EP3913310A1 - Method and device for air separation by cryogenic distilling - Google Patents

Method and device for air separation by cryogenic distilling Download PDF

Info

Publication number
EP3913310A1
EP3913310A1 EP21170059.6A EP21170059A EP3913310A1 EP 3913310 A1 EP3913310 A1 EP 3913310A1 EP 21170059 A EP21170059 A EP 21170059A EP 3913310 A1 EP3913310 A1 EP 3913310A1
Authority
EP
European Patent Office
Prior art keywords
column
air
flow
sent
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21170059.6A
Other languages
German (de)
French (fr)
Inventor
Jean-Pierre Tranier
Richard Dubettier-Grenier
Maxime ROZIERES
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP3913310A1 publication Critical patent/EP3913310A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04157Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04387Details relating to the work expansion, e.g. process parameter etc. using liquid or hydraulic turbine expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04436Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system
    • F25J3/04448Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system in a double column flowsheet with an intermediate pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/0446Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases
    • F25J3/04466Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases for producing oxygen as a mixing column overhead gas by mixing gaseous air feed and liquid oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04472Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
    • F25J3/04496Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04709Producing crude argon in a crude argon column as an auxiliary column system in at least a dual pressure main column system
    • F25J3/04715The auxiliary column system simultaneously produces oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04727Producing pure argon, e.g. recovered from a crude argon column using an auxiliary pure argon column for nitrogen rejection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04733Producing pure argon, e.g. recovered from a crude argon column using a hybrid system, e.g. using adsorption, permeation or catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04896Details of columns, e.g. internals, inlet/outlet devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04951Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network
    • F25J3/04957Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network and inter-connecting equipments upstream of the fractionation unit (s), i.e. at the "front-end"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04969Retrofitting or revamping of an existing air fractionation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • F25J2200/06Processes or apparatus using separation by rectification in a dual pressure main column system in a classical double column flow-sheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/34Processes or apparatus using separation by rectification using a side column fed by a stream from the low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • F25J2205/32Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes as direct contact cooling tower to produce a cooled gas stream, e.g. direct contact after cooler [DCAC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • F25J2205/34Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes as evaporative cooling tower to produce chilled water, e.g. evaporative water chiller [EWC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/62Purifying more than one feed stream in multiple adsorption vessels, e.g. for two feed streams at different pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/02Multiple feed streams, e.g. originating from different sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/42Nitrogen or special cases, e.g. multiple or low purity N2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/58Argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/40Separating high boiling, i.e. less volatile components from air, e.g. CO2, hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/40Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/10Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/40Processes or apparatus involving steps for recycling of process streams the recycled stream being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/58Processes or apparatus involving steps for recycling of process streams the recycled stream being argon or crude argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/12Particular process parameters like pressure, temperature, ratios

Definitions

  • the present invention relates to a process and an apparatus for separating air by cryogenic distillation.
  • the overhead gas from the first column is used to heat the bottom of the second column.
  • the second column can be in two sections and can be connected to an argon separation column.
  • the apparatus is kept cold by a turbine sending gaseous or liquid air to the first column and / or by a turbine sending air to the second column.
  • US4964901 describes a process where a single air compressor produces air at two different pressures which is purified at these different pressures and sent to the column system.
  • the process produces oxygen at relatively low purities and does not produce argon.
  • EP1357342 A1 describes a three-column process with an argon column supplied with purified air at two different pressures.
  • the pressures used are significantly greater than those used according to the invention.
  • a air separation device can when even have a strong injection of low pressure air directly into the low pressure column of a column system comprising one column operating at lower pressure than the other.
  • an apparatus for separating air by cryogenic distillation using a column system consisting of a first column operating at a first pressure and a second column operating at a second pressure lower than the first. pressure, the head of the first column being thermally connected to the bottom of the second column, a first adsorption unit, a second adsorption unit, means for sending a first air flow constituting between 75 and 98% of the air sent to the column system compressed at a third pressure above the first pressure to cooling means and then at the third pressure to the first adsorption unit to be purified of water and carbon dioxide and means for sending all of the first purified flow to the first column and possibly to the second column, means for sending a second air flow constituting between 5 and 25% of the air sent to the compressed column system at a fourth pressure between 1.2 and 2 bars abs and above the second pressure but below the third pressure, at the fourth pressure at the second adsorption unit to be purified of water and carbon dioxide and means for sending all of the second purified flow to
  • the column system only comprises the first and the second columns.
  • FIG. 1 shows that a first air flow 1 constituting between 75 and 98% of the total air sent to the column system is compressed from atmospheric pressure to a pressure slightly above the pressure of a first column 101.
  • the difference between the pressure of the first column and the pressure of the compressed air 3 in the compressor 2 corresponds to the pressure drop due to the cooling and purification which takes place after the compression and before entering the compressor. the column.
  • Other means of cooling the air 35 can be envisaged, for example refrigeration units.
  • the air 3 can therefore be at between 5 and 6 bars abs and is sent to a first cooling tower 4 fed at the head with water 94 and at an intermediate level with water 98.
  • the cooled air 5 withdrawn from the top of the tower 4 is sent to a first adsorption unit 6 to remove the water and the carbon dioxide it contains.
  • the purified air 7 is divided into three parts. Part 8 cools in the gaseous state in the first heat exchanger 80 and enters the column 101 in the gaseous form mixed with the air 32 to form the flow 10.
  • Another part 12 is supercharged in a booster 13 to form a supercharged flow 14 which is cooled in the first exchanger 80 to form a cooled flow 15 extracted at an intermediate temperature level of the exchanger.
  • This flow 15 is expanded in a turbine 16 to form a gas 17 at the pressure of the second column 102 and is sent to the column 102.
  • Another part 19 is boosted in a booster 20 to form the flow 21 and then is divided into two fractions.
  • a fraction 22 is cooled in the first exchanger 80, extracted at an intermediate temperature level (typically around -120 ° C, not shown), is boosted in a cold booster 24, is reintroduced into the exchanger 80, cools in the exchanger 80 and is expanded in the turbine 27 to form a liquid 28 (or possibly a two-phase) which is sent to the first column 101.
  • an intermediate temperature level typically around -120 ° C, not shown
  • the other fraction 29 cools in the exchanger 80 and is extracted at an intermediate temperature level (not shown) to form a flow 30 which is expanded in a turbine 31 coupled to the cold booster 24.
  • the expanded air 32 is released. at the pressure of the first column 101.
  • a second air flow 33 constituting between 5 and 25%, preferably more than 10%, of the total air sent to the column system is compressed from atmospheric pressure to a pressure slightly above the pressure d 'a second column 102.
  • the difference between the pressure of the second column and the pressure of the compressed air in the compressor 34 corresponds to the pressure drop due to the cooling and purification which takes place after the compression and before the entry in column 102.
  • the air 35 is at between 1.2 and 2 bars abs and is sent to a second cooling tower 36 fed at the head with water 97 and at an intermediate level with water 90.
  • the cooled air 37 withdrawn at the top of the tower 36 is sent to a second adsorption unit 38 to remove the water and the carbon dioxide it contains.
  • Other means of cooling the air 35 can be envisaged, for example refrigeration units.
  • the use of a tower is nevertheless preferred for the air at lower pressure in order to reduce the associated pressure drops.
  • the purified air 39 cools in the gaseous state in the second heat exchanger 81 to form the flow 40 and enters the column 102 in gaseous form mixed with the air 17 to form the flow 120.
  • the flow 120 represents between 3 and 5% of the total air flow.
  • the air flow 120 is sent to the second column 102 to be separated at the same level of the column as the expanded bottom liquid 48 and above the arrival of the vaporized rich liquid 72.
  • the flow 40 sent to the second column 102 represents between 5 and 25% of the total air, preferably more than 10% of the total air sent to the column system.
  • the flow rate 120 represents between 10 and 25% of the total air sent to the column system, being a mixture of the flow rate 40 and the blown air 17.
  • argon from a third column preferably with a yield of around 65% that it was possible to simultaneously obtain a production of oxygen at a purity of more than 99% and of preferably greater than 99.5% with a good oxygen yield typically around 99% (at least greater than 95%).
  • the Figure 2 illustrates with constant oxygen purity 99.5% and constant oxygen yield 99%, the quantity of air, in terms of percentage of the total air flow sent to the distillation, which can be injected directly into the second column 102 as a function of the argon yield of the unit on the abscissa.
  • the oxygen yield is defined by the quantity of oxygen contained in the oxygen productions which may be gaseous and / or liquid divided by the quantity of oxygen contained in all of the air flows introduced into the device.
  • the maximum percentage of air to be sent to the second column is located around the point of the yield of 65% for argon.
  • the argon from the third column is either mixed with the residual nitrogen, or produced in liquid or gaseous form after passing through a denitrogenation column.
  • a column system consisting of a first column 101 operating at a first pressure and a second column 102 operating at a second pressure lower than the first pressure.
  • the overhead gas from the first column is used to heat the bottom of the second column.
  • the second column can be in two sections and can be connected to an argon separation column.
  • the air is separated by distillation in the first column 101 to produce an oxygen enriched bottom liquid 41, an overhead liquid 53 enriched in nitrogen and an intermediate liquid 49 enriched in nitrogen.
  • the liquids 53,49 are cooled in a sub-cooler 80 to form the liquids 54,50 and are expanded by the valves 55,51 respectively before being sent to the second column 102.
  • the oxygen enriched liquid is divided into two parts 42,46. Part 46 is expanded in valve 47 and sent as flow 48 to second column 102. Part 42 is expanded in valve 43 and sent as liquid 44 to an overhead condenser 45 of an argon separation column 103. .
  • Nitrogen gas from the top of column 101 condenses in bottom reboiler 83 of second column 102 to heat the bottom of second column.
  • the condensed nitrogen is returned to the top of the first column 102 and to the top of the second column 101.
  • the argon separation column 103 is supplied with gas by a flow 58 taken at an intermediate level of the low pressure column 102.
  • the bottom liquid 57 of the column 103 is returned to the column 102.
  • a fluid rich in argon is obtained.
  • the fluid may contain about 2% oxygen and may subsequently be mixed with nitrogen gas from the column system or purified by catalysis. Otherwise the fluid may contain less than 2 ppm of oxygen and serve as a product after passing through a denitrogenation column (not shown in the diagram)
  • Liquid oxygen 59 containing at least 99% oxygen, preferably at least 99.5% oxygen, is withdrawn from the bottom of the second column 102, pressurized by a pump 60 and sent as a pressurized flow 61 to the bottom. heat exchanger 80 where it vaporizes completely to form the main product of the apparatus, gaseous oxygen 62 at a pressure of at least 10 bar a. Lower pressures can be considered.
  • Overhead gas 63 from column 102 heats up in sub-cooler 82 and then is split in two. A portion 67 heats up in the second heat exchanger 81 and the remainder 65 heats up in the first heat exchanger 80.
  • the reheated flow 65 is the flow 66 and serves to regenerate the second adsorption unit 38 as the flow 68. It It is also possible to divide the overhead gas 63 of the column 102 into two parts before it is introduced into the sub-cooler 82. In this case, the part 67 which heats up in the second heat exchanger 81 is introduced into said heat exchanger.
  • the flow 67,69 is used in part 70 to regenerate the first adsorption unit 6 and in part 71 to cool the water in the water cooling tower 91.
  • the water 90 is sent to the top of the column and leaves. cooled 92 in the tank to be sent by a pump 93 to the two air cooling towers 4.36.
  • the two air cooling towers 4.36 are supplied with cooling water coming from a single water cooling tower 91 cooled by nitrogen coming from the column system.
  • the water 95 intended for the second air cooling tower 36 is cooled between the water cooling tower 91 and the second tower 36 by a cooler 96, for example a refrigeration unit for cooling the water to a temperature between 5 and 30 ° C below the temperature of the water 94 arriving at the head of the first tower 4, preferably between 8 and 15 ° C below this temperature.
  • a cooler 96 for example a refrigeration unit for cooling the water to a temperature between 5 and 30 ° C below the temperature of the water 94 arriving at the head of the first tower 4, preferably between 8 and 15 ° C below this temperature.
  • the cooling tower producing the chilled water intended to cool the second air cooling tower would have to be supplied with the nitrogen 67 coming from the second heat exchanger 81 because it is cooler than the nitrogen 62 coming from. of the first heat exchanger 80.
  • the second heat exchanger 91 performs a heat exchange between just two fluids, air 39,40 and nitrogen 67.
  • the second compressor and the second adsorption unit could be added to an existing apparatus having the first compressor and the first adsorption unit in order to exceed the production limits of the existing apparatus.
  • the second purified flow 120 is sent to the second column 102 to be separated at the same level of the column as a flow of liquid enriched in oxygen coming from the first column (not shown) or as a flow of liquid enriched in oxygen. from the first column and vaporized in an overhead condenser of the third column, flow rate 72.
  • the argon-rich fluid produced at the top of column 103 contains between 20 and 80% of the argon contained in the first and second air flow rates 1.33, preferably between 45 and 75%.
  • the oxygen efficiency of the device is greater than 95%.
  • the air 20 sent to the second column constitutes between 10 and 25%, or even between 14 and 25%, of the total air sent to the column system.
  • the remaining at least 5% of the air destined for the second column will be part of the first flow 1 and at least 5% of the total air will be expanded in the insufflation turbine 16 so that the air flow sent to the second column is at least 10% of the total air.
  • a first step during periods when energy is cheap, the air is compressed exclusively in the compressor 2 and the flow 33 does not exist.
  • the second column is supplied with air by the turbine 16 exclusively.
  • at least one liquid product for example liquid nitrogen, is produced and can be stored and possibly partly used as a product.
  • the air is compressed in the compressors 2 and 34 and preferably the air flow sent to the compressor 2 will be reduced compared to the flow during the first run.
  • energy costs more and therefore operating costs are reduced by lowering the amount of compressed air to the highest pressure.
  • the device will be kept cold in part by sending liquid nitrogen produced during the first run.

