EP1623172B1 - Method and system for the production of pressurized air gas by cryogenic distillation of air - Google Patents

Method and system for the production of pressurized air gas by cryogenic distillation of air Download PDF

Info

Publication number
EP1623172B1
EP1623172B1 EP04742833.9A EP04742833A EP1623172B1 EP 1623172 B1 EP1623172 B1 EP 1623172B1 EP 04742833 A EP04742833 A EP 04742833A EP 1623172 B1 EP1623172 B1 EP 1623172B1
Authority
EP
European Patent Office
Prior art keywords
air
turbine
column
supercharger
exchange line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04742833.9A
Other languages
German (de)
French (fr)
Other versions
EP1623172A1 (en
Inventor
Patrick Le Bot
Olivier Decayeux
Frédéric Judas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority to PL04742833T priority Critical patent/PL1623172T3/en
Publication of EP1623172A1 publication Critical patent/EP1623172A1/en
Application granted granted Critical
Publication of EP1623172B1 publication Critical patent/EP1623172B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04175Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • F25J2240/42Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval the fluid being air

Definitions

  • the present invention relates to a method and an installation for producing gas from pressurized air by cryogenic distillation of air.
  • Some processes such as those described in EP-A-0 504 029 , produce oxygen under high pressure (> 15 bar) using a single compressor to compress air at a pressure well above the pressure of the medium pressure column.
  • US Patent 5475980 discloses a method according to the preamble of claim 1 and an apparatus according to the preamble of claim 15.
  • Temperatures are considered to be close if they differ at most 10 ° C, preferably at most 5 ° C.
  • the exchange line is the main heat exchanger where the gases produced by the column system are heated and where the air for distillation is cooled.
  • An object of the invention is to propose an alternative for producing process diagrams making it possible to improve the energy performances by compared to type 1 processes while keeping a lower exchange volume requirement than cold compression type 2 schemes as described above.
  • the turbine constituting the drive device or forming part thereof may be an air expansion turbine, in particular an insufflation turbine, or a nitrogen expansion turbine.
  • the air is compressed to a pressure of about 15 bar in a compressor (not shown) and is then purified to remove impurities (not shown).
  • the purified air is supercharged at a pressure of about 18 bar in a booster 5.
  • the supercharged air cools by heat exchange with a refrigerant such as water and is sent to the hot end of the exchange line 9. All the air cools down to an intermediate temperature of the exchange line and then the air is split in two.
  • a first portion of the air 11 comprising between 10% and 50% of the air flow under high pressure is sent to a booster 23 sucking at a cryogenic temperature.
  • the supercharged air is then sent to the exchange line, without being cooled at the outlet of the booster, at a pressure of about 31 bar, continues cooling and liquefies in particular by heat exchange with a flow of liquid oxygen pumped 25 which pseudo vaporizes.
  • the remainder of the air 13 comprising between 50 and 90% of the high-pressure air cools to a temperature lower than the suction temperature of the booster 23 and is expanded in a Claude turbine 17 and sent to the middle column pressure, thus constituting the only flow of gaseous air sent to the double column.
  • a nitrogen-enriched gas flow 31 from the medium pressure column 100 heats up in the exchange line, leaves at a temperature higher than the inlet temperature of the Claude 17 turbine and is sent to an expansion turbine 119.
  • Nitrogen expanded substantially at low pressure and substantially at the temperature of the cold end of the exchange line is reintroduced into the exchange line where it heats up or joins a nitrogen-enriched gas 33 withdrawn from the lower column. pressure and the nitrogen flow formed 29 is heated through completely the exchange line.
  • the nitrogen turbine 119 is coupled to the cold booster 23 while the Claude turbine 17 is coupled to the hot booster 5.
  • the expansion turbine 119 is not an essential element of the invention and the drive of the cold booster 23 can be replaced by an electric motor. Similarly, the expansion turbine 119 may be replaced by an air expansion turbine.
  • the column system of the Figure 1 and all the figures is a conventional air separation apparatus consisting of a medium pressure column 100 thermally connected with a low pressure column 200 by means of a bottom reboiler of the low pressure column heated by an average nitrogen flow pressure. Other types of reboiling can obviously be considered.
  • the medium pressure column 100 operates at a pressure of 5.5 bar but can operate at a higher pressure.
  • the gaseous air 35 from the turbine 17 is sent to the bottom of the medium pressure column 100.
  • the liquefied air 37 is expanded in the valve 39, divided in two, a part being sent to the medium pressure column 100 and the rest to the low pressure column 200.
  • Rich liquid 51, lower lean liquid 53 and upper lean liquid 55 are sent from medium pressure column 100 to low pressure column 200 after expansion steps in the valves and subcooling.
  • Oxygen enriched fluids 57 and nitrogen enriched 59 are optionally withdrawn as final products of the double column.
  • Oxygen-enriched liquid is pressurized by the pump 500 and sent as a pressurized liquid to the exchange line 9.
  • other liquids, pressurized or otherwise such as other liquid oxygen different pressure, liquid nitrogen and liquid argon, can vaporize in the exchange line 9.
  • Residual nitrogen 27 is withdrawn at the top of the low pressure column and is heated in the exchange line 9, after being used to subcool the reflux liquids 51, 53, 55.
  • the column may optionally produce argon by treating a flow rate withdrawn in low pressure column 200.
  • a part 41 of the non-superpressurized high pressure air in the booster 23 can be liquefied in the exchange line by heat exchange with the vaporizing oxygen, is relaxed in a valve 43 to the medium pressure and mixes with the liquefied air 37. It will be understood that if the air is at supercritical pressure at the outlet of the booster 5, the liquefaction will take place only after relaxation in the valves 39, 43.
  • the Figure 2 differs from the Figure 1 in that there is no withdrawal of nitrogen medium gas pressure at the head of the medium pressure column 100.
  • the medium pressure nitrogen turbine 119 is replaced by a blowing turbine 119A. Part 61 of the air coming from the Claude turbine 17 is sent to the blowing turbine and the air expanded in the turbine 119A is sent to the low pressure column 200.
  • the hot booster 5 is still coupled to the turbine Claude but the cold booster 23 is coupled to the blowing turbine.
  • the expansion valves of the liquid air are also different in the Figure 2 since the liquid flow rates are only relaxed after the division to form the flow rates for the medium pressure and low pressure columns.
  • This kind of process is more suitable for producing low purity oxygen.
  • the Figure 3 looks like Figures 1 and 2 but does not include any turbine apart from the Claude turbine.
  • the cold booster 23 is coupled to a motor 61 and the hot booster 5 is coupled to the turbine Claude.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Description

