gas-liquid separator 73 is similarly reduced in pressure, and after being discharged from the gas-liquid separator 74, it enters the distillation column 60. The flash gas discharged from the gas-liquid separators 72 and 74 is reduced in pressure to approximately 0.2 Kg/cMG, and then sent to the conduit 26.
Combined at, liquid CO subcooled 7.11 vessel, main heat exchange ',!
After passing through A3 and being heated, it flows out of the system as waste gas.

精溜塔60へ導かれた液化留分はここで精製され、頂部
からは^純度のCOが導管27を通して取出され、また
底部からはメタンを8右する液体COが導管28を通し
て排出され、これらのガスおよび液体はそれぞれ主熱交
換器3で加熱され、前者は製品COガスとして、また後
者はメタンリッチガスとして系外へ利用される。
The liquefied fraction led to the rectification column 60 is purified here, and pure CO is taken out from the top through the conduit 27, and liquid CO containing methane is discharged from the bottom through the conduit 28. The gas and liquid are each heated in the main heat exchanger 3, and the former is used outside the system as product CO gas and the latter as methane-rich gas.

装置全体の冷却は、併設された窒素循環力イクルによっ
て行なわれる。すなわち、循環N2ガスはまず圧縮機1
4で5〜25に4F/cmGまで圧縮された後、第1窒
素熱交換器15により−100〜−150℃まで冷却さ
れて導管31を通して送り出され、その一部はi[f1
16aを通って断熱的に彫版し、−180〜−195℃
程度まで温度が低下して第2窒素熱交換器16に送られ
る。そして導管31から第2窒素熱交換器16に送られ
た残部の高圧N2ガスを冷却液化する。液化された残部
のN2は膨張弁50を通って窒素冷却器90に供給され
る。
Cooling of the entire device is provided by an attached nitrogen circulation cycle. That is, the circulating N2 gas first passes through the compressor 1.
After being compressed to 4F/cmG from 5 to 25 in the first nitrogen heat exchanger 15, it is cooled to -100 to -150°C and sent out through the conduit 31, and a part of it is compressed to i[f1
Adiabatic engraving through 16a, -180~-195℃
The temperature of the nitrogen gas is reduced to a certain degree, and the nitrogen gas is sent to the second nitrogen heat exchanger 16. The remaining high-pressure N2 gas sent from the conduit 31 to the second nitrogen heat exchanger 16 is cooled and liquefied. The remaining liquefied N2 is supplied to the nitrogen cooler 90 through the expansion valve 50.

窒素冷却″S90は通常減圧下で操作され、液体N2は
−195〜−200℃で蒸発する。この蒸発N2は導管
33を通って液体co’a冷却各5に送られ、ついで第
1窒素熱交換器15を通って加熱され、真空ブロワ17
により背圧され、低圧のN2と合流した後、圧縮機14
へ6かれ、循環する。
Nitrogen cooling" S90 is normally operated under reduced pressure, and liquid N2 evaporates at -195 to -200°C. This evaporated N2 is sent through conduit 33 to each liquid co'a cooling 5 and then to the first nitrogen heat Heated through exchanger 15 and vacuum blower 17
After being back-pressured by and merging with low-pressure N2, the compressor 14
To 6, it circulates.

これらの装置全体を冷却するのに必要な全寒冷量は、主
熱交換器3および第1窒糸熱交換器15の高温端におけ
る人熱く系へ入ってくる全ガスの保有熱式)と出熱(系
外ヘリ1出する全ガスの保有熱量)の差と、コールドボ
ックス18を通って系内へ侵入する熱量の和に等しく、
これらの熱は冷凍機4および彫版1116aにより系外
へ取出されている。
The total amount of refrigeration required to cool these devices as a whole is determined by the heat retention equation of all the gases entering the system at the high temperature ends of the main heat exchanger 3 and the first nitrogen heat exchanger 15 and the output heat. It is equal to the sum of the difference in heat (the amount of heat held by all the gases emitted by the helicopter 1 outside the system) and the amount of heat that enters the system through the cold box 18,
This heat is taken out of the system by the refrigerator 4 and the engraving 1116a.

熱交換器の高温端における出入熱差は高温端における湿
度、温度差および圧力差と組成によって変るジュール・
トムソン効果によって変り、またコールドボックス18
からの熱侵入給はコールドボックス18の断熱方式によ
って変ってくる。
The difference in heat input and output at the high-temperature end of a heat exchanger is a joule difference that varies depending on the humidity, temperature difference, pressure difference, and composition at the high-temperature end.
Changed by the Thomson effect, and cold box 18
The heat input from the cold box 18 changes depending on the insulation method of the cold box 18.

上記従来の方法では、深冷部における冷却を十分に行な
うために液体N2用のIII機16aを具備しており、
このため装置が複雑で高価になるという問題がある。
The conventional method described above is equipped with a III machine 16a for liquid N2 in order to sufficiently cool the cryogenic part.
Therefore, there is a problem that the device becomes complicated and expensive.

