FR2990748A1 - METHOD AND APPARATUS FOR DISTILLATION AT SUBAMBIAN TEMPERATURE - Google Patents

METHOD AND APPARATUS FOR DISTILLATION AT SUBAMBIAN TEMPERATURE Download PDF

Info

Publication number
FR2990748A1
FR2990748A1 FR1254415A FR1254415A FR2990748A1 FR 2990748 A1 FR2990748 A1 FR 2990748A1 FR 1254415 A FR1254415 A FR 1254415A FR 1254415 A FR1254415 A FR 1254415A FR 2990748 A1 FR2990748 A1 FR 2990748A1
Authority
FR
France
Prior art keywords
liquid
exchanger
enriched
vaporized
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
FR1254415A
Other languages
French (fr)
Inventor
Arthur Darde
Mathieu Leclerc
Frederick Lockwood
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Priority to FR1254415A priority Critical patent/FR2990748A1/en
Priority to PCT/FR2013/051058 priority patent/WO2013171426A2/en
Publication of FR2990748A1 publication Critical patent/FR2990748A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0223H2/CO mixtures, i.e. synthesis gas; Water gas or shifted synthesis gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0252Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0261Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0266Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/0605Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the feed stream
    • F25J3/061Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/0605Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the feed stream
    • F25J3/0625H2/CO mixtures, i.e. synthesis gas; Water gas or shifted synthesis gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/0635Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/0655Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/0665Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/067Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/70Flue or combustion exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/04Recovery of liquid products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/80Separating impurities from carbon dioxide, e.g. H2O or water-soluble contaminants
    • F25J2220/82Separating low boiling, i.e. more volatile components, e.g. He, H2, CO, Air gases, CH4
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/80Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/80Quasi-closed internal or closed external carbon dioxide refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/34Details about subcooling of liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Dans un procédé de séparation d'un mélange gazeux contenant un composant lourd et un composant léger à une température subambiante, on refroidit au moins une partie du mélange gazeux dans un échangeur (19) et on sépare au moins une partie du mélange gazeux refroidi pour former un gaz enrichi en composant léger, au moins un premier liquide (17) enrichi en composant lourd et au moins un deuxième liquide (13) enrichi en composant lourd, on sous-refroidit le premier liquide dans l'échangeur, on détend le premier liquide jusqu'à une première pression et on le vaporise à la première pression dans l'échangeur et on ne sous-refroidit pas le deuxième liquide dans l'échangeur et on vaporise le deuxième liquide dans l'échangeur, sans l'avoir détendu, à une deuxième pression, plus élevée que la première pression.In a process for separating a gaseous mixture containing a heavy component and a light component at a subambient temperature, at least a portion of the gaseous mixture is cooled in an exchanger (19) and at least a portion of the cooled gaseous mixture is separated into forming a gas enriched with a light component, at least a first liquid (17) enriched with a heavy component and at least a second liquid (13) enriched with a heavy component, the first liquid is subcooled in the exchanger, the first liquid to a first pressure and is vaporized at the first pressure in the exchanger and does not subcool the second liquid in the exchanger and vaporizes the second liquid in the exchanger, without having relaxed, at a second pressure, higher than the first pressure.

Description

La présente invention est relative à un procédé et à un appareil de distillation à température subambiante. Elle s'applique également à la distillation à température cryogénique. Le mélange gazeux à séparer comprend un composant plus lourd et un composant plus léger. La distillation produit un liquide de cuve enrichi en composant plus lourd et un gaz de tête enrichi en composant plus léger. Le mélange gazeux à séparer peut comprendre au moins 30% mol du composant plus lourd, ou au moins 50% mol du composant plus lourd, voire au moins 80% mol du composant plus lourd. Le mélange gazeux à séparer peut comprendre au moins 5% mol du 15 composant plus léger, au moins 10% du composant plus léger, ou au moins 20% du composant plus léger. Parmi les mélanges gazeux pouvant être séparés, on peut dénombrer un mélange où le composant plus lourd est le monoxyde de carbone et le composant plus léger est l'hydrogène, un mélange où le composant plus lourd est le dioxyde 20 de carbone et le composant plus léger est le monoxyde de carbone, le méthane, l'hydrogène, l'oxygène, l'azote, l'argon ou plusieurs de ces gaz et un mélange où le composant plus lourd est le méthane et le composant plus léger est l'azote ou le monoxyde de carbone ou l'hydrogène ou plusieurs de ces gaz. Il est connu de séparer ces mélanges par condensation partielle, telle que 25 décrite dans « Hydrogen/ carbon monoxide separation with cellulose acetate membranes » de DiMartino et al, Cas Separation and Purification 1988 Vol 2 septembre, p121. A la Figure 2 de ce document, on voit que le mélange gazeux d'hydrogène et de monoxyde de carbone est partiellement condensé par échange de chaleur 30 avec des fluides provenant de la distillation, en particulier par vaporisation du liquide de cuve de la colonne de distillation. The present invention relates to a subambient temperature distillation process and apparatus. It also applies to the distillation at cryogenic temperature. The gaseous mixture to be separated comprises a heavier component and a lighter component. Distillation produces a heavier component enriched tank liquid and a lighter component enriched overhead gas. The gaseous mixture to be separated may comprise at least 30 mol% of the heavier component, or at least 50 mol% of the heavier component, or even at least 80 mol% of the heavier component. The gaseous mixture to be separated may comprise at least 5 mol% of the lighter component, at least 10% of the lighter component, or at least 20% of the lighter component. Of the gaseous mixtures that can be separated, there can be counted a mixture where the heavier component is carbon monoxide and the lighter component is hydrogen, a mixture in which the heavier component is carbon dioxide and the component plus light is carbon monoxide, methane, hydrogen, oxygen, nitrogen, argon or many of these gases and a mixture where the heavier component is methane and the lighter component is nitrogen or carbon monoxide or hydrogen or more than one of these gases. It is known to separate these mixtures by partial condensation as described in "Hydrogen / carbon monoxide separation with cellulose acetate membranes" by DiMartino et al., Case Separation and Purification 1988 Vol 2 Sept., p121. In FIG. 2 of this document it can be seen that the gaseous mixture of hydrogen and carbon monoxide is partially condensed by heat exchange with fluids from the distillation, in particular by spraying the bottoms liquid of the distillation column. distillation.