La présente invention est relative à un procédé et à une installation de production de gaz de l'air sous pression par distillation cryogénique d'air.The present invention relates to a method and an installation for producing gas from pressurized air by cryogenic distillation of air.

Certains procédés (type 1), tels que ceux décrits dans EP-A- 0 504 029 , produisent de l'oxygène sous haute pression (> 15 bars) en utilisant un seul compresseur pour comprimer l'air à une pression bien supérieure à la pression de la colonne moyenne pression.Some processes (type 1), such as those described in EP-A-0 504 029 , produce oxygen under high pressure (> 15 bar) using a single compressor to compress air at a pressure well above the pressure of the medium pressure column.

Ces procédés sont adaptés à un contexte dans lequel l'investissement prime, car ils souffrent d'une consommation d'énergie très importante lorsque aucune production de liquide n'est requise.These processes are adapted to a context in which the investment takes precedence because they suffer from a very important energy consumption when no production of liquid is required.

D'autres procédés (type 2) utilisant une haute pression d'air unique pour produire de l'oxygène gazeux sous pression sont divulgués dans US-A- 5 475 980 et présentent une meilleure énergie spécifique pour la production d'oxygène gazeux sous haute pression et sans production de liquide (ou avec une faible production de liquide. Ils utilisent la compression cryogénique d'air sous pression au moyen d'une soufflante liée mécaniquement à une turbine de détente.Other methods (type 2) using a single high air pressure to produce gaseous oxygen under pressure are disclosed in US Pat. US-A-5,475,980 and have better specific energy for the production of gaseous oxygen under high pressure and without liquid production (or with low liquid production) They use the cryogenic compression of air under pressure by means of a blower mechanically linked to a relaxation turbine.

US-A-5475980 décrit un procédé selon le préambule de la revendication 1 et un appareil selon le préambule de la revendication 15. US Patent 5475980 discloses a method according to the preamble of claim 1 and an apparatus according to the preamble of claim 15.

Néanmoins cet avantage énergétique est contrebalancé par un investissement nettement supérieur à ceux du type 1, car c'est un procédé coûteux en volume d'échangeur. En effet, généralement une forte fraction du débit d'air principal (60 % à 80 %) est soumise à compression cryogénique adiabatique avant d'être réintroduite dans la ligne d'échange principale.However, this energy advantage is offset by a much higher investment than type 1, because it is a costly process volume exchanger. Indeed, generally a large fraction of the main air flow (60% to 80%) is subjected to adiabatic cryogenic compression before being reintroduced into the main exchange line.

Finalement, ces types de procédé paraissent avoir un intérêt économique, et le choix s'effectuera en fonction de la valorisation de l'énergie, disponible à faible ou fort coût.Finally, these types of process seem to have an economic interest, and the choice will be made according to the valuation of energy, available at low or high cost.

Dans ce document, le terme « condensation » comprend la pseudo-condensation et le terme « vaporisation » comprend la pseudo-vaporisation.In this document, the term "condensation" includes pseudo-condensation and the term "vaporization" includes pseudo-vaporization.

Des températures sont considérées comme étant proches si elles diffèrent au plus 10°C, de préférence d'au plus 5°C.Temperatures are considered to be close if they differ at most 10 ° C, preferably at most 5 ° C.

La ligne d'échange est l'échangeur principal où se réchauffent les gaz produits par le système de colonnes et où se refroidit l'air destiné à la distillation.The exchange line is the main heat exchanger where the gases produced by the column system are heated and where the air for distillation is cooled.

Un but de l'invention est de proposer une alternative pour réaliser des schémas de procédé permettant d'améliorer les performances énergétiques par rapport aux procédés du type 1 tout en gardant un besoin en volume d'échange inférieur à celui des schémas du type 2 à compression froide tels que décrits ci-dessus.An object of the invention is to propose an alternative for producing process diagrams making it possible to improve the energy performances by compared to type 1 processes while keeping a lower exchange volume requirement than cold compression type 2 schemes as described above.

Selon l'invention, seule une fraction de l'air (la fraction se liquéfiant au bout froid) subit une compression cryogénique, ce qui minimise l'augmentation du volume de l'échangeur. Cela permet cependant de réduire très sensiblement la pression d'air principale, puisque l'air en sortie du booster cryogénique reste à une pression suffisante pour permettre la vaporisation d'oxygène.According to the invention, only a fraction of the air (the fraction liquefying at the cold end) undergoes cryogenic compression, which minimizes the increase in the volume of the exchanger. However, this makes it possible to very substantially reduce the main air pressure, since the air leaving the cryogenic booster remains at a pressure sufficient to allow the vaporization of oxygen.

