JPS60142183A - Method of liquefying and separating air - Google Patents

Method of liquefying and separating air

Info

Publication number
JPS60142183A
JPS60142183A JP25179983A JP25179983A JPS60142183A JP S60142183 A JPS60142183 A JP S60142183A JP 25179983 A JP25179983 A JP 25179983A JP 25179983 A JP25179983 A JP 25179983A JP S60142183 A JPS60142183 A JP S60142183A
Authority
JP
Japan
Prior art keywords
rectification
low
column
nitrogen gas
rectification column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25179983A
Other languages
Japanese (ja)
Other versions
JPH0412391B2 (en
Inventor
高司 辰巳
秀幸 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP25179983A priority Critical patent/JPS60142183A/en
Publication of JPS60142183A publication Critical patent/JPS60142183A/en
Publication of JPH0412391B2 publication Critical patent/JPH0412391B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/044Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/72Refluxing the column with at least a part of the totally condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/90Details relating to column internals, e.g. structured packing, gas or liquid distribution
    • F25J2200/94Details relating to the withdrawal point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • F25J2240/44Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は水系等の低沸点成分の含有量が少ない高純度窒
素を採取する空気液化分離方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an air liquefaction separation method for collecting high-purity nitrogen with a low content of low-boiling components such as aqueous components.

(従来技術〕 工業的に窒素を製造する方法として、空気を原料として
これを液化し、その組成分を精留によりその沸点差によ
って分離するいわゆる空気液化分離方法が採用されてい
る。そこで、この精留を行う従来の方法を単式精留塔と
複式精留塔について説明する。
(Prior art) As a method for industrially producing nitrogen, the so-called air liquefaction separation method has been adopted, in which air is used as a raw material, liquefied, and its components are separated by rectification based on their boiling point differences. The conventional method of rectification will be explained using a single type rectification column and a double type rectification column.

第1図は単式精留塔の一例で、塵埃、炭酸ガス及び水分
を除去された圧縮精製原料空気が径路1を通って単式精
留塔2の下部に導入され、該単式精留塔2内で上部より
精留板3を流下する還流液によって精留され、該単式精
留塔2上部に窒素ガスが、又下部に酸素に富んだ液化空
気が精製される。このうち窒素ガスは径路4を通って製
品窒素ガスとして導出−され、その一部が径路5を通っ
てI)a記事式精留塔2直上に区画された凝縮蒸発器6
に入り、該単式精留塔2底部から径路7を通って導入さ
れる液化空気と熱交換して液化し、径路8を通って単式
精留塔2の上部より還流液となる。
FIG. 1 shows an example of a single-type rectification column, in which compressed and purified feed air from which dust, carbon dioxide, and moisture have been removed is introduced into the lower part of a single-type rectification column 2 through a path 1. The reflux liquid flowing down from the upper part of the rectifying plate 3 is used for rectification, and nitrogen gas is purified in the upper part of the single rectifying column 2, and liquefied air rich in oxygen is purified in the lower part. Of this, nitrogen gas is led out as a product nitrogen gas through path 4, and a part of it passes through path 5 to condenser evaporator 6, which is partitioned directly above I) a-type rectification column 2.
It exchanges heat with the liquefied air introduced from the bottom of the single rectification column 2 through path 7 to liquefy, and passes through path 8 to become a reflux liquid from the top of the single rectification column 2.

第2図は複式精留塔の一例で、単式精留塔2と略同様に
径路9から下部塔10に導入された原料空気が還流液と
の間で精留され下部塔101部に窒素ガスを、下部塔1
0底部に液化空気を生成する。下部塔10上部の窒素ガ
スは径路11を通って凝縮蒸発器12に入り、液化酸素
と熱交換して液化窒素となり、径路13を通って下部塔
10上部に還流液として戻されると共に、一部は径路1
4を通り上部J515515部入され還流液となる。
Fig. 2 shows an example of a double rectification column, in which raw air introduced into the lower column 10 from the path 9 is rectified with the reflux liquid, and nitrogen gas is supplied to the lower column 101 in the same way as the single rectification column 2. , lower tower 1
0 Generates liquefied air at the bottom. Nitrogen gas in the upper part of the lower column 10 enters the condensing evaporator 12 through a path 11, exchanges heat with liquefied oxygen, becomes liquefied nitrogen, returns to the upper part of the lower column 10 through a path 13 as a reflux liquid, and partially evaporates. is route 1
4 and enters the upper part J515515 to become a reflux liquid.

