JP2006329615A - Method and device for separating air by low temperature distillation - Google Patents

Method and device for separating air by low temperature distillation Download PDF

Info

Publication number
JP2006329615A
JP2006329615A JP2006139954A JP2006139954A JP2006329615A JP 2006329615 A JP2006329615 A JP 2006329615A JP 2006139954 A JP2006139954 A JP 2006139954A JP 2006139954 A JP2006139954 A JP 2006139954A JP 2006329615 A JP2006329615 A JP 2006329615A
Authority
JP
Japan
Prior art keywords
air
turbine
pressure
column
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006139954A
Other languages
Japanese (ja)
Inventor
Gabbita Venkata Maruthi Shyamala Prasad
ガッビタ・ベンカタ・マルスィ・シャマラ・プラサド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of JP2006329615A publication Critical patent/JP2006329615A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04175Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04181Regenerating the adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04727Producing pure argon, e.g. recovered from a crude argon column using an auxiliary pure argon column for nitrogen rejection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/40Air or oxygen enriched air, i.e. generally less than 30mol% of O2

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an improved method for separating air by low temperature distillation. <P>SOLUTION: The air is compressed to the first pressure in a compressor, cooled and refined, the air under the first pressure is compressed to the second pressure in the first and second booster compressors 11, 8, to be cooled thereafter in a heat exchanger 5, at least one part of the air under the second pressure fed to the heat exchanger is cooled to be liquefied and is fed to at least one column of a double column, at least one part of the air is compressed to intermediate pressure between the first pressure and the second pressure, in the first booster compressor, followed to be cooled, and is expanded in the first turbine 12 having the first inlet temperature, the first portion of the air expanded in the the first turbine is fed to a high-pressure column, the second portion of the air expanded in the the first turbine is fed to the heat exchanger to be heated, and the second portion of the heated air is expanded in the second turbine 9 and is returned to the heat exchanger to be heated further. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、低温蒸留(cryogenic distillation)により空気を分離するための方法および装置に関する。本発明は、空気中に存在するガスの分離および液化に、および空気の蒸留のための装置に適用される。本発明は、2つンタービン中での空気の膨張による低温生産を用いた方法に関する。空気の一部は、冷(cold)タービンと呼ばれる第1のタービン中で膨張され、ついで、この第1のタービンからの流体が、温(warm)タービンと呼ばれる第2のタービン中で膨張される。   The present invention relates to a method and apparatus for separating air by cryogenic distillation. The invention applies to the separation and liquefaction of gases present in air and to equipment for the distillation of air. The present invention relates to a method using cold production by expansion of air in a two-turbine turbine. A portion of the air is expanded in a first turbine called a cold turbine, and then the fluid from this first turbine is expanded in a second turbine called a warm turbine. .

特許文献1において、全ての圧縮空気は、直列接続された2つのブースタ中で昇圧される。ついで、この空気は、冷却され、高圧タービン中で膨張され、その後、この空気の一部は低圧タービン中で再び膨張される。   In Patent Document 1, all compressed air is pressurized in two boosters connected in series. The air is then cooled and expanded in the high pressure turbine, after which a portion of the air is expanded again in the low pressure turbine.

この構成は、機械の非入手性により、大規模空気分離プラントにおける液体対ガス比を制限する。温ブースタおよび温膨張機を通る流れに大きな相違が存在する。
US−A−5157926
This configuration limits the liquid to gas ratio in large air separation plants due to machine unavailability. There are significant differences in the flow through the warm booster and the expander.
US-A-5157926

本発明は、低温蒸留により空気を分離するための改善された方法および装置を提供することを目的とする。   The present invention seeks to provide an improved method and apparatus for separating air by cryogenic distillation.