なお比較的小型の装置では、窒素冷却器90に対して上
記窒素循環サイクルの循環N2ガスを供給する代りに、
上記窒素冷却器90に外部から液体N2を供給し、この
液体N2によって装置の冷却とCOの液化とを行うよう
にする方法が提案されている。さらに起動時にのみ」−
記液体N2を供給し、定常運転時には供給を停止して液
体COの一部を窒素冷却器90に供給し、この液体CO
によって上記COの液化などを行うようにするh法も提
案されている。
Note that in a relatively small-sized device, instead of supplying the circulating N2 gas of the nitrogen circulation cycle to the nitrogen cooler 90,
A method has been proposed in which liquid N2 is supplied from the outside to the nitrogen cooler 90, and the liquid N2 cools the device and liquefies CO. Moreover, only at startup”−
The liquid N2 is supplied, and during steady operation, the supply is stopped and a part of the liquid CO is supplied to the nitrogen cooler 90, and this liquid CO
The h method has also been proposed, in which the above-mentioned CO is liquefied.

ところが、これらの方法ではCOの回収率を高めるため
に原料ガスを15〜30に9/1yiGの比較的高い圧
力で供給する必要があり、また窒素冷却器90内での蒸
発温度を下げるために蒸発ガスを強制的に排出させて大
気圧以下に減圧させる真空排気装置が必要となる。
However, in these methods, in order to increase the CO recovery rate, it is necessary to supply the raw material gas at a relatively high pressure of 15 to 30 to 9/1yiG, and in order to lower the evaporation temperature in the nitrogen cooler 90. A vacuum evacuation device is required to forcibly exhaust the evaporated gas and reduce the pressure to below atmospheric pressure.

(発明の目的) この発明はこのような従来の欠点を解消するためになさ
れたものであり、深冷部に膨張機を使用せず、したがっ
て簡単な装置でCOを高収率で分離、精製することがで
きる深冷分離方法を提供するものである。
(Objective of the Invention) This invention was made to eliminate such conventional drawbacks, and it is possible to separate and purify CO with a high yield using a simple device without using an expander in the cryogenic section. The purpose of the present invention is to provide a cryogenic separation method that can perform the following steps.

(発明の構成) この発明の第1の要旨は、一酸化炭素と水素とを主成分
とする混合ガスより一酸化炭素を回収する深冷分離方法
であって、原料ガスを冷却して精溜塔に導き、精溜塔で
液化した一酸化炭素と液化しなかったガスとを蒸発器に
導き、この液体一酸化炭素に水素ガスを混入した後にそ
の液体一酸化炭素を蒸発させることによって上記液化し
なかったガスを冷却することを特徴とするものである。
(Structure of the Invention) The first gist of the present invention is a cryogenic separation method for recovering carbon monoxide from a mixed gas containing carbon monoxide and hydrogen as main components, which comprises cooling a raw material gas and rectifying it. The carbon monoxide that has been liquefied in the rectification column and the gas that has not been liquefied are introduced into the evaporator, and after hydrogen gas is mixed into the liquid carbon monoxide, the liquid carbon monoxide is evaporated to achieve the liquefaction. It is characterized by cooling the gas that did not cool down.

上記構成では、深冷部での冷却を液体N2の蒸発によっ
てではなくブ0セス途中の液体COの蒸発によって行い
、しかもその液体COに1−12を混入することにより
その液体Goの蒸発温度を低下させるようにしているの
で、混合ガスを十分に冷却することができる。このため
冷却のための液体N2の供給やその膨張機および真空排
気装置などを省略して深冷設備を簡単にすることができ
るとともに、COの回収率を向上させることができる。
In the above configuration, cooling in the cryogenic section is performed not by evaporation of liquid N2, but by evaporation of liquid CO during the evaporation process, and by mixing 1-12 into the liquid CO, the evaporation temperature of the liquid Go can be lowered. Since the temperature is lowered, the mixed gas can be sufficiently cooled. Therefore, the cryogenic equipment can be simplified by omitting the supply of liquid N2 for cooling, its expander, vacuum evacuation device, etc., and the CO recovery rate can be improved.

また冷却のための1分な低温が得られるので、その供給
圧力を下げることができる。
In addition, since a low temperature of 1 minute can be obtained for cooling, the supply pressure can be lowered.

この発明の第2の要旨は、原料ガスを冷却する主熱交換
器と、原料ガスから一酸化炭素を精製分離する粘溜塔と
、液体一酸化炭素の蒸発によりガスを冷却する蒸発器と
を有し、精溜塔と蒸発器とは精溜塔で液化した液体一酸
化炭素と液化しなかつたガスとが精溜塔から蒸発器へ供
給可能に接続され、蒸発器の下部であって上記液体一酸
化炭素の循環経路には水素ガスヘッダが設けられ、この
水素ガスヘッダには多数の微細な吹出し孔が與通形成さ
れるとともに、水素ガスの供給管が接続されているもの
である。
The second gist of the invention is that the main heat exchanger cools the raw material gas, the distillation column purifies and separates carbon monoxide from the raw material gas, and the evaporator cools the gas by evaporating liquid carbon monoxide. The rectification column and the evaporator are connected so that liquid carbon monoxide liquefied in the rectification column and unliquefied gas can be supplied from the rectification column to the evaporator. A hydrogen gas header is provided in the circulation path of liquid carbon monoxide, and this hydrogen gas header has a large number of fine blow-off holes extending through it, and is connected to a hydrogen gas supply pipe.