Selon un objet de l'invention, il est prévu un procédé selon la revendication 1. Selon d'autres aspects facultatifs :

  • l'air surpressé dans le surpresseur chaud ensuite se refroidit dans la ligne d'échange.
  • une partie de l'air provenant du surpresseur chaud est envoyée à la turbine Claude à la pression de sortie du surpresseur chaud.
  • une partie de l'air provenant du surpresseur chaud se refroidit dans la ligne d'échange, est détendue, liquéfiée et envoyée à au moins une colonne du système de colonnes.
  • tout l'air provenant du surpresseur chaud est envoyé uniquement à la turbine Claude ou à la turbine Claude et au surpresseur froid.
  • tout l'air gazeux destiné à la distillation provient de la turbine et éventuellement d'une autre turbine de détente de l'air.
  • tout l'air surpressé dans le surpresseur froid se refroidit dans la ligne d'échange, est détendu, liquéfié et envoyé à au moins une colonne du système de colonnes.
  • un débit gazeux enrichi en azote provenant d'une colonne du système de colonnes se réchauffe partiellement dans la ligne d'échange, est détendu dans la turbine de détente constituant le (ou faisant partie du) dispositif d'entraînement et se réchauffe dans la ligne d'échange.
  • un débit d'air se détend dans la turbine de détente constituant le (ou faisant partie du) dispositif d'entraînement et l'air détendu est envoyé à une colonne du système de colonnes, en particulier à la colonne basse pression.
  • le liquide issu des colonnes qui se vaporise est enrichi en oxygène par rapport à de l'air.
  • la température d'aspiration du surpresseur froid est proche de, de préférence sensiblement égale à, celle de vaporisation du liquide soutiré des colonnes et introduit pressurisé dans la ligne d'échange.
  • la température d'aspiration de la turbine Claude est inférieure à la température d'aspiration du surpresseur froid.
  • la température d'aspiration de la turbine constituant le ou faisant partie du dispositif d'entraînement est supérieure à la température d'aspiration du surpresseur froid.
  • tout l'air porté à une haute pression au moins 5 à 10 bars au-dessus de la moyenne pression est épuré à cette haute pression.
According to one object of the invention, there is provided a method according to claim 1. According to other optional aspects:
  • the supercharged air in the hot booster then cools in the exchange line.
  • some of the air from the hot booster is sent to the Claude turbine at the outlet pressure of the hot booster.
  • a portion of the air from the hot booster cools in the exchange line, is expanded, liquefied and sent to at least one column of the column system.
  • all the air coming from the hot booster is sent only to the Claude turbine or to the Claude turbine and to the cold booster.
  • all the gaseous air intended for distillation comes from the turbine and possibly from another air expansion turbine.
  • all the air that is overpressed in the cold booster cools in the exchange line, is expanded, liquefied and sent to at least one column of the column system.
  • a nitrogen-enriched gas stream from a column of the column system partially heats up in the exchange line, is expanded in the expansion turbine constituting (or forming part of) the drive and warms in the line exchange.
  • an air flow expands in the expansion turbine constituting the (or part of) the drive device and the expanded air is sent to a column of the column system, in particular to the low pressure column.
  • the liquid from the columns which vaporizes is enriched in oxygen with respect to air.
  • the suction temperature of the cold booster is close to, preferably substantially equal to that of vaporization of the liquid withdrawn from the columns and pressurized introduced into the exchange line.
  • the suction temperature of the Claude turbine is lower than the suction temperature of the cold booster.
  • the suction temperature of the turbine constituting the or part of the drive device is greater than the suction temperature of the cold booster.
  • all air brought to a high pressure at least 5 to 10 bar above the average pressure is purified at this high pressure.

Selon un autre objet de l'invention, il est prévu une installation de séparation d'air par distillation cryogénique selon la revendication 15.According to another object of the invention, there is provided an air separation installation by cryogenic distillation according to claim 15.

La turbine constituant le dispositif d'entraînement ou formant partie de celui-ci peut être une turbine de détente d'air, en particulier une turbine d'insufflation, ou une turbine de détente d'azote.The turbine constituting the drive device or forming part thereof may be an air expansion turbine, in particular an insufflation turbine, or a nitrogen expansion turbine.