Abstract

Dans un procédé de séparation d'air par distillation cryogénique utilisant un système de colonnes constitué par une première colonne (101) opérant à une première pression et une deuxième colonne (102) opérant à une deuxième pression, un premier débit d'air (1) constituant entre 75 et 98% de l'air envoyé au système de colonnes comprimé à une troisième pression au-dessus de la première pression, est envoyé à la première colonne, un deuxième débit d'air (33) constituant entre 5 et 25% de l'air envoyé au système de colonnes est comprimé à une quatrième pression au-dessus de la deuxième pression mais inférieure à la troisième pression, est envoyé à la deuxième colonne, une troisième colonne (103) sépare un débit enrichi en argon et l'air (20) envoyé à la deuxième colonne constitue entre 10 et 25% de l'air total envoyé au système de colonnes.In an air separation process by cryogenic distillation using a column system consisting of a first column (101) operating at a first pressure and a second column (102) operating at a second pressure, a first air flow (1 ) constituting between 75 and 98% of the air sent to the compressed column system at a third pressure above the first pressure, is sent to the first column, a second air flow (33) constituting between 5 and 25 % of the air sent to the column system is compressed to a fourth pressure above the second pressure but lower than the third pressure, is sent to the second column, a third column (103) separates a flow enriched in argon and the air (20) sent to the second column constitutes between 10 and 25% of the total air sent to the column system.

Description

La présente invention est relative à un procédé et à un appareil de séparation d'air par distillation cryogénique.The present invention relates to a process and an apparatus for separating air by cryogenic distillation.

Tous les pourcentages concernant des puretés sont des pourcentages molaires.All percentages relating to purities are molar percentages.

Il est connu de séparer l'air dans un système de colonnes constitué par une première colonne opérant à une première pression et une deuxième colonne opérant à une deuxième pression inférieure à la première pression. Le gaz de tête de la première colonne sert à chauffer la cuve de la deuxième colonne. La deuxième colonne peut être en deux sections et peut être reliée à une colonne de séparation d'argon.It is known to separate the air in a column system consisting of a first column operating at a first pressure and a second column operating at a second pressure lower than the first pressure. The overhead gas from the first column is used to heat the bottom of the second column. The second column can be in two sections and can be connected to an argon separation column.

Généralement tout l'air est comprimé à une pression au-dessus de la première pression, refroidi par contact direct avec de l'eau, épuré à cette pression et divisé en deux. Une fraction est envoyée à la première colonne et une autre fraction est surpressée dans un surpresseur et liquéfié par échange de chaleur avec un produit liquide du système de colonnes qui se vaporise et est envoyé à la première colonne et éventuellement à la deuxième colonne. Dans cette configuration, il n'y a qu'une seule unité d'adsorption pour épurer en eau et en dioxyde de carbone et autres impuretés secondaires.Usually all the air is compressed to a pressure above the first pressure, cooled by direct contact with water, purified at this pressure and divided in half. One fraction is sent to the first column and another fraction is supercharged in a booster and liquefied by heat exchange with a liquid product from the column system which vaporizes and is sent to the first column and optionally to the second column. In this configuration, there is only one adsorption unit to purify water and carbon dioxide and other secondary impurities.

L'appareil est tenu en froid par une turbine envoyant de l'air gazeux ou liquide à la première colonne et/ou par une turbine envoyant de l'air à la deuxième colonne.The apparatus is kept cold by a turbine sending gaseous or liquid air to the first column and / or by a turbine sending air to the second column.

US4964901 décrit un procédé où un seul compresseur d'air produit de l'air à deux pressions différentes qui sont épurés à ces pressions différentes et envoyés au système de colonnes. US4964901 describes a process where a single air compressor produces air at two different pressures which is purified at these different pressures and sent to the column system.

Le procédé produit de l'oxygène à des puretés relativement basses et ne produit pas d'argon.The process produces oxygen at relatively low purities and does not produce argon.

EP1357342 A1 décrit un procédé à trois colonnes avec une colonne d'argon alimentées par de l'air épuré à deux pressions différentes. Les pressions utilisées sont sensiblement plus grandes que celles utilisées selon l'invention. EP1357342 A1 describes a three-column process with an argon column supplied with purified air at two different pressures. The pressures used are significantly greater than those used according to the invention.

Selon la présente invention, en utilisant une colonne de séparation d'argon et avec production d'oxygène pur (>99% de préférence >99.5%), de manière surprenante pour l'homme de l'art, nous avons trouvé qu'un appareil de séparation d'air peut quand même avoir une forte injection d'air basse pression directement en colonne basse pression d'un système de colonnes comprenant une colonne opérant à plus basse pression que l'autre.According to the present invention, using an argon separation column and with production of pure oxygen (> 99% preferably> 99.5%), surprisingly for those skilled in the art, we have found that a air separation device can when even have a strong injection of low pressure air directly into the low pressure column of a column system comprising one column operating at lower pressure than the other.