(実施例) 第1図に示す装置は、第6図に示す従来装置における窒
素冷却器90と、この窒素冷却器90に窒素循環リイク
ルによって液体N2を供給するための設備、すなわち圧
縮114、第1窒素熱交換器15、第2窒素熱交換器1
6、膨&v116a、真空プロワ17などを省略し、こ
れらの代りに内部の液体COにH2ガスを吹込むように
したCO蒸発′a9を精溜塔6と関係付けて設けたもの
である。
(Example) The apparatus shown in FIG. 1 includes a nitrogen cooler 90 in the conventional apparatus shown in FIG. 1 nitrogen heat exchanger 15, 2nd nitrogen heat exchanger 1
6. The expansion &v 116a, vacuum blower 17, etc. are omitted, and instead of these, a CO evaporator 'a9 is provided in association with the rectification column 6, which blows H2 gas into the liquid CO inside.

第1図において、精1vfI6には下部に高圧部61、
上部に低圧部62がそれぞれ形成され、これらの闇には
コンデンサ63が設けられている。またCO蒸発器9は
、多管式の熱交換器91を有するサーモリイフtン型蒸
発器に対して、その熱交換器91の下方にト12ガスヘ
ッダ92が設けられて構成されている。
In FIG. 1, the precision 1vfI6 has a high voltage section 61 at the bottom,
A low voltage section 62 is formed in the upper part, and a capacitor 63 is provided below these sections. The CO evaporator 9 is constructed of a thermo-ifton type evaporator having a shell-and-tube heat exchanger 91, with a gas header 92 provided below the heat exchanger 91.

このH2ガスヘッダ92は、パイプを平面視で例えば同
心円状、m巻き状もしくは並列配置となるようにに屈曲
形成したもので、この1」2ガスヘツダ92の上半部分
には第2図に示すようにH2ガスの吹き出し孔である多
数の細孔921が貫通形成されている。このH2ガスヘ
ッダ92は、その上面が伝熱管911の下部人口912
に臨むように配置されるとともに、CO熱発器9の底面
から液体COを抜出す導管49の間口(扱出し口)49
1とは十分に離れた位置(例えば導管49の開口から1
5〜20cm程度の上方位置)であって上記下部人口9
12寄りに配置されている。
This H2 gas header 92 is made by bending pipes so that they are concentric, m-wound, or arranged in parallel when viewed from above. A large number of pores 921, which are H2 gas blow-off holes, are formed through the hole. The upper surface of this H2 gas header 92 is the lower part 912 of the heat exchanger tube 911.
A frontage (handling port) 49 of a conduit 49 that extracts liquid CO from the bottom of the CO heat generator 9.
1 (for example, 1 from the opening of the conduit 49)
5-20cm above) and the lower population 9 above.
It is located near 12.

これによってH2ガスヘッダ92から吹出されるH2ガ
スがチューブ側(伝熱管911の内側)を循環する液体
CO中に均一に分散して混入するようにされるとともに
、導管49から粘溜塔6に還流させる液体CO中にH2
ガスの気泡が巻込まれないようにしている。
As a result, the H2 gas blown out from the H2 gas header 92 is uniformly dispersed and mixed into the liquid CO circulating on the tube side (inside the heat transfer tube 911), and is refluxed from the conduit 49 to the distillation column 6. H2 in liquid CO
This prevents gas bubbles from getting trapped.

このCO魚発器9と粘溜塔6とは、第1図および第2図
に示すように導管43によってコンデンサ63の蒸発側
からCO蒸発器9のシェル側(伝熱管911の外側)に
1」2リツチガス、導管45によってコンデンサ63の
凝縮側からCO蒸発器9のチューブ側に液体COがそれ
ぞれ供給されるように接続され、また導管49によって
CO蒸発器9の底部から精溜塔6の低圧部62に液体C
Oが還流液として供給されるように接続されている。
As shown in FIGS. 1 and 2, the CO gas generator 9 and the viscosity column 6 are connected from the evaporation side of the condenser 63 to the shell side of the CO evaporator 9 (outside of the heat transfer tube 911) through a conduit 43. A conduit 45 connects liquid CO from the condensation side of the condenser 63 to the tube side of the CO evaporator 9, respectively, and a conduit 49 connects the bottom of the CO evaporator 9 to the low pressure of the rectification column 6. Liquid C in part 62
It is connected so that O is supplied as a reflux liquid.

上記CO蒸発器9には気液分離器10が接続され、シェ
ル側を通ったH2リッグガスが導管46によって気液分
離器10に導かれ、気液分離器10で分離された液体C
Oが¥J管47によってCO蒸発S9のデユープ側に戻
されるように構成されている。またこの気液分離器10
で分離された1」2ガスは、その一部が導管55を通し
てH2ガスヘッダ92に供給され、残部が導@48によ
って排出されるようにしている。
A gas-liquid separator 10 is connected to the CO evaporator 9, and the H2 rig gas that has passed through the shell side is guided to the gas-liquid separator 10 through a conduit 46, and the liquid C separated in the gas-liquid separator 10 is
The configuration is such that O is returned to the duplex side of the CO evaporator S9 by the J pipe 47. Also, this gas-liquid separator 10
A portion of the separated 1"2 gas is supplied to the H2 gas header 92 through the conduit 55, and the remainder is discharged through the conduit 48.