本発明によれば、高圧カラムと低圧カラムを備える二重カラムを少なくとも備える低温蒸留装置を用いる低温蒸留により空気を分離するための方法であって、空気を圧縮機中で第1の圧力に圧縮し、冷却し、および精製し、前記第1の圧力にある空気を第1および第2のブースタ圧縮機中で第2の圧力に圧縮した後、熱交換器中で冷却し、前記熱交換器に送られた前記第2の圧力にある空気の少なくとも一部を冷却し、液化し、および前記二重カラムの少なくとも1つのカラムに送り、該空気の少なくとも一部を、前記第1のブースタ圧縮機中で、前記第1の圧力と第2の圧力の中間の圧力に圧縮し、冷却し、および第1の入口温度を有する第1のタービン中で膨張させ、前記第1のタービン中で膨張された空気の第1の部分を前記高圧カラムに送り、前記第1のタービン中で膨張された空気の第2の部分を加温すべく前記熱交換器に送り、この加温された空気の第2の部分を、第2のタービン中で膨張させ、前記熱交換器に戻し、さらに加温する該方法が提供される。   According to the present invention, a method for separating air by cryogenic distillation using a cryogenic distillation apparatus comprising at least a double column comprising a high pressure column and a low pressure column, wherein the air is compressed to a first pressure in a compressor. Cooling, purifying, and compressing air at the first pressure to a second pressure in the first and second booster compressors and then cooling in a heat exchanger, the heat exchanger At least a portion of the air at the second pressure sent to is cooled, liquefied, and sent to at least one column of the dual column, wherein at least a portion of the air is compressed into the first booster In the machine, compressed to an intermediate pressure between the first pressure and the second pressure, cooled and expanded in a first turbine having a first inlet temperature and expanded in the first turbine A first portion of the conditioned air in the high pressure column To the heat exchanger to warm a second portion of the air expanded in the first turbine, and to pass the second portion of the warmed air in the second turbine The method is provided for expanding, returning to the heat exchanger and further warming.

本発明は、以下の特徴の1つまたはそれ以上を有し得る:
− 前記中間の圧力に圧縮された後、冷却された全ての空気を前記第1のタービンに送ること;
− 少なくとも1種の液体生成物が製造されること;
− 前記第1のブースタ圧縮機が、前記第1のタービンに連結され、前記第2のブースタ圧縮機が、前記第2のタービンに連結されること。
The present invention may have one or more of the following features:
-Sending all cooled air to the first turbine after being compressed to the intermediate pressure;
-At least one liquid product is produced;
The first booster compressor is connected to the first turbine and the second booster compressor is connected to the second turbine;

本発明のさらなる側面によると、高圧カラムと低圧カラムを備える二重カラム、圧縮機、第1および第2のタービン、第1および第2のブースタ圧縮機、熱交換器、第1の圧力にある空気を、前記圧縮機から、直列に接続された前記第1および第2のブースタ圧縮機に送るための手段、第2の圧力にある空気を、前記第2のブースタ圧縮機の出口から、前記熱交換器に送り、ついで前記二重カラムの少なくとも1つのカラムに送るための手段、前記第1のブースタ圧縮機から空気を取り出すための手段、前記第1のブースタ圧縮機から取り出された空気を前記熱交換器に送り、ついで前記第1のタービンに送るための手段、前記第1のタービンから空気を前記高圧カラムに送るための手段、前記第1のタービンから空気を熱交換器の冷末端(cold end)に送るための手段、前記第1のタービンから前記熱交換器に送られた空気を前記熱交換器の中間点から取り出すための手段、該取り出された空気を第2のタービンに送るための手段、並びに前記第2のタービンから空気を前記熱交換器へ戻すための手段を備える、低温蒸留により空気を分離するための装置が提供される。   According to a further aspect of the invention, a double column comprising a high pressure column and a low pressure column, a compressor, a first and a second turbine, a first and a second booster compressor, a heat exchanger, a first pressure Means for sending air from the compressor to the first and second booster compressors connected in series; air at a second pressure from the outlet of the second booster compressor; Means for sending to a heat exchanger and then to at least one column of the double column, means for taking air from the first booster compressor, air taken from the first booster compressor Means for sending to the heat exchanger and then to the first turbine, means for sending air from the first turbine to the high pressure column, air from the first turbine to the cold end of the heat exchanger (C old end), means for extracting air sent from the first turbine to the heat exchanger from an intermediate point of the heat exchanger, and sending the extracted air to the second turbine There is provided an apparatus for separating air by cryogenic distillation, comprising means for, and means for returning air from the second turbine to the heat exchanger.