Selon un objet de l'invention, il est prévu un procédé de séparation d'air par distillation cryogénique utilisant un système de colonnes constitué par une première colonne opérant à une première pression et une deuxième colonne opérant à une deuxième pression inférieure à la première pression, la tête de la première colonne étant thermiquement reliée à la cuve de la deuxième colonne dans lequel :

  1. i) Un premier débit d'air constituant entre 75 et 98% de l'air envoyé au système de colonnes est comprimé à une troisième pression entre 5 et 6 bars abs et au-dessus de la première pression, refroidi et envoyé à la troisième pression à une première unité d'adsorption pour être épuré en eau et en dioxyde de carbone et le premier débit épuré est envoyé à la première colonne et éventuellement à la deuxième colonne
  2. ii) Un deuxième débit d'air constituant entre 2 et 25%, voire 5 et 25%, de l'air envoyé au système de colonnes est comprimé à une quatrième pression entre 1,2 et 2 bars abs et au-dessus de la deuxième pression mais inférieure à la troisième pression, de préférence refroidi par contact direct dans une tour de refroidissement d'air, envoyé à la quatrième pression à une deuxième unité d'adsorption pour être épuré en eau et en dioxyde de carbone et le deuxième débit épuré est envoyé à la deuxième colonne
  3. iii) De l'air se sépare dans la première colonne pour former un liquide enrichi en oxygène et un gaz enrichi en azote
  4. iv) Du liquide enrichi en oxygène et du liquide enrichi en azote sont envoyés de la première colonne à la deuxième colonne
  5. v) Un liquide d'une pureté supérieure à 99%, de préférence à 99.5% d'oxygène est soutiré du système de colonnes, pressurisé et puis vaporisé par échange de chaleur avec au moins une partie du premier débit d'air
  6. vi) Un gaz enrichi en argon est envoyé de la deuxième colonne à une troisième colonne et un fluide riche en argon est soutiré en tête de la troisième colonne
  7. vii) L'air envoyé à la deuxième colonne constitue entre 10 et 25% de l'air total envoyé au système de colonnes et
  8. viii) Le fluide riche en argon contient entre 20 et 80% de l'argon contenu dans le premier et le deuxième débit d'air.
According to one object of the invention, there is provided a process for separating air by cryogenic distillation using a column system consisting of a first column operating at a first pressure and a second column operating at a second pressure lower than the first pressure. , the head of the first column being thermally connected to the bottom of the second column in which:
  1. i) A first air flow constituting between 75 and 98% of the air sent to the column system is compressed to a third pressure between 5 and 6 bar abs and above the first pressure, cooled and sent to the third pressure at a first adsorption unit to be purified of water and carbon dioxide and the first purified flow is sent to the first column and optionally to the second column
  2. ii) A second air flow, constituting between 2 and 25%, or even 5 and 25%, of the air sent to the column system is compressed to a fourth pressure between 1.2 and 2 bar abs and above the second pressure but lower than the third pressure, preferably cooled by direct contact in an air cooling tower, sent at the fourth pressure to a second adsorption unit to be purified of water and carbon dioxide and the second flow purified is sent to the second column
  3. iii) Air separates in the first column to form oxygen-enriched liquid and nitrogen-enriched gas
  4. iv) Oxygen enriched liquid and nitrogen enriched liquid are sent from the first column to the second column
  5. v) A liquid with a purity greater than 99%, preferably 99.5% oxygen is withdrawn from the column system, pressurized and then vaporized by heat exchange with at least part of the first air flow
  6. vi) A gas enriched in argon is sent from the second column to a third column and a fluid rich in argon is withdrawn at the top of the third column
  7. vii) The air sent to the second column constitutes between 10 and 25% of the total air sent to the column system and
  8. viii) The argon-rich fluid contains between 20 and 80% of the argon contained in the first and second air flow.

Selon d'autres aspects facultatifs :

  • le fluide riche en argon contient entre 45 et 75%de l'argon contenu dans le premier et le deuxième débit d'air
  • le rendement oxygène de l'appareil est supérieur à 95%.
  • le premier débit d'air est refroidi par contact direct par un premier débit d'eau dans une première tour de refroidissement et le deuxième débit d'air est refroidi par contact direct par un deuxième débit d'eau dans une deuxième tour de refroidissement, de l'azote gazeux provenant du système de colonnes est envoyé à une tour de refroidissement d'eau et l'eau refroidie dans la tour de refroidissement d'eau est envoyée aux première et deuxième tours de refroidissement d'air.
  • on refroidit l'eau refroidie entre la tour de refroidissement d'eau et la deuxième tour de refroidissement d'air de sorte que l'eau envoyée à la deuxième tour de refroidissement d'air est plus froide que celle envoyée à la première tour de refroidissement d'air.
  • l'air est refroidi dans la première tour de refroidissement d'air jusqu'à une température supérieure d'au moins 5°C, de préférence au moins 8°C, à la température à laquelle l'air est refroidi dans la deuxième tour de refroidissement d'air.
  • l'air est refroidi dans la première tour de refroidissement jusqu'à une température supérieure d'au plus 30°C, de préférence d'au plus 12°C, à la température à laquelle l'air est refroidi dans la deuxième tour de refroidissement.
  • le premier débit épuré se refroidit en amont du système de colonne dans un premier échangeur de chaleur par échange de chaleur avec un premier débit d'azote gazeux provenant du système de colonnes et le deuxième débit épuré se refroidit en amont du système de colonne dans un deuxième échangeur de chaleur par échange de chaleur avec un deuxième débit d'azote gazeux provenant du système de colonnes.
  • le deuxième débit épuré se refroidit en amont du système de colonne dans le deuxième échangeur de chaleur par échange de chaleur avec uniquement le deuxième débit d'azote gazeux provenant du système de colonnes.
  • le deuxième débit d'azote est introduit dans le deuxième échangeur de chaleur à une température sans être passé dans un autre échangeur de chaleur après sa sortie de colonne.
  • le premier débit épuré se refroidit en amont du système de colonne dans le premier échangeur de chaleur par échange de chaleur avec le premier débit d'azote gazeux provenant du système de colonnes ainsi qu'avec le liquide pressurisé soutiré du système de colonnes et le liquide se vaporise dans le premier échangeur de chaleur.
  • le deuxième débit d'air n'est pas détendu ou surpressé entre la deuxième unité d'adsorption et la deuxième colonne.
  • au moins une partie du premier débit d'air n'est pas détendue ou surpressée entre la première unité d'adsorption et la première colonne.
  • une partie du premier débit d'air est surpressée puis détendue entre la première unité d'adsorption et la première colonne.
  • une partie du premier débit d'air est détendue dans une turbine puis envoyée à la première colonne sous forme gazeuse et/ou liquide.
  • au moins 14% mol de l'air total est envoyé à la deuxième colonne.
  • le deuxième débit épuré est envoyé dans la deuxième colonne pour être séparé au même niveau de la colonne qu'un débit de liquide enrichi en oxygène provenant de la première colonne
  • le deuxième débit épuré est envoyé dans la deuxième colonne pour être séparé au même niveau de la colonne qu'un débit de liquide enrichi en oxygène provenant de la première colonne et vaporisé dans un condenseur de tête de la troisième colonne.
  • tout le premier débit épuré est envoyé à la première colonne et éventuellement à la deuxième colonne
  • tout le deuxième débit épuré est envoyé à la deuxième colonne
  • tout l'azote gazeux soutiré en tête de la deuxième colonne est réchauffé par échange de chaleur avec l'air
  • le système de colonnes ne comprend pas de colonne opérant à une pression plus basse que celle de la deuxième colonne
  • la troisième pression est entre 5 et 6 bars abs et
According to other optional aspects:
  • the argon-rich fluid contains between 45 and 75% of the argon contained in the first and second air flow
  • the oxygen efficiency of the device is greater than 95%.
  • the first air flow is cooled by direct contact by a first water flow in a first cooling tower and the second air flow is cooled by direct contact by a second water flow in a second cooling tower, nitrogen gas from the column system is sent to a water cooling tower and the water cooled in the water cooling tower is sent to the first and second air cooling towers.
  • the water cooled between the water cooling tower and the second air cooling tower is cooled so that the water sent to the second air cooling tower is cooler than that sent to the first air cooling tower air cooling.
  • the air is cooled in the first air cooling tower to a temperature at least 5 ° C, preferably at least 8 ° C, above the temperature to which the air is cooled in the second tower air cooling.
  • the air is cooled in the first cooling tower to a temperature at most 30 ° C, preferably at most 12 ° C, above the temperature at which the air is cooled in the second cooling tower. cooling.
  • the first clean flow cools upstream of the column system in a first heat exchanger by heat exchange with a first flow of nitrogen gas from the column system and the second clean flow cools upstream of the column system in a second heat exchanger by heat exchange with a second flow of nitrogen gas from the column system.
  • the second purified flow cools upstream of the column system in the second heat exchanger by heat exchange with only the second nitrogen gas flow coming from the column system.
  • the second nitrogen flow is introduced into the second heat exchanger at a temperature without having passed into another heat exchanger after leaving the column.
  • the first purified flow cools upstream of the column system in the first heat exchanger by heat exchange with the first flow of nitrogen gas from the column system as well as with the pressurized liquid withdrawn column system and the liquid vaporizes in the first heat exchanger.
  • the second air flow is not expanded or overpressed between the second adsorption unit and the second column.
  • at least part of the first air flow is not expanded or overpressed between the first adsorption unit and the first column.
  • part of the first air flow is supercharged and then expanded between the first adsorption unit and the first column.
  • part of the first air flow is expanded in a turbine and then sent to the first column in gaseous and / or liquid form.
  • at least 14 mol% of the total air is sent to the second column.
  • the second purified flow is sent to the second column to be separated at the same level of the column as a flow of oxygen-enriched liquid from the first column
  • the second purified flow is sent to the second column to be separated at the same level of the column as a flow of liquid enriched in oxygen coming from the first column and vaporized in an overhead condenser of the third column.
  • all the first purified flow is sent to the first column and possibly to the second column
  • all the second purified flow is sent to the second column
  • all the gaseous nitrogen withdrawn from the top of the second column is reheated by heat exchange with the air
  • the column system does not include a column operating at a lower pressure than that of the second column
  • the third pressure is between 5 and 6 bars abs and