つぎに、第1図に丞す装置に基いて原料ガスからCOを
深冷分離する方法を説明する。まず原料ガスは気体圧縮
ta1によって従来プロセスよりも相対的に低い5 K
g / ci G以上に加n−されて吸着精製器2に導
かれ、この吸着N製器2で原料ガス中からCO2および
水分が吸着除去されて導管41を通して深冷部に供給さ
れる。この原料ガスは、すでに分離された[」2ガス、
COガスおよびメタンリッチガスなどと主熱交換器3に
おいて熱交換されることによって液化開始温度付近まで
冷却される。なおこの冷却工程では、冷凍(蔑4によっ
て上記冷却を助けるようにしてもよい。
Next, a method for cryogenically separating CO from a raw material gas based on the apparatus shown in FIG. 1 will be explained. First, the raw material gas is heated to 5 K, which is relatively lower than in the conventional process, due to gas compression ta1.
g/ci G or more and guided to the adsorption purifier 2, where CO2 and moisture are adsorbed and removed from the raw material gas, and the raw material gas is supplied to the deep cooling section through the conduit 41. This raw material gas has already been separated [''2 gas,
By exchanging heat with CO gas, methane rich gas, etc. in the main heat exchanger 3, it is cooled to around the liquefaction start temperature. In this cooling step, the cooling may be assisted by freezing.

冷却された原料ガスは導管42を通して精溜塔6の高圧
部61に導入され、塔内を上管してコンデンサ63で冷
却されることによって原料ガス中のCOの大部分は凝縮
液化する。液化せずに残ったガスはH2リッチとなり、
この1(2リツチガスは導管43を通してCO蒸発器9
に入る。
The cooled raw material gas is introduced into the high-pressure section 61 of the rectification column 6 through the conduit 42, passes up the column and is cooled by the condenser 63, whereby most of the CO in the raw material gas is condensed and liquefied. The gas that remains without being liquefied becomes H2-rich,
This 1 (2) rich gas is passed through conduit 43 to CO evaporator 9.
to go into.

コンデンサ63で液化されたCOの一部は高圧部61内
を下方へ流れていく間に1冒してくるガス中のメタン分
を取込み、底部から導管44を通して抜き出され、気液
分離器8に送られる。この気液分離器8では液体CO中
に溶解しているH2分が分離除去されて残りの液体CO
が精溜塔6の低圧部62へ供給される。この蒸溜操作に
よって精溜塔6の高圧部61頂部では原料ガスからメタ
ン分が除去され、上記高圧部61頂部のガスおよび液中
に沸点の高いメタン留分は実質的に存在しなくなる。
A part of the CO liquefied in the condenser 63 absorbs methane from the gas while flowing downward in the high-pressure section 61, is extracted from the bottom through the conduit 44, and is sent to the gas-liquid separator 8. Sent. In this gas-liquid separator 8, the H2 component dissolved in the liquid CO is separated and removed, and the remaining liquid CO
is supplied to the low pressure section 62 of the rectification column 6. By this distillation operation, the methane component is removed from the raw material gas at the top of the high pressure section 61 of the rectification column 6, and the methane fraction with a high boiling point is substantially no longer present in the gas and liquid at the top of the high pressure section 61.

またコンデンサ63で液化されたCOの残部は減圧され
て導管45を通してco蒸発器9に供給される。この液
体COがCO蒸発器9のチューブ側でほぼ大気圧<0.
2に9/cdG程度)1讐で蒸発することによって、導
管43を通してシェル側に供給された高圧の112リツ
チガス(原石ガスの圧力によって変化するが112分が
概略40〜70%含有)は冷1りされてガス中のCOは
さらに液化する。
The remainder of the CO liquefied in the condenser 63 is reduced in pressure and supplied to the CO evaporator 9 through the conduit 45. This liquid CO is at approximately atmospheric pressure <0 on the tube side of the CO evaporator 9.
The high-pressure 112-rich gas supplied to the shell side through the conduit 43 (112-rich gas contains approximately 40 to 70%, although it varies depending on the pressure of the ore gas) is evaporated at a rate of about 2 to 9/cdG). The CO in the gas is further liquefied.

上記液体COの蒸発による冷却過程において、液体CO
には第2図に示すように伝熱管911の下部入口に吸込
まれる時にト12ガスヘッダ92から吹出すH2ガスの
気泡が混入され、これによって液体COの蒸発温度は8
2111度が高くなる分だけ低くなる。
In the cooling process by evaporation of the liquid CO, the liquid CO
As shown in FIG. 2, bubbles of H2 gas blown out from the gas header 92 are mixed in when it is sucked into the lower inlet of the heat transfer tube 911, and as a result, the evaporation temperature of liquid CO is 8.
The temperature decreases by the amount that 2111 degrees rises.