本装置は、前記第1のブースタ圧縮機で圧縮された全ての空気を前記第1のタービンに送るための手段を有し得る。   The apparatus may have means for sending all the air compressed by the first booster compressor to the first turbine.

前記第1のブースタ圧縮機は、前記第1のタービンに連結され得、前記第2のブースタ圧縮機は、前記第2のタービンに連結され得る。   The first booster compressor may be coupled to the first turbine, and the second booster compressor may be coupled to the second turbine.

本装置は、アルゴンカラム、およびアルゴン富化流を前記低圧カラムからこのアルゴンカラムに送るための手段を有し得る。   The apparatus may have an argon column and means for sending an argon enriched stream from the low pressure column to the argon column.

以下、図面を参照しながら、本発明を説明する。
図1に示される空気蒸留装置は、ガス状および液状で酸素、窒素およびアルゴンを製造するためのものである。この装置は、二重蒸留カラム1を備え、これは、約6バール(絶対)で操作される高圧カラム2と、その上に設けられた、大気圧よりもやや高い圧力で操作される低圧カラム3を含む。カラム2のヘッド部分内のガス(窒素)は、蒸発器−凝縮器4により、カラム3のバット(vat)部分内の液体(酸素)と間接的熱交換関係にある。
Hereinafter, the present invention will be described with reference to the drawings.
The air distillation apparatus shown in FIG. 1 is for producing oxygen, nitrogen and argon in gaseous and liquid form. This apparatus comprises a double distillation column 1, which comprises a high pressure column 2 operated at about 6 bar (absolute) and a low pressure column provided thereon and operated at a pressure slightly higher than atmospheric pressure. 3 is included. The gas (nitrogen) in the head portion of the column 2 is in an indirect heat exchange relationship with the liquid (oxygen) in the vat portion of the column 3 by the evaporator-condenser 4.

この装置は、また、熱交換関係にある流体の向流循環を有する熱交換ライン5と、2つのタービン−ブースタ装置6および7を備える。装置6は、ブースタ8と、同じシャフト10上に設けられた温低圧タービン9を備え、装置7は、ブースタ11と、同じシャフト13上に設けられた冷高圧タービン12を備える。2つのブースタ8および11は、直列に設けられている。   The device also comprises a heat exchange line 5 with a countercurrent circulation of fluid in heat exchange relation and two turbine-booster devices 6 and 7. The apparatus 6 includes a booster 8 and a hot / low pressure turbine 9 provided on the same shaft 10, and the apparatus 7 includes a booster 11 and a cold / high pressure turbine 12 provided on the same shaft 13. The two boosters 8 and 11 are provided in series.

圧縮機C内で約20バール(絶対)に圧縮され、精製装置Aでの精製により水およびCO2が除去された、分離する空気を、第1のブースタ11により約32バール(絶対)に昇圧する。ついで、この流れを2つに分ける。この空気の第1の部分P1は、上記熱交換ラインに送り、温度T1、例えば−125℃のオーダーの温度まで、熱交換ライン5のダクト内で冷却する。ついで、これを、ダクト17を介して熱交換ライン5から取り出し、タービン12内で6バール(絶対)まで膨張させる。空気は、そのほぼ露点で、このタービンを出る。この空気の一部、例えば4分の1を、熱交換ライン14の冷末端に達するまで冷却し続けることができる。 The air to be separated, compressed in the compressor C to about 20 bar (absolute) and from which water and CO 2 have been removed by purification in the refiner A, is boosted to about 32 bar (absolute) by the first booster 11. To do. Then this flow is divided into two. This first part P1 of air is sent to the heat exchange line and cooled in the duct of the heat exchange line 5 to a temperature T1, for example a temperature on the order of −125 ° C. This is then removed from the heat exchange line 5 via the duct 17 and expanded in the turbine 12 to 6 bar (absolute). Air exits this turbine at its near dew point. A portion of this air, for example a quarter, can continue to be cooled until the cold end of the heat exchange line 14 is reached.