Il est également connu de produire les frigories requises par vaporisation du liquide de cuve à plusieurs pressions différentes. Il a été suggéré dans EP-A-1729077 de sous-refroidir tout le liquide destiné à être vaporisé dans l'échangeur où se refroidit le mélange gazeux destiné à la distillation. Un objet de la présente invention est d'optimiser la consommation énergétique du procédé. Selon un objet de l'invention, il est prévu un procédé de séparation d'un mélange gazeux contenant un composant lourd et un composant léger à une 10 température subambiante dans lequel : i) on refroidit au moins une partie du mélange gazeux dans un échangeur et on sépare au moins une partie du mélange gazeux refroidi pour former un gaz enrichi en composant léger, au moins un premier liquide enrichi en composant lourd et au moins un deuxième liquide enrichi en composant lourd, on sous- 15 refroidit le premier liquide dans l'échangeur, on détend le premier liquide jusqu' à une première pression et on le vaporise à la première pression dans l'échangeur ii) on ne sous-refroidit pas le deuxième liquide dans l'échangeur et on vaporise le deuxième liquide dans l'échangeur, sans l'avoir détendu, à une deuxième pression, plus élevée que la première pression. 20 De préférence le deuxième liquide n'est pas sous-refroidi ailleurs dans l'échangeur avant d'être vaporisé. Selon d'autres caractéristiques facultatives : - on condense partiellement au moins une partie du mélange gazeux dans un échangeur et on envoie au moins une partie du liquide condensé ou des 25 liquides condensés à une colonne de distillation, on soutire le gaz enrichi en composant léger de la tête de la colonne et on soutire les liquides enrichis en composant lourd de la cuve de la colonne. - on sépare le mélange dans au moins un séparateur de phases pour former le gaz enrichi en composant léger et les liquides enrichis en composant 30 lourd. - on sous-refroidit au moins un premier liquide dans l'échangeur, on détend le ou les premiers liquides jusqu'à une ou plusieurs premières pressions et on vaporise le ou les premiers liquides à la ou les plusieurs pressions, chaque premier liquide étant vaporisé à une pression différente s'ils sont plusieurs. - on ne sous-refroidit pas le ou les deuxièmes liquides dans l'échangeur, on vaporise le ou les deuxièmes liquides à une ou plusieurs secondes pressions, éventuellement après pompage, chaque deuxième liquide étant vaporisé à une pression différente s'ils sont plusieurs. - au moins un premier liquide vaporisé et au moins un deuxième liquide 10 vaporisé sont envoyés à un compresseur à un niveau correspondant à leur pression de vaporisation, les liquides vaporisés étant comprimées dans le compresseur pour former un gaz comprimé enrichi en composant lourd. - le gaz comprimé est condensé et divisé en deux, une fraction constituant un produit condensé riche en composant lourd (éventuellement pompé ou sous- 15 refroidi) et une autre fraction étant refroidie dans l'échangeur, détendue avant et/ou après le refroidissement et vaporisée dans l'échangeur. - l'autre fraction est mélangée avec une/la première partie du liquide en aval du sous-refroidissement et en amont de la vaporisation ou bien avec une/la seconde partie du liquide en amont de la vaporisation et en aval de la pompe s'il y 20 en a une. - le composant lourd est le monoxyde de carbone et le composant léger est l'hydrogène ou le composant lourd est le dioxyde de carbone et le composant léger est de l'azote, de l'oxygène, de l'argon ou du monoxyde de carbone, du méthane ou de l'hydrogène. 25 Selon un autre objet de l'invention, il est prévu un appareil de séparation d'un mélange gazeux contenant un composant lourd et un composant léger à une température subambiante comprenant un échangeur, une conduite d'alimentation pour envoyer au moins une partie du mélange gazeux se refroidir dans l'échangeur, des moyens de séparation reliés à l'échangeur pour séparer au moins 30 une partie du mélange gazeux refroidi pour former un gaz enrichi en composant léger, un premier liquide enrichi en composant lourd et un deuxième liquide enrichi en composant lourd, une première conduite pour envoyer le premier liquide enrichi en composant lourd des moyens de séparations à l'échangeur pour se sous-refroidir, un moyen de détente relié à l'échangeur pour détendre le premier liquide sous-refroidi, une conduite de liquide détendu reliée au moyen de détente pour amener le liquide détendu à l'échangeur, une deuxième conduite reliée aux moyen de séparation et à l'échangeur pour amener le deuxième liquide enrichi en composant lourd vers l'échangeur, la deuxième conduite n'étant pas reliée à un moyen de détente en amont de l'échangeur, les première et deuxième conduite étant agencées de sorte que le premier liquide se vaporise dans l'échangeur à une pression moins élevée que le deuxième liquide. L'appareil peut comprendre un échangeur où se condense partiellement au moins une partie du mélange gazeux, une colonne, des moyens pour envoyer au moins une partie du liquide condensé ou des liquides condensés de l'échangeur à la colonne de distillation, des moyens pour soutirer le gaz enrichi en composant léger de la tête de la colonne et des moyens pour soutirer les liquides enrichis en composant lourd de la cuve de la colonne. Sinon ou également, l'appareil peut comprendre un séparateur de phases pour former le gaz enrichi en composant léger et les liquides enrichis en composant lourd. It is also known to produce the required frigories by spraying the trough liquid at several different pressures. It has been suggested in EP-A-1729077 to subcool all the liquid to be vaporized in the exchanger where the gas mixture for the distillation is cooled. An object of the present invention is to optimize the energy consumption of the process. According to an object of the invention, there is provided a method for separating a gaseous mixture containing a heavy component and a light component at a subambient temperature wherein: i) at least a portion of the gaseous mixture is cooled in an exchanger and separating at least a portion of the cooled gaseous mixture to form a light component-enriched gas, at least a first heavy-component-enriched liquid and at least a second heavy-component-enriched liquid, the first liquid is subcooled. exchanger, the first liquid is depressed to a first pressure and is vaporized at the first pressure in the exchanger ii) the second liquid is not subcooled in the exchanger and the second liquid is vaporized in the exchanger; exchanger, without having relaxed, at a second pressure, higher than the first pressure. Preferably the second liquid is not subcooled elsewhere in the exchanger before being vaporized. According to other optional features: at least part of the gaseous mixture is partially condensed in an exchanger and at least part of the condensed liquid or condensed liquids is sent to a distillation column, the gas enriched with the light component is withdrawn. from the top of the column and the rich-enriched liquids are withdrawn from the bottom of the column. the mixture is separated into at least one phase separator to form the light component enriched gas and the heavy component enriched fluids. at least a first liquid is subcooled in the exchanger, the first liquid (s) is expanded to one or more first pressures and the first liquid (s) are vaporized at the pressure (s), each first liquid being vaporized; at a different pressure if they are several. - It does not subcool the second or second liquids in the exchanger, the vapor or the second liquid is vaporized at one or more second pressures, possibly after pumping, each second liquid being vaporized at a different pressure if they are several. at least one first vaporized liquid and at least one second vaporized liquid are sent to a compressor at a level corresponding to their vaporization pressure, the vaporized liquids being compressed in the compressor to form a compressed gas enriched with heavy component. the compressed gas is condensed and divided into two, a fraction constituting a condensed product rich in heavy component (optionally pumped or undercooled) and another fraction being cooled in the exchanger, expanded before and / or after cooling and vaporized in the exchanger. the other fraction is mixed with a first part of the liquid downstream of the subcooling and upstream of the vaporization or with a second part of the liquid upstream of the vaporization and downstream of the pump; there is one. - the heavy component is carbon monoxide and the light component is hydrogen or the heavy component is carbon dioxide and the light component is nitrogen, oxygen, argon or carbon monoxide , methane or hydrogen. According to another object of the invention, there is provided an apparatus for separating a gaseous mixture containing a heavy component and a light component at a subambient temperature comprising an exchanger, a feed pipe for sending at least a part of the gaseous mixture cooling in the exchanger, separation means connected to the exchanger for separating at least a portion of the cooled gas mixture to form a gas enriched light component, a first liquid enriched in heavy component and a second enriched liquid by heavy component, a first pipe for sending the first enriched liquid with a heavy component separating means to the exchanger for sub-cooling, an expansion means connected to the exchanger for expanding the first subcooled liquid, a pipe of expanded liquid connected to the expansion means to bring the expanded liquid to the exchanger, a second pipe connected to the separation means and to the exchanger for bringing the second enriched heavy component liquid to the exchanger, the second conduit not being connected to an expansion means upstream of the exchanger, the first and second lines being arranged so that the first liquid vaporizes in the exchanger at a lower pressure than the second liquid. The apparatus may comprise an exchanger in which at least a portion of the gaseous mixture, a column, means for sending at least a portion of the condensed liquid or condensed liquids from the exchanger to the distillation column, are partially condensed, means for withdrawing the enriched light component gas from the top of the column and means for withdrawing the enriched heavy-component liquids from the column vessel. Alternatively or also, the apparatus may include a phase separator to form the enriched light component gas and the heavy component enriched fluids.