すなわちCO蒸発器9の作動圧力1.2ataにおける
液体Go(t(2m度0%)の蒸発温度は第3図に示す
ようにほぼ一188℃であるが、この液体COに12ガ
スを例えば30〜50%(ト12濃度)混入すると蒸発
温度は−192,5〜−195,4℃となり、この蒸発
によって112リツチガスの冷却温度として−190〜
−193℃が1ワられる。したがってCO蒸発器9では
ト12リッチガスが4分に冷却され、これによって12
リツチガス中のCOが十分に液化される。この結果ガス
中に残留するCOr:1度は、上記液体COの112濃
度が0%の場合の12%に対して8%(混入)42の濃
度50%の場合)まで低減することができる。
That is, the evaporation temperature of liquid Go (t (2 m degrees 0%)) at the working pressure of 1.2 ata of the CO evaporator 9 is approximately -188°C as shown in Fig. 3. When ~50% (T12 concentration) is mixed, the evaporation temperature becomes -192.5 to -195.4°C, and due to this evaporation, the cooling temperature of 112 rich gas increases from -190 to -190.
-193℃ is 1W. Therefore, in the CO evaporator 9, the tri-rich gas is cooled down to 12
CO in the rich gas is sufficiently liquefied. As a result, the COr remaining in the gas: 1 degree can be reduced to 8% (in the case of a concentration of 42 of 50%), compared to 12% when the 112 concentration of the liquid CO is 0%.

このガスが導管46を通して気液分離器10に送られて
気液分離され、分離されたH2ガスはその濃度が92%
(混入H2の濃度50%の場合)に濃縮されて導管48
を通して送られ、液体C0過冷JJI器5、主熱交換器
3を通って系外へ排出される。また上記気液分離器10
で分離された液体COは導管47を通してCO蒸発器9
のチューブ側へ回収され、これによってCO蒸発器9の
内部で蒸発するCOの蒸気圧が低下されるとともに、内
部の液体COの温度が下げられる。
This gas is sent to the gas-liquid separator 10 through the conduit 46 and separated into gas and liquid, and the separated H2 gas has a concentration of 92%.
(in the case of 50% concentration of contaminating H2)
The liquid C0 is sent through the JJI subcooler 5, the main heat exchanger 3, and then discharged to the outside of the system. In addition, the gas-liquid separator 10
The liquid CO separated is passed through a conduit 47 to a CO evaporator 9.
The vapor pressure of the CO evaporated inside the CO evaporator 9 is thereby lowered, and the temperature of the liquid CO inside is lowered.

CO蒸発器9の頂部からはH2を含むCOガスが導管5
1を通して排出され、このガスは途中で気液分離器8か
ら排出されるガスと合流して液体CO過冷却器5、主熱
交換器3を通って加熱され、そして導管52を通して気
体圧縮機1の吸込み側に原料ガスとしてリサイクルされ
る。
CO gas containing H2 flows from the top of the CO evaporator 9 to the conduit 5.
1, this gas joins with the gas discharged from the gas-liquid separator 8 on the way, passes through the liquid CO subcooler 5, the main heat exchanger 3, is heated, and passes through the conduit 52 to the gas compressor 1. The gas is recycled as raw material gas to the suction side of the gas.

CO蒸発器9に対して導管45と導管47とによって供
給された液体COのうち魚発しなかった余剰の液体CO
は導管49を通して精溜塔6の低圧部62に還流液とし
て供給される。この際、導管49の復出し口とH2ガス
ヘツダ92とは十分に離され、しかもH2ガスの吹出し
口は上半部分だけに形成されているので、還流する液体
COにH2ガスの気泡がまき込まれることはない。
Out of the liquid CO supplied to the CO evaporator 9 by the conduit 45 and the conduit 47, the surplus liquid CO that was not emitted by the fish
is supplied as a reflux liquid to the low pressure section 62 of the rectification column 6 through the conduit 49. At this time, since the return port of the conduit 49 and the H2 gas header 92 are sufficiently separated, and the H2 gas outlet is formed only in the upper half, bubbles of H2 gas are mixed into the refluxing liquid CO. It won't happen.

11溜塔6の低圧部62ではCOとメタンとの蒸溜が行
われる。すなわち上記液体COに対して塔内を上背して
くるメタンを含有するCOガスが接触し、メタン分は液
中に溶解し、ガスは高純度に精製される。そして頂部か
らは高純度のCOガスが導管53を通して排出され、ま
た底部からはメタン分を含む液体coが34管54を通
して排出され、これらのガスおよび液体はそれぞれ主熱
交換器3で加熱され、前者は製品COガスとして、また
後者はメタンリッチガスとして系外に排出される。
In the low pressure section 62 of the No. 11 distillation column 6, CO and methane are distilled. That is, the CO gas containing methane flowing up the inside of the column comes into contact with the liquid CO, the methane component is dissolved in the liquid, and the gas is purified to a high degree of purity. High-purity CO gas is discharged from the top through a conduit 53, and liquid CO containing methane is discharged from the bottom through 34 pipes 54, and these gas and liquid are heated in the main heat exchanger 3, respectively. The former is discharged outside the system as product CO gas, and the latter as methane-rich gas.

上記深冷分離方法によれば、CO蒸発器9で蒸発させる
液体coに142ガスを混入させることによってH2リ
ッチガスからCOを分離回収するにあたり十分に冷却す
ることができるので、冷却のために従来のように液体N
2を使用する必要はない。また十分に冷却される分だけ
COの液化けが増加するので、COの回収率を向上させ
ることもできる。例えば原料ガス中のCO謂度が50%
の場合、上記H2ガスを混入しない場合のCOの回収率
は86.4%であったのに対して、上記混入1−12の
濃度を50%にした場合には91.3%となった。
According to the cryogenic separation method described above, by mixing 142 gas into the liquid co evaporated in the CO evaporator 9, it is possible to sufficiently cool CO when separating and recovering CO from H2-rich gas. Like liquid N
There is no need to use 2. Furthermore, since the amount of CO liquefied increases by the amount of sufficient cooling, the CO recovery rate can also be improved. For example, the CO degree in the raw material gas is 50%.
In the case of , the CO recovery rate was 86.4% when the above H2 gas was not mixed, whereas it was 91.3% when the concentration of the above mixture 1-12 was set to 50%. .