そして、凝縮蒸発器12で気化した酸素ガスの一部が径
路16より導入される液化空気の還流液との間で精留さ
れ、窒素濃度の多いガスとなって、さらに110記液化
窒素の還流液との間で精留され製品窒素ガスとなって上
部塔15頂部より径路17を通って導出される。また、
11累ガスは上部塔15の下部から径路18を通って導
出される。なお、3a、3bは精留板である。
Then, a part of the oxygen gas vaporized in the condenser evaporator 12 is rectified with the reflux liquid of liquefied air introduced from the path 16, and becomes a gas with a high nitrogen concentration. It is rectified between the nitrogen gas and the liquid and becomes a product nitrogen gas, which is led out from the top of the upper column 15 through a path 17. Also,
11 gas is led off from the lower part of the upper column 15 through a path 18. Note that 3a and 3b are rectifying plates.

しかし、このようにして生成される製品窒素ガス中には
原料空気の中に微mに含まれていた水素等の低沸点成分
が濃縮されて含まれる。すなわち、製品窒素カス中には
一般に2〜ioppmの水素、(3〜20111)mの
ヘリウム、40〜100ppm (Dネオンが含有され
ている。そし′(これらの成分はたとえ微開であっても
半導体工業等の超高純度の窒素を製水される分野におい
てはその製品に及ばず影響が大きく改善が要求されてい
た。
However, the product nitrogen gas produced in this way contains concentrated low-boiling components such as hydrogen, which were contained in minute amounts in the raw air. In other words, the product nitrogen scum generally contains 2 to ioppm of hydrogen, (3 to 20111) m of helium, and 40 to 100 ppm of (D neon). In fields where ultra-high purity nitrogen is produced, such as in the semiconductor industry, this has had a significant impact on products, and improvements have been required.

(発明の目的) 本発明は上記の点に鑑みなされたもので製品窒素中の水
素等の低沸点成分を効率よく簡単かつ廉価に低減除去J
る方法を提供することを目的とする。
(Object of the invention) The present invention has been made in view of the above points, and is an efficient, simple and inexpensive way to reduce and remove low boiling point components such as hydrogen in product nitrogen.
The purpose is to provide a method for

〔発明の組成〕[Composition of the invention]

上記の目的を達成するため、第1発明においては、高純
度窒素を採取する空気液化分離方法において、精留塔の
精留段を数段多く設け、該精留塔頂部より水素等の低沸
点成分の含有量の多い窒素ガスをその石を調節しつつ導
出すると共に、該精留塔頂部より数段下のM両段より水
素等の低沸点成分の含有量の少ない高純度の窒素ガスま
たは液化窒素を導出することを特徴とし、また第2発明
においては、高純度窒素を採取する空気液化分離方法に
おいて、精留塔の精留段を数段多く設け、該精留塔頂部
より水素等の低沸点成分の含有量の多い窒素ガスをその
量を調節しつつ導出すると共に、該精留塔頂部より数段
下の精留段より水素等の低沸点成分の含有量の少ない高
純度液化窒素を導出し、膨張弁を介して膨張降圧後凝縮
蒸発器に導入し気化しく水素等の低沸点成分の含有量の
少ない高純度窒素ガスを導出することを特徴とする。
In order to achieve the above object, in the first invention, in an air liquefaction separation method for collecting high-purity nitrogen, a rectification column is provided with several rectification stages, and low-boiling point hydrogen such as hydrogen is extracted from the top of the rectification column. Nitrogen gas with a high content of components is led out while adjusting the stone, and high purity nitrogen gas with a low content of low boiling point components such as hydrogen or In the second invention, in the air liquefaction separation method for collecting high-purity nitrogen, a rectification column is provided with several rectification stages, and hydrogen etc. are extracted from the top of the rectification tower. Nitrogen gas with a high content of low-boiling point components such as hydrogen is extracted while controlling its amount, and high-purity liquefaction with a low content of low-boiling point components such as hydrogen from the rectification stages several stages below the top of the rectification column. The method is characterized in that nitrogen is introduced, expanded and depressurized via an expansion valve, and then introduced into a condensing evaporator to vaporize and derive high-purity nitrogen gas with a low content of low-boiling components such as hydrogen.