L'appareil peut comprendre un compresseur et des moyens pour envoyer au moins un premier liquide vaporisé et au moins un deuxième liquide vaporisé au compresseur à un niveau correspondant à leur pression de vaporisation, pour former un gaz comprimé enrichi en composant lourd. L'appareil peut comprendre des moyens pour condenser le gaz comprimé, 25 des moyens pour diviser le gaz condensé en deux, des moyens pour envoyer une fraction constituant un produit condensé riche en composant lourd (éventuellement pompé ou sous-refroidi) et une autre fraction dans l'échangeur. Selon la présente invention, il est nécessaire de sous-refroidir seulement la partie du liquide destiné à être vaporisé à plus basse pression que celle à laquelle 30 est disponible le liquide. The apparatus may comprise a compressor and means for sending at least a first vaporized liquid and at least a second vaporized liquid to the compressor at a level corresponding to their vaporization pressure, to form a compressed gas enriched with heavy component. The apparatus may comprise means for condensing the compressed gas, means for dividing the condensed gas into two, means for sending a fraction constituting a heavy component rich product (optionally pumped or subcooled) and another fraction in the exchanger. According to the present invention, it is necessary to subcool only the portion of the liquid to be vaporized at lower pressure than that at which the liquid is available.

Le procédé sera décrit en plus de détail en se référant aux Figures 1 à 3 qui illustrent des procédés selon l'invention. Dans la Figure 1, on considère la séparation d'un mélange contenant au moins 80% de dioxyde de carbone, provenant par exemple d'une oxycombustion et contaminé avec de l'azote, de l'oxygène et de l'argon. Le mélange gazeux 1 est refroidi dans un échangeur 19, séparé dans un premier séparateur de phases 5A, la partie liquide 3 étant envoyée en tête de colonne pour être séparée. Le mélange gazeux 1 peut servir à rebouillir la cuve de la colonne de distillation 5 comme gaz 1 en transférant la chaleur au liquide de 10 cuve. Le gaz 17 du séparateur de phases 5A se réchauffe dans l'échangeur 19. Un gaz de tête 7 enrichi en azote, oxygène et argon est soutiré en tête de la colonne 5. Un liquide de cuve 9 est soutiré en cuve de colonne 5 enrichi en dioxyde de carbone et contenant par exemple 95% mol de dioxyde de carbone. 15 Le froid nécessaire à la condensation partielle du mélange gazeux à traiter en entrée de boite froide est en partie apporté par la vaporisation (sous plusieurs niveaux de pression de 5,5 à 55 bars a du CO2 liquide produit. Ce CO2 peut provenir de la cuve de colonne 5 quand elle est présente ou de la cuve du ou des pots de condensation partielle dans les autres cas. Sur le schéma, le liquide de 20 cuve de la colonne 9 est d'abord divisé en deux portions 11, 13. La première portion 11 est elle-même divisé en deux pour former un produit liquide 15 à la pression de la colonne 5 et un débit 17. Le débit 17 est sous-refroidi dans l'échangeur 19 pour être à une température plus basse que la cuve de la colonne 5. 25 Le débit 13 constitue la deuxième partie du liquide. La première partie 33 est ensuite vaporisée dans l'échangeur 19, après détente à une ou plusieurs pressions plus basses que celle de la cuve de la colonne 5. Dans l'exemple la première partie 33 est divisée en partie 35A et partie 35, détendues par les vannes VD et Vc respectivement à des pressions entre 5,5 et 10 bars a. Pour la partie 35A 30 à la plus basse pression, il n'est pas possible d'éviter une détente avec génération 2 99074 8 6 de gaz et un pot de séparation 37 peut être nécessaire pour introduire convenablement les phases gazeuse et liquide dans l'échangeur. La deuxième partie 13 peut rester à la pression de la cuve de la colonne et être vaporisée et n'est pas sous-refroidi. Or il est plus intéressant énergétiquement 5 de la diviser en plusieurs parties (ici 3) et de vaporiser chaque partie à une pression différentes, toutes les parties sauf une ayant été pompées. Ici la partie 25 n'est pas détendue ou pressurisée et se vaporise à la pression de la colonne 5. La partie 25A est pompée dans la pompe Pa à une pression plus haute et la partie 25B est pompée dans la pompe Pb à une pression plus haute encore. Ainsi les trois parties sont vaporisées dans l'échangeur 19 à trois pressions différentes, toutes entre 11 et 55 bars a. Ainsi les premières parties 35, 35A qui se vaporisent sont des liquide dont au moins une partie a été sous-refroidie alors que les deuxième parties 25, 25A, 25B sont vaporisés sans avoir été sous-refroidis. The process will be described in more detail with reference to Figures 1 to 3 which illustrate methods according to the invention. In Figure 1, it is considered the separation of a mixture containing at least 80% of carbon dioxide, for example from oxy-fuel combustion and contaminated with nitrogen, oxygen and argon. The gaseous mixture 1 is cooled in an exchanger 19, separated in a first phase separator 5A, the liquid part 3 being sent to the top of the column to be separated. The gas mixture 1 can be used to reboil the distillation