上記空気の第2の部分P2は、第2のブースタ8内で、38バールの圧力までさらに圧縮した後、ダクト14内でその温末端(warm end)から冷末端に通じることにより冷却する。この空気は、液体状態でダクト14を出、その後、ダクト15を介して、膨張弁16内で6バールまで膨張させ、高圧カラム2の底部に注入する。この液体空気は、上記低圧まで膨張させ、カラム3に注入することができる。   The second portion P2 of air is further compressed in the second booster 8 to a pressure of 38 bar and then cooled in the duct 14 by passing from its warm end to its cold end. This air exits the duct 14 in the liquid state and is then expanded to 6 bar in the expansion valve 16 via the duct 15 and injected into the bottom of the high pressure column 2. This liquid air can be expanded to the low pressure and injected into the column 3.

全ての空気(または残存空気)は38バールにある。   All air (or residual air) is at 38 bar.

20バール(絶対)に圧縮された初期空気流の例えば約1/10に相当する、タービン12からの空気の一部は、導管18を介してカラム2のバット部分に送り、残りの部分を、熱交換ラインのダクト19内で、この熱交換ラインの冷末端から、T1よりもはるかに高い温度T2まで温める。この温度T2は、例えば、室温〜−20℃であり得る。   A portion of the air from the turbine 12 corresponding to, for example, about 1/10 of the initial air flow compressed to 20 bar (absolute) is sent via conduit 18 to the bat portion of the column 2 and the remaining portion is In the duct 19 of the heat exchange line, it is warmed from the cold end of this heat exchange line to a temperature T2 that is much higher than T1. This temperature T2 can be, for example, room temperature to −20 ° C.

こうして加温された空気を、ダクト20を介して、熱交換ラインから取り出し、タービン9中でほぼ大気圧まで膨張させる。この空気は、該タービンから、T1近傍の温度で出てゆく。その後、この空気を、ダクト21を介して熱交換ラインに再導入し、ダクト22内で室温まで加温し、そして流入する空気を精製するために使用した吸着剤を冷却するために、および/または本装置の主圧縮機から出てゆく空気を冷却するために最終的に使用した後、当該装置から排出する。   The air thus heated is taken out from the heat exchange line via the duct 20 and expanded to almost atmospheric pressure in the turbine 9. This air exits the turbine at a temperature near T1. This air is then reintroduced into the heat exchange line via the duct 21, warmed to room temperature in the duct 22, and to cool the adsorbent used to purify the incoming air and / or Or after using finally to cool the air which leaves the main compressor of this apparatus, it exhausts from the said apparatus.

変形例として、図1に示すように、タービン9からの空気の全てを、熱交換ラインの温末端に達するまで加温し、ついで大気に排出することができる。   As a modification, as shown in FIG. 1, all of the air from the turbine 9 can be heated until reaching the warm end of the heat exchange line and then discharged to the atmosphere.