Selon un autre objet de l'invention, il est prévu un appareil de séparation d'air par distillation cryogénique utilisant un système de colonnes constitué par une première colonne opérant à une première pression et une deuxième colonne opérant à une deuxième pression inférieure à la première pression, la tête de la première colonne étant thermiquement reliée à la cuve de la deuxième colonne, une première unité d'adsorption, une deuxième unité d'adsorption, des moyens pour envoyer un premier débit d'air constituant entre 75 et 98% de l'air envoyé au système de colonnes comprimé à une troisième pression au-dessus de la première pression à des moyens de refroidissement et ensuite à la troisième pression à la première unité d'adsorption pour être épuré en eau et en dioxyde de carbone et des moyens pour envoyer tout le premier débit épuré à la première colonne et éventuellement à la deuxième colonne, des moyens pour envoyer un deuxième débit d'air constituant entre 5 et 25% de l'air envoyé au système de colonnes comprimé à une quatrième pression entre 1,2 et 2 bars abs et au-dessus de la deuxième pression mais inférieure à la troisième pression, à la quatrième pression à la deuxième unité d'adsorption pour être épuré en eau et en dioxyde de carbone et des moyens pour envoyer tout le deuxième débit épuré à la deuxième colonne, la première colonne comprenant des moyens d'échange de chaleur et de masse pour séparer l'air pour former un liquide enrichi en oxygène et un gaz enrichi en azote, des moyens pour envoyer du liquide enrichi en oxygène et du liquide enrichi en azote de la première colonne à la deuxième colonne, des moyens pour soutirer un liquide d'une pureté supérieure à 99%, de préférence à 99.5% d'oxygène du système de colonnes, une pompe pour pressuriser ce liquide, des moyens pour vaporiser le liquide pressurisé par échange de chaleur avec au moins une partie du premier débit d'air et des moyens pour envoyer un gaz enrichi en argon de la deuxième colonne à la troisième colonne et des moyens pour soutirer un fluide riche en argon en tête de la troisième colonne.According to another object of the invention, there is provided an apparatus for separating air by cryogenic distillation using a column system consisting of a first column operating at a first pressure and a second column operating at a second pressure lower than the first. pressure, the head of the first column being thermally connected to the bottom of the second column, a first adsorption unit, a second adsorption unit, means for sending a first air flow constituting between 75 and 98% of the air sent to the column system compressed at a third pressure above the first pressure to cooling means and then at the third pressure to the first adsorption unit to be purified of water and carbon dioxide and means for sending all of the first purified flow to the first column and possibly to the second column, means for sending a second air flow constituting between 5 and 25% of the air sent to the compressed column system at a fourth pressure between 1.2 and 2 bars abs and above the second pressure but below the third pressure, at the fourth pressure at the second adsorption unit to be purified of water and carbon dioxide and means for sending all of the second purified flow to the second column, the first column comprising heat and mass exchange means for separating the air to form an oxygen-enriched liquid and a nitrogen-enriched gas, means for sending oxygen-enriched liquid and liquid enriched in nitrogen from the first column to the second column, means for withdrawing a liquid with a purity greater than 99%, preferably 99.5% oxygen from the column system, a pump for pressurizing this liquid, means for vaporize the pressurized liquid by heat exchange with at least part of the first air flow and means for sending an argon-enriched gas from the second column to the third column and means for withdrawing an argon-rich fluid at the top of the the third column.

De préférence le système de colonnes ne comprend que la première et la deuxième colonnes.Preferably, the column system only comprises the first and the second columns.

L'invention sera décrite de manière plus détaillée en se référant aux figures.

  • [Fig. 1] illustre un appareil de séparation d'air selon l'invention.
  • [Fig. 2] illustre à pureté oxygène constante 99,5% et à rendement oxygène constant 99%, le pourcentage de l'air d'alimentation total en ordonnées que l'on peut injecter directement dans une deuxième colonne en fonction du rendement argon de l'unité en abscisses.
The invention will be described in more detail with reference to the figures.
  • [ Fig. 1 ] illustrates an air separation apparatus according to the invention.
  • [ Fig. 2 ] illustrates at constant oxygen purity 99.5% and at constant oxygen yield 99%, the percentage of the total supply air in ordinates that can be injected directly into a second column as a function of the argon yield of the unit on the x-axis.

[Fig. 1] montre qu'un premier débit d'air 1 constituant entre 75 et 98% de l'air total envoyé au système de colonnes est comprimé depuis la pression atmosphérique jusqu'à une pression légèrement au-dessus de la pression d'une première colonne 101. La différence entre la pression de la première colonne et la pression de l'air 3 comprimé dans le compresseur 2 correspond à la perte de charge due au refroidissement et à l'épuration qui ont lieu après la compression et avant l'entrée dans la colonne. D'autres moyens de refroidir l'air 35 peuvent être envisagés, par exemple des groupes frigorifiques.[ Fig. 1 ] shows that a first air flow 1 constituting between 75 and 98% of the total air sent to the column system is compressed from atmospheric pressure to a pressure slightly above the pressure of a first column 101. The difference between the pressure of the first column and the pressure of the compressed air 3 in the compressor 2 corresponds to the pressure drop due to the cooling and purification which takes place after the compression and before entering the compressor. the column. Other means of cooling the air 35 can be envisaged, for example refrigeration units.

L'air 3 peut donc se trouver à entre 5 et 6 bars abs et est envoyé à une première tour de refroidissement 4 alimentée en tête par de l'eau 94 et à un niveau intermédiaire par de l'eau 98.The air 3 can therefore be at between 5 and 6 bars abs and is sent to a first cooling tower 4 fed at the head with water 94 and at an intermediate level with water 98.

L'air refroidi 5 soutiré en tête de la tour 4 est envoyé à une première unité d'adsorption 6 pour enlever l'eau et le dioxyde de carbone qu'il contient. L'air épuré 7 est divisé en trois parties. Une partie 8 se refroidit à l'état gazeux dans le premier échangeur de chaleur 80 et rentre dans la colonne 101 sous forme gazeuse mélangé avec l'air 32 pour former le débit 10.The cooled air 5 withdrawn from the top of the tower 4 is sent to a first adsorption unit 6 to remove the water and the carbon dioxide it contains. The purified air 7 is divided into three parts. Part 8 cools in the gaseous state in the first heat exchanger 80 and enters the column 101 in the gaseous form mixed with the air 32 to form the flow 10.

Une autre partie 12 est surpressée dans un surpresseur 13 pour former un débit surpressé 14 qui est refroidi dans le premier échangeur 80 pour former un débit refroidi 15 extrait à un niveau de température intermédiaire de l'échangeur. Ce débit 15 est détendu dans une turbine 16 pour former un gaz 17 à la pression de la deuxième colonne 102 et est envoyé à la colonne 102.Another part 12 is supercharged in a booster 13 to form a supercharged flow 14 which is cooled in the first exchanger 80 to form a cooled flow 15 extracted at an intermediate temperature level of the exchanger. This flow 15 is expanded in a turbine 16 to form a gas 17 at the pressure of the second column 102 and is sent to the column 102.

Une autre partie 19 est surpressée dans un surpresseur 20 pour former le débit 21 et ensuite est divisée en deux fractions. Une fraction 22 est refroidie dans le premier échangeur 80, extraite à un niveau de température intermédiaire (typiquement aux alentours de -120°C, non illustrée), est surpressée dans un surpresseur froid 24, est réintroduite dans l'échangeur 80, se refroidit dans l'échangeur 80 et est détendue dans la turbine 27 pour former un liquide 28 (ou éventuellement un diphasique) qui est envoyé à la première colonne 101.Another part 19 is boosted in a booster 20 to form the flow 21 and then is divided into two fractions. A fraction 22 is cooled in the first exchanger 80, extracted at an intermediate temperature level (typically around -120 ° C, not shown), is boosted in a cold booster 24, is reintroduced into the exchanger 80, cools in the exchanger 80 and is expanded in the turbine 27 to form a liquid 28 (or possibly a two-phase) which is sent to the first column 101.

L'autre fraction 29 se refroidit dans l'échangeur 80 et est extraite à un niveau de température intermédiaire (non-illustrée) pour former un débit 30 qui est détendu dans une turbine 31 couplée au surpresseur froid 24. L'air détendu 32 est à la pression de la première colonne 101.The other fraction 29 cools in the exchanger 80 and is extracted at an intermediate temperature level (not shown) to form a flow 30 which is expanded in a turbine 31 coupled to the cold booster 24. The expanded air 32 is released. at the pressure of the first column 101.

Un deuxième débit d'air 33 constituant entre 5 et 25%, de préférence plus que 10%, de l'air total envoyé au système de colonnes est comprimé depuis la pression atmosphérique jusqu'à une pression légèrement au-dessus de la pression d'une deuxième colonne 102. La différence entre la pression de la deuxième colonne et la pression de l'air 35 comprimé dans le compresseur 34 correspond à la perte de charge due au refroidissement et à l'épuration qui ont lieu après la compression et avant l'entrée dans la colonne 102.A second air flow 33 constituting between 5 and 25%, preferably more than 10%, of the total air sent to the column system is compressed from atmospheric pressure to a pressure slightly above the pressure d 'a second column 102. The difference between the pressure of the second column and the pressure of the compressed air in the compressor 34 corresponds to the pressure drop due to the cooling and purification which takes place after the compression and before the entry in column 102.