column vessel 5 as a gas 1 by transferring the heat to the vessel liquid. The gas 17 of the phase separator 5A is heated in the exchanger 19. An overhead gas 7 enriched in nitrogen, oxygen and argon is withdrawn at the top of the column 5. A tank liquid 9 is withdrawn in enriched column vat. carbon dioxide and containing for example 95 mol% of carbon dioxide. The cold required for the partial condensation of the gaseous mixture to be treated at the cold box inlet is partly brought about by the vaporization (under several pressure levels of 5.5 to 55 bar) of the liquid CO2 produced. In the diagram, the column liquid 9 is first divided into two portions 11, 13, the column vessel 5 when present, or the vessel of the partial condensation vessel (s). first portion 11 is itself divided in two to form a liquid product 15 at the pressure of the column 5 and a flow rate 17. The flow 17 is subcooled in the exchanger 19 to be at a lower temperature than the tank The first portion 33 is then vaporized in the exchanger 19, after expansion at one or more pressures lower than that of the tank of the column 5. In the example the first part 33 es t divided into part 35A and part 35, expanded by valves VD and Vc respectively at pressures between 5.5 and 10 bar a. For the lower pressure portion 35A, it is not possible to avoid expansion with gas generation and a separation pot 37 may be necessary to properly introduce the gaseous and liquid phases into the gas. exchanger. The second portion 13 can remain at the pressure of the column vessel and be vaporized and not subcooled. Now it is more energetically interesting to divide it into several parts (here 3) and to vaporize each part at a different pressure, all but one part having been pumped. Here the part 25 is not expanded or pressurized and vaporizes at the pressure of the column 5. The part 25A is pumped into the pump Pa at a higher pressure and the part 25B is pumped into the pump Pb at a higher pressure. high again. Thus the three parts are vaporized in the exchanger 19 at three different pressures, all between 11 and 55 bars. Thus the first parts 35, 35A which vaporize are liquid of which at least a part has been sub-cooled while the second parts 25, 25A, 25B are vaporized without having been subcooled.

On voit que les débits vaporisés à une pression de 11 bars ou plus n'ont pas été sous-refroidis alors que les débits vaporisés à une pression plus basse que 11 bars ont été sous-refroidis. Pour les niveaux de pression les plus bas (5,5 à 10 bars a), pour optimiser la consommation énergétique du système et pour réduire le nombre de pots de détente sur les flux détendus avant vaporisation, il est nécessaire de sous-refroidir le CO2 produit 17, car la détente étant importante, une part non négligeable du CO2 serait alors sous forme gazeuse avant de traverser l'échangeur 19. Or, il est intéressant de maximiser la part de liquide car c'est sa vaporisation qui fournira le plus de froid. Et par ailleurs, il convient de séparer les phases liquide et gazeuse d'un fluide avant leur introduction dans un échangeur à plaque. Ainsi, lorsque le fait de sous-refroidir évite la détente avec génération de gaz, cela permet d'économiser un équipement Pour les niveaux de pression les plus hauts (11 à 55 bars a), il n'est pas nécessaire de sous-refroidir, car le liquide n'étant pas détendu, il n'y aura pas de détente rapide avec production de gaz. Si l'on sous-refroidissait ces liquides, comme le propose l'état de l'art, il faudrait augmenter l'énergie dépensée au bout froid, c'est-à-dire le débit du plus bas niveau de pression et donc augmenter l'énergie totale consommée par l'unité. Après vaporisation dans l'échangeur, les différentes parties de liquide vaporisé peuvent être envoyés à un compresseur 29. It can be seen that the flow rates vaporized at a pressure of 11 bars or more were not subcooled while the vaporized flow rates at a pressure lower than 11 bars were subcooled. For the lowest pressure levels (5.5 to 10 bar a), to optimize the energy consumption of the system and to reduce the number of expansion vessels on the expanded flow before vaporization, it is necessary to sub-cool the CO2 product 17, because the relaxation is important, a significant part of the CO2 would then be in gaseous form before crossing the exchanger 19. However, it is interesting to maximize the share of liquid because it is its vaporization that will provide the most cold. Moreover, the liquid and gaseous phases of a fluid must be separated before being introduced into a plate heat exchanger. Thus, when the sub-cooling avoids the expansion with gas generation, it saves equipment For the highest pressure levels (11 to 55 bar a), it is not necessary to sub-cool because the liquid is not relaxed, there will be no rapid expansion with gas production. If these liquids are subcooled, as the state of the art proposes, the energy expended at the cold end, ie the flow of the lowest pressure level, should be increased and therefore increased. the total energy consumed by the unit. After vaporization in the exchanger, the different parts of vaporized liquid can be sent to a compressor 29.