〔実施例〕〔Example〕

以下本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

なお、第1図及び第2図と同一部材については同符号を
付し説明を省略する。
Note that the same members as in FIGS. 1 and 2 are designated by the same reference numerals, and their explanations will be omitted.

第3図は本発明を複式精留塔の上部塔に適用したもので
、上部塔15の精留板3bの他にその上部に数段の精留
板19を設けた場合である。該上部塔15の頂部に、下
部塔10上部に生成された水素等低沸点成分含有量の多
い窒素ガスを凝縮蒸発器12で液化したものの一部を径
路14の膨張弁20で膨張降圧し上部塔15の還流液と
して導入し、まず精留板19の部分において水素等の低
沸点成分の含有量の少ない上昇窒素ガスと精留を行なわ
せる。そして上部塔15頂部より径路21の調節弁22
で水素等の低沸点成分の含有量の多い窒素ガスをそのm
を調節しつつ導出すると共に、水素等の低沸点成分を除
去した液化窒素を精留板3bに流下させ、上部jg15
を上昇して来る窒素ガスとの間でざらに精留を行なわせ
る。この場合上記径路21より導出する窒素ガスの量は
上記径路17あるいは23より導出される窒素ガス中あ
るいは液化窒素中の水素等低沸点成分の含有mが例えば
夫々’i ppm以下になるように調節弁22により調
wJリ−る。かくして該上部」61518部より数段下
の精留段即ち精留板19の直下より酸素含有量が少なく
なり且つ水素等の低沸点成分も少ない最も高純度の窒素
ガスを径路17より導出することができる。またこの段
より水素等の低沸点成分を除去した液化窒素の一部を径
路23から取出すこともできる。
FIG. 3 shows the present invention applied to the upper column of a double rectification column, in which in addition to the rectification plate 3b of the upper column 15, several stages of rectification plates 19 are provided above it. At the top of the upper column 15, a portion of the nitrogen gas containing a large amount of low-boiling components such as hydrogen produced in the upper part of the lower column 10 is liquefied in the condensing evaporator 12, and is expanded and depressurized by the expansion valve 20 in the path 14, and then the pressure is reduced to the upper part. It is introduced as a reflux liquid from the column 15, and is first subjected to rectification at the rectification plate 19 with rising nitrogen gas containing a small amount of low-boiling components such as hydrogen. Then, from the top of the upper tower 15, the control valve 22 of the path 21
Nitrogen gas with a high content of low boiling point components such as hydrogen is
At the same time, the liquefied nitrogen from which low boiling point components such as hydrogen have been removed is flowed down to the rectifying plate 3b, and the upper jg15
Rough rectification is performed between the nitrogen gas and the rising nitrogen gas. In this case, the amount of nitrogen gas led out from the above-mentioned path 21 is adjusted so that the content m of low boiling point components such as hydrogen in the nitrogen gas or liquefied nitrogen led out from the above-mentioned path 17 or 23 is, for example, 'i ppm or less, respectively. The valve 22 controls the amount of water. In this way, the highest purity nitrogen gas is led out from the rectification stage several stages below the upper part 61518, that is, directly below the rectification plate 19, through the path 17, with a lower oxygen content and less low boiling point components such as hydrogen. I can do it. Further, a part of the liquefied nitrogen from which low boiling point components such as hydrogen have been removed can also be taken out from this stage through the path 23.

