JP2009509120A - Method and apparatus for separating air by cryogenic distillation. - Google Patents

Method and apparatus for separating air by cryogenic distillation. Download PDF

Info

Publication number
JP2009509120A
JP2009509120A JP2008531702A JP2008531702A JP2009509120A JP 2009509120 A JP2009509120 A JP 2009509120A JP 2008531702 A JP2008531702 A JP 2008531702A JP 2008531702 A JP2008531702 A JP 2008531702A JP 2009509120 A JP2009509120 A JP 2009509120A
Authority
JP
Japan
Prior art keywords
air
heat exchanger
compressor
outlet pressure
auxiliary fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008531702A
Other languages
Japanese (ja)
Inventor
トラニエ、ジャン−ピエール
Original Assignee
レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード filed Critical レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード
Publication of JP2009509120A publication Critical patent/JP2009509120A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04139Combination of different types of drivers mechanically coupled to the same compressor, possibly split on multiple compressor casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04024Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04145Mechanically coupling of different compressors of the air fractionation process to the same driver(s)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04278Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using external refrigeration units, e.g. closed mechanical or regenerative refrigeration units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04381Details relating to the work expansion, e.g. process parameter etc. using work extraction by mechanical coupling of compression and expansion so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/08Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/20Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/66Closed external refrigeration cycle with multi component refrigerant [MCR], e.g. mixture of hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/902Details about the refrigeration cycle used, e.g. composition of refrigerant, arrangement of compressors or cascade, make up sources, use of reflux exchangers etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/12Particular process parameters like pressure, temperature, ratios

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

高圧塔及び低圧塔を具備する塔システムにおいて低温蒸留によって空気を分離する方法は、全ての供給空気を、第1圧縮機(1)において、第1出口圧力まで圧縮することと、前記第1出口圧力にある前記空気の第1部分を第2圧縮機(3)へと送り、前記空気を第2出口圧力まで圧縮することと、前記第2出口圧力にある前記空気の少なくとも一部を熱交換器(5)において冷却し、前記第2出口圧力にある前記空気の少なくとも一部を液化させ、且つ、前記液化空気を前記塔システムの少なくとも1つの塔へと送ることであって、前記塔システムへと送られる前記液化空気の少なくとも50%が前記第2圧縮機において圧縮されていることと、前記第1出口圧力にある前記空気の第2部分(12)を、前記熱交換器において冷却し、前記空気の前記第2部分の少なくとも一部を、膨張機(13)において、前記第1出口圧力から塔システムの1つの塔(30、31)の圧力まで膨張させ、且つ、前記膨張空気をその塔へと送ることと、補助流体(6)を少なくとも部分的に気化させ、最終的には前記補助流体を前記熱交換器において加温することと、この補助流体の少なくとも一部を第3圧縮機(8)へと送って第3出口圧力にし、前記第3出口圧力にある前記補助流体の少なくとも一部(9)を前記熱交換器内に導入し、前記補助流体を冷却し、且つ、前記補助流体を少なくとも部分的に液化させることと、前記補助の流れ(10)を前記熱交換器から取り出し、且つ、それを、それが上述のように部分的に気化される前記熱交換器内にそれを再導入する前に第4圧力レベルまで膨張させることと、液体(20)を前記塔システムの1つの塔(31)から取り出すことと、前記液体を前記熱交換器において熱交換によって気化させることとを含む。
【選択図】 図2
A method for separating air by cryogenic distillation in a column system comprising a high pressure column and a low pressure column comprises compressing all feed air to a first outlet pressure in a first compressor (1), and said first outlet Sending a first portion of the air at pressure to a second compressor (3), compressing the air to a second outlet pressure, and heat exchanging at least a portion of the air at the second outlet pressure Cooling in a vessel (5), liquefying at least part of the air at the second outlet pressure, and sending the liquefied air to at least one tower of the tower system, the tower system At least 50% of the liquefied air sent to the air is compressed in the second compressor, and the second portion (12) of the air at the first outlet pressure is cooled in the heat exchanger. The above At least a portion of the second portion of gas is expanded in the expander (13) from the first outlet pressure to the pressure of one column (30, 31) of the column system, and the expanded air is expanded into the column The auxiliary fluid (6) is at least partially vaporized, and finally the auxiliary fluid is heated in the heat exchanger, and at least part of the auxiliary fluid is transferred to the third compressor. (8) to a third outlet pressure, introducing at least a portion (9) of the auxiliary fluid at the third outlet pressure into the heat exchanger, cooling the auxiliary fluid, and Liquefying the auxiliary fluid and removing the auxiliary stream (10) from the heat exchanger and passing it into the heat exchanger where it is partially vaporized as described above. 4th pressure level before reintroducing it In comprising a inflating, and taking out liquid (20) from one column of the column system (31), and vaporizing the liquid by heat exchange in the heat exchanger.
[Selection] Figure 2

Description

本発明は、低温蒸留による空気の分離方法及び装置に関する。特には、高められた圧力にある酸素及び/又は窒素の製造方法及び装置に関する。   The present invention relates to a method and apparatus for separating air by cryogenic distillation. In particular, it relates to a method and apparatus for the production of oxygen and / or nitrogen at elevated pressure.

空気分離プラントによって製造される気体酸素は、通常、約20乃至50barの高められた圧力にある。基本的な蒸留スキームは、通常、1.4乃至4barで稼動される低圧塔の塔底部で酸素を製造する二重塔プロセスである。酸素は、酸素圧縮機又は液体ポンププロセスの何れかによって、高圧まで圧縮される必要がある。酸素圧縮機に関連した安全面についての問題のため、最新の酸素プラントは、液体ポンププロセスに基づいている。高められた圧力にある液体酸素を気化させるために、供給空気又は窒素の一部を40〜80barの範囲内のより高圧まで上昇させる追加のモーター駆動ブースター圧縮機が必要である。実質的には、ブースターが、酸素圧縮機に取って代わっている。   The gaseous oxygen produced by the air separation plant is usually at an elevated pressure of about 20-50 bar. The basic distillation scheme is a double column process that produces oxygen at the bottom of a low pressure column, usually operated at 1.4 to 4 bar. Oxygen needs to be compressed to high pressure by either an oxygen compressor or a liquid pump process. Due to safety issues associated with oxygen compressors, modern oxygen plants are based on a liquid pump process. In order to vaporize liquid oxygen at elevated pressures, an additional motor driven booster compressor is required that raises a portion of the supply air or nitrogen to a higher pressure in the range of 40-80 bar. In essence, the booster has replaced the oxygen compressor.

酸素プラントの煩雑さを低減する取り組みにおいて、モーター駆動圧縮機の数を減らすことが望ましい。動力消費量の点でプラントの性能にあまり悪影響を及ぼすことなくブースターを取り除くことができる場合に、顕著なコスト削減が達成され得る。更に、従来の酸素プラント用に考え出された空気精製ユニットは、実質的に高圧塔の圧力である約5〜7barで稼動するであろうし、装置をより小型及び安価にすべくこの圧力をより高いレベルまで上昇させることも望ましい。   In an effort to reduce the complexity of the oxygen plant, it is desirable to reduce the number of motor driven compressors. Significant cost savings can be achieved if the booster can be removed without significantly adversely affecting plant performance in terms of power consumption. Furthermore, an air purification unit conceived for a conventional oxygen plant will operate at about 5-7 bar, which is substantially the pressure of the high pressure column, and this pressure will be increased to make the device smaller and cheaper. It is also desirable to raise it to a higher level.