Le compresseur 29 est ici un compresseur à quatre étages mais un compresseur à un seul étage pourrait suffire. Selon leur pression de vaporisation, les liquides vaporisés sont envoyés aux inter-étages du compresseur correspondant à leur niveau de pression. De préférence le compresseur est choisi pour que la pression de vaporisation la plus basse soit sa pression d'entrée. Ainsi le débit 35A vaporisé à la pression la plus basse est envoyé à l'entrée du compresseur. Le débit 35 est envoyé à la sortie du premier étage. Le débit 25 est envoyé à la sortie du deuxième étage et le débit 25A à la sortie du troisième étage avec finalement le débit 25B rejoignant le gaz 31 en sortie du quatrième étage, si tant est qu'il y a autant de niveaux de vaporisation dans l'échangeur. Le gaz enrichi en composant lourd est comprimé à très haute pression (entre 50 et 120 bars, de préférence entre 70 et 110 bars) pour former un gaz 31 puis condensé contre une source de froid 37, par exemple de l'eau suffisamment froide. Le liquide ainsi formé peut constituer un produit du procédé, débit 39 de liquide sous pression. Dans de nombreux cas, le débit de liquide produit par la colonne 5 et/ou le ou les pots de condensation partielle n'est pas suffisant pour fournir le froid nécessaire. En complément, une part 41 du CO2 condensé à très haute pression par la source de froid 37 peut être détournée de la production finale 39 et vaporisée dans l'échangeur 19 pour faire l'appoint de froid. La détente dans la vanne VE de ce débit liquide 41 en aval de l'échangeur 19 où le débit 41 est sous-refroidi pour réduire, voire annuler, le gaz résultant de sa détente et sa vaporisation dans l'échangeur fourniront donc le froid à générer en complément. On peut donc séparer ce flux 41 avant l'entrée dans l'échangeur 19 et réaliser la détente aux niveaux de pression précédents en mélangeant le CO2 apporté en complément avec le CO2 liquide produit aux niveaux de pression correspondants, le but étant de limiter la quantité de liquide sous-refroidi à ce qui doit l'être (on ne sous-refroidit au plus froid que ce qui est détendu aux plus basses pressions). Mais quel que soit le niveau de pression considéré, la détente est très importante (entre la très haute pression et les autres niveaux de pression) et la création de gaz serait donc importante sans sous-refroidissement avant la vanne Ve, sauf éventuellement pour le plus haut niveau de pression (supérieur à 30 bars a environ). Pour optimiser la consommation énergétique du système, on peut minimiser le sous-refroidissement du CO2 apporté. Ainsi, la température de sous-refroidissement des fluides pour les plus basses températures (et donc pressions) (-35°C environ à -55°C) doit être inférieure à celle des plus hautes températures (et donc pressions) (+10°C à -35°C) car la détente est moins importante pour ceux-ci. Ainsi, la passe dans l'échangeur pour ces sous-refroidissements est composée d'une entrée et d'au moins deux sorties. L'innovation permet la simplification de cette passe en supprimant une sortie intermédiaire. Pour ce faire, on élimine le sous-refroidissement destiné aux niveaux des plus hautes pressions. Le liquide condensé à très haute pression 41 est alors uniquement destiné aux niveaux des plus basses pressions car dans tous les cas le sous-refroidissement est nécessaire. On utilise donc préférentiellement le CO2 produit (celui de la cuve de colonne et/ou de pots) pour les niveaux des plus hautes pressions puisqu'il n'est pas nécessaire de le sous-refroidir. Dans la Figure 2, à la différence de la Figure 1, le liquide 41 est partiellement refroidi dans l'échangeur 19 ou un autre échangeur 19A dédié au sous-refroidissement de ce fluide afin de pouvoir le détendre (vanne VE) sans génération de phase gazeuse et l'introduire à plus basse pression dans l'échangeur 19, pour former le débit 45, détendu dans une vanne Ve et vaporisé dans l'échangeur 19 à une pression intermédiaire du compresseur. Ainsi le débit vaporisé est envoyé à l'étage avant la sortie du compresseur 29. Le liquide 13 n'est divisé qu'en deux parties 25, 25A Une seule pourrait suffire, la partie 25 sans pompe). The compressor 29 is here a four-stage compressor but a single-stage compressor could suffice. According to their vaporization pressure, the vaporized liquids are sent to the inter-stages of the compressor corresponding to their pressure level. Preferably the compressor is selected so that the lowest vaporization pressure is its inlet pressure. Thus the flow 35A vaporized at the lowest pressure is sent to the compressor inlet. The flow 35 is sent to the output of the first stage. The flow 25 is sent to the outlet of the second stage and the flow 25A to the outlet of the third stage with finally the flow 25B joining the gas 31 at the exit of the fourth stage, if there are so many levels of vaporization in the exchanger. The gas enriched with heavy component is compressed at a very high pressure (between 50 and 120 bar, preferably between 70 and 110 bar) to form a gas 31 and then condensed against a source of cold 37, for example sufficiently cold water. The liquid thus formed may constitute a product of the process, the flow rate of liquid under pressure. In many cases, the flow of liquid produced by the column 5 and / or the partial condensation vessel or pots is not sufficient to provide the necessary cold. In addition, a part 41 of the condensed CO2 at very high pressure by the cold source 37 can be diverted from the final production 39 and vaporized in the exchanger 19 to make extra cold. The expansion in the valve VE of this liquid flow 41 downstream of the exchanger 19 where the flow 41 is subcooled to reduce, or even cancel, the gas resulting from its expansion and its vaporization in the exchanger will therefore provide the cold to generate in addition. It is therefore possible to separate this stream 41 before entering the exchanger 19 and to carry out the expansion at the preceding pressure levels by mixing the supplemented CO2 with the liquid CO2 produced at the corresponding pressure levels, the aim being to limit the amount of liquid sub-cooled to what must be (it does not undercool colder than what is relaxed at the lowest pressures). But whatever the pressure level considered, the expansion is very important (between the very high pressure and the other pressure levels) and the creation of gas would be important without subcooling before the valve Ve, except possibly for the most part. high level of pressure (above about 30 bar). To optimize the energy consumption of the system, it is possible to minimize the subcooling of the CO2 supplied. Thus, the subcooling temperature of the fluids for the lowest temperatures (and therefore pressures) (-35 ° C to -55 ° C) must be lower than that of the highest temperatures (and therefore pressures) (+ 10 ° C). C at -35 ° C) because the relaxation is less important for them. Thus, the pass in the exchanger for these subcoolings is composed of an inlet and at least two outlets. Innovation allows the simplification of this pass by removing an intermediate output. To do this, subcooling is eliminated for the higher pressure levels. The condensed liquid at very high pressure 41 is then only intended for the lower pressure levels because in all cases subcooling is necessary. The CO2 produced (that of the column vessel and / or pots) is therefore preferably used for the higher pressure levels since it is not necessary to sub-cool it. In FIG. 2, unlike FIG. 1, the liquid 41 is partially cooled in the exchanger 19 or another exchanger 19A dedicated to the subcooling of this fluid in order to be able to relax it (VE valve) without phase generation. gaseous and introduce it at lower pressure into the exchanger 19, to form the flow 45, expanded in a valve Ve and vaporized in the exchanger 19 at an intermediate pressure of the compressor. Thus the vaporized flow is sent to the stage before the output of the compressor 29. The liquid 13 is divided into two parts 25, 25A only one could be sufficient, the part 25 without pump).

Selon une variante de la Figure 2, illustrée dans la Figure 3, la colonne de distillation 5 est supprimée et la séparation n'est assurée que par le séparateur de phases 5A. Le gaz d'alimentation 3 se refroidit dans l'échangeur 19, se condense partiellement et se sépare dans le séparateur 5A pour former un gaz 7 qui se réchauffe dans l'échangeur 19. Le liquide 9 est divisé en trois, une partie 17 étant envoyée se refroidir dans l'échangeur 19, une partie 15 constitue un produit liquide et une partie 13 est vaporisée sans avoir été refroidie. Il est bien évidemment possible de modifier la Figure 1 pour supprimer la colonne 5 et ne laisser que le pot séparateur 5A.10 According to a variant of Figure 2, illustrated in Figure 3, the distillation column 5 is removed and the separation is provided only by the phase separator 5A. The feed gas 3 cools in the exchanger 19, partially condenses and separates in the separator 5A to form a gas 7 which is heated in the exchanger 19. The liquid 9 is divided into three, a part 17 being sent to cool in the exchanger 19, a portion 15 is a liquid product and a portion 13 is vaporized without having been cooled. It is of course possible to modify Figure 1 to delete column 5 and leave only the separator pot 5A.10

Claims (10)

REVENDICATIONS1. Procédé de séparation d'un mélange gazeux contenant un composant lourd et un composant léger à une température subambiante dans lequel : i) on refroidit au moins une partie du mélange gazeux dans un échangeur (19) et on sépare au moins une partie du mélange gazeux refroidi pour former un gaz (7) enrichi en composant léger, au moins un premier liquide enrichi (17) en composant lourd et au moins un deuxième liquide (13) enrichi en composant lourd, on sous-refroidit le premier liquide dans l'échangeur, on détend le premier liquide jusqu'à une première pression et on le vaporise à la première pression dans l'échangeur. ii) on ne sous-refroidit pas le deuxième liquide dans l'échangeur et on vaporise le deuxième liquide dans l'échangeur, sans l'avoir détendu, à une deuxième pression, plus élevée que la première pression. REVENDICATIONS1. Process for separating a gaseous mixture containing a heavy component and a light component at a subambient temperature in which: i) at least a portion of the gaseous mixture is cooled in an exchanger (19) and at least a portion of the gaseous mixture is separated off cooled to form a gas (7) enriched with a light component, at least a first enriched liquid (17) with a heavy component and at least a second liquid (13) enriched with a heavy component, the first liquid is subcooled in the exchanger the first liquid is expanded to a first pressure and vaporized at the first pressure in the exchanger. ii) the second liquid is not subcooled in the exchanger and the second liquid is vaporized in the exchanger, without having expanded, at a second pressure, higher than the first pressure. 2. Procédé selon la revendication 1 dans lequel on condense partiellement au moins une partie du mélange gazeux (1) dans l'échangeur (19) et on envoie au moins une partie du liquide condensé ou des liquides condensés à une colonne de distillation (5), on soutire le gaz enrichi en composant léger de la tête de la colonne et on soutire les liquides enrichis (13, 17) en composant lourd de la cuve de la colonne. 2. Process according to claim 1, in which at least part of the gaseous mixture (1) is partially condensed in the exchanger (19) and at least a portion of the condensed liquid or condensed liquids is sent to a distillation column (5). ), the lighter-enriched gas is withdrawn from the top of the column and the enriched liquids (13, 17) are withdrawn as a heavy component from the column vessel. 3. Procédé selon la revendication 1 dans lequel on sépare le mélange dans au moins un séparateur de phases (5A) pour former le gaz (7)enrichi en composant léger et les liquides enrichis (13, 17) en composant lourd. 3. Method according to claim 1 wherein the mixture is separated in at least one phase separator (5A) to form the gas (7) enriched in light component and the enriched liquids (13, 17) in heavy component. 4. Procédé selon l'une des revendications précédentes dans lequel on sous-refroidit au moins un premier liquide dans l'échangeur (19), on détend le ou les premiers liquides jusqu'à une ou plusieurs premières pressions et on vaporisele ou les premiers liquides à la ou les plusieurs pressions, chaque premier liquide étant vaporisé à une pression différente s'ils sont plusieurs. 4. Method according to one of the preceding claims wherein is sub-cooled at least a first liquid in the exchanger (19), the first liquid or the first liquid is expanded to one or more first pressures and vaporisele or first liquids at the one or more pressures, each first liquid being vaporized at a different pressure if they are several. 5. Procédé selon l'une des revendications précédentes dans lequel on ne sous-refroidit pas le ou les deuxièmes liquides dans l'échangeur (19), on vaporise le ou les deuxièmes liquides à une ou plusieurs secondes pressions, éventuellement après pompage, chaque deuxième liquide étant vaporisé à une pression différente s'ils sont plusieurs. 5. Method according to one of the preceding claims wherein it is not subcooled the second or second liquids in the exchanger (19), the vapor or the second liquid is vaporized at one or more second pressures, possibly after pumping, each second liquid being vaporized at a different pressure if they are several. 6. Procédé selon l'une des revendications précédentes dans lequel au moins un premier liquide vaporisé et au moins un deuxième liquide vaporisé sont envoyés à un compresseur (29) à un niveau correspondant à leur pression de vaporisation, les liquides vaporisés étant comprimées dans le compresseur pour former un gaz comprimé enrichi en composant lourd. 6. Method according to one of the preceding claims wherein at least a first vaporized liquid and at least a second vaporized liquid are sent to a compressor (29) at a level corresponding to their vaporization pressure, the vaporized liquids being compressed in the compressor to form a compressed gas enriched with heavy component. 7. Procédé selon la revendication 6 dans lequel le gaz comprimé (31) est condensé et divisé en deux, une fraction (39) constituant un produit condensé riche en composant lourd (éventuellement pompé ou sous-refroidi) et une autre fraction (41) étant refroidie dans l'échangeur (19), détendue avant et/ou après le refroidissement et vaporisée dans l'échangeur. 7. The method of claim 6 wherein the compressed gas (31) is condensed and divided into two, a fraction (39) constituting a condensed product rich in heavy component (optionally pumped or subcooled) and another fraction (41). being cooled in the exchanger (19), relaxed before and / or after cooling and vaporized in the exchanger. 8. Procédé selon la revendication 7 dans lequel l'autre fraction (41) est mélangée avec une/la première partie du liquide en aval du sous-refroidissement et en amont de la vaporisation ou bien avec une/la seconde partie du liquide en amont de la vaporisation et en aval de la pompe s'il y en a une 8. The method of claim 7 wherein the other fraction (41) is mixed with a / the first part of the liquid downstream of the subcooling and upstream of the vaporization or with a / the second part of the liquid upstream vaporization and downstream of the pump if there is one 9. Procédé selon l'une des revendications précédentes dans lequel le composant lourd est le monoxyde de carbone et le composant léger est l'hydrogène ou le composant lourd est le dioxyde de carbone et le composant léger est de l'azote, de l'oxygène, de l'argon ou du monoxyde de carbone, du méthane ou de l'hydrogène. 9. Method according to one of the preceding claims wherein the heavy component is carbon monoxide and the light component is hydrogen or the heavy component is carbon dioxide and the light component is nitrogen, the oxygen, argon or carbon monoxide, methane or hydrogen. 10. Appareil de séparation d'un mélange gazeux contenant un composant lourd et un composant léger à une température subambiante comprenant un échangeur (19), une conduite d'alimentation pour envoyer au moins une partie du mélange gazeux se refroidir dans l'échangeur, des moyens de séparation (5, 5A) reliés à l'échangeur pour séparer au moins une partie du mélange gazeux refroidi pour former un gaz enrichi en composant léger, un premier liquide enrichi en composant lourd et un deuxième liquide enrichi en composant lourd, une première conduite pour envoyer le premier liquide enrichi en composant lourd des moyens de séparations à l'échangeur pour se sous-refroidir, un moyen de détente relié à l'échangeur pour détendre le premier liquide sous-refroidi, une conduite de liquide détendu reliée au moyen de détente pour amener le liquide détendu à l'échangeur, une deuxième conduite reliée aux moyen de séparation et à l'échangeur pour amener le deuxième liquide enrichi en composant lourd vers l'échangeur, la deuxième conduite n'étant pas reliée à un moyen de détente en amont de l'échangeur, les première et deuxième conduite étant agencées de sorte que le premier liquide se vaporise dans l'échangeur à une pression moins élevée que le deuxième liquide.20 Apparatus for separating a gaseous mixture containing a heavy component and a light component at a subambient temperature comprising an exchanger (19), a supply line for sending at least a portion of the gaseous mixture to cool in the exchanger, separating means (5, 5A) connected to the exchanger for separating at least a portion of the cooled gaseous mixture to form a light component enriched gas, a first heavy component enriched liquid and a second heavy component enriched liquid, a first conduit for sending the first enriched liquid heavy component separation means to the exchanger to sub-cool, a detent means connected to the exchanger for relaxing the first subcooled liquid, a relaxed liquid line connected to the means of expansion to bring the expanded liquid to the exchanger, a second conduit connected to the separation means and the exchanger to bring the second liquid of enriched heavy component to the heat exchanger, the second pipe is not connected to an expansion means upstream of the heat exchanger, the first and second pipes being arranged so that the first liquid vaporizes in the heat exchanger. less pressure than the second liquid.
FR1254415A 2012-05-15 2012-05-15 METHOD AND APPARATUS FOR DISTILLATION AT SUBAMBIAN TEMPERATURE Pending FR2990748A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FR1254415A FR2990748A1 (en) 2012-05-15 2012-05-15 METHOD AND APPARATUS FOR DISTILLATION AT SUBAMBIAN TEMPERATURE
PCT/FR2013/051058 WO2013171426A2 (en) 2012-05-15 2013-05-15 Method and device for sub-ambient-temperature distillation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1254415A FR2990748A1 (en) 2012-05-15 2012-05-15 METHOD AND APPARATUS FOR DISTILLATION AT SUBAMBIAN TEMPERATURE

Publications (1)

Publication Number Publication Date
FR2990748A1 true FR2990748A1 (en) 2013-11-22

Family

ID=48577129

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1254415A Pending FR2990748A1 (en) 2012-05-15 2012-05-15 METHOD AND APPARATUS FOR DISTILLATION AT SUBAMBIAN TEMPERATURE

Country Status (2)

Country Link
FR (1) FR2990748A1 (en)
WO (1) WO2013171426A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3147611A1 (en) * 2015-09-24 2017-03-29 General Electric Technology GmbH Method and system for separating carbon dioxide from flue gas
FR3120427B1 (en) * 2021-03-04 2023-03-31 Air Liquide Method and apparatus for liquefying a gas rich in CO2

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3224211A (en) * 1961-11-20 1965-12-21 Phillips Petroleum Co Processing low b.t.u. gas from natural gas
FR2137412A1 (en) * 1971-05-07 1972-12-29 Linde Ag Separation of nitrogen from natural gas - by low temp rectification, with methane stream produced at required delivery pres
GB2208699A (en) * 1988-08-18 1989-04-12 Costain Eng Ltd Separation of nitrogen from methane-containing gas streams
DE3822175A1 (en) * 1988-06-30 1990-01-04 Linde Ag Process for removing nitrogen from nitrogen-containing natural gas
US20120097520A1 (en) * 2009-03-25 2012-04-26 Costain Oil, Gas & Process Limited Process and apparatus for separation of hydrocarbons and nitrogen

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005025651A1 (en) 2005-06-03 2006-12-07 Linde Ag Process and apparatus for recovering products from synthesis gas
DE102007007581A1 (en) * 2007-02-15 2008-08-21 Linde Ag Carbon dioxide product producing method for gas analysis process, involves producing two-phase material-mixture by releasing fluid phase by throttle element, and vaporizing and heating fluid phase against application gas
US8080090B2 (en) * 2007-02-16 2011-12-20 Air Liquide Process & Construction, Inc. Process for feed gas cooling in reboiler during CO2 separation
FR2934170A3 (en) * 2009-09-28 2010-01-29 Air Liquide Separating feed flow having carbon dioxide as major component, comprises passing cooled feed flow to column, and heating column in tank by flow of heating gas which heats bottom of column and is richer in carbon dioxide than feed flow
ES2624271T3 (en) * 2010-04-21 2017-07-13 General Electric Technology Gmbh Method to separate carbon dioxide from flue gas from combustion plants

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3224211A (en) * 1961-11-20 1965-12-21 Phillips Petroleum Co Processing low b.t.u. gas from natural gas
FR2137412A1 (en) * 1971-05-07 1972-12-29 Linde Ag Separation of nitrogen from natural gas - by low temp rectification, with methane stream produced at required delivery pres
DE3822175A1 (en) * 1988-06-30 1990-01-04 Linde Ag Process for removing nitrogen from nitrogen-containing natural gas
GB2208699A (en) * 1988-08-18 1989-04-12 Costain Eng Ltd Separation of nitrogen from methane-containing gas streams
US20120097520A1 (en) * 2009-03-25 2012-04-26 Costain Oil, Gas & Process Limited Process and apparatus for separation of hydrocarbons and nitrogen

Also Published As

Publication number Publication date
WO2013171426A2 (en) 2013-11-21
WO2013171426A3 (en) 2015-11-12

Similar Documents

Publication Publication Date Title
EP2122282B1 (en) Method for separating a mixture of carbon monoxide, methane, hydrogen and nitrogen by cryogenic distillation
FR2885679A1 (en) METHOD AND INSTALLATION FOR SEPARATING LIQUEFIED NATURAL GAS
CA2828179C (en) Method and apparatus for the liquefaction of co2
EP1711765B1 (en) Cryogenic distillation method and installation for air separation
FR2934170A3 (en) Separating feed flow having carbon dioxide as major component, comprises passing cooled feed flow to column, and heating column in tank by flow of heating gas which heats bottom of column and is richer in carbon dioxide than feed flow
EP1623172A1 (en) Method and system for the production of pressurized air gas by cryogenic distillation of air
EP2715260B1 (en) Apparatus and integrated process for separating a mixture of carbon dioxide and at least one other gas and for separating air by cryogenic distillation
CA2832096C (en) Method and apparatus for liquefying a co2-rich gas
CA2830826C (en) Method and device for separating air by cryogenic distillation
EP3631327B1 (en) Method and apparatus for air separation by cryogenic distillation
EP2932177A2 (en) Method and device for separating a mixture containing carbon dioxide by means of distillation
FR2990748A1 (en) METHOD AND APPARATUS FOR DISTILLATION AT SUBAMBIAN TEMPERATURE
US9746233B2 (en) Process for the separation of a gas rich in carbon dioxide
FR2973485A1 (en) Method for separating air by cryogenic distillation in column system, involves withdrawing liquid containing specific mol percent of oxygen from bottom of low pressure column, where liquid is pressurized and vaporized to form gaseous oxygen
FR3052241A1 (en) PROCESS FOR PURIFYING NATURAL GAS AND LIQUEFACTING CARBON DIOXIDE
EP3058296B1 (en) Method for denitrogenation of natural gas with or without helium recovery
WO2022162041A1 (en) Method and apparatus for separating a flow rich in carbon dioxide by distillation to produce liquid carbon dioxide
EP3913310A1 (en) Method and device for air separation by cryogenic distilling
EP4368929A1 (en) Method and apparatus for distillation of carbon dioxide
FR3113606A3 (en) Nitrogen and methane separation process by cryogenic distillation
FR3110223A1 (en) Process for extracting nitrogen from a stream of natural gas or bio-methane
FR3074274A1 (en) METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
FR2987755A1 (en) Method for separating gas containing carbon dioxide and e.g. component, lighter than carbon dioxide by distillation, involves sending part of vaporized liquid to reboiler tank, and returning vaporized part of liquid to distillation column
FR2853405A1 (en) Cryogenic distillation air separation procedure and plant uses lightening gas formed at least partly from purging gas drawn from vaporizer-condenser

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5

PLFP Fee payment

Year of fee payment: 6