本装置のその他の部分はよく知られているものである。カラム2のバット部分に集められた富化液体LR(酸素富化空気)は、低圧カラム3の頂部から来る残存窒素を加熱することにより過冷却器(sub-cooler)25内で過冷却した後、カラム3に送り、その後これを、膨張弁26内で膨張させる。カラム2の上部から取り出された、実質的に窒素からなる貧液体LPは、過冷却器25内で過冷却した後、カラム3に送り、その後これを膨張弁28内で膨張させる。本装置は、ダクト29を介してカラム2のヘッド部分中に収集された液体窒素を生産する。液体窒素は、過冷却器25内で過冷却され、膨張弁30内でほぼ大気圧まで膨張させ、容器31内に貯蔵する。ダクト32を介してカラム3のバット部分に収集された液体酸素は、過冷却器25内で過冷却されている。これは、ダクト34を介してカラム3のヘッド部分に取り出された残存窒素により冷却される。カラム3の底部から取り出された気体35の形態にある酸素は、主熱交換器により温められ、流入する空気を冷却する。カラム3の頂部から取り出されたもう一つの生成物低圧窒素37も、過冷却器および主熱交換器を通り、他の流入するガスおよび液体を冷却する。   The other parts of the device are well known. After the enriched liquid LR (oxygen-enriched air) collected in the bat portion of the column 2 is subcooled in the sub-cooler 25 by heating the residual nitrogen coming from the top of the low pressure column 3 , Sent to the column 3, which is then expanded in the expansion valve 26. The poor liquid LP substantially consisting of nitrogen taken out from the upper part of the column 2 is supercooled in the subcooler 25 and then sent to the column 3, and then expanded in the expansion valve 28. The apparatus produces liquid nitrogen collected in the head portion of column 2 via duct 29. The liquid nitrogen is supercooled in the subcooler 25, expanded to almost atmospheric pressure in the expansion valve 30, and stored in the container 31. Liquid oxygen collected in the bat portion of the column 3 through the duct 32 is supercooled in the supercooler 25. This is cooled by the residual nitrogen taken out to the head portion of the column 3 through the duct 34. Oxygen in the form of gas 35 taken from the bottom of the column 3 is warmed by the main heat exchanger and cools the incoming air. Another product, low pressure nitrogen 37, taken from the top of column 3, also passes through the subcooler and main heat exchanger to cool other incoming gases and liquids.

本装置は、アルゴン富化供給流を低圧カラム3からアルゴンカラム39に送るための導管38をも備えている。アルゴンは、窒素除去カラム41内でさらに精製される。本プロセスのこの部分は、全体として標準的なものであり、詳しくは説明しない。   The apparatus also includes a conduit 38 for sending an argon enriched feed stream from the low pressure column 3 to the argon column 39. Argon is further purified in a nitrogen removal column 41. This part of the process is generally standard and will not be described in detail.

図2において、x軸は温度(℃)を示し、y軸は熱流量を示す。下側の線C1は、冷却され、液化される空気の熱流量の変動を示し、上側の線C2は、加温されるガスの熱流量を示す。このことから以下のことがわかる。   In FIG. 2, the x-axis indicates temperature (° C.), and the y-axis indicates heat flow. The lower line C1 shows the variation in the heat flow of the cooled and liquefied air, and the upper line C2 shows the heat flow of the heated gas. This shows the following.

冷タービン12は、空気の液化ゾーンを境界付ける入口温度と出口温度を有する高流量の空気を処理する。すなわち、冷タービンは、その低圧での操作にもかかわらず、多くの寒冷(cold)を生成し、さらにこの寒冷を、空気を液化するために正確に多量の冷却が必要とされ、かつ他方ヘッド損失が最大であるところの温度ゾーン中に生成させる。温タービンは、小流量の空気を処理し、6バールから1バールへの膨張を確保することにより、先の温度ゾーンの上に位置し、冷却がタービンにより確保されるところの温度ゾーンの実質部を回復(recover)する。したがって、タービン9は、広範囲の温度にわたって少量の冷却を生み出す。   The cold turbine 12 processes a high flow of air having an inlet temperature and an outlet temperature that bound the air liquefaction zone. That is, a cold turbine produces a lot of cold despite its low pressure operation, and this cold requires an exact amount of cooling to liquefy the air and the other head It is generated in the temperature zone where the loss is greatest. The hot turbine is located above the previous temperature zone by treating a small flow of air and ensuring expansion from 6 bar to 1 bar, the substantial part of the temperature zone where cooling is ensured by the turbine. Recover. Thus, the turbine 9 produces a small amount of cooling over a wide range of temperatures.

上記考察から、図1の装置は減少した液化の比エネルギーをもたらすことがわかる。また、ダクト18内を循環する高圧空気は、不都合なく、その露点近傍にあり、これは、二重カラムにおける蒸留に重要である。   From the above considerations, it can be seen that the apparatus of FIG. 1 provides a reduced specific energy of liquefaction. Also, the high pressure air circulating in the duct 18 is inconveniently near its dew point, which is important for distillation in a double column.