第4図は本発明を単式精留JJ4に適用したもので、単
式精留塔2の精留板3の他にその上部に数段の精留板1
9aを設けた場合である。即ち該単式精留塔2の頂部よ
り水素等の低沸点成分の含有量の多い窒素ガスの一部を
径路4の調節弁24で低沸点成分の濃縮程度を制御して
その流量を調節しつつ導出すると共に、残りの窒素ガス
を径路5を介して凝縮蒸発器6に導入し、径路7から導
入した液化空気と熱交換させ液化窒素とし、径路8によ
、り単式精留塔2の頂部に還流液として戻し、精留板1
9aを流下させることにより窒素ガスとの間で低沸点成
分を除去する精留を行わせる。そして該精留板19aの
直下より水素等の低沸点成分の含有量の少ない高純度液
化窒素を径路25より導出し、径路26の膨張弁27を
介して膨張降圧後、凝縮蒸発器6に導入し気化して水素
等の低沸点成分の含有量の少ない高純度窒素ガスを径路
28より導出する。なお、径路25の高純度液化窒素は
そのまま径路29より導出することもできる。また上記
径路4より導出する窒素ガスのmは上記径路25より導
出する液化窒素中に含まれる水素等低沸点成分の含有m
が夫々1 ppm以下になる様に調節弁24により調節
することは言うまでもない。
Figure 4 shows the application of the present invention to a single rectifier JJ4, in which in addition to the rectifying plate 3 of the single rectifying column 2, there are several rectifying plates 1 above the rectifying plate 3.
This is the case when 9a is provided. That is, a portion of the nitrogen gas containing a large amount of low-boiling point components such as hydrogen is transferred from the top of the single-type rectification column 2 using the control valve 24 in the path 4 while controlling the degree of concentration of the low-boiling point components and adjusting its flow rate. At the same time, the remaining nitrogen gas is introduced into the condensing evaporator 6 through the path 5, and is converted into liquefied nitrogen through heat exchange with the liquefied air introduced through the path 7. Return it as a reflux liquid to the rectifying plate 1.
9a is caused to flow down to perform rectification with nitrogen gas to remove low boiling point components. Then, high-purity liquefied nitrogen with a low content of low-boiling components such as hydrogen is led out from directly below the rectifying plate 19a through a path 25, expanded and depressurized through an expansion valve 27 in a path 26, and then introduced into the condensing evaporator 6. The nitrogen gas is then vaporized and high-purity nitrogen gas with a low content of low-boiling components such as hydrogen is led out through the path 28. Note that the high-purity liquefied nitrogen in the path 25 can also be directly led out from the path 29. In addition, m of the nitrogen gas led out from the above-mentioned path 4 is the content m of low boiling point components such as hydrogen contained in the liquefied nitrogen led out from the above-mentioned path 25.
Needless to say, the control valve 24 is used to adjust the amount so that each amount is 1 ppm or less.

第5図は本発明を複式精留塔の下部塔に適用したもので
、下部塔10の精留板3aの他にその上部に数段の精留
板19bを設けた場合であ”る。即ち該下部塔10頂部
より水素等の低沸点成分の含有mの多い窒素ガスの一部
を径路30の調節弁31で低沸点成分の濃縮程度を制御
してその流量を調節しつつ導出すると共に、残りの窒素
ガスを径路11を介して凝縮蒸発器12に尋人し、液化
酸素と熱交換さV液化窒素とし、径路13にょリート部
塔10頂部に還流液として戻し、精留板191)を流下
させることにより窒素ガスとの間C低沸点成分を除去づ
る精留を行わせる。そして該精留板19bの直下より水
素等の低沸点成分の含有量の少ない高純度液化窒素を径
路32を経て導出し、径路33の膨張弁34を介して膨
張降圧後、凝縮蒸発器12に導入し気化して水素等の低
沸点成分の含有量の少ない高純度窒素ガスを径路35よ
りI9出する。なお径路32の高純度液化窒素はそのま
ま径路36より導出することもできる。また径路32の
6純度液化M素を径路14′、膨張弁20′を経て上部
塔15に還流液として供給し、上部塔15拍部より径路
17′を経て水素等低沸点成分の含@量の少ない高純度
窒素ガスを導出することも出来る。上記の場合に於て径
路3oより導出する窒素ガスのmは径路32より4出さ
れる液化窒素中の水素等低沸点成分の量が人々1111
110以下になる様mfH弁31を調節しC導出するこ
とは言うまでもない。
FIG. 5 shows an application of the present invention to the lower column of a double rectification column, in which, in addition to the rectifying plate 3a of the lower column 10, several stages of rectifying plates 19b are provided above the rectifying plate 3a. That is, a part of the nitrogen gas containing a large amount of low-boiling point components such as hydrogen is led out from the top of the lower column 10 while controlling the degree of concentration of the low-boiling point components with the control valve 31 of the path 30 and adjusting its flow rate. The remaining nitrogen gas is sent to the condensing evaporator 12 via path 11, where it is heat exchanged with liquefied oxygen to become liquefied nitrogen, and returned to the top of the column 10 through path 13 as a reflux liquid, where it is returned to the rectifier plate 191). Flows down to perform rectification to remove C low-boiling point components between the nitrogen gas and the rectifying plate 19b.Then, high-purity liquefied nitrogen with a low content of low-boiling point components such as hydrogen is passed through the path 32 from directly below the rectification plate 19b. After expanding and lowering the pressure through the expansion valve 34 in the path 33, it is introduced into the condensing evaporator 12 and vaporized, and high-purity nitrogen gas with a low content of low-boiling components such as hydrogen is outputted through the path 35 I9. Note that the high-purity liquefied nitrogen in the path 32 can also be directly led out from the path 36.Also, the 6-purity liquefied nitrogen in the path 32 is supplied as a reflux liquid to the upper column 15 via the path 14' and the expansion valve 20'. It is also possible to lead out high-purity nitrogen gas with a low content of low-boiling point components such as hydrogen from the 15th section of the upper column via path 17'.In the above case, m of the nitrogen gas led out from path 3o is the path From 32 to 4, the amount of low boiling point components such as hydrogen in liquefied nitrogen is 1111
Needless to say, the mfH valve 31 is adjusted to derive C so that the value becomes 110 or less.