なお上記実施例においては前処理した原料ガスを主熱交
換器3に直接供給するようにしているが、吸着精製器2
と主熱交換!113との間に例えば酢酸セルロース系の
気体躾を有する気体膜分離器13を介在させて、この気
体膜分離器m器2によって原料ガスをあらかじめH2リ
ッヂガスと粗COガスとに分離するようにしてもよい。
In the above embodiment, the pretreated raw material gas is directly supplied to the main heat exchanger 3, but the adsorption purifier 2
and main heat exchange! For example, a gas membrane separator 13 having a cellulose acetate-based gas is interposed between the H2 ridge gas and the crude CO gas. Good too.

この粗COガスを主熱交換器3に供給することによって
ざらにCOの回収率を向上さゼることができる。
By supplying this crude CO gas to the main heat exchanger 3, the CO recovery rate can be greatly improved.

また上記実施例においては、コンデンサ63からのH2
リッチガスをCO蒸発!19に直接供給するようにして
いるが、例えば比較的小型の装置の場合には導管43の
途上にN2冷却器12を設け、起動時のみ外部から液体
N2を供給して補助冷却するようにしてもよい。
Further, in the above embodiment, H2 from the capacitor 63
CO evaporates rich gas! For example, in the case of a relatively small device, an N2 cooler 12 is installed in the middle of the conduit 43, and liquid N2 is supplied from the outside only at startup for auxiliary cooling. Good too.

第4図および第5図には、第1図におけるCO蒸発:a
9の伯の実施例が示されている。このCO蒸発器9aは
、プレートフィン型熱交換器をザーモサイフォン型蒸発
器に適用したもので、H2リッチガスは導管43を通し
てフィン部93の上方側面から入り、フィン部93を下
方に流れる間にそのガス中のCOは液化し、この液体C
Oは下部ヘッダ931に溜る。この1」2ガスを含む液
体COはその一部が減圧弁を介して導管57を通してフ
ィン部93の下部側面ヘッダ932内に設けられたH2
ガスヘッダ933に送られる。このH2ガスヘッダ93
3には多数の微細な吹出し孔934が形成され、この吹
出し孔934からH2ガスが微細な気泡となって吹き出
て導管56を通して気液分離部94から流入する液体C
O中に分散するように上記H2ガスヘッダ933は構成
されている。
FIGS. 4 and 5 show CO evaporation in FIG. 1: a
An example of a count of nine is shown. This CO evaporator 9a is a thermosiphon-type evaporator that applies a plate-fin type heat exchanger, and H2-rich gas enters from the upper side of the fin part 93 through the conduit 43, and while flowing downward through the fin part 93. The CO in the gas liquefies, and this liquid C
O accumulates in the lower header 931. A portion of the liquid CO containing the 1"2 gas passes through the pressure reducing valve and the conduit 57 to the H2 gas provided in the lower side header 932 of the fin portion 93.
It is sent to gas header 933. This H2 gas header 93
3 is formed with a large number of fine blow-off holes 934, from which the H2 gas blows out in the form of fine bubbles, and the liquid C flows in from the gas-liquid separation section 94 through the conduit 56.
The H2 gas header 933 is configured to be dispersed in O.

一方、上記気液分離部94には精溜塔6から導管45を
通して液体COが下部側面から供給され、この液体CO
は導管56を経てフィン部93を上方に流れる間に上記
H2リッチガスと熱交換されてその一部が蒸発する。こ
の蒸発する液体COには上記H2ガスヘッダ933から
吹き出されるH2ガスが況人されるので、その蒸発温度
はさらに低下する。上記下部ヘッダ931からは、導管
46を通して気液況合のCOが気液分離器10(第1図
参照)に送られ、分離された液体COが導管47を通し
て気液分離部94に供給されて循環する。そして、精溜
塔6への還流液体COは気液分離部94の底にrji1
口する導管4つを通して抜出されるので、上記還流液体
COにH2ガスヘッダ933からのH2ガスの気泡が巻
き込まれることはない。
On the other hand, liquid CO is supplied from the rectification column 6 to the gas-liquid separation section 94 from the lower side through the conduit 45, and this liquid CO
While flowing upward through the fin portion 93 through the conduit 56, heat is exchanged with the H2-rich gas and a portion of it evaporates. Since the H2 gas blown out from the H2 gas header 933 is absorbed into this evaporating liquid CO, its evaporation temperature is further lowered. From the lower header 931, CO in a gas-liquid state is sent to the gas-liquid separator 10 (see FIG. 1) through the conduit 46, and the separated liquid CO is supplied to the gas-liquid separator 94 through the conduit 47. circulate. Then, the reflux liquid CO to the rectification column 6 is deposited at the bottom of the gas-liquid separation section 94.
Since the H2 gas is extracted through four conduits, the bubbles of H2 gas from the H2 gas header 933 will not be drawn into the reflux liquid CO.