本発明により空気を蒸留するための装置の概略図。1 is a schematic view of an apparatus for distilling air according to the present invention. 本発明による液化サイクルの熱交換ダイアグラム。2 is a heat exchange diagram of a liquefaction cycle according to the present invention.

符号の説明Explanation of symbols

1…二重カラム
2…高圧カラム
3…低圧カラム
4…気化器−凝縮器
5,14…熱交換ライン
6,7…タービン−ブースタ装置
8,11…ブースタ
9…温低圧タービン
10,13…シャフト
12…冷高圧タービン
15,17,20,21,22,29,32,34…ダクト
16,26,28,30…膨張弁
18…導管
25…過冷却器
31…容器
35…気体酸素
37…低圧窒素
38…アルゴンカラム
41…窒素除去カラム
DESCRIPTION OF SYMBOLS 1 ... Double column 2 ... High pressure column 3 ... Low pressure column 4 ... Vaporizer-condenser 5,14 ... Heat exchange line 6,7 ... Turbine-booster device 8,11 ... Booster 9 ... Warm and low pressure turbine 10,13 ... Shaft DESCRIPTION OF SYMBOLS 12 ... Cold high pressure turbine 15, 17, 20, 21, 22, 29, 32, 34 ... Duct 16, 26, 28, 30 ... Expansion valve 18 ... Conduit 25 ... Subcooler 31 ... Container 35 ... Gaseous oxygen 37 ... Low pressure Nitrogen 38 ... Argon column 41 ... Nitrogen removal column

Claims (7)