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明した如く、高純度窒素を採取する空気
液化分離方法において、精留塔の精留段を数段釜(設け
、該精留塔頂部より水素等の低沸点成分の含有菌の多い
窒素ガスをそのmJIj:調節しつつ導出すると1に、
該精留塔1口部より数段下の精留段より水素等の低沸点
成分の含有量の少ない高純度の窒素ガスま1=は液化窒
素を導出することができるので、効率よく簡単かつ廉価
に高純度窒素を製造することができる。
As explained above, the present invention is an air liquefaction separation method for collecting high-purity nitrogen. If a large amount of nitrogen gas is derived while adjusting its mJIj, it becomes 1,
High-purity nitrogen gas with a low content of low-boiling components such as hydrogen can be extracted from the rectification stage several stages below the mouth of the rectification column to form liquefied nitrogen, so it is efficient, simple, and efficient. High purity nitrogen can be produced at low cost.

また、高純度窒素を採取づる空気液化分離方法において
、精留塔の精留段をvl、段多く設け、該精留塔項部よ
り水素等の低沸点成分の含イj量の多い窒素ガスをその
闇を調節しつつ導出すると共に、該精留塔頂部より数段
下の精留段より水素等の低沸点成分の含有量の少ない高
純度液化窒素を導出し、膨張弁を介して膨張降圧後凝縮
蒸発器に導入し気化して水素等の低沸点成分の含有量の
少ない高純度窒素ガスを導出することができるので、系
外にtel出する高純度窒素ガスのRを最小限に出来効
率よく簡単かつ廉価に高純度窒素ガスを製造することが
できる。
In addition, in an air liquefaction separation method that collects high-purity nitrogen, the number of rectification stages in the rectification column is increased by vl, and nitrogen gas containing a large amount of low-boiling point components such as hydrogen is extracted from the lower part of the rectification column. At the same time, high-purity liquefied nitrogen with a low content of low-boiling components such as hydrogen is extracted from a rectification stage several stages below the top of the rectification column, and expanded through an expansion valve. After reducing the pressure, it is introduced into the condensing evaporator and vaporized to produce high-purity nitrogen gas with a low content of low-boiling components such as hydrogen, so the R of high-purity nitrogen gas discharged outside the system can be minimized. High purity nitrogen gas can be produced easily and inexpensively with high efficiency.