(発明の効果) この発明の第1の要旨であるCOの深冷分離方法によれ
ば、深冷部での冷却をプロセス途中の液体COの蒸発に
よって行い、しかもその液体COにト12を観入するこ
とによりその液体COの蒸発温度を低下させるようにし
ているので、混合ガスを十分に冷却することができる。
(Effects of the Invention) According to the cryogenic separation method for CO, which is the first gist of the present invention, cooling in the cryogenic section is performed by evaporation of liquid CO during the process, and furthermore, Since the evaporation temperature of the liquid CO is lowered by introducing the liquid CO, the mixed gas can be sufficiently cooled.

このため冷却のために液体N2の供給やその彫版機、お
よび真空排気装置などを省略して深冷設備を簡q1にす
ることができるとともに、COの回収率を向上させるこ
とができる。また冷却のための十分な低温が得られるの
で、その供給圧力を下げることもできる。
Therefore, it is possible to simplify the cryogenic equipment by omitting the supply of liquid N2, its engraving machine, vacuum evacuation device, etc. for cooling, and it is also possible to improve the CO recovery rate. Furthermore, since a sufficiently low temperature is obtained for cooling, the supply pressure can also be lowered.

また第2の要旨である深冷分離装置によれば、簡単なり
4造で液体COにH2ガスを均・−に混入させることが
でき、上記液体COの蒸発温度を確実に下げることがで
きる。
Furthermore, according to the cryogenic separator, which is the second feature, it is possible to evenly mix H2 gas into liquid CO in just four simple units, and it is possible to reliably lower the evaporation temperature of the liquid CO.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示す装置の全体配置図、第
2図は第1図のCO蒸発器の断面説明図、第3図はH2
ガスを混入した液体coの蒸発温度とその日2濃度との
関係図、第4図はCO蒸′9.器の他の実施例を示す説
明図、第5図は第4図のCO蒸発器の要部の一部切欠き
斜視図、第6図は従来の深冷部m装置の全体配置図であ
る。 3・・・主熱交換器、6・・・精溜塔、9・・・CO蒸
発器、55.57・・・導管(水素ガスの供給管)、9
1・・・蒸発器の熱交換器、92,933・・・H2ガ
スヘッダ、491・・・開口(還流液の抜出し口)、9
12・・・熱交換器の下部入口、921,934・・・
吹出し孔。 特許出願人      株式会社神戸製鋼所代 理 人
       弁理士 小谷悦司同         
弁理士 長1)1同         弁理士 板谷康
夫第  2  図 Hz f)f、/j (%) 第  4  図
Fig. 1 is an overall layout diagram of an apparatus showing an embodiment of the present invention, Fig. 2 is a cross-sectional explanatory diagram of the CO evaporator shown in Fig. 1, and Fig. 3 is an H2
Figure 4 shows the relationship between the evaporation temperature of liquid CO mixed with gas and the concentration of CO on that day. Fig. 5 is a partially cutaway perspective view of the main parts of the CO evaporator shown in Fig. 4, and Fig. 6 is an overall layout diagram of a conventional deep cooling section m device. . 3... Main heat exchanger, 6... Rectification column, 9... CO evaporator, 55.57... Conduit (hydrogen gas supply pipe), 9
1... Evaporator heat exchanger, 92,933... H2 gas header, 491... Opening (reflux liquid extraction port), 9
12...Lower inlet of heat exchanger, 921,934...
Air outlet. Patent applicant: Representative of Kobe Steel, Ltd. Patent attorney: Etsushi Kotani
Patent Attorney Chief 1) 1 Patent Attorney Yasuo Itaya Figure 2 Hz f) f, /j (%) Figure 4

Claims (1)