L'invention sera décrit en plus de détail par rapport aux figures dont les Figures 1 et 3 représentent un appareil de séparation d'air selon l'invention. Dans la Figure 1, l'air est comprimé à une pression d'environ 15 bars dans un compresseur (non-illustré) et est ensuite épuré pour enlever les impuretés (non-illustré). L'air épuré est surpressé à une pression d'environ 18 bars dans un surpresseur 5. L'air surpressé se refroidit par échange de chaleur avec un réfrigérant tel que de l'eau et est envoyé au bout chaud de la ligne d'échange 9. Tout l'air se refroidit jusqu'à une température intermédiaire de la ligne d'échange et ensuite l'air est divisé en deux. Une première partie de l'air 11 comprenant entre 10 % et 50 % du débit d'air sous haute pression est envoyée à un surpresseur 23 aspirant à une température cryogénique. L'air surpressé est ensuite envoyé à la ligne d'échange, sans être refroidi à la sortie du surpresseur, à une pression de 31 bars environ, poursuit son refroidissement et se liquéfie en particulier par échange de chaleur avec un débit d'oxygène liquide pompé 25 qui se pseudo vaporise. Le reste de l'air 13 comprenant entre 50 et 90 % de l'air à haute pression se refroidit à une température plus basse que la température d'aspiration du surpresseur 23 et est détendu dans une turbine Claude 17 et envoyé à la colonne moyenne pression, ainsi constituant le seul débit d'air gazeux envoyé à la double colonne.The invention will be described in more detail with respect to the figures whose Figures 1 and 3 represent an air separation apparatus according to the invention. In the Figure 1 , the air is compressed to a pressure of about 15 bar in a compressor (not shown) and is then purified to remove impurities (not shown). The purified air is supercharged at a pressure of about 18 bar in a booster 5. The supercharged air cools by heat exchange with a refrigerant such as water and is sent to the hot end of the exchange line 9. All the air cools down to an intermediate temperature of the exchange line and then the air is split in two. A first portion of the air 11 comprising between 10% and 50% of the air flow under high pressure is sent to a booster 23 sucking at a cryogenic temperature. The supercharged air is then sent to the exchange line, without being cooled at the outlet of the booster, at a pressure of about 31 bar, continues cooling and liquefies in particular by heat exchange with a flow of liquid oxygen pumped 25 which pseudo vaporizes. The remainder of the air 13 comprising between 50 and 90% of the high-pressure air cools to a temperature lower than the suction temperature of the booster 23 and is expanded in a Claude turbine 17 and sent to the middle column pressure, thus constituting the only flow of gaseous air sent to the double column.

Un débit de gaz enrichi en azote 31 provenant de la colonne moyenne pression 100 se réchauffe dans la ligne d'échange, en sort à une température plus élevée que la température d'entrée de la turbine Claude 17 et est envoyé à une turbine de détente 119. L'azote détendu sensiblement à la basse pression et sensiblement à la température du bout froid de la ligne d'échange est réintroduit dans la ligne d'échange où il se réchauffe ou rejoint un gaz enrichi en azote 33 soutiré de la colonne basse pression et le débit d'azote formé 29 se réchauffe en traversant complètement la ligne d'échange.A nitrogen-enriched gas flow 31 from the medium pressure column 100 heats up in the exchange line, leaves at a temperature higher than the inlet temperature of the Claude 17 turbine and is sent to an expansion turbine 119. Nitrogen expanded substantially at low pressure and substantially at the temperature of the cold end of the exchange line is reintroduced into the exchange line where it heats up or joins a nitrogen-enriched gas 33 withdrawn from the lower column. pressure and the nitrogen flow formed 29 is heated through completely the exchange line.

La turbine d'azote 119 est couplée au surpresseur froid 23 alors que la turbine Claude 17 est couplée au surpresseur chaud 5.The nitrogen turbine 119 is coupled to the cold booster 23 while the Claude turbine 17 is coupled to the hot booster 5.

La turbine de détente 119 n'est pas un élément essentiel de l'invention et l'entraînement du surpresseur froid 23 peut être remplacé par un moteur électrique. De même, la turbine de détente 119 peut être remplacée par une turbine de détente d'air.The expansion turbine 119 is not an essential element of the invention and the drive of the cold booster 23 can be replaced by an electric motor. Similarly, the expansion turbine 119 may be replaced by an air expansion turbine.

Le système de colonnes de la Figure 1 et de toutes les figures est un appareil de séparation d'air classique constitué par une colonne moyenne pression 100 thermiquement reliée avec une colonne basse pression 200 au moyen d'un rebouilleur de cuve de la colonne basse pression chauffé par un débit d'azote moyenne pression. D'autres types de rebouillage peuvent évidemment être envisagés.The column system of the Figure 1 and all the figures is a conventional air separation apparatus consisting of a medium pressure column 100 thermally connected with a low pressure column 200 by means of a bottom reboiler of the low pressure column heated by an average nitrogen flow pressure. Other types of reboiling can obviously be considered.

La colonne moyenne pression 100 opère à une pression de 5,5 bars mais peut opérer à une pression plus élevée.The medium pressure column 100 operates at a pressure of 5.5 bar but can operate at a higher pressure.

L'air gazeux 35 provenant de la turbine 17 est envoyé en cuve de la colonne moyenne pression 100.The gaseous air 35 from the turbine 17 is sent to the bottom of the medium pressure column 100.

L'air liquéfié 37 est détendu dans la vanne 39, divisé en deux, une partie étant envoyée à la colonne moyenne pression 100 et le reste à la colonne basse pression 200.The liquefied air 37 is expanded in the valve 39, divided in two, a part being sent to the medium pressure column 100 and the rest to the low pressure column 200.

Du liquide riche 51, du liquide pauvre inférieur 53 et du liquide pauvre supérieur 55 sont envoyés depuis la colonne moyenne pression 100 vers la colonne basse pression 200 après des étapes de détente dans les vannes et de sous-refroidissement.Rich liquid 51, lower lean liquid 53 and upper lean liquid 55 are sent from medium pressure column 100 to low pressure column 200 after expansion steps in the valves and subcooling.

Des liquides enrichis en oxygène 57 et enrichis en azote 59 sont éventuellement soutirés comme produits finaux de la double colonne.Oxygen enriched fluids 57 and nitrogen enriched 59 are optionally withdrawn as final products of the double column.

Du liquide enrichi en oxygène est pressurisé par la pompe 500 et envoyé comme liquide pressurisé 25 vers la ligne d'échange 9. Alternativement ou additionnellement, d'autres liquides, pressurisés ou non, tel que d'autres débits d'oxygène liquide à une pression différente, de l'azote liquide et de l'argon liquide, peuvent se vaporiser dans la ligne d'échange 9.Oxygen-enriched liquid is pressurized by the pump 500 and sent as a pressurized liquid to the exchange line 9. Alternatively or additionally, other liquids, pressurized or otherwise, such as other liquid oxygen different pressure, liquid nitrogen and liquid argon, can vaporize in the exchange line 9.