高圧カラム(2)と低圧カラム(3)を備える二重カラム(1)を少なくとも備える低温蒸留装置を用いる低温蒸留により空気を分離するための方法であって、空気を圧縮機中で第1の圧力に圧縮し、冷却し、および精製し、前記第1の圧力にある空気を第1および第2のブースタ圧縮機(11、8)中で第2の圧力に圧縮した後、熱交換器(5)中で冷却し、前記熱交換器に送られた前記第2の圧力にある空気(15)の少なくとも一部を冷却し、液化し、および前記二重カラムの少なくとも1つのカラムに送り、該空気の少なくとも一部を、前記第1のブースタ圧縮機中で、前記第1の圧力と第2の圧力の中間の圧力に圧縮し、冷却し、および第1の入口温度を有する第1のタービン(12)中で膨張させ、前記第1のタービン中で膨張された空気の第1の部分を前記高圧カラムに送り、前記第1のタービン中で膨張された空気の第2の部分(19)を加温すべく前記熱交換器に送り、この加温された空気の第2の部分を、第2のタービン(9)中で膨張させ、前記熱交換器に戻し、さらに加温する該方法。   A method for separating air by low temperature distillation using a low temperature distillation apparatus comprising at least a double column (1) comprising a high pressure column (2) and a low pressure column (3), wherein the air is first in a compressor. After compressing to pressure, cooling and purifying and compressing the air at said first pressure to a second pressure in first and second booster compressors (11, 8), a heat exchanger ( 5) Cool in, cool at least a portion of the air (15) at the second pressure sent to the heat exchanger, liquefy and send to at least one column of the double column; At least a portion of the air is compressed in the first booster compressor to a pressure intermediate between the first pressure and the second pressure, cooled, and having a first inlet temperature; Expanded in turbine (12) and expanded in said first turbine A first portion of the air that has been sent to the high pressure column, and a second portion (19) of the air that has been expanded in the first turbine is sent to the heat exchanger to be heated and heated. The method wherein the second part of the heated air is expanded in a second turbine (9), returned to the heat exchanger and further heated. 前記中間の圧力に圧縮され、さらに圧縮することなく冷却された全ての空気を前記第1のタービン(12)に送る請求項1に記載の方法。   The method of claim 1, wherein all air compressed to the intermediate pressure and cooled without further compression is sent to the first turbine (12). 少なくとも1種の液体生成物が製造される請求項1または2に記載の方法。   The process according to claim 1 or 2, wherein at least one liquid product is produced. 前記第1のブースタ圧縮機(11)が、前記第1のタービン(12)に連結され、前記第2のブースタ圧縮機(8)が、前記第2のタービン(9)に連結されている請求項1〜3のいずれか1項に記載の方法。   The first booster compressor (11) is connected to the first turbine (12) and the second booster compressor (8) is connected to the second turbine (9). Item 4. The method according to any one of Items 1 to 3. 高圧カラム(2)と低圧カラム(3)を備える二重カラム(1)、圧縮機(C)、第1および第2のタービン(12、9)、第1および第2のブースタ圧縮機(11、8)、熱交換器(5)、第1の圧力にある空気を、前記圧縮機から、直列に接続された前記第1および第2のブースタ圧縮機に送るための手段、第2の圧力にある空気を、前記第2のブースタ圧縮機の出口から、前記熱交換器に送り、ついで前記二重カラムの少なくとも1つのカラムに送るための手段、前記第1のブースタ圧縮機から空気を取り出すための手段、前記第1のブースタ圧縮機から取り出された空気を前記熱交換器に送り、ついで前記第1のタービンに送るための手段、前記第1のタービンから空気を前記高圧カラムに送るための手段、前記第1のタービンから空気を熱交換器の冷末端に送るための手段、前記第1のタービンから前記熱交換器に送られた空気を前記熱交換器の中間点から取り出すための手段、該取り出された空気を第2のタービンに送るための手段、並びに前記第2のタービンから空気を前記熱交換器へ戻すための手段を備える、低温蒸留により空気を分離するための装置。   Double column (1) comprising a high pressure column (2) and a low pressure column (3), compressor (C), first and second turbines (12, 9), first and second booster compressors (11 8), heat exchanger (5), means for sending air at a first pressure from the compressor to the first and second booster compressors connected in series, a second pressure Means for sending air from the outlet of the second booster compressor to the heat exchanger and then to at least one column of the double column, taking air from the first booster compressor Means for sending air taken from the first booster compressor to the heat exchanger and then to the first turbine, for sending air from the first turbine to the high pressure column Means from the first turbine Means for sending air to the cold end of the heat exchanger, means for removing air sent from the first turbine to the heat exchanger from an intermediate point of the heat exchanger, and An apparatus for separating air by cryogenic distillation comprising means for sending to a second turbine and means for returning air from the second turbine to the heat exchanger. 前記第1のブースタ圧縮機の出口が、前記第1のタービンの入口のみに接続されている請求項5に記載の装置。   The apparatus of claim 5, wherein an outlet of the first booster compressor is connected only to an inlet of the first turbine. 前記第1のブースタ圧縮機(11)が、前記第1のタービン(12)に連結され、前記第2のブースタ圧縮機(8)が、前記第2のタービン(9)に連結されている請求項5または6に記載の装置。   The first booster compressor (11) is connected to the first turbine (12) and the second booster compressor (8) is connected to the second turbine (9). Item 7. The device according to Item 5 or 6.
JP2006139954A 2005-05-20 2006-05-19 Method and device for separating air by low temperature distillation Pending JP2006329615A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IN606CH2005 2005-05-20

Publications (1)

Publication Number Publication Date
JP2006329615A true JP2006329615A (en) 2006-12-07

Family

ID=36910828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006139954A Pending JP2006329615A (en) 2005-05-20 2006-05-19 Method and device for separating air by low temperature distillation

Country Status (4)

Country Link
US (1) US20060272353A1 (en)
EP (1) EP1726900A1 (en)
JP (1) JP2006329615A (en)
CN (1) CN1873358A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2913759B1 (en) * 2007-03-13 2013-08-16 Air Liquide METHOD AND APPARATUS FOR GENERATING GAS AIR FROM THE AIR IN A GAS FORM AND LIQUID WITH HIGH FLEXIBILITY BY CRYOGENIC DISTILLATION
RU2675029C1 (en) * 2017-02-10 2018-12-14 Общество с ограниченной ответственностью "Газхолодтехника" System for production of compressed natural gas at the gas distribution station
WO2020124427A1 (en) * 2018-12-19 2020-06-25 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for starting up a cryogenic air separation unit and associated air separation unit
US11933541B2 (en) * 2021-08-11 2024-03-19 Praxair Technology, Inc. Cryogenic air separation unit with argon condenser vapor recycle
US11933539B2 (en) * 2021-08-11 2024-03-19 Praxair Technology, Inc. Cryogenic air separation unit with argon condenser vapor recycle