なお、この精留段を増加させる方法は特に新規のプラン
トに好適に採用することができる。
Note that this method of increasing the number of rectification stages can be particularly suitably employed in new plants.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来の空気液化分離方法を示したも
ので、第1図は単式精留塔の系統図、第2図は複式精留
塔の系統図、第3図乃至第5図は本発明の空気波化分前
方法を示したもので、第3図は複式精留塔の上部塔に適
用した系統図、第4図は単式精留塔に適用した系統図、
第5図は複式精留塔の下部塔に適用した系統図である。 2は単式精留塔、6は凝縮蒸発器、10はF部塔、12
は凝縮蒸発器、15G!上部塔、19.]9a、19b
Gt精留板、20,27.34は膨張弁、22.24.
31は調節弁である。
Figures 1 and 2 show the conventional air liquefaction separation method. Figure 1 is a system diagram of a single type rectification column, Figure 2 is a system diagram of a double type rectification column, and Figures 3 to 5. The figures show the air wave fractionation method of the present invention. Figure 3 is a system diagram applied to the upper column of a double rectification column, and Figure 4 is a system diagram applied to a single type rectification column.
FIG. 5 is a system diagram applied to the lower column of a double rectification column. 2 is a single rectification column, 6 is a condensing evaporator, 10 is an F section column, 12
is a condenser evaporator, 15G! Upper tower, 19. ]9a, 19b
Gt rectifier plate, 20, 27.34 expansion valve, 22.24.
31 is a control valve.

Claims (1)

【特許請求の範囲】 1、高純度窒素を採取する空気波化分11111 jj
法において、精留塔の精留段を数段多く設()、該精留
塔頂部より水素等の低沸点成分の含有量の多い窒素ガス
をその量を調節しつつ導出り゛るど」(に、該精留塔頂
部より数段下の精留段より水素等の低沸点成分の含有量
の少ない高純度の窒素ガスまた【、L液化窒素を導出す
ることを特徴とづる空気液化分離方法。 2、前記精留塔が複式精留塔の」ニ部塔である特許請求
の範囲第1項記載の空気液化分離方法。 3、高純度窒素を採取する空気液化分離方法に(13い
て、精留塔の精留段を数段多く設け、該精留塔頂部より
水素等の低沸点成分の含有量の多い窒素ガスをその開を
調節しつつ導出すると共に、該精留塔頂部より数段下の
精留段より水素等の低沸点成分のa有量の少ない高純度
液化窒素を導出し、膨張弁を介して膨張降圧後凝縮蒸発
器に導入し気化して水系等の低沸点成分の含有mの少な
い高純度窒素ガスを導出することを特徴とする空気液化
分離方法。 4、前記精留塔が単式精留塔である特許請求の範囲第3
項記載の空気液化分離方法。 5、前記精留塔が複式精留塔の下部塔である特許請求の
範囲第3項記載の空気液化分離方法。
[Claims] 1. Air wave fraction for collecting high purity nitrogen 11111 jj
In the method, the number of rectification stages in a rectification column is increased by several stages (), and nitrogen gas containing a high content of low-boiling components such as hydrogen is drawn out from the top of the rectification column while adjusting the amount. Air liquefaction separation characterized by deriving high-purity nitrogen gas with a low content of low-boiling components such as hydrogen from the rectification stage several stages below the top of the rectification column. 2. The air liquefaction separation method according to claim 1, wherein the rectification column is a two-part column of a double rectification column. 3. The air liquefaction separation method for collecting high-purity nitrogen (13) , a rectification column is provided with several rectification stages, and nitrogen gas containing a high content of low-boiling components such as hydrogen is discharged from the top of the rectification tower while adjusting its opening. High-purity liquefied nitrogen with a small amount of low-boiling components such as hydrogen is extracted from the rectification stage several stages below, expanded through an expansion valve, and then introduced into a condensing evaporator where it is vaporized to produce low-boiling point components such as water. An air liquefaction separation method characterized by deriving high-purity nitrogen gas containing a small amount of components. 4. Claim 3, wherein the rectification column is a single-type rectification column.
The air liquefaction separation method described in . 5. The air liquefaction separation method according to claim 3, wherein the rectification column is a lower column of a double rectification column.
JP25179983A 1983-12-28 1983-12-28 Method of liquefying and separating air Granted JPS60142183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25179983A JPS60142183A (en) 1983-12-28 1983-12-28 Method of liquefying and separating air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25179983A JPS60142183A (en) 1983-12-28 1983-12-28 Method of liquefying and separating air