De l'azote résiduaire 27 est soutiré en tête de la colonne basse pression et se réchauffe dans la ligne d'échange 9, après avoir servi à sous-refroidir les liquides de reflux 51, 53, 55.Residual nitrogen 27 is withdrawn at the top of the low pressure column and is heated in the exchange line 9, after being used to subcool the reflux liquids 51, 53, 55.

La colonne peut éventuellement produire de l'argon en traitant un débit soutiré en colonne basse pression 200.The column may optionally produce argon by treating a flow rate withdrawn in low pressure column 200.

En variante, comme l'on voit en pointillés, une partie 41 de l'air haute pression non-surpressé dans le surpresseur 23 peut se liquéfier dans la ligne d'échange par échange de chaleur avec l'oxygène qui se vaporise, est détendu dans une vanne 43 jusqu'à la moyenne pression et se mélange avec l'air liquéfié 37. Il sera compris que si l'air est à pression supercritique en sortie du surpresseur 5, la liquéfaction n'aura lieu qu'après détente dans les vannes 39, 43.Alternatively, as seen in dashed lines, a part 41 of the non-superpressurized high pressure air in the booster 23 can be liquefied in the exchange line by heat exchange with the vaporizing oxygen, is relaxed in a valve 43 to the medium pressure and mixes with the liquefied air 37. It will be understood that if the air is at supercritical pressure at the outlet of the booster 5, the liquefaction will take place only after relaxation in the valves 39, 43.

La Figure 2 diffère de la Figure 1 en ce qu'il n'y a aucun soutirage d'azote moyenne pression gazeuse en tête de la colonne moyenne pression 100. La turbine d'azote moyenne pression 119 est remplacée par une turbine d'insufflation 119A. Une partie 61 de l'air provenant de la turbine Claude 17 est envoyée à la turbine d'insufflation et l'air détendu dans la turbine 119A est envoyé à la colonne basse pression 200.The Figure 2 differs from the Figure 1 in that there is no withdrawal of nitrogen medium gas pressure at the head of the medium pressure column 100. The medium pressure nitrogen turbine 119 is replaced by a blowing turbine 119A. Part 61 of the air coming from the Claude turbine 17 is sent to the blowing turbine and the air expanded in the turbine 119A is sent to the low pressure column 200.

Le surpresseur chaud 5 est toujours couplé à la turbine Claude mais le surpresseur froid 23 est couplé à la turbine d'insufflation.The hot booster 5 is still coupled to the turbine Claude but the cold booster 23 is coupled to the blowing turbine.

Les vannes de détente de l'air liquide sont également différentes dans la Figure 2 du fait que les débits liquides ne sont détendus qu'après la division pour former les débits destinés aux colonnes moyenne pression et basse pression.The expansion valves of the liquid air are also different in the Figure 2 since the liquid flow rates are only relaxed after the division to form the flow rates for the medium pressure and low pressure columns.

Comme pour la Figure 1, il est possible de refroidir une partie de l'air haute pression par échange de chaleur avec l'oxygène, de sorte que deux débits d'air se liquéfient dans la ligne d'échange, permettant d'optimiser le bilan de chaleur.As for the Figure 1 it is possible to cool a portion of the high pressure air by heat exchange with oxygen, so that two air flows liquefy in the exchange line, to optimize the heat balance.

Ce genre de procédé est plus adapté à la production d'oxygène à basse pureté.This kind of process is more suitable for producing low purity oxygen.

La Figure 3 ressemble aux Figures 1 et 2 mais ne comprend aucune turbine à part la turbine Claude. Le surpresseur froid 23 est couplé à un moteur 61 et le surpresseur chaud 5 est couplé à la turbine Claude.The Figure 3 looks like Figures 1 and 2 but does not include any turbine apart from the Claude turbine. The cold booster 23 is coupled to a motor 61 and the hot booster 5 is coupled to the turbine Claude.

Claims (16)