L'air 35 se trouve à entre 1,2 et 2 bars abs et est envoyé à une deuxième tour de refroidissement 36 alimentée en tête par de l'eau 97 et à un niveau intermédiaire par de l'eau 90. L'air refroidi 37 soutiré en tête de la tour 36 est envoyé à une deuxième unité d'adsorption 38 pour enlever l'eau et le dioxyde de carbone qu'il contient. D'autres moyens de refroidir l'air 35 peuvent être envisagés, par exemple des groupes frigorifiques. L'usage d'une tour est néanmoins préféré pour l'air à plus basse pression afin de réduire les pertes de charge associées. L'air épuré 39 se refroidit à l'état gazeux dans le deuxième échangeur de chaleur 81 pour former le débit 40 et rentre dans la colonne102 sous forme gazeuse mélangé avec l'air 17 pour former le débit 120. Le débit 120 représente entre 3 et 5% du débit total d'air. Le débit d'air 120 est envoyé dans la deuxième colonne 102 pour être séparé au même niveau de la colonne que le liquide de cuve détendu 48 et au-dessus de l'arrivée de liquide riche vaporisé 72.The air 35 is at between 1.2 and 2 bars abs and is sent to a second cooling tower 36 fed at the head with water 97 and at an intermediate level with water 90. The cooled air 37 withdrawn at the top of the tower 36 is sent to a second adsorption unit 38 to remove the water and the carbon dioxide it contains. Other means of cooling the air 35 can be envisaged, for example refrigeration units. The use of a tower is nevertheless preferred for the air at lower pressure in order to reduce the associated pressure drops. The purified air 39 cools in the gaseous state in the second heat exchanger 81 to form the flow 40 and enters the column 102 in gaseous form mixed with the air 17 to form the flow 120. The flow 120 represents between 3 and 5% of the total air flow. The air flow 120 is sent to the second column 102 to be separated at the same level of the column as the expanded bottom liquid 48 and above the arrival of the vaporized rich liquid 72.

Ainsi le débit 40 envoyé à la deuxième colonne 102 représente entre 5 et 25% de l'air totale, de préférence plus que 10% de l'air total envoyé au système de colonnes. En tout le débit 120 représente entre 10 et 25% de l'air total envoyé au système de colonnes, étant un mélange du débit 40 et l'air insufflé 17.Thus the flow 40 sent to the second column 102 represents between 5 and 25% of the total air, preferably more than 10% of the total air sent to the column system. In all, the flow rate 120 represents between 10 and 25% of the total air sent to the column system, being a mixture of the flow rate 40 and the blown air 17.

Etant donné que l'oxygène produit à une pureté de plus de 99% et de préférence supérieure à 99,5%, il est surprenant qu'il soit possible d'envoyer ce pourcentage élevée d'air à la deuxième colonne 102 sans dégrader significativement le rendement oxygène de l'unité. Le brevet US4964901 ne l'avait d'ailleurs pas envisagé. Si l'on ne produit pas d'argon, il n'est effectivement pas possible d'injecter une telle quantité d'air dans la colonne basse pression en cherchant à produire de l'oxygène à une pureté de plus de 99% et de préférence supérieure à 99,5%. De la même manière, si l'on produit de l'argon en cherchant cette fois à obtenir un rendement argon « classique » situé sur un appareil moderne aux alentours de 85% et un bon rendement oxygène (de l'ordre de 99%), cela n'est pas non plus possible. C'est en produisant de l'argon à partir d'une troisième colonne de préférence avec un rendement situé aux alentours de 65% que l'on a pu obtenir simultanément une production d'oxygène à une pureté de plus de 99% et de préférence supérieure à 99,5% avec un bon rendement oxygène typiquement aux alentours de 99% (a minima supérieur à 95%). La Figure 2 illustre à pureté oxygène constante 99,5% et à rendement oxygène constant 99%, la quantité d'air, en termes de pourcentage du débit total d'air envoyé à la distillation, que l'on peut injecter directement dans la deuxième colonne 102 en fonction du rendement argon de l'unité en abscisses.Since the oxygen produced at a purity of greater than 99% and preferably greater than 99.5%, it is surprising that it is possible to send this high percentage of air to the second column 102 without significantly degrading the oxygen output of the unit. The patent US4964901 hadn't even considered it. If one does not produce argon, it is indeed not possible to inject such a quantity of air into the low pressure column while seeking to produce oxygen at a purity of more than 99% and of preferably greater than 99.5%. Likewise, if argon is produced, this time seeking to obtain a “classic” argon yield located on a modern device at around 85% and a good oxygen yield (of the order of 99%) , this is not possible either. It is by producing argon from a third column preferably with a yield of around 65% that it was possible to simultaneously obtain a production of oxygen at a purity of more than 99% and of preferably greater than 99.5% with a good oxygen yield typically around 99% (at least greater than 95%). The Figure 2 illustrates with constant oxygen purity 99.5% and constant oxygen yield 99%, the quantity of air, in terms of percentage of the total air flow sent to the distillation, which can be injected directly into the second column 102 as a function of the argon yield of the unit on the abscissa.

Le rendement oxygène est défini par la quantité d'oxygène contenu dans les productions d'oxygène qui peuvent être gazeuses et/ou liquides divisée par la quantité d'oxygène contenu dans l'ensemble des débits d'air introduits dans l'appareil.The oxygen yield is defined by the quantity of oxygen contained in the oxygen productions which may be gaseous and / or liquid divided by the quantity of oxygen contained in all of the air flows introduced into the device.

On remarque que le pourcentage maximal d'air à envoyer à la deuxième colonne se situe autour du point du rendement de 65% pour l'argon.It is noted that the maximum percentage of air to be sent to the second column is located around the point of the yield of 65% for argon.

L'argon issu de la troisième colonne est soit mélangé avec l'azote résiduaire, soit produit sous forme liquide ou gazeuse après être passé dans une colonne de déazotation.The argon from the third column is either mixed with the residual nitrogen, or produced in liquid or gaseous form after passing through a denitrogenation column.

Pour lutter contre le réchauffement climatique, il est nécessaire d'améliorer l'efficacité énergétique des appareils de séparation des gaz de l'air. Dans la configuration considérée, plus on injectera d'air dans la deuxième colonne basse pression moins l'unité consommera d'énergie. En rajoutant une troisième colonne dite colonne de mixture argon et en l'opérant à un rendement argon optimal de préférence aux alentours de 65% sans nécessairement produire cet argon, on arrive à minimiser la consommation énergétique de l'appareil. Un système de colonnes constitué par une première colonne 101 opérant à une première pression et une deuxième colonne 102 opérant à une deuxième pression inférieure à la première pression. Le gaz de tête de la première colonne sert à chauffer la cuve de la deuxième colonne. La deuxième colonne peut être en deux sections et peut être reliée à une colonne de séparation d'argon.To fight against global warming, it is necessary to improve the energy efficiency of air separation devices. In the configuration considered, the more air is injected into the second low pressure column, the less energy the unit will consume. By adding a third column called an argon mixture column and operating it at an optimum argon yield, preferably around 65% without necessarily producing this argon, the energy consumption of the device is minimized. A column system consisting of a first column 101 operating at a first pressure and a second column 102 operating at a second pressure lower than the first pressure. The overhead gas from the first column is used to heat the bottom of the second column. The second column can be in two sections and can be connected to an argon separation column.

L'air se sépare par distillation dans la première colonne 101 pour produire un liquide de cuve enrichi en oxygène 41, un liquide de tête 53 enrichi en azote et un liquide intermédiaire 49 enrichi en azote. Les liquides 53,49 sont refroidis dans un sous-refroidisseur 80 pour former les liquides 54,50 et sont détendus par les vannes 55,51 respectivement avant d'être envoyés à la deuxième colonne 102.The air is separated by distillation in the first column 101 to produce an oxygen enriched bottom liquid 41, an overhead liquid 53 enriched in nitrogen and an intermediate liquid 49 enriched in nitrogen. The liquids 53,49 are cooled in a sub-cooler 80 to form the liquids 54,50 and are expanded by the valves 55,51 respectively before being sent to the second column 102.

Le liquide enrichi en oxygène est divisé en deux parties 42,46. La partie 46 est détendue dans une vanne 47 et envoyée comme débit 48 à la deuxième colonne 102. La partie 42 est détendue dans la vanne 43 et envoyée comme liquide 44 à un condenseur de tête 45 d'une colonne de séparation d'argon 103.The oxygen enriched liquid is divided into two parts 42,46. Part 46 is expanded in valve 47 and sent as flow 48 to second column 102. Part 42 is expanded in valve 43 and sent as liquid 44 to an overhead condenser 45 of an argon separation column 103. .

De l'azote gazeux de la tête de la colonne 101 se condense dans le rebouilleur de cuve 83 de la deuxième colonne 102 pour chauffer la cuve de la deuxième colonne. L'azote condensé est renvoyé à la tête de la première colonne 102 et à la tête de la deuxième colonne 101.Nitrogen gas from the top of column 101 condenses in bottom reboiler 83 of second column 102 to heat the bottom of second column. The condensed nitrogen is returned to the top of the first column 102 and to the top of the second column 101.