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1325881A (en) * 1969-08-12 1973-08-08 Union Carbide Corp Cryogenic separation of air
FR2461906A1 (en) * 1979-07-20 1981-02-06 Air Liquide CRYOGENIC AIR SEPARATION METHOD AND INSTALLATION WITH OXYGEN PRODUCTION AT HIGH PRESSURE
FR2652409A1 (en) * 1989-09-25 1991-03-29 Air Liquide REFRIGERANT PRODUCTION PROCESS, CORRESPONDING REFRIGERANT CYCLE AND THEIR APPLICATION TO AIR DISTILLATION.
JP2909678B2 (en) * 1991-03-11 1999-06-23 レール・リキード・ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method and apparatus for producing gaseous oxygen under pressure
FR2692664A1 (en) * 1992-06-23 1993-12-24 Lair Liquide Process and installation for producing gaseous oxygen under pressure.
US5475980A (en) * 1993-12-30 1995-12-19 L'air Liquide, Societe Anonyme Pour L'etude L'exploitation Des Procedes Georges Claude Process and installation for production of high pressure gaseous fluid
FR2744795B1 (en) * 1996-02-12 1998-06-05 Grenier Maurice PROCESS AND PLANT FOR THE PRODUCTION OF HIGH-PRESSURE GASEOUS OXYGEN
US6962062B2 (en) * 2003-12-10 2005-11-08 L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Proédés Georges Claude Process and apparatus for the separation of air by cryogenic distillation

Also Published As

Publication number Publication date
US20060272353A1 (en) 2006-12-07
CN1873358A (en) 2006-12-06
EP1726900A1 (en) 2006-11-29

Similar Documents

Publication Publication Date Title
TWI301883B (en) Air separation process utilizing refrigeration extracted form lng for production of liquid oxygen
CA2063928C (en) Process for low-temperature air fractionation
JPS581350B2 (en) Gaseous oxygen production method and low temperature plant for implementing the production method
JP2865274B2 (en) Cryogenic distillation of air for the simultaneous production of oxygen and nitrogen as gaseous and / or liquid products
KR100192874B1 (en) Air separation
JP4728219B2 (en) Method and system for producing pressurized air gas by cryogenic distillation of air
JPH0875349A (en) Air separation method for obtaining gaseous oxygen product at supply pressure
US20160025408A1 (en) Air separation method and apparatus
US20110214453A1 (en) Process and device for cryogenic air fractionation
JPH05157448A (en) Cryogenic method separating supply air flow into component
JPH05203348A (en) Air separation by refining and its apparatus
JPH11351738A (en) Method and system for producing high purity oxygen
JP2009509120A (en) Method and apparatus for separating air by cryogenic distillation.
EP0425738A1 (en) Process for the production of high pressure nitrogen with split reboil-condensing duty
TW201940824A (en) Nitrogen production method and nitrogen production apparatus
JP4908634B2 (en) Method and apparatus for separating air by cryogenic distillation
KR20130002811U (en) Apparatus for the production of pressurized purified air and a liquid product by cryogenic distillation of air
JP2006329615A (en) Method and device for separating air by low temperature distillation
JP6092804B2 (en) Air liquefaction separation method and apparatus
CN102901322B (en) Pressure nitrogen and the method and apparatus of pressure oxygen is obtained by Cryogenic air separation
JP3190016B2 (en) Low-temperature distillation method for feed air producing high-pressure nitrogen
US20130086941A1 (en) Air separation method and apparatus
BRPI0706347A2 (en) method for cryogenic air separation
JP3737611B2 (en) Method and apparatus for producing low purity oxygen
JP4401999B2 (en) Air separation method and air separation device