  1. Method for separating air by cryogenic distillation in a column system (100, 200) comprising a double column or a triple column, the column (100) operating at the highest pressure operating at a so-called medium pressure wherein:
    a) all the air is brought to a high pressure at least 5 to 10 bar above the medium pressure.
    b) a portion (11) of the air, comprising between 10% and 50% of the air flow at high pressure, is extracted from the exchange line (9), at a temperature close to the (pseudo-) vaporisation temperature of the liquid, supercharged from at least the high pressure by means of a cold supercharger (23), then is returned to the exchange line, and at least a portion is liquefied at the cold end of the exchange line, and is then sent into at least one column of the column system after expansion.
    c) a further fraction (13) of the air at at least the high pressure, optionally making up the remainder of the air at high pressure, is expanded in a Claude turbine (17) and sent into the medium-pressure column.
    d) at least one liquid flow (25) is extracted from one of the columns (200) of the column system, pressurised, and is vaporised in an exchange line.
    e) the cold supercharger is coupled with a drive device from among:
    i) an expansion turbine (119, 199A)
    ii) an electric motor (61)
    iii) a combination of an expansion turbine and an electric motor characterised in that all the air to be distilled is supercharged to a pressure greater than the high pressure in a hot supercharger (5), which is coupled with the Claude turbine.
  2. Method according to claim 1 wherein the air supercharged in the hot supercharger (5) is subsequently cooled in the exchange line (9).
  3. Method according to any of claims 1 or 2 wherein a portion (13) of the air from the hot supercharger (5) is sent to the Claude turbine (17) at the outlet pressure of the hot supercharger.
  4. Method according to any of claims 1 to 3 wherein a portion (41) of the air from the hot supercharger (5) is cooled in the exchange line, is expanded, liquefied and sent to at least one column of the column system.
  5. Method according to any of claims 1 to 3 wherein all the air from the hot supercharger (5) is sent only to the Claude turbine (17) or to the Claude turbine and to the cold supercharger (23).
  6. Method according to any of the above claims, wherein all the gaseous air intended for distillation is obtained from the Claude turbine (17) and optionally from a further air expansion turbine.
  7. Method according to any of the above claims wherein all the air supercharged in the cold super charger (5) is cooled in the exchange line, is expanded, liquefied and sent to at least one column of the column system (100, 200).
  8. Method according to any of the above claims wherein a nitrogen-enriched gaseous flow (31) from a column (100) of the column system is partially heated in the exchange line (9), is expanded in the expansion turbine (119) making up or forming part of the drive device and is heated in the exchange line.
  9. Method according to any of the above claims wherein an air flow (61) is expanded in the expansion turbine (119A) making up or forming part of the drive device and the expanded air is sent to a column of the column system, in particular to the low-pressure column (200).
  10. Method according to any of the above claims wherein the liquid (25) from the columns which is vaporised is enriched with oxygen with respect to the air.
  11. Method according to any of the above claims wherein the intake temperature of the cold supercharger (23) is close to, preferably substantially equal to, the vaporisation temperature of the liquid (25) extracted from the columns and fed pressurised into the exchange line.
  12. Method according to any of the above claims wherein the intake temperature of the Claude turbine (17) is less than the intake temperature of the cold supercharger (23).
  13. Method according to any of the above claims wherein the intake temperature of the turbine (17) making up or forming part of the drive device is greater than the intake temperature of the cold supercharger (23).
  14. Method according to any of the above claims wherein all the air brought to a high pressure at least 5 to 10 bar above the medium pressure is purified at this high pressure.
  15. Installation for separating air by cryogenic distillation comprising:
    a) a heat exchange line (9)
    b) a double or triple air separation column (100, 200) wherein the column operating at the highest pressure operates at a medium pressure
    c) a Claude turbine (17)
    d) a hot supercharger (5) coupled with the Claude turbine
    e) a cold supercharger (23)
    f) a device for driving the cold supercharger consisting of a turbine (119, 119A), an electric motor (61) or a combination of both,
    g) means for sending compressed air intended for distillation to the hot supercharger, means for sending supercharged air to the heat exchange line
    h) means for extracting supercharged air at an intermediate level of the exchange line, preferably making up between 10 and 50% of the compressed air, and for sending same to the cold supercharger, means for returning the air from the cold supercharger to the exchange line and means for extracting the air from the cold supercharger of the cold end of the exchange line, in order to expand and send same into at least one column of the column system
    i) means for extracting a portion of the air at an intermediate level of the exchange line and for sending same to the Claude turbine and
    j) means for sending a liquid to be vaporised from the double or triple column in the exchange line characterised in that the means in g) are means for sending all the air intended for distillation to the hot supercharger, in that the means in h) are means for extracting a first portion of the supercharged air at an intermediate level of the exchange line and for sending same to the cold supercharger and in that the means in i) are means for extracting a second portion of the supercharged air at an intermediate level of the exchange line and for sending same to the Claude turbine.
  16. Installation according to claim 15 wherein the turbine making up the drive device or forming part thereof is an air expansion turbine, in particular an aeration turbine (119A), or a nitrogen expansion turbine (119).
EP04742833.9A 2003-05-05 2004-04-06 Method and system for the production of pressurized air gas by cryogenic distillation of air Expired - Lifetime EP1623172B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL04742833T PL1623172T3 (en) 2003-05-05 2004-04-06 Method and system for the production of pressurized air gas by cryogenic distillation of air

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0350142A FR2854683B1 (en) 2003-05-05 2003-05-05 METHOD AND INSTALLATION FOR PRODUCING PRESSURIZED AIR GASES BY AIR CRYOGENIC DISTILLATION
PCT/FR2004/050146 WO2004099691A1 (en) 2003-05-05 2004-04-06 Method and system for the production of pressurized air gas by cryogenic distillation of air

Publications (2)

Publication Number Publication Date
EP1623172A1 EP1623172A1 (en) 2006-02-08
EP1623172B1 true EP1623172B1 (en) 2015-12-09

Family

ID=33306451

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04742833.9A Expired - Lifetime EP1623172B1 (en) 2003-05-05 2004-04-06 Method and system for the production of pressurized air gas by cryogenic distillation of air

Country Status (8)