La colonne de séparation d'argon 103 est alimentée en gaz par un débit 58 pris à un niveau intermédiaire de la colonne basse pression 102. Le liquide de cuve 57 de la colonne 103 est renvoyé à la colonne 102. Un fluide riche en argon est soutiré en tête de la colonne 103 contenant au moins 95%, voire au moins 98% d'argon. Le fluide peut contenir environ 2% d'oxygène et être mélangé par la suite à l'azote gazeux provenant du système colonnes ou épuré par catalyse. Sinon le fluide peut contenir moins que 2ppm d'oxygène et servir comme produit après être passé dans une colonne de déazotation (non représentée sur le schéma)The argon separation column 103 is supplied with gas by a flow 58 taken at an intermediate level of the low pressure column 102. The bottom liquid 57 of the column 103 is returned to the column 102. A fluid rich in argon is obtained. withdrawn at the top of column 103 containing at least 95%, or even at least 98% argon. The fluid may contain about 2% oxygen and may subsequently be mixed with nitrogen gas from the column system or purified by catalysis. Otherwise the fluid may contain less than 2 ppm of oxygen and serve as a product after passing through a denitrogenation column (not shown in the diagram)

De l'oxygène liquide 59 contenant au moins 99% d'oxygène, de préférence au moins 99,5% d'oxygène, est soutiré en cuve de la deuxième colonne 102, pressurisé par une pompe 60 et envoyé comme débit pressurisé 61 à l'échangeur de chaleur 80 où il se vaporise totalement pour former le produit principal de l'appareil, de l'oxygène gazeux 62 à une pression d'au moins 10 bars a. Des pressions plus basses peuvent être envisagées.Liquid oxygen 59 containing at least 99% oxygen, preferably at least 99.5% oxygen, is withdrawn from the bottom of the second column 102, pressurized by a pump 60 and sent as a pressurized flow 61 to the bottom. heat exchanger 80 where it vaporizes completely to form the main product of the apparatus, gaseous oxygen 62 at a pressure of at least 10 bar a. Lower pressures can be considered.

Le gaz de tête 63 de la colonne 102 se réchauffe dans le sous-refroidisseur 82 puis est divisé en deux. Une partie 67 se réchauffe dans le deuxième échangeur de chaleur 81 et le reste 65 se réchauffe dans le premier échangeur de chaleur 80. Le débit 65 réchauffé est le débit 66 et sert à régénérer la deuxième unité d'adsorption 38 comme débit 68. Il est aussi possible de diviser en deux parties le gaz de tête 63 de la colonne 102 avant introduction dans le sous-refroidisseur 82. Dans ce cas, la partie 67 qui se réchauffe dans le deuxième échangeur de chaleur 81 est introduite dans le dit échangeur à une température inférieure ce qui permet de refroidir le fluide 40 à une température plus basse et, après mélange avec le fluide 17 pour former le fluide 120, de l'introduire dans la deuxième colonne 102 à une température plus proche de celle qui règne dans cette colonne au point d'injection, ce qui permet de diminuer les irréversibilités du procédé.Overhead gas 63 from column 102 heats up in sub-cooler 82 and then is split in two. A portion 67 heats up in the second heat exchanger 81 and the remainder 65 heats up in the first heat exchanger 80. The reheated flow 65 is the flow 66 and serves to regenerate the second adsorption unit 38 as the flow 68. It It is also possible to divide the overhead gas 63 of the column 102 into two parts before it is introduced into the sub-cooler 82. In this case, the part 67 which heats up in the second heat exchanger 81 is introduced into said heat exchanger. a lower temperature which makes it possible to cool the fluid 40 to a lower temperature and, after mixing with the fluid 17 to form the fluid 120, to introduce it into the second column 102 at a temperature closer to that which prevails in this column at the point of injection, which makes it possible to reduce the irreversibilities of the process.

Le débit 67,69 sert en partie 70 pour régénérer la première unité d'adsorption 6 et en partie 71 à refroidir l'eau dans la tour de refroidissement d'eau 91. L'eau 90 est envoyée en tête de la colonne et sort refroidie 92 en cuve pour être envoyée par une pompe 93 vers les deux tours de refroidissement d'air 4,36.The flow 67,69 is used in part 70 to regenerate the first adsorption unit 6 and in part 71 to cool the water in the water cooling tower 91. The water 90 is sent to the top of the column and leaves. cooled 92 in the tank to be sent by a pump 93 to the two air cooling towers 4.36.

Ainsi les deux tours de refroidissement d'air 4,36 sont alimentées en eau de refroidissement provenant d'une seule tour de refroidissement d'eau 91 refroidie par l'azote provenant du système de colonnes.Thus the two air cooling towers 4.36 are supplied with cooling water coming from a single water cooling tower 91 cooled by nitrogen coming from the column system.

L'eau 95 destinée à la deuxième tour de refroidissement d'air 36 est refroidie entre la tour de refroidissement d'eau 91 et la deuxième tour 36 par un refroidisseur 96 par exemple un groupe frigorifique pour refroidir l'eau à une température entre 5 et 30°C en dessous de la température de l'eau 94 arrivant en tête de la première tour 4, de préférence entre 8 et 15°C en dessous de cette température.The water 95 intended for the second air cooling tower 36 is cooled between the water cooling tower 91 and the second tower 36 by a cooler 96, for example a refrigeration unit for cooling the water to a temperature between 5 and 30 ° C below the temperature of the water 94 arriving at the head of the first tower 4, preferably between 8 and 15 ° C below this temperature.

Il est également possible d'utiliser deux tours de refroidissement d'eau, chacune alimentant la tour de refroidissement d'air respective avec de l'eau à la température requise. Dans ce cas, la tour de refroidissement produisant l'eau refroidie destinée à refroidir la deuxième tour de refroidissement d'air devrait être alimentée par l'azote 67 provenant du deuxième échangeur de chaleur 81 car il est plus froid que l'azote 62 provenant du premier échangeur de chaleur 80.It is also possible to use two water cooling towers, each supplying the respective air cooling tower with water at the required temperature. In this case, the cooling tower producing the chilled water intended to cool the second air cooling tower would have to be supplied with the nitrogen 67 coming from the second heat exchanger 81 because it is cooler than the nitrogen 62 coming from. of the first heat exchanger 80.

Ainsi le deuxième échangeur de chaleur 91 réalise un échange de chaleur entre juste deux fluides, l'air 39,40 et l'azote 67.Thus the second heat exchanger 91 performs a heat exchange between just two fluids, air 39,40 and nitrogen 67.

Le deuxième compresseur et la deuxième unité d'adsorption pourraient être rajoutées à un appareil existant ayant le premier compresseur et la première unité d'adsorption afin de dépasser les limites de production de l'appareil existant.The second compressor and the second adsorption unit could be added to an existing apparatus having the first compressor and the first adsorption unit in order to exceed the production limits of the existing apparatus.

Le deuxième débit épuré 120 est envoyé dans la deuxième colonne 102 pour être séparé au même niveau de la colonne qu'un débit de liquide enrichi en oxygène provenant de la première colonne (non-illustré) ou qu'un débit de liquide enrichi en oxygène provenant de la première colonne et vaporisé dans un condenseur de tête de la troisième colonne, débit 72.The second purified flow 120 is sent to the second column 102 to be separated at the same level of the column as a flow of liquid enriched in oxygen coming from the first column (not shown) or as a flow of liquid enriched in oxygen. from the first column and vaporized in an overhead condenser of the third column, flow rate 72.

Le fluide riche en argon produit en tête de la colonne 103 contient entre 20 et 80% de l'argon contenu dans le premier et le deuxième débits d'air 1,33, de préférence entre 45 et 75%.The argon-rich fluid produced at the top of column 103 contains between 20 and 80% of the argon contained in the first and second air flow rates 1.33, preferably between 45 and 75%.

Le rendement oxygène de l'appareil est supérieur à 95%.The oxygen efficiency of the device is greater than 95%.

L'air 20 envoyé à la deuxième colonne constitue entre 10 et 25%, voire entre 14 et 25%, de l'air total envoyé au système de colonnes.The air 20 sent to the second column constitutes between 10 and 25%, or even between 14 and 25%, of the total air sent to the column system.

Si le deuxième débit 33 est à son minimum de 5% du débit total, les au moins 5% restants de l'air destinés à la deuxième colonne feront partie du premier débit 1 et au moins 5% de l'air total sera détendu dans la turbine d'insufflation 16 pour que le débit d'air envoyé à la deuxième colonne soit au moins 10% de l'air total.If the second flow 33 is at its minimum of 5% of the total flow, the remaining at least 5% of the air destined for the second column will be part of the first flow 1 and at least 5% of the total air will be expanded in the insufflation turbine 16 so that the air flow sent to the second column is at least 10% of the total air.

Il peut être envisagé d'opérer le procédé avec deux marches différentes. Dans une première marche, pendant les périodes où l'énergie est peu chère, l'air est comprimé exclusivement dans le compresseur 2 et le débit 33 n'existe pas. La deuxième colonne est alimentée en air par la turbine 16 exclusivement. Pendant cette marche, au moins un produit liquide, par exemple de l'azote liquide est produit et peut être stocké et éventuellement utilisé en partie comme produit.It can be envisaged to operate the process with two different steps. In a first step, during periods when energy is cheap, the air is compressed exclusively in the compressor 2 and the flow 33 does not exist. The second column is supplied with air by the turbine 16 exclusively. During this operation, at least one liquid product, for example liquid nitrogen, is produced and can be stored and possibly partly used as a product.

Dans une deuxième marche, l'air est comprimé dans les compresseurs 2 et 34 et de préférence le débit d'air envoyé au compresseur 2 sera réduit par rapport au débit pendant la première marche. Pendant la deuxième marche, l'énergie coûte plus cher et donc les coûts d'opération sont réduits en baissant la quantité d'air comprimé à la plus haute pression. L'appareil sera tenu en froid en partie par envoi d'azote liquide produit pendant la première marche.In a second run, the air is compressed in the compressors 2 and 34 and preferably the air flow sent to the compressor 2 will be reduced compared to the flow during the first run. During the second run, energy costs more and therefore operating costs are reduced by lowering the amount of compressed air to the highest pressure. The device will be kept cold in part by sending liquid nitrogen produced during the first run.