米国特許第5475980号に記載されている冷間圧縮プロセスは、酸素プラントをただ1つの空気圧縮機を用いて駆動させる技術を提供する。このプロセスでは、蒸留しようとする空気を、主たる交換器において冷却し、次に、二重塔プロセスの高圧塔内へと排気する膨張機により駆動させられるブースター圧縮機によって更に圧縮する。そうすることによって、空気圧縮機の排出圧は、15barの範囲内にあり、これは、精製ユニットにとってもかなり都合がよい。このアプローチの1つの不便な点は、冷間圧縮プラントに典型的である追加の流れ再循環に起因する主たる交換器の大きさの増大である。交換器の温度アプローチを開拓することによって、交換器の大きさを縮小させることができる。しかしながら、これは、圧縮機の非効率的な動力利用とより高い排出圧力とをもたらし、それにより、それのコストを増大させるであろう。この従来技術の例示が図1に示されており、ここでは、オイルブレーキがシステムに追加されており、冷凍に必要とされる動力を浪費している。より大きなプラントでは、圧縮機及び/又は発電機が、オイルブレーキに取って代わることができる。   The cold compression process described in US Pat. No. 5,475,980 provides a technique for driving an oxygen plant with a single air compressor. In this process, the air to be distilled is further compressed by a booster compressor driven by an expander that cools in the main exchanger and then exhausts into the high pressure column of the double column process. By doing so, the discharge pressure of the air compressor is in the range of 15 bar, which is also quite convenient for the purification unit. One inconvenience of this approach is the increase in main exchanger size due to the additional flow recirculation typical of cold compression plants. By pioneering the exchanger temperature approach, the size of the exchanger can be reduced. However, this will result in inefficient power utilization of the compressor and higher discharge pressure, thereby increasing its cost. An illustration of this prior art is shown in FIG. 1, where an oil brake has been added to the system, wasting the power required for refrigeration. In larger plants, the compressor and / or generator can replace the oil brake.

図1では、全ての供給空気が、圧縮機1において圧縮され、精製ユニット2において精製され、流れ11として熱交換器5のウォームエンドへと送られる。全ての供給空気が、中間温度へと冷却され、熱交換器から流れ7として取り出され、冷間圧縮機8において圧縮される。圧縮された流れ9は、より高い中間温度で熱交換器へと送り戻され、冷間圧縮機8の入口の温度よりも低い温度へと冷却され、2つに分けられる。流れ15は、圧縮機8及びオイルブレーキによって制動されるクロード膨張機13へと送られる。空気の残り10は、熱交換器において液化され、2つの部分に分けられ、一方の部分は高圧塔30へと送られ、残り34は低圧塔31へと送られる。   In FIG. 1, all the supply air is compressed in the compressor 1, purified in the purification unit 2 and sent as stream 11 to the warm end of the heat exchanger 5. All supply air is cooled to an intermediate temperature, removed from the heat exchanger as stream 7 and compressed in cold compressor 8. The compressed stream 9 is sent back to the heat exchanger at a higher intermediate temperature, cooled to a temperature lower than the temperature at the inlet of the cold compressor 8 and divided in two. Stream 15 is sent to Claude expander 13 which is braked by compressor 8 and oil brake. The remaining air 10 is liquefied in a heat exchanger and divided into two parts, one part being sent to the high pressure column 30 and the remaining 34 being sent to the low pressure column 31.

酸素富化された液体の流れ28は、膨張させられて、高圧塔から低圧塔へと送られる。窒素富化された液体の流れ29は、膨張させられて、高圧塔から低圧塔へと送られる。高圧の気体窒素14は、高圧塔の塔頂部から取り出され、熱交換器において加温され、製品の流れ24を生成する。液体の酸素20は、低圧塔31の塔底部から取り出され、ポンプ21によって加圧され、流れ22として熱交換器5へと送られ、ここで、加圧空気10との熱交換によって気化して、気体の加圧酸素23を生成する。塔頂部の窒素富化された気体の流れ25は、低圧塔31から取り出され、熱交換器5において加温され、それにより、流れ26を生成する。   The oxygen-enriched liquid stream 28 is expanded and sent from the high pressure column to the low pressure column. The nitrogen-enriched liquid stream 29 is expanded and sent from the high pressure column to the low pressure column. High pressure gaseous nitrogen 14 is withdrawn from the top of the high pressure column and warmed in a heat exchanger to produce a product stream 24. The liquid oxygen 20 is taken from the bottom of the low pressure column 31 and pressurized by the pump 21 and sent to the heat exchanger 5 as a stream 22 where it is vaporized by heat exchange with the pressurized air 10. To generate pressurized oxygen 23 in the form of gas. A nitrogen-rich gas stream 25 at the top of the column is withdrawn from the low pressure column 31 and warmed in the heat exchanger 5, thereby producing a stream 26.

冷間圧縮プロセスの幾つかの様々な変形が、米国特許第5379598号、米国特許第5596885号、米国特許第5901576号及び米国特許第6626008号などの従来技術にも記載されている。   Several different variations of the cold compression process are also described in the prior art, such as US Pat. No. 5,379,598, US Pat. No. 5,596,885, US Pat. No. 5,901,576 and US Pat. No. 6,626,008.

米国特許第5379598号では、酸素の気化に必要とされる加圧された流れを得るべく、供給空気の一部分を、ブースター圧縮機と、続けて冷間圧縮機とによって更に圧縮する。このアプローチは依然として少なくとも2つの圧縮機を有しており、精製ユニットは依然として低圧で稼動する。   In US Pat. No. 5,379,598, a portion of the supply air is further compressed by a booster compressor followed by a cold compressor to obtain the pressurized flow required for oxygen vaporization. This approach still has at least two compressors and the purification unit still operates at low pressure.

米国特許第5596885号では、供給空気の一部分を温間ブースターにおいて更に圧縮する一方、この空気の少なくとも一部を冷間ブースターにおいて更に圧縮する。双方のブースターからの空気を液化させ、冷間圧縮された空気の一部をクロード膨張機において膨張させる。   In US Pat. No. 5,596,885, a portion of the supply air is further compressed in a warm booster while at least a portion of this air is further compressed in a cold booster. The air from both boosters is liquefied and a portion of the cold compressed air is expanded in a Claude expander.

米国特許第5901576号は、冷間圧縮スキームの幾つかの配置を記載しており、これらは、高圧塔の塔底部の気化されたリッチ液体の膨張又は高圧窒素の膨張を利用して、冷間圧縮機を駆動させる。幾つかの場合において、モーター駆動冷間圧縮機も使用された。これらプロセスもおおよそ高圧塔の圧力にある供給空気を用いて稼動し、殆どの場合、ブースター圧縮機も必要とされる。   U.S. Pat.No. 5,901,576 describes several arrangements of cold compression schemes that utilize cold rich liquid expansion at the bottom of the high pressure column or high pressure nitrogen expansion to Drive the compressor. In some cases, motor driven cold compressors were also used. These processes also operate with feed air at approximately the pressure of the high pressure column, and in most cases a booster compressor is also required.

米国特許第6626008号は、冷間圧縮機を利用して、二重気化器酸素プロセス(double vaporizer oxygen process)用の低純度酸素の製造のための蒸留プロセスを改善するヒートポンプサイクルを記載している。低い空気圧及びブースター圧縮機も、この種のプロセスに典型的なものである。   U.S. Pat. No. 6,626,008 describes a heat pump cycle that utilizes a cold compressor to improve the distillation process for the production of low purity oxygen for a double vaporizer oxygen process. . Low air pressure and booster compressors are also typical for this type of process.

それゆえに、圧縮機の列を単純化させるため及び精製ユニットの大きさを縮小するための解決策を提供することによって、従来のプロセスの不便な点を解決することが、本発明の目的である。これは、更には、良好な動力消費量と共に達成され得る。それによって、酸素プラントの全体の製造費が削減され得る。動力消費量の主たる改善は、比熱の代わりに潜熱を本質的に使用することによって、冷間圧縮機の流れを低減させることによるものである。   It is therefore an object of the present invention to solve the inconveniences of conventional processes by providing a solution to simplify the compressor row and reduce the size of the purification unit. . This can also be achieved with good power consumption. Thereby, the overall production cost of the oxygen plant can be reduced. The main improvement in power consumption is due to the cold compressor flow being reduced by essentially using latent heat instead of specific heat.

記載された全ての百分率は、モル百分率である。   All percentages stated are molar percentages.

本発明に従うと、高圧塔及び低圧塔を具備する塔システムにおいて低温蒸留によって空気を分離する方法であって、
i)全ての供給空気を、第1圧縮機において、第1出口圧力まで圧縮する工程と、
ii)前記第1出口圧力にある前記空気の第1部分を第2圧縮機へと送り、前記空気を第2出口圧力まで圧縮する工程と、
iii)前記第2出口圧力にある前記空気の少なくとも一部を熱交換器において冷却して、前記第2出口圧力にある冷却された圧縮空気を生成し、前記第2出口圧力にある前記空気の少なくとも一部を液化させ、且つ、前記液化空気を前記塔システムの少なくとも1つの塔へと送る工程と、
iv)前記第1出口圧力にある前記空気の第2部分を前記熱交換器において冷却し、前記空気の前記第2部分の少なくとも一部を、膨張機において、前記第1出口圧力から塔システムの1つの塔の圧力まで膨張させ、且つ、前記膨張空気をその塔へと送る工程と、
v)液体を前記塔システムの1つの塔から取り出し、前記液体を加圧し、且つ、前記液体を、前記熱交換器において、熱交換によって気化させる工程と、
vi)補助流体を少なくとも部分的に気化させ、最終的には前記熱交換器において前記補助流体を加温し、この補助流体の少なくとも一部を第3圧縮機へと送って第3出口圧力まで圧縮し、前記第3出口圧力にある前記補助流体の少なくとも一部を前記熱交換器内に導入し、前記補助流体を冷却し且つ前記補助流体を少なくとも部分的に液化させ、前記補助的な流れを前記熱交換器から取り出し、且つ、それを、それが上述のように気化される前記熱交換器内へと再導入する前に、第4圧力レベルまで膨張させる工程と
を含む方法が提供される。
According to the present invention, a method for separating air by cryogenic distillation in a column system comprising a high pressure column and a low pressure column, comprising:
i) compressing all supply air to the first outlet pressure in the first compressor;
ii) sending a first portion of the air at the first outlet pressure to a second compressor and compressing the air to a second outlet pressure;
iii) cooling at least a portion of the air at the second outlet pressure in a heat exchanger to produce cooled compressed air at the second outlet pressure, wherein the air at the second outlet pressure Liquefying at least a portion and sending the liquefied air to at least one tower of the tower system;
iv) cooling the second part of the air at the first outlet pressure in the heat exchanger, and at least part of the second part of the air in the expander from the first outlet pressure to the tower system Expanding to the pressure of one tower and sending the expanded air to the tower;
v) removing liquid from one tower of the tower system, pressurizing the liquid, and evaporating the liquid in the heat exchanger by heat exchange;
vi) At least partially vaporize the auxiliary fluid and eventually warm the auxiliary fluid in the heat exchanger and send at least a portion of the auxiliary fluid to the third compressor to a third outlet pressure Compressing and introducing at least a portion of the auxiliary fluid at the third outlet pressure into the heat exchanger, cooling the auxiliary fluid and at least partially liquefying the auxiliary fluid; And removing it from the heat exchanger and expanding it to a fourth pressure level before reintroducing it into the heat exchanger where it is vaporized as described above. The

本発明の任意の特徴に従うと、
−前記第1圧力にある追加の空気を、前記熱交換器において液化させる。
−前記第3圧縮機は、以下のガス:He、H2、Ne、N2、CO、Ar、O2、CH4、Kr、NO、Xe、CF4、HCF3、C24、C26、C26、C38、N2O、CO2のうちの少なくとも1種を含む補助流体を圧縮する。
According to any feature of the invention,
-Additional air at the first pressure is liquefied in the heat exchanger.
- the third compressor, the following gases: He, H 2, Ne, N 2, CO, Ar, O 2, CH 4, Kr, NO, Xe, CF 4, HCF 3, C 2 H 4, C The auxiliary fluid containing at least one of 2 H 6 , C 2 F 6 , C 3 F 8 , N 2 O, and CO 2 is compressed.

−前記第3圧縮機は、主成分がAr、O2、CH4及びKrのうちの少なくとも1種を含む補助流体を圧縮する。 The third compressor compresses the auxiliary fluid whose main component contains at least one of Ar, O 2 , CH 4 and Kr;

本発明の他の側面に従うと、低温蒸留によって空気を分離する装置であって、
a)塔システムと、
b)第1、第2及び第3圧縮機と、
c)膨張機と、
d)第1出口圧力にある圧縮空気を生成させるために、空気を前記第1圧縮機へと送る導管と、
e)第2出口圧力にある空気を生成させるために、前記第1出口圧力にある前記空気の第1部分を前記第2圧縮機へと送る導管と、
f)熱交換器と、前記第2出口圧力にある冷却圧縮空気を生成させるために、前記第2出口圧力にある前記空気の少なくとも一部を前記熱交換器へと送る導管と、
g)前記第2出口圧力にある液化空気を前記熱交換器から取り出し、前記液化空気を前記塔システムの少なくとも1つの塔へと送る導管と、
h)前記第1出口圧力にある前記空気の第2部分を前記熱交換器から取り出し、前記空気の前記第2部分の少なくとも一部を前記膨張機へと送る導管と、
i)膨張機において膨張させられた空気を塔システムの少なくとも1つの塔へと送る導管と、
j)液体を前記塔システムの1つの塔から取り出す導管と、加圧液体を生成させるために前記液体の少なくとも一部を加圧する手段と、加圧液体の少なくとも一部を前記熱交換器へと送る導管と、
k)前記第3圧縮機及び第2膨張機(16)を具備する冷凍サイクルと、補助流体を前記第3圧縮機から前記熱交換器へと送る導管と、前記補助流体を前記熱交換器から前記第2膨張機へと送る導管と、前記補助流体を前記第2膨張機から前記熱交換器へと送る導管と、前記補助流体を前記熱交換器から前記第3圧縮機へと送る導管と
を具備する装置が提供される。
According to another aspect of the invention, an apparatus for separating air by cryogenic distillation comprising:
a) a tower system;
b) first, second and third compressors;
c) an expander;
d) a conduit for sending air to the first compressor to produce compressed air at a first outlet pressure;
e) a conduit that delivers a first portion of the air at the first outlet pressure to the second compressor to generate air at a second outlet pressure;
f) a heat exchanger and a conduit that delivers at least a portion of the air at the second outlet pressure to the heat exchanger to generate cooled compressed air at the second outlet pressure;
g) a conduit for removing liquefied air at the second outlet pressure from the heat exchanger and delivering the liquefied air to at least one tower of the tower system;
h) a conduit for removing a second portion of the air at the first outlet pressure from the heat exchanger and delivering at least a portion of the second portion of the air to the expander;
i) a conduit for sending air expanded in the expander to at least one tower of the tower system;
j) a conduit for removing liquid from one tower of the tower system, means for pressurizing at least a portion of the liquid to produce a pressurized liquid, and at least a portion of the pressurized liquid to the heat exchanger. A conduit to send,
k) a refrigeration cycle comprising the third compressor and second expander (16), a conduit for sending auxiliary fluid from the third compressor to the heat exchanger, and the auxiliary fluid from the heat exchanger. A conduit for sending the auxiliary fluid to the second expander, a conduit for sending the auxiliary fluid from the second expander to the heat exchanger, and a conduit for sending the auxiliary fluid from the heat exchanger to the third compressor There is provided an apparatus comprising:

本発明の更なる任意の側面に従うと、前記装置は、更なる膨張機と、窒素を前記塔システム又は外気から前記更なる膨張機へと送る手段とを含み得る。   According to a further optional aspect of the invention, the device may comprise a further expander and means for sending nitrogen from the tower system or outside air to the further expander.

この場合、前記第2及び前記第3圧縮機のうちの一方は、前記膨張機へと連結されていても良く、前記第2及び前記第3圧縮機のうちの他方は、前記更なる圧縮機へと連結されていても良い。   In this case, one of the second and third compressors may be connected to the expander, and the other of the second and third compressors may be the further compressor. It may be connected to.

前記第2及び前記第3圧縮機のうちの少なくとも一方は、空気膨張機に連結されている。   At least one of the second and third compressors is connected to an air expander.

好ましくは、前記第1出口圧力ある前記空気の第1部分を前記第2圧縮機へと送る前記導管は、前記熱交換器の中間の位置に接続されている。   Preferably, the conduit for delivering the first portion of the air at the first outlet pressure to the second compressor is connected to an intermediate position of the heat exchanger.

好ましくは、前記第2及び第3圧縮機は、直列に接続されている。   Preferably, the second and third compressors are connected in series.

前記膨張機は、出口が高圧塔に接続されている空気膨張機と、出口が低圧塔に接続されている空気膨張機と、高圧窒素膨張機と、低圧窒素膨張機とを含む群より選択されても良い。   The expander is selected from the group comprising an air expander having an outlet connected to a high pressure tower, an air expander having an outlet connected to a low pressure tower, a high pressure nitrogen expander, and a low pressure nitrogen expander. May be.

前記装置は、出口が前記高圧塔に接続されている空気膨張機と、出口が前記低圧塔に接続されている空気膨張機と、高圧窒素膨張機と、低圧窒素膨張機とを含む群より選ばれる更なる膨張機を含み得る。   The apparatus is selected from the group comprising an air expander having an outlet connected to the high pressure column, an air expander having an outlet connected to the low pressure column, a high pressure nitrogen expander, and a low pressure nitrogen expander. Additional expanders may be included.

好ましくは、前記更なる膨張機は、前記第2及び第3膨張機のうちの一方と連結されている。   Preferably, the further expander is connected to one of the second and third expanders.

ここで、本発明に従う低温空気分離方法を示すプロセスフロー図である図2、3、5及び6、熱交換図である図4、並びに本発明に従う方法における圧縮機と膨張機との連結システムを示した図7を参照しながら、本発明をより詳細に説明する。   Here, FIGS. 2, 3, 5 and 6 which are process flow diagrams showing a low-temperature air separation method according to the present invention, FIG. 4 which is a heat exchange diagram, and a connecting system of a compressor and an expander in the method according to the present invention. The present invention will be described in more detail with reference to FIG.

図2の実施形態では、大気の空気が、空気圧縮機1によって圧縮され、精製ユニット2において精製されて、空気の流れ(流れ11)を得る。この流れ11は、低温装置において凍結し得る水分及び二酸化炭素などの不純物を含まない。この空気の第1部分は、その圧力をさらに上昇させるためにブースターブレーキ圧縮機3において圧縮される。次に、この加圧された第1部分(流れ4)が、主たる交換器5において冷却されて凝縮し、液化空気の流れ(流れ27)を生成する。この流れ27は、バルブでの膨張の後、蒸留塔の少なくとも1つへと供給される。この空気は、使用される圧力に応じて、主たる交換器の内部又は下流において液化し得る。クリプトン(90%)及び酸素(10%)からなる補助流体混合物6を、それが気化され且つ気化後にわずかに加温されたときに熱交換器5内に導入して、中間温度T1にある冷たい補助気体の流れを得る。この冷たい補助流れの少なくとも一部(流れ7)は、温度T1にある冷間ブレーキ圧縮機8に送られて、その圧力(流れ9)を上昇させるために圧縮される。次に、流れ9は、T1よりも高い温度T2にある熱交換器に送り戻され、交換器5において冷却されて凝縮し、液化された補助流れ(流れ10)を生成する。流れ10は、バルブ16において膨張させられて、流れ6を生成する。流れ6が2相流体である場合には、相分離機が追加されても良く、液相は熱交換器5内に導入され、蒸気相は流れ7と混合される。流れ11の第2部分(流れ12)が交換器5において冷却されて、流れ15を得る。流れ15は、高圧塔内への膨張のために、T3の入口温度にある膨張機13へと送られる。膨張機13によって生ずる動力がブースターブレーキ圧縮機3を駆動させるのに使用されることが好ましい。流れ12の残りは、流れ33として液化され、高圧塔30へと送られる。窒素リッチガス14を、高圧塔30から取り出し、交換器5において加温して、流れ17を生成することができる。次に、流れ17は、入口温度T4を有する膨張機18において膨張させられる。膨張機18の出力は、好ましくは、冷間ブースターブレーキ圧縮機8を駆動するのに使用され得る。次に、膨張機18の排出ガス(流れ19)は、交換器5のコールドエンドへと戻され、周囲の温度近くまで再加熱されて、流れ24を生成する。ポンプ21は、低圧塔31の塔底部で取り出された液体酸素製品20の圧力を所望の圧力まで昇圧させ、次に、加圧酸素の流れ22を蒸発及び加熱のために交換器5へと送って、酸素製品23を得る。二重塔システムは、空気分離技術での数多くの特許又は論文において記載されているような、二重塔プロセスの伝統的なタイプであり、リボイラー−コンデンサによって低圧塔の塔底部で熱的に結合された高圧塔30及び低圧塔31を有する。濃縮アルゴンの流れを提供するために、アルゴン塔(図示せず)が、二重塔システムと共に使用され得る。   In the embodiment of FIG. 2, atmospheric air is compressed by the air compressor 1 and purified in the purification unit 2 to obtain an air stream (stream 11). This stream 11 is free of impurities such as moisture and carbon dioxide that can be frozen in a cryogenic device. This first portion of air is compressed in booster brake compressor 3 to further increase its pressure. This pressurized first portion (stream 4) is then cooled and condensed in the main exchanger 5 to produce a liquefied air stream (stream 27). This stream 27 is fed to at least one of the distillation columns after expansion at the valve. This air can liquefy inside or downstream of the main exchanger depending on the pressure used. Auxiliary fluid mixture 6 consisting of krypton (90%) and oxygen (10%) is introduced into heat exchanger 5 when it is vaporized and slightly warmed after vaporization to provide a cold intermediate temperature T1. A flow of auxiliary gas is obtained. At least a portion of this cold auxiliary stream (stream 7) is sent to a cold brake compressor 8 at temperature T1, where it is compressed to increase its pressure (stream 9). Next, stream 9 is sent back to a heat exchanger at a temperature T2 higher than T1, where it is cooled and condensed in exchanger 5 to produce a liquefied auxiliary stream (stream 10). Stream 10 is expanded at valve 16 to produce stream 6. If stream 6 is a two-phase fluid, a phase separator may be added, the liquid phase is introduced into heat exchanger 5 and the vapor phase is mixed with stream 7. The second part of stream 11 (stream 12) is cooled in exchanger 5 to obtain stream 15. Stream 15 is sent to expander 13 at the inlet temperature of T3 for expansion into the high pressure column. The power generated by the expander 13 is preferably used to drive the booster brake compressor 3. The remainder of stream 12 is liquefied as stream 33 and sent to high pressure column 30. Nitrogen rich gas 14 can be removed from high pressure column 30 and heated in exchanger 5 to produce stream 17. Next, the stream 17 is expanded in an expander 18 having an inlet temperature T4. The output of the expander 18 can preferably be used to drive the cold booster brake compressor 8. The exhaust gas of expander 18 (stream 19) is then returned to the cold end of exchanger 5 and reheated to near ambient temperature to produce stream 24. The pump 21 raises the pressure of the liquid oxygen product 20 taken at the bottom of the low pressure column 31 to the desired pressure, and then sends the pressurized oxygen stream 22 to the exchanger 5 for evaporation and heating. Thus, the oxygen product 23 is obtained. Double column systems are a traditional type of double column process, as described in numerous patents or papers on air separation technology, and are thermally coupled at the bottom of the low pressure column by a reboiler-condenser. The high pressure column 30 and the low pressure column 31 are provided. An argon column (not shown) can be used with a double column system to provide a stream of concentrated argon.

上記の温度T1、T2、T3及びT4は、好ましい配置で提供されている。上のものを最も高い温度から最も低い温度へと並べると、T2、T5、T1及びT3となる。気化された酸素の圧力及び塔システムの圧力に応じて、プロセスの性能を最適にするために、これら温度の順序を変更することができる。   The above temperatures T1, T2, T3 and T4 are provided in a preferred arrangement. Arranging the above from the highest temperature to the lowest temperature results in T2, T5, T1, and T3. Depending on the pressure of the vaporized oxygen and the pressure of the column system, the order of these temperatures can be changed to optimize process performance.

ブースターブレーキ圧縮機3は、1段階の圧縮機であり、通常は膨張機ブースターパッケージの一部分として提供され、それゆえに、独立型又はモーター駆動のブースター圧縮機よりも、それの構成は非常に単純であり且つそれの費用構造は非常に低いということに気付くことが有益である。しかしながら、必要であれば、圧縮機3は、独立型又はモーター駆動のブースター圧縮機であっても良い。圧縮機8は、流れ4及び流れ23の圧力に応じて、1乃至4つの段階を有する独立型又はモーター駆動型の何れかのブースター圧縮機であっても良い。ブースター及び膨張機の性能を最適化するために、それは、同じ速度にある膨張機18(或いは膨張機13)によって直接、又は、伝動装置を用いて駆動されても良い。   The booster brake compressor 3 is a one-stage compressor and is usually provided as part of an expander booster package, and therefore its construction is much simpler than a stand alone or motor driven booster compressor. It is beneficial to realize that and its cost structure is very low. However, if necessary, the compressor 3 may be a stand-alone or motor-driven booster compressor. The compressor 8 may be either a stand alone or motor driven booster compressor having one to four stages depending on the pressure of the stream 4 and the stream 23. In order to optimize the performance of the booster and expander, it may be driven directly by the expander 18 (or expander 13) at the same speed or using a transmission.

図2の実施形態のプロセス変量の範囲は、以下の通りである:
流れ11の圧力:約9乃至17bar a
流れ4の圧力:約16乃至50bar a
流れ9の圧力:クリプトンリッチの混合物の場合、約5乃至20bara
T1:約−110℃乃至−165℃。
The range of process variables for the embodiment of FIG. 2 is as follows:
Pressure of stream 11: about 9 to 17 bar a
Pressure of stream 4: about 16 to 50 bar a
Stream 9 pressure: about 5 to 20 bara for krypton rich mixture
T1: about −110 ° C. to −165 ° C.

ブースターブレーキ圧縮機8によって圧縮される流れは、流れ12の幾らかを液化空気流33として任意に取り出すことによって減らすことができる。そうすることによって、ブースターブレーキ圧縮機8を駆動させるのにはあまり動力を必要とせず、動力の節約を幾らか達成できる。第1の圧力にある液化される空気の量は、塔システムへと送られる液化空気の50%以下、好ましくは40%以下、より好ましくは35%以下であるべきである。   The flow compressed by the booster brake compressor 8 can be reduced by optionally taking some of the stream 12 as a liquefied air stream 33. By doing so, little power is required to drive the booster brake compressor 8, and some power savings can be achieved. The amount of liquefied air at the first pressure should be no more than 50%, preferably no more than 40%, more preferably no more than 35% of the liquefied air sent to the tower system.

窒素膨張機を空気膨張機と取り替えることは、空気分離技術における慣例である。図3の実施形態は、そのような配置を説明している:第1圧縮機の後、流れ11の一部12が交換器5において冷却され、この流れの一部が抜き取られて、流れ50を得る。流れ50は、低圧塔31への膨張のための膨張機52へと送られる。膨張機52の出力は、好ましくは、冷間圧縮機8を駆動させるのに使用される。流れ12を交換器5の前で分けることを選択し、対応する空気の流れを交換器5内の分離路に送り、次に、それを冷却し、それを膨張機52において塔に向けて膨張させることもできることに気付くことが有益である。図4は、図3のプロセスに対応する交換図を示している。   Replacing a nitrogen expander with an air expander is common practice in air separation technology. The embodiment of FIG. 3 illustrates such an arrangement: after the first compressor, a part 12 of the stream 11 is cooled in the exchanger 5 and a part of this stream is withdrawn to produce a stream 50. Get. Stream 50 is sent to expander 52 for expansion into low pressure column 31. The output of the expander 52 is preferably used to drive the cold compressor 8. Choose to split stream 12 in front of exchanger 5 and send the corresponding air stream to the separation path in exchanger 5, then cool it and expand it toward the tower in expander 52 It is beneficial to realize that they can also be FIG. 4 shows an exchange diagram corresponding to the process of FIG.

上の技術を、図5に記載されたように、少し変更することができる;膨張機13の排出流れ54での空気の一部分53が、交換器5において加温され、次に、低圧塔内への膨張のために、膨張機52へと送られ得る。流れ54において幾らかの凝縮が起こる場合には、膨張機52に供給されるガスを気液分離器を追加することによって抜き取るか、又は、更に良くは、高圧塔のサンプをセパレータとして使用することができ、この場合、膨張機に供給されるガスは、高圧塔のサンプの位置で抜き取られる。   The above technique can be modified slightly as described in FIG. 5; a portion 53 of the air in the exhaust stream 54 of the expander 13 is warmed in the exchanger 5 and then in the low pressure column. Can be sent to the expander 52 for expansion. If some condensation occurs in stream 54, the gas supplied to expander 52 can be withdrawn by adding a gas-liquid separator, or better still, a high pressure column sump can be used as a separator. In this case, the gas supplied to the expander is withdrawn at the sump of the high pressure column.

高められた圧力にある有意の量の窒素リッチのガス製品を必要とする多くの場合、窒素リッチガスの膨張機18を利用することはもはや経済的でない。その代わりに、図6に示されたように、窒素リッチのガス14を、高圧塔30から直接抜き取って製造し、窒素製品41を得ることができる。こういった場合では、窒素膨張機の排除を原因とする冷却の不足を補うために、圧縮機1の圧力を上昇させることを選択して、膨張機13の動力出力を増加させることができる。膨張機及びブースターブレーキ圧縮機の配置を更に簡単にするために、直列に並べた膨張機及びブースターブレーキを機械的に1つの列へと統合することができる:膨張機13の出力は、2つの圧縮ブレーキ3(1段階)及び8(2段階)を駆動させる。加えて、モーター及び/又はジェネレータ60は、或る時間でのプラントから予想される性能及び生産量に応じて、機械的動力を抜き出すか又はシステムに追加することができる。膨張機及びブースターブレーキ圧縮機の流れ及び圧力に応じて、変速機(伝動装置)を使用し、システムの性能を最適化させることができる。伝動装置を用いた配置の図が図7に示されている。更なる膨張機18、52をこのシステムに追加することもできる。   In many cases requiring a significant amount of nitrogen rich gas product at elevated pressure, it is no longer economical to utilize the nitrogen rich gas expander 18. Instead, as shown in FIG. 6, the nitrogen-rich gas 14 can be extracted directly from the high pressure column 30 to produce a nitrogen product 41. In such a case, the power output of the expander 13 can be increased by choosing to increase the pressure of the compressor 1 to compensate for the lack of cooling due to the exclusion of the nitrogen expander. To further simplify the placement of the expander and booster brake compressor, the series of expanders and booster brakes can be mechanically integrated into one row: the output of the expander 13 is 2 The compression brakes 3 (1 stage) and 8 (2 stages) are driven. In addition, the motor and / or generator 60 can extract mechanical power or add to the system depending on the performance and output expected from the plant at a given time. Depending on the flow and pressure of the expander and booster brake compressor, a transmission (transmission) can be used to optimize system performance. A diagram of the arrangement using the transmission is shown in FIG. Additional expanders 18, 52 can also be added to the system.

このプロセスを変更して、ポンプ搬送された液体窒素を、追加の流れとして又はポンプ搬送された酸素の流れと取って代る流れとして気化させても良い。   This process may be modified to vaporize the pumped liquid nitrogen as an additional stream or as a stream that replaces the pumped oxygen stream.

図示したプロセスは、二重塔システムを示しているが、本発明が三重塔システムに適用されることは容易に理解されるであろう。   The illustrated process shows a double column system, but it will be readily understood that the present invention applies to a triple column system.

二重塔又は三重塔のシステムが高められた圧力で稼動する場合、低圧の窒素の幾らかが、膨張機18において膨張され得る。   Some of the low pressure nitrogen may be expanded in the expander 18 when the double column or triple column system operates at elevated pressure.

記載なし。not listed. 記載なし。not listed. 記載なし。not listed. 記載なし。not listed. 記載なし。not listed. 記載なし。not listed. 記載なし。not listed.

Claims (8)

高圧塔及び低圧塔を具備する塔システムにおいて低温蒸留によって空気を分離する方法であって、
i)全ての供給空気を、第1圧縮機(1)において、第1出口圧力まで圧縮する工程と、
ii)前記第1出口圧力にある前記空気の第1部分(4)を第2圧縮機(3)へと送り、前記空気を第2出口圧力まで圧縮する工程と、
iii)前記第2出口圧力にある前記空気の少なくとも一部を、熱交換器(5)において冷却する工程と、
iv)前記第1出口圧力にある前記空気の第2部分(12)を前記熱交換器において冷却し、前記空気の前記第2部分の少なくとも一部を、膨張機(13)において、前記第1出口圧力から塔システムの1つの塔(30)の圧力まで膨張させ、且つ、前記膨張空気をその塔へと送る工程と、
v)液体(20)を前記塔システムの1つの塔(31)から取り出し、前記液体を加圧し、且つ、前記液体を、前記熱交換器において、熱交換によって気化させる工程と、
vi)補助流体を前記熱交換器において少なくとも部分的に気化させ、最終的には前記補助流体を前記熱交換器において加温し、この補助流体の少なくとも一部を第3圧縮機(8)へと送って第3出口圧力まで圧縮し、前記第3出口圧力にある前記補助流体の少なくとも一部(9)を前記熱交換器内に導入し、前記補助流体を冷却し、前記補助流体を少なくとも部分的に液化させ、前記補助的な流れを前記熱交換器から取り出し、且つ、それを、上述した少なくとも部分的な気化工程のために前記熱交換器内に再導入する前に、第4圧力レベルまで膨張させる工程と
を含む方法。
A method for separating air by cryogenic distillation in a column system comprising a high pressure column and a low pressure column,
i) compressing all supply air to the first outlet pressure in the first compressor (1);
ii) sending a first portion (4) of the air at the first outlet pressure to a second compressor (3) and compressing the air to a second outlet pressure;
iii) cooling at least a portion of the air at the second outlet pressure in a heat exchanger (5);
iv) cooling the second part (12) of the air at the first outlet pressure in the heat exchanger, and at least part of the second part of the air in the expander (13) Expanding from the outlet pressure to the pressure of one tower (30) of the tower system and sending the expanded air to the tower;
v) removing liquid (20) from one tower (31) of the tower system, pressurizing the liquid, and vaporizing the liquid by heat exchange in the heat exchanger;
vi) The auxiliary fluid is at least partially vaporized in the heat exchanger, and finally the auxiliary fluid is heated in the heat exchanger, and at least a part of the auxiliary fluid is transferred to the third compressor (8). And compressing to a third outlet pressure, introducing at least a portion (9) of the auxiliary fluid at the third outlet pressure into the heat exchanger, cooling the auxiliary fluid, and A fourth pressure before partially liquefying, removing the auxiliary stream from the heat exchanger, and reintroducing it into the heat exchanger for at least the partial vaporization step described above. Expanding to a level.
前記空気の前記第1部分の少なくとも一部を、前記第2圧縮機(3)の上流で冷却する請求項1記載の方法。   The method of claim 1, wherein at least a portion of the first portion of the air is cooled upstream of the second compressor (3). 前記空気の前記第1部分の少なくとも一部を、前記第2圧縮機(3)の上流で、前記熱交換器(5)において冷却する請求項2記載の方法。   The method of claim 2, wherein at least a portion of the first portion of the air is cooled in the heat exchanger (5) upstream of the second compressor (3). 前記空気の前記第1部分の少なくとも一部を、前記第2圧縮機の上流で、前記熱交換器において、冷凍ユニットを使用して冷却する請求項2記載の方法。   The method of claim 2, wherein at least a portion of the first portion of the air is cooled upstream of the second compressor using a refrigeration unit in the heat exchanger. 前記第1及び第2圧力の少なくとも一方にある追加の空気(27、33)を、前記熱交換器において液化させる請求項1乃至4記載の方法。   The method according to claims 1 to 4, wherein additional air (27, 33) at at least one of the first and second pressures is liquefied in the heat exchanger. 前記第3圧縮機が、以下のガス:He、H2、Ne、N2、CO、Ar、O2、CH4、Kr、NO、Xe、CF4、HCF3、C24、C26、C26、C38、N2O、CO2のうちの少なくとも1種を含む群より選ばれる補助流体を圧縮する請求項1乃至5記載の方法。 The third compressor has the following gases: He, H 2 , Ne, N 2 , CO, Ar, O 2 , CH 4 , Kr, NO, Xe, CF 4 , HCF 3 , C 2 H 4 , C 2. H 6, C 2 F 6, C 3 F 8, N 2 O, claims 1 to 5 method according to compress an auxiliary fluid chosen from the group comprising at least one of CO 2. 前記補助流体の主成分は、Ar、O2、CH4及びKrのうちの少なくとも1種である請求項6記載の方法。 The method according to claim 6, wherein a main component of the auxiliary fluid is at least one of Ar, O 2 , CH 4, and Kr. 低温蒸留によって空気を分離する装置であって、
a)塔システム(30、31)と、
b)第1、第2及び第3圧縮機(1、3、8)と
c)第1膨張機(13)と、
d)第1出口圧力にある圧縮空気を生成させるために、空気を前記第1圧縮機へと送る導管と、
e)第2出口圧力にある空気を生成させるために、前記第1出口圧力にある前記空気の第1部分を前記第2圧縮機へと送る導管と、
f)熱交換器(5)と、前記第2出口圧力にある冷却圧縮空気を生成させるために、前記第2出口圧力にある前記空気の少なくとも一部を前記熱交換器へと送る導管と、
g)前記第2出口圧力にある液化空気を前記熱交換器から取り出し、前記液化空気を前記塔システムの少なくとも1つの塔へと送る導管と、
h)前記第1出口圧力にある前記空気の第2部分を前記熱交換器から取り出し、前記空気の前記第2部分の少なくとも一部を、前記膨張機において膨張させられた空気を塔システムの少なくとも1つの塔へと送る前記膨張機の導管へと送る導管と、
i)液体を前記塔システムの1つの塔から取り出す導管と、加圧液体を生成させるために前記液体の少なくとも一部を加圧する手段と、前記加圧液体の少なくとも一部を前記熱交換器へと送る導管と、
j)前記第3圧縮機及び第2膨張機(16)を具備する冷凍サイクルと、補助流体を前記第3圧縮機から前記熱交換器へと送る導管と、前記補助流体を前記熱交換器から前記第2膨張機へと送る導管と、前記補助流体を前記第2膨張機から前記熱交換器へと送る導管と、前記補助流体を前記熱交換器から前記第3圧縮機へと送る導管と
を具備する装置。
An apparatus for separating air by cryogenic distillation,
a) tower system (30, 31);
b) first, second and third compressors (1, 3, 8); c) first expander (13);
d) a conduit for sending air to the first compressor to produce compressed air at a first outlet pressure;
e) a conduit that delivers a first portion of the air at the first outlet pressure to the second compressor to generate air at a second outlet pressure;
f) a heat exchanger (5) and a conduit for delivering at least a portion of the air at the second outlet pressure to the heat exchanger to produce cooled compressed air at the second outlet pressure;
g) a conduit for removing liquefied air at the second outlet pressure from the heat exchanger and delivering the liquefied air to at least one tower of the tower system;
h) removing a second portion of the air at the first outlet pressure from the heat exchanger and removing at least a portion of the second portion of the air from the expanded air in at least a tower system; A conduit leading to the expander conduit leading to one tower;
i) a conduit for removing liquid from one tower of the tower system, means for pressurizing at least a portion of the liquid to produce a pressurized liquid, and at least a portion of the pressurized liquid to the heat exchanger And a conduit to send
j) a refrigeration cycle comprising the third compressor and the second expander (16), a conduit for sending auxiliary fluid from the third compressor to the heat exchanger, and the auxiliary fluid from the heat exchanger. A conduit for sending the auxiliary fluid to the second expander, a conduit for sending the auxiliary fluid from the second expander to the heat exchanger, and a conduit for sending the auxiliary fluid from the heat exchanger to the third compressor A device comprising:
JP2008531702A 2005-09-23 2006-09-21 Method and apparatus for separating air by cryogenic distillation. Pending JP2009509120A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP05108826A EP1767884A1 (en) 2005-09-23 2005-09-23 Process and apparatus for the separation of air by cryogenic distillation
PCT/EP2006/066601 WO2007039478A1 (en) 2005-09-23 2006-09-21 Process and apparatus for the separation of air by cryogenic distillation

Publications (1)

Publication Number Publication Date
JP2009509120A true JP2009509120A (en) 2009-03-05

Family

ID=35809642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008531702A Pending JP2009509120A (en) 2005-09-23 2006-09-21 Method and apparatus for separating air by cryogenic distillation.

Country Status (5)

Country Link
US (1) US20080223075A1 (en)
EP (2) EP1767884A1 (en)
JP (1) JP2009509120A (en)
CN (1) CN101268326A (en)
WO (1) WO2007039478A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015215104A (en) * 2014-05-08 2015-12-03 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Liquid gas manufacturing apparatus and liquid gas manufacturing method
JP7451532B2 (en) 2018-12-21 2024-03-18 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Apparatus and method for separating air by cryogenic distillation

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1972875A1 (en) * 2007-03-23 2008-09-24 L'AIR LIQUIDE, S.A. pour l'étude et l'exploitation des procédés Georges Claude Process and apparatus for the separation of air by cryogenic distillation
US20120174625A1 (en) * 2009-08-11 2012-07-12 Linde Aktiengesellschaft Method and device for producing a gaseous pressurized oxygen product by cryogenic separation of air
EP2369281A1 (en) * 2010-03-09 2011-09-28 Linde Aktiengesellschaft Method and device for cryogenic decomposition of air
CN102721262A (en) * 2012-07-04 2012-10-10 开封空分集团有限公司 Crude krypton and xenon extraction system and process for extracting crude krypton and xenon by utilizing same
JP5932127B2 (en) * 2013-02-25 2016-06-08 三菱重工コンプレッサ株式会社 Carbon dioxide liquefaction equipment
EP2980514A1 (en) * 2014-07-31 2016-02-03 Linde Aktiengesellschaft Method for the low-temperature decomposition of air and air separation plant
US20160245585A1 (en) * 2015-02-24 2016-08-25 Henry E. Howard System and method for integrated air separation and liquefaction
EP3101374A3 (en) * 2015-06-03 2017-01-18 Linde Aktiengesellschaft Method and installation for cryogenic decomposition of air
CN111406192B (en) * 2017-11-29 2022-04-08 乔治洛德方法研究和开发液化空气有限公司 Cryogenic rectification method and apparatus for producing pressurized air by expander booster braked in conjunction with nitrogen expander
WO2019127343A1 (en) * 2017-12-29 2019-07-04 乔治洛德方法研究和开发液化空气有限公司 Method and device for producing air product based on cryogenic rectification
US11054182B2 (en) * 2018-05-31 2021-07-06 Air Products And Chemicals, Inc. Process and apparatus for separating air using a split heat exchanger
CN114174747B (en) * 2019-07-26 2024-05-28 乔治洛德方法研究和开发液化空气有限公司 Method and apparatus for separating air by cryogenic distillation
CN114017992B (en) * 2021-11-09 2023-03-31 四川空分设备(集团)有限责任公司 Air separation system suitable for LNG cold energy load changes

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4345925A (en) * 1980-11-26 1982-08-24 Union Carbide Corporation Process for the production of high pressure oxygen gas
US5379598A (en) * 1993-08-23 1995-01-10 The Boc Group, Inc. Cryogenic rectification process and apparatus for vaporizing a pumped liquid product
GB9325648D0 (en) * 1993-12-15 1994-02-16 Boc Group Plc Air separation
US5475980A (en) * 1993-12-30 1995-12-19 L'air Liquide, Societe Anonyme Pour L'etude L'exploitation Des Procedes Georges Claude Process and installation for production of high pressure gaseous fluid
FR2721383B1 (en) * 1994-06-20 1996-07-19 Maurice Grenier Process and installation for producing gaseous oxygen under pressure.
US6009723A (en) * 1998-01-22 2000-01-04 Air Products And Chemicals, Inc. Elevated pressure air separation process with use of waste expansion for compression of a process stream
US5901576A (en) * 1998-01-22 1999-05-11 Air Products And Chemicals, Inc. Single expander and a cold compressor process to produce oxygen
US6178775B1 (en) * 1998-10-30 2001-01-30 The Boc Group, Inc. Method and apparatus for separating air to produce an oxygen product
US6112550A (en) * 1998-12-30 2000-09-05 Praxair Technology, Inc. Cryogenic rectification system and hybrid refrigeration generation
DE59909750D1 (en) * 1999-07-05 2004-07-22 Linde Ag Method and device for the low-temperature separation of air
FR2806152B1 (en) * 2000-03-07 2002-08-30 Air Liquide PROCESS AND INSTALLATION FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
US6260380B1 (en) * 2000-03-23 2001-07-17 Praxair Technology, Inc. Cryogenic air separation process for producing liquid oxygen
US6357258B1 (en) * 2000-09-08 2002-03-19 Praxair Technology, Inc. Cryogenic air separation system with integrated booster and multicomponent refrigeration compression
US6626008B1 (en) * 2002-12-11 2003-09-30 Praxair Technology, Inc. Cold compression cryogenic rectification system for producing low purity oxygen
US6962062B2 (en) * 2003-12-10 2005-11-08 L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Proédés Georges Claude Process and apparatus for the separation of air by cryogenic distillation
EP1750074A1 (en) * 2005-08-02 2007-02-07 Linde Aktiengesellschaft Process and device for the cryogenic separation of air

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015215104A (en) * 2014-05-08 2015-12-03 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Liquid gas manufacturing apparatus and liquid gas manufacturing method
JP7451532B2 (en) 2018-12-21 2024-03-18 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Apparatus and method for separating air by cryogenic distillation

Also Published As

Publication number Publication date
US20080223075A1 (en) 2008-09-18
CN101268326A (en) 2008-09-17
WO2007039478A1 (en) 2007-04-12
EP1767884A1 (en) 2007-03-28
EP1938032A1 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
JP2009509120A (en) Method and apparatus for separating air by cryogenic distillation.
JP4733124B2 (en) Cryogenic air separation method for producing pressurized gas products
US6962062B2 (en) Process and apparatus for the separation of air by cryogenic distillation
JP2909678B2 (en) Method and apparatus for producing gaseous oxygen under pressure
JP4728219B2 (en) Method and system for producing pressurized air gas by cryogenic distillation of air
EP0644388B1 (en) Cryogenic air separation
US8695377B2 (en) Process and apparatus for the separation of air by cryogenic distillation
JP2735742B2 (en) Cryogenic separation method and apparatus for feed air stream
JPH06117753A (en) High-pressure low-temperature distilling method of air
WO2008116727A2 (en) Process and apparatus for the separation of air by cryogenic distillation
US5428962A (en) Process and installation for the production of at least one gaseous product under pressure and at least one liquid by distillation of air
US20090241595A1 (en) Distillation method and apparatus
US5251450A (en) Efficient single column air separation cycle and its integration with gas turbines
EP2634517A1 (en) Process and apparatus for the separation of air by cryogenic distillation
US6009723A (en) Elevated pressure air separation process with use of waste expansion for compression of a process stream
CN105378411B (en) Produce method, the air separation plant, the method and apparatus produced electricl energy of at least one air products
JP2000193365A (en) Method of separating gas from air at low temperature
JP2000346547A (en) Cryogenic distillation for separating air
JP2000356464A (en) Low-temperature vapor-depositing system for separating air
EP1999422A2 (en) Cryogenic air separation system
US7219514B2 (en) Method for separating air by cryogenic distillation and installation therefor
US5901577A (en) Process and plant for air separation by cryogenic distillation
JP2000346546A (en) Low-temperature distilling system for separating air
US20240183610A1 (en) Method and plant for low temperature fractionation of air