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP279691A Division JPH0615947B2 (en) 1991-01-14 1991-01-14 Air liquefaction separation method and device

Publications (2)

Publication Number Publication Date
JPS60142183A true JPS60142183A (en) 1985-07-27
JPH0412391B2 JPH0412391B2 (en) 1992-03-04

Family

ID=17228096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25179983A Granted JPS60142183A (en) 1983-12-28 1983-12-28 Method of liquefying and separating air

Country Status (1)

Country Link
JP (1) JPS60142183A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62141485A (en) * 1985-12-16 1987-06-24 日本酸素株式会社 Manufacture of nitrogen having high purity
JPS62158977A (en) * 1985-12-28 1987-07-14 大同ほくさん株式会社 Production unit for high-purity nitrogen gas
JPS62272079A (en) * 1986-05-21 1987-11-26 株式会社日立製作所 Air separator
JPS6479574A (en) * 1987-07-09 1989-03-24 Linde Ag Air separating method and device by rectification
JPH04227459A (en) * 1990-06-27 1992-08-17 Union Carbide Ind Gases Technol Corp Cryogenic air separating system with double formation type side condenser
JPH05212203A (en) * 1991-11-15 1993-08-24 Air Prod And Chem Inc Distillation separation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864478A (en) * 1981-10-15 1983-04-16 日本酸素株式会社 Device for manufacturing nitrogen having high purity

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864478A (en) * 1981-10-15 1983-04-16 日本酸素株式会社 Device for manufacturing nitrogen having high purity

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62141485A (en) * 1985-12-16 1987-06-24 日本酸素株式会社 Manufacture of nitrogen having high purity
JPS62158977A (en) * 1985-12-28 1987-07-14 大同ほくさん株式会社 Production unit for high-purity nitrogen gas
JPS62272079A (en) * 1986-05-21 1987-11-26 株式会社日立製作所 Air separator
JPS6479574A (en) * 1987-07-09 1989-03-24 Linde Ag Air separating method and device by rectification
JPH04227459A (en) * 1990-06-27 1992-08-17 Union Carbide Ind Gases Technol Corp Cryogenic air separating system with double formation type side condenser
JPH05212203A (en) * 1991-11-15 1993-08-24 Air Prod And Chem Inc Distillation separation method

Also Published As

Publication number Publication date
JPH0412391B2 (en) 1992-03-04

Similar Documents

Publication Publication Date Title
US5582035A (en) Air separation
US5485729A (en) Air separation
JPH0694361A (en) Separation of air
GB2180923A (en) Process and apparatus for the production of pressurized nitrogen
KR900007209B1 (en) Hybrid nitrogen generator with auxiliary column drive
US2040116A (en) Method for the separation and recovery of krypton and xenon from gaseous mixtures containing them
JPS6298184A (en) Manufacture of krypton-xenon concentrate containing no oxygen
JP2636949B2 (en) Improved nitrogen generator
JPS60142183A (en) Method of liquefying and separating air
JPH05288464A (en) Method and device for cryogenic rectification for producing nitrogen and ultra high purity oxygen
JPH03170785A (en) Extremely low temperature air separation and its apparatus
JPH0615947B2 (en) Air liquefaction separation method and device
JPH0526114B2 (en)
JPS6044587B2 (en) Totally low pressure air separation method and device
JP3282040B2 (en) Ultra high purity oxygen sampling method and apparatus
JPH0399190A (en) Method of manufacturing oxygen
JPS6039951B2 (en) Argon separation method
JPH05133682A (en) Method and device for liquefying separation of air
JPS62276387A (en) Manufacture of argon
JP2553989B2 (en) Air liquefaction separation method
JP2000292055A (en) Method and apparatus for manufacturing ultrahigh purity gas
JPH06129762A (en) Method and device for producing ultrahigh purity nitrogen
JPS60126572A (en) Manufacture of high-purity argon
GB2073863A (en) Gas recovery method and apparatus
JPH02293578A (en) Air liquefying separation method and its apparatus

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term