Claims (17)

Procédé de séparation d'air par distillation cryogénique utilisant un système de colonnes constitué par une première colonne (101) opérant à une première pression et une deuxième colonne (102) opérant à une deuxième pression inférieure à la première pression, la tête de la première colonne étant thermiquement reliée à la cuve de la deuxième colonne dans lequel : i. Un premier débit d'air (1) constituant entre 75 et 98% de l'air envoyé au système de colonnes est comprimé à une troisième pression au-dessus de la première pression, refroidi et envoyé à la troisième pression à une première unité d'adsorption (6) pour être épuré en eau et en dioxyde de carbone et le premier débit épuré est envoyé à la première colonne et éventuellement à la deuxième colonne. ii. Un deuxième débit d'air (33) constituant entre 2 et 25% de l'air envoyé au système de colonnes est comprimé à une quatrième pression entre 1,2 et 2 bars abs et au-dessus de la deuxième pression mais inférieure à la troisième pression, de préférence refroidi par contact direct dans une tour de refroidissement d'air (36), envoyé à la quatrième pression à une deuxième unité d'adsorption (38) pour être épuré en eau et en dioxyde de carbone et le deuxième débit épuré est envoyé à la deuxième colonne. iii. De l'air se sépare dans la première colonne pour former un liquide enrichi en oxygène (41) et un gaz enrichi en azote. iv. Du liquide enrichi en oxygène (41) et du liquide enrichi en azote (49,53) sont envoyés de la première colonne à la deuxième colonne. v. Un liquide d'une pureté supérieure à 99%, de préférence à 99.5% d'oxygène (59) est soutiré du système de colonnes, pressurisé et puis vaporisé par échange de chaleur avec au moins une partie du premier débit d'air (22,29). vi. Un gaz enrichi en argon (58) est envoyé de la deuxième colonne à une troisième colonne (103) et un fluide riche en argon est soutiré en tête de la troisième colonne vii. L'air (120) envoyé à la deuxième colonne constitue entre 10 et 25% de l'air total envoyé au système de colonnes et viii. Le fluide riche en argon contient entre 20 et 80% de l'argon contenu dans le premier et le deuxième débits d'air (1,33). Process for separating air by cryogenic distillation using a column system consisting of a first column (101) operating at a first pressure and a second column (102) operating at a second pressure lower than the first pressure, the head of the first column being thermally connected to the bottom of the second column in which: i. A first air flow (1) constituting between 75 and 98% of the air sent to the column system is compressed to a third pressure above the first pressure, cooled and sent at the third pressure to a first unit d adsorption (6) to be purified of water and carbon dioxide and the first purified flow is sent to the first column and optionally to the second column. ii. A second air flow (33) constituting between 2 and 25% of the air sent to the column system is compressed to a fourth pressure between 1.2 and 2 bar abs and above the second pressure but below the third pressure, preferably cooled by direct contact in an air cooling tower (36), sent at the fourth pressure to a second adsorption unit (38) to be purified of water and carbon dioxide and the second flow clean is sent to the second column. iii. Air separates in the first column to form an oxygen-enriched liquid (41) and a nitrogen-enriched gas. iv. Oxygen enriched liquid (41) and nitrogen enriched liquid (49,53) are sent from the first column to the second column. v. A liquid of greater than 99% purity, preferably 99.5% oxygen (59) is withdrawn from the column system, pressurized and then vaporized by heat exchange with at least part of the first air flow (22 , 29). vi. A gas enriched in argon (58) is sent from the second column to a third column (103) and a fluid rich in argon is withdrawn at the top of the third column vii. The air (120) sent to the second column constitutes between 10 and 25% of the total air sent to the column system and viii. The argon-rich fluid contains between 20 and 80% of the argon contained in the first and second air flows (1.33). Procédé selon la revendication 1 dans lequel le fluide riche en argon contient entre 45 et 75%de l'argon contenu dans le premier et le deuxième débits d'air (1,33).A method according to claim 1 wherein the argon-rich fluid contains between 45 and 75% of the argon contained in the first and second air flows (1.33). Procédé selon la revendication 1 ou 2 caractérisé en ce que le rendement en oxygène de l'appareil est supérieur à 95%.Process according to Claim 1 or 2, characterized in that the oxygen yield of the device is greater than 95%. Procédé selon la revendication 1 ou 2 ou 3 caractérisé en ce que le premier débit d'air (1) est refroidi par contact direct par un premier débit d'eau dans une première tour de refroidissement (4) et le deuxième débit d'air (33) est refroidi par contact direct par un deuxième débit d'eau dans une deuxième tour de refroidissement (36), de l'azote gazeux (63) provenant du système de colonnes est envoyé à une tour de refroidissement d'eau (91) et l'eau refroidie (94,95) dans la tour de refroidissement d'eau est envoyée aux première et deuxième tours de refroidissement d'air.Process according to Claim 1 or 2 or 3, characterized in that the first air flow (1) is cooled by direct contact by a first water flow in a first cooling tower (4) and the second air flow (33) is cooled by direct contact by a second water flow in a second cooling tower (36), nitrogen gas (63) from the column system is sent to a water cooling tower (91 ) and the cooled water (94.95) in the water cooling tower is sent to the first and second air cooling towers. Procédé selon la revendication 4 dans lequel on refroidit l'eau refroidie entre la tour de refroidissement d'eau (91) et la deuxième tour de refroidissement d'air (36) de sorte que l'eau envoyée à la deuxième tour de refroidissement d'air est plus froide que celle envoyée à la première tour de refroidissement d'air.A method according to claim 4 wherein the water cooled between the water cooling tower (91) and the second air cooling tower (36) is cooled so that the water sent to the second cooling tower d The air is cooler than that sent to the first air cooling tower. Procédé selon l'une des revendications 4 ou 5 dans lequel l'air est refroidi dans la première tour de refroidissement d'air (4) jusqu'à une température supérieure d'au moins 5°C, de préférence au moins 8°C, à la température à laquelle l'air est refroidi dans la deuxième tour de refroidissement d'air (36).Process according to one of Claims 4 or 5, in which the air is cooled in the first air cooling tower (4) to a higher temperature of at least 5 ° C, preferably at least 8 ° C , at the temperature to which the air is cooled in the second air cooling tower (36). Procédé selon la revendication 4,5 ou 6 dans lequel l'air est refroidi dans la première tour de refroidissement (4) jusqu'à une température supérieure d'au plus 30°C, de préférence d'au plus 12°C, à la température à laquelle l'air est refroidi dans la deuxième tour de refroidissement (36).A method according to claim 4,5 or 6 in which the air is cooled in the first cooling tower (4) to a temperature above at most 30 ° C, preferably at most 12 ° C, than the temperature to which the air is cooled in the second cooling tower (36). Procédé selon l'une des revendications précédentes dans lequel le premier débit épuré se refroidit en amont du système de colonnes dans un premier échangeur de chaleur (80) par échange de chaleur avec un premier débit d'azote gazeux (65) provenant du système de colonnes et le deuxième débit épuré se refroidit en amont du système de colonne dans un deuxième échangeur de chaleur (81) par échange de chaleur avec un deuxième débit d'azote gazeux (67) provenant du système de colonnes.Method according to one of the preceding claims, in which the first purified flow cools upstream of the column system in a first heat exchanger (80) by heat exchange with a first flow of gaseous nitrogen (65) coming from the system of columns. columns and the second purified flow cools upstream of the column system in a second heat exchanger (81) by heat exchange with a second nitrogen gas flow (67) from the column system. Procédé selon la revendication 8 dans lequel le deuxième débit épuré se refroidit en amont du système de colonnes dans le deuxième échangeur de chaleur par échange de chaleur avec uniquement le deuxième débit d'azote gazeux provenant du système de colonnes.Process according to Claim 8, in which the second purified flow cools upstream of the column system in the second heat exchanger by heat exchange with only the second flow of nitrogen gas from the column system. Procédé selon la revendication 8 ou 9 dans lequel le deuxième débit d'azote (67) est introduit dans le deuxième échangeur de chaleur (81) à une température sans être passé dans un autre échangeur de chaleur après sa sortie de colonne.Process according to Claim 8 or 9, in which the second nitrogen flow (67) is introduced into the second heat exchanger (81) at a temperature without having passed through another heat exchanger after leaving the column. Procédé selon l'une des revendications précédentes dans lequel le deuxième débit d'air (33) n'est pas détendu ou surpressé entre la deuxième unité d'adsorption (36) et la deuxième colonne (102).Process according to one of the preceding claims, in which the second air flow (33) is not expanded or overpressed between the second adsorption unit (36) and the second column (102). Procédé selon l'une des revendications précédentes dans lequel au moins une partie du premier débit d'air n'est pas détendue ou surpressée entre la première unité d'adsorption (6) et la première colonne (101).Process according to one of the preceding claims, in which at least part of the first air flow is not expanded or overpressed between the first adsorption unit (6) and the first column (101). Procédé selon l'une des revendications précédentes dans lequel une partie (12) du premier débit d'air est surpressée puis détendue entre la première unité d'adsorption et la première colonne (101).Process according to one of the preceding claims, in which part (12) of the first air flow is pressurized and then relaxed between the first adsorption unit and the first column (101). Procédé selon l'une des revendications précédentes dans lequel une partie du premier débit d'air est détendue dans une turbine puis envoyée à la première colonne (101) sous forme gazeuse et/ou liquide.Method according to one of the preceding claims, in which part of the first air flow is expanded in a turbine and then sent to the first column (101) in gaseous and / or liquid form. Procédé selon l'une des revendications précédentes dans lequel au moins 14% mol de l'air total est envoyé à la deuxième colonne.Process according to one of the preceding claims, in which at least 14 mol% of the total air is sent to the second column. Procédé selon l'une des revendications précédentes dans lequel le deuxième débit épuré (40) est envoyé dans la deuxième colonne (102) pour être séparé au même niveau de la colonne qu'un débit de liquide enrichi en oxygène provenant de la première colonne ou qu'un débit de liquide enrichi en oxygène provenant de la première colonne et vaporisé (72) dans un condenseur de tête de la troisième colonne.Process according to one of the preceding claims, in which the second purified flow (40) is sent to the second column (102) to be separated at the same level of the column as a flow of liquid enriched in oxygen coming from the first column or a flow of liquid enriched in oxygen from the first column and vaporized (72) in an overhead condenser of the third column. Appareil de séparation d'air par distillation cryogénique utilisant un système de colonnes constitué par une première colonne (101) opérant à une première pression et une deuxième colonne (102) opérant à une deuxième pression inférieure à la première pression, la tête de la première colonne étant thermiquement reliée à la cuve de la deuxième colonne, une première unité d'adsorption (6), une deuxième unité d'adsorption (36), des moyens pour envoyer un premier débit d'air (1) constituant entre 75 et 98% de l'air envoyé au système de colonnes comprimé à une troisième pression au-dessus de la première pression à des moyens de refroidissement et ensuite à la troisième pression à la première unité d'adsorption (6) pour être épuré en eau et en dioxyde de carbone et des moyens pour envoyer tout le premier débit épuré à la première colonne et éventuellement à la deuxième colonne, des moyens pour envoyer un deuxième débit d'air constituant entre 2 et 25% de l'air envoyé au système de colonnes comprimé à une quatrième pression entre 1,2 et 2 bars abs et au-dessus de la deuxième pression mais inférieure à la troisième pression, à la quatrième pression à la deuxième unité d'adsorption pour être épuré en eau et en dioxyde de carbone et des moyens pour envoyer tout le deuxième débit épuré à la deuxième colonne, la première colonne comprenant des moyens d'échange de chaleur et de masse pour séparer l'air pour former un liquide enrichi en oxygène et un gaz enrichi en azote, des moyens pour envoyer du liquide enrichi en oxygène et du liquide enrichi en azote de la première colonne à la deuxième colonne, des moyens pour soutirer un liquide (59) d'une pureté supérieure à 99%, de préférence à 99.5% d'oxygène du système de colonnes, une pompe (60) pour pressuriser ce liquide, des moyens pour vaporiser le liquide pressurisé par échange de chaleur avec au moins une partie du premier débit d'air et des moyens pour envoyer un gaz (58) enrichi en argon de la deuxième colonne à la troisième colonne et des moyens pour soutirer un fluide riche en argon en tête de la troisième colonne.Apparatus for separating air by cryogenic distillation using a column system consisting of a first column (101) operating at a first pressure and a second column (102) operating at a second pressure lower than the first pressure, the head of the first column being thermally connected to the bottom of the second column, a first adsorption unit (6), a second adsorption unit (36), means for sending a first air flow (1) constituting between 75 and 98 % of the air sent to the column system compressed at a third pressure above the first pressure to cooling means and then at the third pressure to the first adsorption unit (6) to be purified of water and carbon dioxide and means to send all the first purified flow to the first column and possibly to the second column, means for sending a second air flow constituting between 2 and 25% of the air sent to the compressed column system at a fourth pressure between 1.2 and 2 bars abs and at- above the second pressure but below the third pressure, at the fourth pressure at the second adsorption unit to be purified of water and carbon dioxide and means for sending all of the second purified flow to the second column, the first column comprising heat and mass exchange means for separating the air to form an oxygen-enriched liquid and a nitrogen-enriched gas, means for sending oxygen-enriched liquid and nitrogen-enriched liquid from the first column at the second column, means for withdrawing a liquid (59) of a purity greater than 99%, preferably 99.5% oxygen from the column system, a pump (60) for pressurizing this liquid, means for vaporizing the liquid near secured by heat exchange with at least part of the first air flow and means for sending a gas (58) enriched in argon from the second column to the third column and means for withdrawing a fluid rich in argon at the top of the the third column.
EP21170059.6A 2020-05-20 2021-04-23 Method and device for air separation by cryogenic distilling Pending EP3913310A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR2005220A FR3110685B1 (en) 2020-05-20 2020-05-20 Process and apparatus for air separation by cryogenic distillation