Country Link
US (1) US9945606B2 (en)
EP (1) EP1623172B1 (en)
JP (1) JP4728219B2 (en)
CN (1) CN1784579B (en)
FR (1) FR2854683B1 (en)
HU (1) HUE026528T2 (en)
PL (1) PL1623172T3 (en)
WO (1) WO2004099691A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2865024B3 (en) * 2004-01-12 2006-05-05 Air Liquide METHOD AND INSTALLATION OF AIR SEPARATION BY CRYOGENIC DISTILLATION
US7487648B2 (en) * 2006-03-10 2009-02-10 Praxair Technology, Inc. Cryogenic air separation method with temperature controlled condensed feed air
FR2913760B1 (en) * 2007-03-13 2013-08-16 Air Liquide METHOD AND APPARATUS FOR PRODUCING GAS-LIKE AIR AND HIGH-FLEXIBILITY LIQUID AIR GASES BY CRYOGENIC DISTILLATION
FR2913759B1 (en) * 2007-03-13 2013-08-16 Air Liquide METHOD AND APPARATUS FOR GENERATING GAS AIR FROM THE AIR IN A GAS FORM AND LIQUID WITH HIGH FLEXIBILITY BY CRYOGENIC DISTILLATION
DE102007031765A1 (en) * 2007-07-07 2009-01-08 Linde Ag Process for the cryogenic separation of air
EP2185879A1 (en) * 2007-08-10 2010-05-19 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Process and apparatus for the separation of air by cryogenic distillation
US20110197630A1 (en) * 2007-08-10 2011-08-18 L'air Liquide, Societe Anonyme Pour L'etude Et L'e Xploitation Des Procedes Georges Claude Process and Apparatus for the Separation of Air by Cryogenic Distillation
FR2953915B1 (en) * 2009-12-11 2011-12-02 Air Liquide METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
EP2369281A1 (en) 2010-03-09 2011-09-28 Linde Aktiengesellschaft Method and device for cryogenic decomposition of air
DE102010055448A1 (en) * 2010-12-21 2012-06-21 Linde Ag Method and apparatus for the cryogenic separation of air
FR2973485B1 (en) * 2011-03-29 2017-11-24 L'air Liquide Sa Pour L'etude Et L'exploitation Des Procedes Georges Claude METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
CN102353754B (en) * 2011-09-02 2014-04-09 杭州杭氧股份有限公司 Low-temperature fractionation performance test system with refrigerator as cold source
FR2983287B1 (en) * 2011-11-25 2018-03-02 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude METHOD AND INSTALLATION OF AIR SEPARATION BY CRYOGENIC DISTILLATION
FR2985305B1 (en) * 2012-01-03 2017-12-22 L'air Liquide Sa Pour L'etude Et L'exploitation Des Procedes Georges Claude METHOD AND APPARATUS FOR PRODUCING PRESSURIZED AIR GAS USING A CRYOGENIC SURPRESSOR
DE102012017488A1 (en) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Method for building air separation plant, involves selecting air separation modules on basis of product specification of module set with different air pressure requirements
EP2784420A1 (en) * 2013-03-26 2014-10-01 Linde Aktiengesellschaft Method for air separation and air separation plant
WO2014154339A2 (en) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Method for air separation and air separation plant
FR3010778B1 (en) * 2013-09-17 2019-05-24 Air Liquide PROCESS AND APPARATUS FOR PRODUCING GAS OXYGEN BY CRYOGENIC DISTILLATION OF AIR
EP2963370B1 (en) * 2014-07-05 2018-06-13 Linde Aktiengesellschaft Method and device for the cryogenic decomposition of air
WO2018219501A1 (en) 2017-05-31 2018-12-06 Linde Aktiengesellschaft Method for obtaining one or more air products and air separation plant
FR3072451B1 (en) * 2017-10-13 2022-01-21 Air Liquide METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
EP3870916B1 (en) 2018-10-26 2023-07-12 Linde GmbH Method for producing one or more air products and air separation unit
CN109630269B (en) * 2019-01-15 2021-12-31 中国石油大学(华东) Natural gas-steam combined cycle clean power generation process
WO2023051946A1 (en) 2021-09-29 2023-04-06 Linde Gmbh Method for the cryogenic separation of air, and air separation plant

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3285028A (en) * 1964-01-06 1966-11-15 Air Prod & Chem Refrigeration method
US3605422A (en) * 1968-02-28 1971-09-20 Air Prod & Chem Low temperature frocess for the separation of gaseous mixtures
FR2461906A1 (en) * 1979-07-20 1981-02-06 Air Liquide CRYOGENIC AIR SEPARATION METHOD AND INSTALLATION WITH OXYGEN PRODUCTION AT HIGH PRESSURE
US4869742A (en) * 1988-10-06 1989-09-26 Air Products And Chemicals, Inc. Air separation process with waste recycle for nitrogen and oxygen production
JP2909678B2 (en) 1991-03-11 1999-06-23 レール・リキード・ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method and apparatus for producing gaseous oxygen under pressure
FR2692664A1 (en) * 1992-06-23 1993-12-24 Lair Liquide Process and installation for producing gaseous oxygen under pressure.
US5379598A (en) * 1993-08-23 1995-01-10 The Boc Group, Inc. Cryogenic rectification process and apparatus for vaporizing a pumped liquid product
FR2711778B1 (en) * 1993-10-26 1995-12-08 Air Liquide Process and installation for the production of oxygen and / or nitrogen under pressure.
US5475980A (en) * 1993-12-30 1995-12-19 L'air Liquide, Societe Anonyme Pour L'etude L'exploitation Des Procedes Georges Claude Process and installation for production of high pressure gaseous fluid
FR2721383B1 (en) * 1994-06-20 1996-07-19 Maurice Grenier Process and installation for producing gaseous oxygen under pressure.
US5490391A (en) * 1994-08-25 1996-02-13 The Boc Group, Inc. Method and apparatus for producing oxygen
FR2757282B1 (en) * 1996-12-12 2006-06-23 Air Liquide METHOD AND INSTALLATION FOR PROVIDING A VARIABLE FLOW OF AN AIR GAS
JP3737611B2 (en) * 1997-08-08 2006-01-18 大陽日酸株式会社 Method and apparatus for producing low purity oxygen
JP3737612B2 (en) * 1997-08-12 2006-01-18 大陽日酸株式会社 Method and apparatus for producing low purity oxygen
US5966967A (en) * 1998-01-22 1999-10-19 Air Products And Chemicals, Inc. Efficient process to produce oxygen
FR2776057B1 (en) * 1998-03-11 2000-06-23 Air Liquide METHOD AND PLANT FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
FR2776760B1 (en) * 1998-03-31 2000-05-05 Air Liquide METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
JP3992387B2 (en) * 1998-12-08 2007-10-17 日本エア・リキード株式会社 Air separation device
EP1067345B1 (en) * 1999-07-05 2004-06-16 Linde Aktiengesellschaft Process and device for cryogenic air separation
DE19951521A1 (en) * 1999-10-26 2001-05-03 Linde Ag Recovering pressurized product by low temperature decomposition of air in rectification system comprises cold compressing heat carrier stream before introducing into mixing column
US6253576B1 (en) * 1999-11-09 2001-07-03 Air Products And Chemicals, Inc. Process for the production of intermediate pressure oxygen
US6962062B2 (en) * 2003-12-10 2005-11-08 L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Proédés Georges Claude Process and apparatus for the separation of air by cryogenic distillation

Also Published As

Publication number Publication date
HUE026528T2 (en) 2016-06-28
US20060277944A1 (en) 2006-12-14
JP4728219B2 (en) 2011-07-20
FR2854683B1 (en) 2006-09-29
FR2854683A1 (en) 2004-11-12
JP2006525487A (en) 2006-11-09
WO2004099691A1 (en) 2004-11-18
PL1623172T3 (en) 2016-06-30
CN1784579B (en) 2010-10-06
EP1623172A1 (en) 2006-02-08
US9945606B2 (en) 2018-04-17
CN1784579A (en) 2006-06-07

Similar Documents

Publication Publication Date Title
EP1623172B1 (en) Method and system for the production of pressurized air gas by cryogenic distillation of air
EP0689019B1 (en) Process and apparatus for producing gaseous oxygen under pressure
CA2125230C (en) Method and apparatus for feeding pressurized gas to an air constituant consuming facility
US20140260422A1 (en) Low Temperature Air Separation Process for Producing Pressurized Gaseous Product
WO2007068858A2 (en) Process for separating air by cryogenic distillation
US20090078001A1 (en) Cryogenic Distillation Method and System for Air Separation
EP1711765B1 (en) Cryogenic distillation method and installation for air separation
EP1014020B1 (en) Cryogenic process for separating air gases
WO2013167817A2 (en) Method and apparatus for air separation by cryogenic distillation
EP0694746B1 (en) Process for the production of a gas under pressure in variable quantities
FR3066809A1 (en) METHOD AND APPARATUS FOR SEPARATING AIR BY CRYOGENIC DISTILLATION
FR2700205A1 (en) Method and installation for producing at least one gaseous product under pressure and at least one liquid by air distillation.
EP0618415A1 (en) Process and installation for the production of gaseous Oxygen and/or gaseous nitrogen under pressure by distillation of air
WO2011030050A2 (en) Method and facility for producing oxygen through air distillation
EP1189003B1 (en) Process and apparatus for air separation by cryogenic distillation
EP0641983B1 (en) Process and installation for the production of gaseous oxygen and/or nitrogen under pressure
FR2832213A1 (en) PROCESS AND PLANT FOR THE PRODUCTION OF HELIUM
EP0766055B1 (en) Process and apparatus for the production of pressurized gas by cryogenic distillation
EP3058297B1 (en) Method and device for separating air by cryogenic distillation
FR2831249A1 (en) Air separation in an apparatus containing at least two columns which can be operated normally or with air expanded to a low pressure in the turbine before distillation in the low pressure column
EP0612967B1 (en) Process for the production of oxygen and/or nitrogen under pressure
EP0611218B2 (en) Process and installation for producing oxygen under pressure
EP1132700B1 (en) Process and apparatus for air separation by cryogenic distillation
FR2819046A1 (en) Cryogenic distillation air separation plant uses compressor to compress nitrogen-rich flow with inlet temperature below that of heat exchanger
FR2864213A1 (en) Producing oxygen, argon or nitrogen as high-pressure gas by distilling air comprises using electricity generated by turbine to drive cold blower

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DECAYEUX OLIVIER

Inventor name: LE BOT, PATRICK

Inventor name: JUDAS, FREDERIC

17Q First examination report despatched

Effective date: 20070504

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150723

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 764770

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602004048343

Country of ref document: DE

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20151209

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20160323

Year of fee payment: 13

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 764770

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151209

REG Reference to a national code

Ref country code: EE

Ref legal event code: FG4A

Ref document number: E011747

Country of ref document: EE

Effective date: 20160212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160310

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20160323

Year of fee payment: 13

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E026528

Country of ref document: HU

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 20395

Country of ref document: SK

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BG

Payment date: 20160414

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160411

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20160322

Year of fee payment: 13

Ref country code: SK

Payment date: 20160406

Year of fee payment: 13

Ref country code: EE

Payment date: 20160413

Year of fee payment: 13

Ref country code: HU

Payment date: 20160422

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004048343

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

26N No opposition filed

Effective date: 20160912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160406

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170406

REG Reference to a national code

Ref country code: EE

Ref legal event code: MM4A

Ref document number: E011747

Country of ref document: EE

Effective date: 20170430

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 20395

Country of ref document: SK

Effective date: 20170406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170406

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170407

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170406

Ref country code: EE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171105

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20220401

Year of fee payment: 19

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230421

Year of fee payment: 20

Ref country code: FR

Payment date: 20230420

Year of fee payment: 20

Ref country code: DE

Payment date: 20230420

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 602004048343

Country of ref document: DE