【特許請求の範囲】 1、一酸化炭素と水素とを主成分とする混合ガスより一
酸化炭素を回収する深冷分離方法であって、原料ガスを
冷却して精溜塔に導き、精溜塔で液化した一酸化炭素と
液化しなかつたガスとを蒸発器に導き、この液体一酸化
炭素に水素ガスを混入した後にその液体一酸化炭素を蒸
発させることによつて上記液化しなかったガスを冷却す
ることを特徴とする一酸化炭素の深冷分離方法。 2、原料ガスを冷却する主熱交換器と、原料ガスから一
酸化炭素を精製分離する精溜塔と、液体一酸化炭素の蒸
発によりガスを冷却する蒸発器とを有し、精溜塔と蒸発
器とは精溜塔で液化した液体一酸化炭素と液化しなかつ
たガスとが精溜塔から蒸発器へ供給可能に接続され、蒸
発器の下部であって上記液体一酸化炭素の循環経路には
水素ガスヘッダが設けられ、この水素ガスヘッダには多
数の微細な吹出し孔が貫通形成されるとともに、水素ガ
スの供給管が接続されていることを特徴とする一酸化炭
素の深冷分離装置。 3、上記水素ガスヘッダーは、精溜塔への還流液の抜出
し口と蒸発器内の熱交換器の下部入口との間であつて、
熱交換器寄りの位置に設けられていることを特徴とする
特許請求の範囲第2項記載の一酸化炭素の深冷分離装置
[Claims] 1. A cryogenic separation method for recovering carbon monoxide from a mixed gas containing carbon monoxide and hydrogen as main components, in which the raw material gas is cooled and led to a rectification column to perform rectification. The carbon monoxide that has been liquefied in the tower and the gas that has not been liquefied are led to an evaporator, hydrogen gas is mixed into this liquid carbon monoxide, and then the liquid carbon monoxide is evaporated to produce the gas that has not been liquefied. A cryogenic separation method for carbon monoxide, characterized by cooling the carbon monoxide. 2. It has a main heat exchanger that cools the raw material gas, a rectification column that purifies and separates carbon monoxide from the raw material gas, and an evaporator that cools the gas by evaporating liquid carbon monoxide. The evaporator is the lower part of the evaporator where the liquid carbon monoxide liquefied in the rectification column and the unliquefied gas are connected so that they can be supplied from the rectification column to the evaporator. A cryogenic separation device for carbon monoxide, characterized in that the hydrogen gas header is provided with a hydrogen gas header, a large number of fine blow-off holes are formed through the hydrogen gas header, and a hydrogen gas supply pipe is connected to the hydrogen gas header. 3. The hydrogen gas header is located between the outlet of the reflux liquid to the rectification column and the lower inlet of the heat exchanger in the evaporator,
The cryogenic separation device for carbon monoxide according to claim 2, characterized in that it is provided at a position close to a heat exchanger.
JP62253426A 1987-10-06 1987-10-06 Cryogenic separation method and apparatus for carbon monoxide Expired - Fee Related JP2621841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62253426A JP2621841B2 (en) 1987-10-06 1987-10-06 Cryogenic separation method and apparatus for carbon monoxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62253426A JP2621841B2 (en) 1987-10-06 1987-10-06 Cryogenic separation method and apparatus for carbon monoxide

Publications (2)

Publication Number Publication Date
JPH0195280A true JPH0195280A (en) 1989-04-13
JP2621841B2 JP2621841B2 (en) 1997-06-18

Family

ID=17251230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62253426A Expired - Fee Related JP2621841B2 (en) 1987-10-06 1987-10-06 Cryogenic separation method and apparatus for carbon monoxide

Country Status (1)

Country Link
JP (1) JP2621841B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105605883A (en) * 2016-03-25 2016-05-25 北京中科瑞奥能源科技股份有限公司 Oxygen-bearing coalbed methane liquefaction separation system and technique
KR20160128210A (en) 2015-04-28 2016-11-07 니폰 파이오니쿠스 가부시키가이샤 Pre-processing equipment of cryogenic gas separation, and pre-processing method using the same
CN107490244A (en) * 2017-07-27 2017-12-19 成都深冷液化设备股份有限公司 A kind of low-power consumption CO cryogenic separations system and its separation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160128210A (en) 2015-04-28 2016-11-07 니폰 파이오니쿠스 가부시키가이샤 Pre-processing equipment of cryogenic gas separation, and pre-processing method using the same
CN105605883A (en) * 2016-03-25 2016-05-25 北京中科瑞奥能源科技股份有限公司 Oxygen-bearing coalbed methane liquefaction separation system and technique
CN107490244A (en) * 2017-07-27 2017-12-19 成都深冷液化设备股份有限公司 A kind of low-power consumption CO cryogenic separations system and its separation method
CN107490244B (en) * 2017-07-27 2023-05-30 四川蜀道装备科技股份有限公司 Low-power-consumption CO cryogenic separation system and separation method thereof

Also Published As

Publication number Publication date
JP2621841B2 (en) 1997-06-18

Similar Documents

Publication Publication Date Title
JPH06117753A (en) High-pressure low-temperature distilling method of air
US4192662A (en) Process for liquefying and rectifying air
JPS6214750B2 (en)
JPH09269189A (en) Preparation of nitrogen and nitrogen generator
JPH06257939A (en) Distilling method at low temperature of air
JPH0914832A (en) Method and equipment for manufacturing ultra-high purity oxygen
US2433604A (en) Separation of the constituents of gaseous mixtures
TW201800333A (en) Process and device for cryogenic synthesis gas separation
JP2007147113A (en) Nitrogen manufacturing method and device
KR101238063B1 (en) Nitrogen generating device and apparatus for use therefor
US4530708A (en) Air separation method and apparatus therefor
JPH10132458A (en) Method and equipment for producing oxygen gas
JPH0195280A (en) Chilling separating method and device for carbon monoxide
JP4520667B2 (en) Air separation method and apparatus
US1607708A (en) Separation of the constituents of gaseous mixtures
US1959884A (en) Apparatus for separating the constituents of gaseous mixtures
JP4150107B2 (en) Nitrogen production method and apparatus
JP2859663B2 (en) Nitrogen gas and oxygen gas production equipment
US1607320A (en) Separation of the constituents of gaseous mixtures
JPH11173753A (en) Method and device for manufacturing nitrogen and argon from air
JP2001336876A (en) Method and system for producing nitrogen
JPH11325716A (en) Separation of air
JPH0730998B2 (en) Method for recovering argon from ammonia synthesis purge gas
JPH03160294A (en) Supercooling method of liquefied nitrogen in air liquefier/separator
JPS61243273A (en) Air liquefying separating method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees