EP1623172B1 - Method and system for the production of pressurized air gas by cryogenic distillation of air - Google Patents
Method and system for the production of pressurized air gas by cryogenic distillation of air Download PDFInfo
- Publication number
- EP1623172B1 EP1623172B1 EP04742833.9A EP04742833A EP1623172B1 EP 1623172 B1 EP1623172 B1 EP 1623172B1 EP 04742833 A EP04742833 A EP 04742833A EP 1623172 B1 EP1623172 B1 EP 1623172B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- air
- turbine
- column
- supercharger
- exchange line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 26
- 238000004821 distillation Methods 0.000 title claims description 11
- 238000004519 manufacturing process Methods 0.000 title description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 31
- 239000007788 liquid Substances 0.000 claims description 21
- 229910052757 nitrogen Inorganic materials 0.000 claims description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 11
- 239000001301 oxygen Substances 0.000 claims description 11
- 229910052760 oxygen Inorganic materials 0.000 claims description 11
- 238000009834 vaporization Methods 0.000 claims description 7
- 238000009434 installation Methods 0.000 claims description 4
- 238000000926 separation method Methods 0.000 claims description 4
- 238000005273 aeration Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 230000008016 vaporization Effects 0.000 description 4
- 238000007664 blowing Methods 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04296—Claude expansion, i.e. expanded into the main or high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04048—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
- F25J3/04054—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/0409—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04163—Hot end purification of the feed air
- F25J3/04169—Hot end purification of the feed air by adsorption of the impurities
- F25J3/04175—Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04303—Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/04309—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
- F25J3/04393—Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/40—Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
- F25J2240/42—Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval the fluid being air
Definitions
- the present invention relates to a method and an installation for producing gas from pressurized air by cryogenic distillation of air.
- Some processes such as those described in EP-A-0 504 029 , produce oxygen under high pressure (> 15 bar) using a single compressor to compress air at a pressure well above the pressure of the medium pressure column.
- US Patent 5475980 discloses a method according to the preamble of claim 1 and an apparatus according to the preamble of claim 15.
- Temperatures are considered to be close if they differ at most 10 ° C, preferably at most 5 ° C.
- the exchange line is the main heat exchanger where the gases produced by the column system are heated and where the air for distillation is cooled.
- An object of the invention is to propose an alternative for producing process diagrams making it possible to improve the energy performances by compared to type 1 processes while keeping a lower exchange volume requirement than cold compression type 2 schemes as described above.
- the turbine constituting the drive device or forming part thereof may be an air expansion turbine, in particular an insufflation turbine, or a nitrogen expansion turbine.
- the air is compressed to a pressure of about 15 bar in a compressor (not shown) and is then purified to remove impurities (not shown).
- the purified air is supercharged at a pressure of about 18 bar in a booster 5.
- the supercharged air cools by heat exchange with a refrigerant such as water and is sent to the hot end of the exchange line 9. All the air cools down to an intermediate temperature of the exchange line and then the air is split in two.
- a first portion of the air 11 comprising between 10% and 50% of the air flow under high pressure is sent to a booster 23 sucking at a cryogenic temperature.
- the supercharged air is then sent to the exchange line, without being cooled at the outlet of the booster, at a pressure of about 31 bar, continues cooling and liquefies in particular by heat exchange with a flow of liquid oxygen pumped 25 which pseudo vaporizes.
- the remainder of the air 13 comprising between 50 and 90% of the high-pressure air cools to a temperature lower than the suction temperature of the booster 23 and is expanded in a Claude turbine 17 and sent to the middle column pressure, thus constituting the only flow of gaseous air sent to the double column.
- a nitrogen-enriched gas flow 31 from the medium pressure column 100 heats up in the exchange line, leaves at a temperature higher than the inlet temperature of the Claude 17 turbine and is sent to an expansion turbine 119.
- Nitrogen expanded substantially at low pressure and substantially at the temperature of the cold end of the exchange line is reintroduced into the exchange line where it heats up or joins a nitrogen-enriched gas 33 withdrawn from the lower column. pressure and the nitrogen flow formed 29 is heated through completely the exchange line.
- the nitrogen turbine 119 is coupled to the cold booster 23 while the Claude turbine 17 is coupled to the hot booster 5.
- the expansion turbine 119 is not an essential element of the invention and the drive of the cold booster 23 can be replaced by an electric motor. Similarly, the expansion turbine 119 may be replaced by an air expansion turbine.
- the column system of the Figure 1 and all the figures is a conventional air separation apparatus consisting of a medium pressure column 100 thermally connected with a low pressure column 200 by means of a bottom reboiler of the low pressure column heated by an average nitrogen flow pressure. Other types of reboiling can obviously be considered.
- the medium pressure column 100 operates at a pressure of 5.5 bar but can operate at a higher pressure.
- the gaseous air 35 from the turbine 17 is sent to the bottom of the medium pressure column 100.
- the liquefied air 37 is expanded in the valve 39, divided in two, a part being sent to the medium pressure column 100 and the rest to the low pressure column 200.
- Rich liquid 51, lower lean liquid 53 and upper lean liquid 55 are sent from medium pressure column 100 to low pressure column 200 after expansion steps in the valves and subcooling.
- Oxygen enriched fluids 57 and nitrogen enriched 59 are optionally withdrawn as final products of the double column.
- Oxygen-enriched liquid is pressurized by the pump 500 and sent as a pressurized liquid to the exchange line 9.
- other liquids, pressurized or otherwise such as other liquid oxygen different pressure, liquid nitrogen and liquid argon, can vaporize in the exchange line 9.
- Residual nitrogen 27 is withdrawn at the top of the low pressure column and is heated in the exchange line 9, after being used to subcool the reflux liquids 51, 53, 55.
- the column may optionally produce argon by treating a flow rate withdrawn in low pressure column 200.
- a part 41 of the non-superpressurized high pressure air in the booster 23 can be liquefied in the exchange line by heat exchange with the vaporizing oxygen, is relaxed in a valve 43 to the medium pressure and mixes with the liquefied air 37. It will be understood that if the air is at supercritical pressure at the outlet of the booster 5, the liquefaction will take place only after relaxation in the valves 39, 43.
- the Figure 2 differs from the Figure 1 in that there is no withdrawal of nitrogen medium gas pressure at the head of the medium pressure column 100.
- the medium pressure nitrogen turbine 119 is replaced by a blowing turbine 119A. Part 61 of the air coming from the Claude turbine 17 is sent to the blowing turbine and the air expanded in the turbine 119A is sent to the low pressure column 200.
- the hot booster 5 is still coupled to the turbine Claude but the cold booster 23 is coupled to the blowing turbine.
- the expansion valves of the liquid air are also different in the Figure 2 since the liquid flow rates are only relaxed after the division to form the flow rates for the medium pressure and low pressure columns.
- This kind of process is more suitable for producing low purity oxygen.
- the Figure 3 looks like Figures 1 and 2 but does not include any turbine apart from the Claude turbine.
- the cold booster 23 is coupled to a motor 61 and the hot booster 5 is coupled to the turbine Claude.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
Description
La présente invention est relative à un procédé et à une installation de production de gaz de l'air sous pression par distillation cryogénique d'air.The present invention relates to a method and an installation for producing gas from pressurized air by cryogenic distillation of air.
Certains procédés (type 1), tels que ceux décrits dans
Ces procédés sont adaptés à un contexte dans lequel l'investissement prime, car ils souffrent d'une consommation d'énergie très importante lorsque aucune production de liquide n'est requise.These processes are adapted to a context in which the investment takes precedence because they suffer from a very important energy consumption when no production of liquid is required.
D'autres procédés (type 2) utilisant une haute pression d'air unique pour produire de l'oxygène gazeux sous pression sont divulgués dans
Néanmoins cet avantage énergétique est contrebalancé par un investissement nettement supérieur à ceux du type 1, car c'est un procédé coûteux en volume d'échangeur. En effet, généralement une forte fraction du débit d'air principal (60 % à 80 %) est soumise à compression cryogénique adiabatique avant d'être réintroduite dans la ligne d'échange principale.However, this energy advantage is offset by a much higher investment than
Finalement, ces types de procédé paraissent avoir un intérêt économique, et le choix s'effectuera en fonction de la valorisation de l'énergie, disponible à faible ou fort coût.Finally, these types of process seem to have an economic interest, and the choice will be made according to the valuation of energy, available at low or high cost.
Dans ce document, le terme « condensation » comprend la pseudo-condensation et le terme « vaporisation » comprend la pseudo-vaporisation.In this document, the term "condensation" includes pseudo-condensation and the term "vaporization" includes pseudo-vaporization.
Des températures sont considérées comme étant proches si elles diffèrent au plus 10°C, de préférence d'au plus 5°C.Temperatures are considered to be close if they differ at most 10 ° C, preferably at most 5 ° C.
La ligne d'échange est l'échangeur principal où se réchauffent les gaz produits par le système de colonnes et où se refroidit l'air destiné à la distillation.The exchange line is the main heat exchanger where the gases produced by the column system are heated and where the air for distillation is cooled.
Un but de l'invention est de proposer une alternative pour réaliser des schémas de procédé permettant d'améliorer les performances énergétiques par rapport aux procédés du type 1 tout en gardant un besoin en volume d'échange inférieur à celui des schémas du type 2 à compression froide tels que décrits ci-dessus.An object of the invention is to propose an alternative for producing process diagrams making it possible to improve the energy performances by compared to
Selon l'invention, seule une fraction de l'air (la fraction se liquéfiant au bout froid) subit une compression cryogénique, ce qui minimise l'augmentation du volume de l'échangeur. Cela permet cependant de réduire très sensiblement la pression d'air principale, puisque l'air en sortie du booster cryogénique reste à une pression suffisante pour permettre la vaporisation d'oxygène.According to the invention, only a fraction of the air (the fraction liquefying at the cold end) undergoes cryogenic compression, which minimizes the increase in the volume of the exchanger. However, this makes it possible to very substantially reduce the main air pressure, since the air leaving the cryogenic booster remains at a pressure sufficient to allow the vaporization of oxygen.
Selon un objet de l'invention, il est prévu un procédé selon la revendication 1. Selon d'autres aspects facultatifs :
- l'air surpressé dans le surpresseur chaud ensuite se refroidit dans la ligne d'échange.
- une partie de l'air provenant du surpresseur chaud est envoyée à la turbine Claude à la pression de sortie du surpresseur chaud.
- une partie de l'air provenant du surpresseur chaud se refroidit dans la ligne d'échange, est détendue, liquéfiée et envoyée à au moins une colonne du système de colonnes.
- tout l'air provenant du surpresseur chaud est envoyé uniquement à la turbine Claude ou à la turbine Claude et au surpresseur froid.
- tout l'air gazeux destiné à la distillation provient de la turbine et éventuellement d'une autre turbine de détente de l'air.
- tout l'air surpressé dans le surpresseur froid se refroidit dans la ligne d'échange, est détendu, liquéfié et envoyé à au moins une colonne du système de colonnes.
- un débit gazeux enrichi en azote provenant d'une colonne du système de colonnes se réchauffe partiellement dans la ligne d'échange, est détendu dans la turbine de détente constituant le (ou faisant partie du) dispositif d'entraînement et se réchauffe dans la ligne d'échange.
- un débit d'air se détend dans la turbine de détente constituant le (ou faisant partie du) dispositif d'entraînement et l'air détendu est envoyé à une colonne du système de colonnes, en particulier à la colonne basse pression.
- le liquide issu des colonnes qui se vaporise est enrichi en oxygène par rapport à de l'air.
- la température d'aspiration du surpresseur froid est proche de, de préférence sensiblement égale à, celle de vaporisation du liquide soutiré des colonnes et introduit pressurisé dans la ligne d'échange.
- la température d'aspiration de la turbine Claude est inférieure à la température d'aspiration du surpresseur froid.
- la température d'aspiration de la turbine constituant le ou faisant partie du dispositif d'entraînement est supérieure à la température d'aspiration du surpresseur froid.
- tout l'air porté à une haute pression au moins 5 à 10 bars au-dessus de la moyenne pression est épuré à cette haute pression.
- the supercharged air in the hot booster then cools in the exchange line.
- some of the air from the hot booster is sent to the Claude turbine at the outlet pressure of the hot booster.
- a portion of the air from the hot booster cools in the exchange line, is expanded, liquefied and sent to at least one column of the column system.
- all the air coming from the hot booster is sent only to the Claude turbine or to the Claude turbine and to the cold booster.
- all the gaseous air intended for distillation comes from the turbine and possibly from another air expansion turbine.
- all the air that is overpressed in the cold booster cools in the exchange line, is expanded, liquefied and sent to at least one column of the column system.
- a nitrogen-enriched gas stream from a column of the column system partially heats up in the exchange line, is expanded in the expansion turbine constituting (or forming part of) the drive and warms in the line exchange.
- an air flow expands in the expansion turbine constituting the (or part of) the drive device and the expanded air is sent to a column of the column system, in particular to the low pressure column.
- the liquid from the columns which vaporizes is enriched in oxygen with respect to air.
- the suction temperature of the cold booster is close to, preferably substantially equal to that of vaporization of the liquid withdrawn from the columns and pressurized introduced into the exchange line.
- the suction temperature of the Claude turbine is lower than the suction temperature of the cold booster.
- the suction temperature of the turbine constituting the or part of the drive device is greater than the suction temperature of the cold booster.
- all air brought to a high pressure at least 5 to 10 bar above the average pressure is purified at this high pressure.
Selon un autre objet de l'invention, il est prévu une installation de séparation d'air par distillation cryogénique selon la revendication 15.According to another object of the invention, there is provided an air separation installation by cryogenic distillation according to claim 15.
La turbine constituant le dispositif d'entraînement ou formant partie de celui-ci peut être une turbine de détente d'air, en particulier une turbine d'insufflation, ou une turbine de détente d'azote.The turbine constituting the drive device or forming part thereof may be an air expansion turbine, in particular an insufflation turbine, or a nitrogen expansion turbine.
L'invention sera décrit en plus de détail par rapport aux figures dont les
Un débit de gaz enrichi en azote 31 provenant de la colonne moyenne pression 100 se réchauffe dans la ligne d'échange, en sort à une température plus élevée que la température d'entrée de la turbine Claude 17 et est envoyé à une turbine de détente 119. L'azote détendu sensiblement à la basse pression et sensiblement à la température du bout froid de la ligne d'échange est réintroduit dans la ligne d'échange où il se réchauffe ou rejoint un gaz enrichi en azote 33 soutiré de la colonne basse pression et le débit d'azote formé 29 se réchauffe en traversant complètement la ligne d'échange.A nitrogen-enriched
La turbine d'azote 119 est couplée au surpresseur froid 23 alors que la turbine Claude 17 est couplée au surpresseur chaud 5.The
La turbine de détente 119 n'est pas un élément essentiel de l'invention et l'entraînement du surpresseur froid 23 peut être remplacé par un moteur électrique. De même, la turbine de détente 119 peut être remplacée par une turbine de détente d'air.The
Le système de colonnes de la
La colonne moyenne pression 100 opère à une pression de 5,5 bars mais peut opérer à une pression plus élevée.The
L'air gazeux 35 provenant de la turbine 17 est envoyé en cuve de la colonne moyenne pression 100.The
L'air liquéfié 37 est détendu dans la vanne 39, divisé en deux, une partie étant envoyée à la colonne moyenne pression 100 et le reste à la colonne basse pression 200.The
Du liquide riche 51, du liquide pauvre inférieur 53 et du liquide pauvre supérieur 55 sont envoyés depuis la colonne moyenne pression 100 vers la colonne basse pression 200 après des étapes de détente dans les vannes et de sous-refroidissement.
Des liquides enrichis en oxygène 57 et enrichis en azote 59 sont éventuellement soutirés comme produits finaux de la double colonne.Oxygen enriched
Du liquide enrichi en oxygène est pressurisé par la pompe 500 et envoyé comme liquide pressurisé 25 vers la ligne d'échange 9. Alternativement ou additionnellement, d'autres liquides, pressurisés ou non, tel que d'autres débits d'oxygène liquide à une pression différente, de l'azote liquide et de l'argon liquide, peuvent se vaporiser dans la ligne d'échange 9.Oxygen-enriched liquid is pressurized by the
De l'azote résiduaire 27 est soutiré en tête de la colonne basse pression et se réchauffe dans la ligne d'échange 9, après avoir servi à sous-refroidir les liquides de reflux 51, 53, 55.
La colonne peut éventuellement produire de l'argon en traitant un débit soutiré en colonne basse pression 200.The column may optionally produce argon by treating a flow rate withdrawn in
En variante, comme l'on voit en pointillés, une partie 41 de l'air haute pression non-surpressé dans le surpresseur 23 peut se liquéfier dans la ligne d'échange par échange de chaleur avec l'oxygène qui se vaporise, est détendu dans une vanne 43 jusqu'à la moyenne pression et se mélange avec l'air liquéfié 37. Il sera compris que si l'air est à pression supercritique en sortie du surpresseur 5, la liquéfaction n'aura lieu qu'après détente dans les vannes 39, 43.Alternatively, as seen in dashed lines, a
La
Le surpresseur chaud 5 est toujours couplé à la turbine Claude mais le surpresseur froid 23 est couplé à la turbine d'insufflation.The
Les vannes de détente de l'air liquide sont également différentes dans la
Comme pour la
Ce genre de procédé est plus adapté à la production d'oxygène à basse pureté.This kind of process is more suitable for producing low purity oxygen.
La
Claims (16)
- Method for separating air by cryogenic distillation in a column system (100, 200) comprising a double column or a triple column, the column (100) operating at the highest pressure operating at a so-called medium pressure wherein:a) all the air is brought to a high pressure at least 5 to 10 bar above the medium pressure.b) a portion (11) of the air, comprising between 10% and 50% of the air flow at high pressure, is extracted from the exchange line (9), at a temperature close to the (pseudo-) vaporisation temperature of the liquid, supercharged from at least the high pressure by means of a cold supercharger (23), then is returned to the exchange line, and at least a portion is liquefied at the cold end of the exchange line, and is then sent into at least one column of the column system after expansion.c) a further fraction (13) of the air at at least the high pressure, optionally making up the remainder of the air at high pressure, is expanded in a Claude turbine (17) and sent into the medium-pressure column.d) at least one liquid flow (25) is extracted from one of the columns (200) of the column system, pressurised, and is vaporised in an exchange line.e) the cold supercharger is coupled with a drive device from among:i) an expansion turbine (119, 199A)ii) an electric motor (61)iii) a combination of an expansion turbine and an electric motor characterised in that all the air to be distilled is supercharged to a pressure greater than the high pressure in a hot supercharger (5), which is coupled with the Claude turbine.
- Method according to claim 1 wherein the air supercharged in the hot supercharger (5) is subsequently cooled in the exchange line (9).
- Method according to any of claims 1 or 2 wherein a portion (13) of the air from the hot supercharger (5) is sent to the Claude turbine (17) at the outlet pressure of the hot supercharger.
- Method according to any of claims 1 to 3 wherein a portion (41) of the air from the hot supercharger (5) is cooled in the exchange line, is expanded, liquefied and sent to at least one column of the column system.
- Method according to any of claims 1 to 3 wherein all the air from the hot supercharger (5) is sent only to the Claude turbine (17) or to the Claude turbine and to the cold supercharger (23).
- Method according to any of the above claims, wherein all the gaseous air intended for distillation is obtained from the Claude turbine (17) and optionally from a further air expansion turbine.
- Method according to any of the above claims wherein all the air supercharged in the cold super charger (5) is cooled in the exchange line, is expanded, liquefied and sent to at least one column of the column system (100, 200).
- Method according to any of the above claims wherein a nitrogen-enriched gaseous flow (31) from a column (100) of the column system is partially heated in the exchange line (9), is expanded in the expansion turbine (119) making up or forming part of the drive device and is heated in the exchange line.
- Method according to any of the above claims wherein an air flow (61) is expanded in the expansion turbine (119A) making up or forming part of the drive device and the expanded air is sent to a column of the column system, in particular to the low-pressure column (200).
- Method according to any of the above claims wherein the liquid (25) from the columns which is vaporised is enriched with oxygen with respect to the air.
- Method according to any of the above claims wherein the intake temperature of the cold supercharger (23) is close to, preferably substantially equal to, the vaporisation temperature of the liquid (25) extracted from the columns and fed pressurised into the exchange line.
- Method according to any of the above claims wherein the intake temperature of the Claude turbine (17) is less than the intake temperature of the cold supercharger (23).
- Method according to any of the above claims wherein the intake temperature of the turbine (17) making up or forming part of the drive device is greater than the intake temperature of the cold supercharger (23).
- Method according to any of the above claims wherein all the air brought to a high pressure at least 5 to 10 bar above the medium pressure is purified at this high pressure.
- Installation for separating air by cryogenic distillation comprising:a) a heat exchange line (9)b) a double or triple air separation column (100, 200) wherein the column operating at the highest pressure operates at a medium pressurec) a Claude turbine (17)d) a hot supercharger (5) coupled with the Claude turbinee) a cold supercharger (23)f) a device for driving the cold supercharger consisting of a turbine (119, 119A), an electric motor (61) or a combination of both,g) means for sending compressed air intended for distillation to the hot supercharger, means for sending supercharged air to the heat exchange lineh) means for extracting supercharged air at an intermediate level of the exchange line, preferably making up between 10 and 50% of the compressed air, and for sending same to the cold supercharger, means for returning the air from the cold supercharger to the exchange line and means for extracting the air from the cold supercharger of the cold end of the exchange line, in order to expand and send same into at least one column of the column systemi) means for extracting a portion of the air at an intermediate level of the exchange line and for sending same to the Claude turbine andj) means for sending a liquid to be vaporised from the double or triple column in the exchange line characterised in that the means in g) are means for sending all the air intended for distillation to the hot supercharger, in that the means in h) are means for extracting a first portion of the supercharged air at an intermediate level of the exchange line and for sending same to the cold supercharger and in that the means in i) are means for extracting a second portion of the supercharged air at an intermediate level of the exchange line and for sending same to the Claude turbine.
- Installation according to claim 15 wherein the turbine making up the drive device or forming part thereof is an air expansion turbine, in particular an aeration turbine (119A), or a nitrogen expansion turbine (119).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL04742833T PL1623172T3 (en) | 2003-05-05 | 2004-04-06 | Method and system for the production of pressurized air gas by cryogenic distillation of air |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0350142A FR2854683B1 (en) | 2003-05-05 | 2003-05-05 | METHOD AND INSTALLATION FOR PRODUCING PRESSURIZED AIR GASES BY AIR CRYOGENIC DISTILLATION |
PCT/FR2004/050146 WO2004099691A1 (en) | 2003-05-05 | 2004-04-06 | Method and system for the production of pressurized air gas by cryogenic distillation of air |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1623172A1 EP1623172A1 (en) | 2006-02-08 |
EP1623172B1 true EP1623172B1 (en) | 2015-12-09 |
Family
ID=33306451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04742833.9A Expired - Lifetime EP1623172B1 (en) | 2003-05-05 | 2004-04-06 | Method and system for the production of pressurized air gas by cryogenic distillation of air |
Country Status (8)
Country | Link |
---|---|
US (1) | US9945606B2 (en) |
EP (1) | EP1623172B1 (en) |
JP (1) | JP4728219B2 (en) |
CN (1) | CN1784579B (en) |
FR (1) | FR2854683B1 (en) |
HU (1) | HUE026528T2 (en) |
PL (1) | PL1623172T3 (en) |
WO (1) | WO2004099691A1 (en) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2865024B3 (en) * | 2004-01-12 | 2006-05-05 | Air Liquide | METHOD AND INSTALLATION OF AIR SEPARATION BY CRYOGENIC DISTILLATION |
US7487648B2 (en) * | 2006-03-10 | 2009-02-10 | Praxair Technology, Inc. | Cryogenic air separation method with temperature controlled condensed feed air |
FR2913760B1 (en) * | 2007-03-13 | 2013-08-16 | Air Liquide | METHOD AND APPARATUS FOR PRODUCING GAS-LIKE AIR AND HIGH-FLEXIBILITY LIQUID AIR GASES BY CRYOGENIC DISTILLATION |
FR2913759B1 (en) * | 2007-03-13 | 2013-08-16 | Air Liquide | METHOD AND APPARATUS FOR GENERATING GAS AIR FROM THE AIR IN A GAS FORM AND LIQUID WITH HIGH FLEXIBILITY BY CRYOGENIC DISTILLATION |
DE102007031765A1 (en) * | 2007-07-07 | 2009-01-08 | Linde Ag | Process for the cryogenic separation of air |
EP2185879A1 (en) * | 2007-08-10 | 2010-05-19 | L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Process and apparatus for the separation of air by cryogenic distillation |
US20110197630A1 (en) * | 2007-08-10 | 2011-08-18 | L'air Liquide, Societe Anonyme Pour L'etude Et L'e Xploitation Des Procedes Georges Claude | Process and Apparatus for the Separation of Air by Cryogenic Distillation |
FR2953915B1 (en) * | 2009-12-11 | 2011-12-02 | Air Liquide | METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION |
EP2369281A1 (en) | 2010-03-09 | 2011-09-28 | Linde Aktiengesellschaft | Method and device for cryogenic decomposition of air |
DE102010055448A1 (en) * | 2010-12-21 | 2012-06-21 | Linde Ag | Method and apparatus for the cryogenic separation of air |
FR2973485B1 (en) * | 2011-03-29 | 2017-11-24 | L'air Liquide Sa Pour L'etude Et L'exploitation Des Procedes Georges Claude | METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION |
CN102353754B (en) * | 2011-09-02 | 2014-04-09 | 杭州杭氧股份有限公司 | Low-temperature fractionation performance test system with refrigerator as cold source |
FR2983287B1 (en) * | 2011-11-25 | 2018-03-02 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | METHOD AND INSTALLATION OF AIR SEPARATION BY CRYOGENIC DISTILLATION |
FR2985305B1 (en) * | 2012-01-03 | 2017-12-22 | L'air Liquide Sa Pour L'etude Et L'exploitation Des Procedes Georges Claude | METHOD AND APPARATUS FOR PRODUCING PRESSURIZED AIR GAS USING A CRYOGENIC SURPRESSOR |
DE102012017488A1 (en) | 2012-09-04 | 2014-03-06 | Linde Aktiengesellschaft | Method for building air separation plant, involves selecting air separation modules on basis of product specification of module set with different air pressure requirements |
EP2784420A1 (en) * | 2013-03-26 | 2014-10-01 | Linde Aktiengesellschaft | Method for air separation and air separation plant |
WO2014154339A2 (en) | 2013-03-26 | 2014-10-02 | Linde Aktiengesellschaft | Method for air separation and air separation plant |
FR3010778B1 (en) * | 2013-09-17 | 2019-05-24 | Air Liquide | PROCESS AND APPARATUS FOR PRODUCING GAS OXYGEN BY CRYOGENIC DISTILLATION OF AIR |
EP2963370B1 (en) * | 2014-07-05 | 2018-06-13 | Linde Aktiengesellschaft | Method and device for the cryogenic decomposition of air |
WO2018219501A1 (en) | 2017-05-31 | 2018-12-06 | Linde Aktiengesellschaft | Method for obtaining one or more air products and air separation plant |
FR3072451B1 (en) * | 2017-10-13 | 2022-01-21 | Air Liquide | METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION |
EP3870916B1 (en) | 2018-10-26 | 2023-07-12 | Linde GmbH | Method for producing one or more air products and air separation unit |
CN109630269B (en) * | 2019-01-15 | 2021-12-31 | 中国石油大学(华东) | Natural gas-steam combined cycle clean power generation process |
WO2023051946A1 (en) | 2021-09-29 | 2023-04-06 | Linde Gmbh | Method for the cryogenic separation of air, and air separation plant |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3285028A (en) * | 1964-01-06 | 1966-11-15 | Air Prod & Chem | Refrigeration method |
US3605422A (en) * | 1968-02-28 | 1971-09-20 | Air Prod & Chem | Low temperature frocess for the separation of gaseous mixtures |
FR2461906A1 (en) * | 1979-07-20 | 1981-02-06 | Air Liquide | CRYOGENIC AIR SEPARATION METHOD AND INSTALLATION WITH OXYGEN PRODUCTION AT HIGH PRESSURE |
US4869742A (en) * | 1988-10-06 | 1989-09-26 | Air Products And Chemicals, Inc. | Air separation process with waste recycle for nitrogen and oxygen production |
JP2909678B2 (en) | 1991-03-11 | 1999-06-23 | レール・リキード・ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | Method and apparatus for producing gaseous oxygen under pressure |
FR2692664A1 (en) * | 1992-06-23 | 1993-12-24 | Lair Liquide | Process and installation for producing gaseous oxygen under pressure. |
US5379598A (en) * | 1993-08-23 | 1995-01-10 | The Boc Group, Inc. | Cryogenic rectification process and apparatus for vaporizing a pumped liquid product |
FR2711778B1 (en) * | 1993-10-26 | 1995-12-08 | Air Liquide | Process and installation for the production of oxygen and / or nitrogen under pressure. |
US5475980A (en) * | 1993-12-30 | 1995-12-19 | L'air Liquide, Societe Anonyme Pour L'etude L'exploitation Des Procedes Georges Claude | Process and installation for production of high pressure gaseous fluid |
FR2721383B1 (en) * | 1994-06-20 | 1996-07-19 | Maurice Grenier | Process and installation for producing gaseous oxygen under pressure. |
US5490391A (en) * | 1994-08-25 | 1996-02-13 | The Boc Group, Inc. | Method and apparatus for producing oxygen |
FR2757282B1 (en) * | 1996-12-12 | 2006-06-23 | Air Liquide | METHOD AND INSTALLATION FOR PROVIDING A VARIABLE FLOW OF AN AIR GAS |
JP3737611B2 (en) * | 1997-08-08 | 2006-01-18 | 大陽日酸株式会社 | Method and apparatus for producing low purity oxygen |
JP3737612B2 (en) * | 1997-08-12 | 2006-01-18 | 大陽日酸株式会社 | Method and apparatus for producing low purity oxygen |
US5966967A (en) * | 1998-01-22 | 1999-10-19 | Air Products And Chemicals, Inc. | Efficient process to produce oxygen |
FR2776057B1 (en) * | 1998-03-11 | 2000-06-23 | Air Liquide | METHOD AND PLANT FOR AIR SEPARATION BY CRYOGENIC DISTILLATION |
FR2776760B1 (en) * | 1998-03-31 | 2000-05-05 | Air Liquide | METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION |
JP3992387B2 (en) * | 1998-12-08 | 2007-10-17 | 日本エア・リキード株式会社 | Air separation device |
EP1067345B1 (en) * | 1999-07-05 | 2004-06-16 | Linde Aktiengesellschaft | Process and device for cryogenic air separation |
DE19951521A1 (en) * | 1999-10-26 | 2001-05-03 | Linde Ag | Recovering pressurized product by low temperature decomposition of air in rectification system comprises cold compressing heat carrier stream before introducing into mixing column |
US6253576B1 (en) * | 1999-11-09 | 2001-07-03 | Air Products And Chemicals, Inc. | Process for the production of intermediate pressure oxygen |
US6962062B2 (en) * | 2003-12-10 | 2005-11-08 | L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Proédés Georges Claude | Process and apparatus for the separation of air by cryogenic distillation |
-
2003
- 2003-05-05 FR FR0350142A patent/FR2854683B1/en not_active Expired - Fee Related
-
2004
- 2004-04-06 US US10/555,745 patent/US9945606B2/en active Active
- 2004-04-06 PL PL04742833T patent/PL1623172T3/en unknown
- 2004-04-06 CN CN2004800120826A patent/CN1784579B/en not_active Expired - Lifetime
- 2004-04-06 HU HUE04742833A patent/HUE026528T2/en unknown
- 2004-04-06 JP JP2006505869A patent/JP4728219B2/en not_active Expired - Fee Related
- 2004-04-06 WO PCT/FR2004/050146 patent/WO2004099691A1/en active Application Filing
- 2004-04-06 EP EP04742833.9A patent/EP1623172B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
HUE026528T2 (en) | 2016-06-28 |
US20060277944A1 (en) | 2006-12-14 |
JP4728219B2 (en) | 2011-07-20 |
FR2854683B1 (en) | 2006-09-29 |
FR2854683A1 (en) | 2004-11-12 |
JP2006525487A (en) | 2006-11-09 |
WO2004099691A1 (en) | 2004-11-18 |
PL1623172T3 (en) | 2016-06-30 |
CN1784579B (en) | 2010-10-06 |
EP1623172A1 (en) | 2006-02-08 |
US9945606B2 (en) | 2018-04-17 |
CN1784579A (en) | 2006-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1623172B1 (en) | Method and system for the production of pressurized air gas by cryogenic distillation of air | |
EP0689019B1 (en) | Process and apparatus for producing gaseous oxygen under pressure | |
CA2125230C (en) | Method and apparatus for feeding pressurized gas to an air constituant consuming facility | |
US20140260422A1 (en) | Low Temperature Air Separation Process for Producing Pressurized Gaseous Product | |
WO2007068858A2 (en) | Process for separating air by cryogenic distillation | |
US20090078001A1 (en) | Cryogenic Distillation Method and System for Air Separation | |
EP1711765B1 (en) | Cryogenic distillation method and installation for air separation | |
EP1014020B1 (en) | Cryogenic process for separating air gases | |
WO2013167817A2 (en) | Method and apparatus for air separation by cryogenic distillation | |
EP0694746B1 (en) | Process for the production of a gas under pressure in variable quantities | |
FR3066809A1 (en) | METHOD AND APPARATUS FOR SEPARATING AIR BY CRYOGENIC DISTILLATION | |
FR2700205A1 (en) | Method and installation for producing at least one gaseous product under pressure and at least one liquid by air distillation. | |
EP0618415A1 (en) | Process and installation for the production of gaseous Oxygen and/or gaseous nitrogen under pressure by distillation of air | |
WO2011030050A2 (en) | Method and facility for producing oxygen through air distillation | |
EP1189003B1 (en) | Process and apparatus for air separation by cryogenic distillation | |
EP0641983B1 (en) | Process and installation for the production of gaseous oxygen and/or nitrogen under pressure | |
FR2832213A1 (en) | PROCESS AND PLANT FOR THE PRODUCTION OF HELIUM | |
EP0766055B1 (en) | Process and apparatus for the production of pressurized gas by cryogenic distillation | |
EP3058297B1 (en) | Method and device for separating air by cryogenic distillation | |
FR2831249A1 (en) | Air separation in an apparatus containing at least two columns which can be operated normally or with air expanded to a low pressure in the turbine before distillation in the low pressure column | |
EP0612967B1 (en) | Process for the production of oxygen and/or nitrogen under pressure | |
EP0611218B2 (en) | Process and installation for producing oxygen under pressure | |
EP1132700B1 (en) | Process and apparatus for air separation by cryogenic distillation | |
FR2819046A1 (en) | Cryogenic distillation air separation plant uses compressor to compress nitrogen-rich flow with inlet temperature below that of heat exchanger | |
FR2864213A1 (en) | Producing oxygen, argon or nitrogen as high-pressure gas by distilling air comprises using electricity generated by turbine to drive cold blower |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20051205 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: DECAYEUX OLIVIER Inventor name: LE BOT, PATRICK Inventor name: JUDAS, FREDERIC |
|
17Q | First examination report despatched |
Effective date: 20070504 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E |
|
TPAC | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOSNTIPA |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150723 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 764770 Country of ref document: AT Kind code of ref document: T Effective date: 20151215 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602004048343 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20151209 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20160323 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 764770 Country of ref document: AT Kind code of ref document: T Effective date: 20151209 |
|
REG | Reference to a national code |
Ref country code: EE Ref legal event code: FG4A Ref document number: E011747 Country of ref document: EE Effective date: 20160212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160310 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RO Payment date: 20160323 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E026528 Country of ref document: HU |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 20395 Country of ref document: SK |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BG Payment date: 20160414 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160430 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160411 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20160322 Year of fee payment: 13 Ref country code: SK Payment date: 20160406 Year of fee payment: 13 Ref country code: EE Payment date: 20160413 Year of fee payment: 13 Ref country code: HU Payment date: 20160422 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602004048343 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 |
|
26N | No opposition filed |
Effective date: 20160912 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20160406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160430 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160406 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170406 |
|
REG | Reference to a national code |
Ref country code: EE Ref legal event code: MM4A Ref document number: E011747 Country of ref document: EE Effective date: 20170430 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: MM4A Ref document number: E 20395 Country of ref document: SK Effective date: 20170406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170406 Ref country code: HU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170407 Ref country code: SK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170406 Ref country code: EE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170430 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171105 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20220401 Year of fee payment: 19 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230523 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20230421 Year of fee payment: 20 Ref country code: FR Payment date: 20230420 Year of fee payment: 20 Ref country code: DE Payment date: 20230420 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 602004048343 Country of ref document: DE |