Publications (1)

Publication Number Publication Date
EP3913310A1 true EP3913310A1 (en) 2021-11-24

Family

ID=72178740

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21170059.6A Pending EP3913310A1 (en) 2020-05-20 2021-04-23 Method and device for air separation by cryogenic distilling

Country Status (4)

Country Link
US (1) US11852408B2 (en)
EP (1) EP3913310A1 (en)
CN (1) CN113701451A (en)
FR (1) FR3110685B1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5538423A (en) * 1978-09-11 1980-03-17 Hitachi Ltd Method of extracting low purity oxygen
JPH01174878A (en) * 1987-12-28 1989-07-11 Nippon Sanso Kk Manufacture of low purity oxygen
US4964901A (en) 1988-05-20 1990-10-23 Linde Aktiengesellschaft Low-temperature separation of air using high and low pressure air feedstreams
US5469710A (en) * 1994-10-26 1995-11-28 Praxair Technology, Inc. Cryogenic rectification system with enhanced argon recovery
DE19537910A1 (en) * 1995-10-11 1997-04-17 Linde Ag Double column process and device for the low temperature separation of air
US5765396A (en) * 1997-03-19 1998-06-16 Praxair Technology, Inc. Cryogenic rectification system for producing high pressure nitrogen and high pressure oxygen
EP1357342A1 (en) 2002-04-17 2003-10-29 Linde Aktiengesellschaft Cryogenic triple column air separation system with argon recovery
WO2013014252A2 (en) * 2011-07-27 2013-01-31 Norwegian University Of Science And Technology (Ntnu) Air separation
CN102809261B (en) * 2012-04-19 2014-07-23 四川空分设备(集团)有限责任公司 Cryogenic separation method and cryogenic separation device for preparing low-purity oxygen from air

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528301A (en) 1977-12-19 1980-02-28 Toyota Central Res & Dev Lab Inc Surface treating method for iron, nickel, or cobalt base metal
GB9412182D0 (en) * 1994-06-17 1994-08-10 Boc Group Plc Air separation
GB9505645D0 (en) * 1995-03-21 1995-05-10 Boc Group Plc Air separation
AU743283B2 (en) * 1998-04-21 2002-01-24 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and installation for air distillation with production of argon
WO2019127179A1 (en) * 2017-12-28 2019-07-04 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Utilization of nitrogen-enriched streams produced in air separation units comprising split-core main heat exchangers
US20200080773A1 (en) * 2018-09-07 2020-03-12 Zhengrong Xu Cryogenic air separation unit with flexible liquid product make

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5538423A (en) * 1978-09-11 1980-03-17 Hitachi Ltd Method of extracting low purity oxygen
JPH01174878A (en) * 1987-12-28 1989-07-11 Nippon Sanso Kk Manufacture of low purity oxygen
US4964901A (en) 1988-05-20 1990-10-23 Linde Aktiengesellschaft Low-temperature separation of air using high and low pressure air feedstreams
US5469710A (en) * 1994-10-26 1995-11-28 Praxair Technology, Inc. Cryogenic rectification system with enhanced argon recovery
DE19537910A1 (en) * 1995-10-11 1997-04-17 Linde Ag Double column process and device for the low temperature separation of air
US5765396A (en) * 1997-03-19 1998-06-16 Praxair Technology, Inc. Cryogenic rectification system for producing high pressure nitrogen and high pressure oxygen
EP1357342A1 (en) 2002-04-17 2003-10-29 Linde Aktiengesellschaft Cryogenic triple column air separation system with argon recovery
WO2013014252A2 (en) * 2011-07-27 2013-01-31 Norwegian University Of Science And Technology (Ntnu) Air separation
CN102809261B (en) * 2012-04-19 2014-07-23 四川空分设备(集团)有限责任公司 Cryogenic separation method and cryogenic separation device for preparing low-purity oxygen from air

Also Published As

Publication number Publication date
US11852408B2 (en) 2023-12-26
CN113701451A (en) 2021-11-26
US20210364233A1 (en) 2021-11-25
FR3110685A1 (en) 2021-11-26
FR3110685B1 (en) 2022-12-23

Similar Documents

Publication Publication Date Title
EP0689019B1 (en) Process and apparatus for producing gaseous oxygen under pressure
EP2122282B1 (en) Method for separating a mixture of carbon monoxide, methane, hydrogen and nitrogen by cryogenic distillation
EP0547946B2 (en) Process for the production of impure oxygen
EP0937679B1 (en) Process and apparatus for the production of carbon monoxide and hydrogen
FR3062197A3 (en) METHOD AND APPARATUS FOR SEPARATING AIR BY CRYOGENIC DISTILLATION
EP0968959A1 (en) Process for the production of carbon monoxide
CA2865991C (en) Method and device for separating a mixture containing carbon dioxide by means of distillation
EP3069091B1 (en) Process and apparatus for separating air by cryogenic distillation
FR2942869A1 (en) Cryogenic separation method for mixture of carbon monoxide, hydrogen and nitrogen, involves constituting nitrogenless flow with final product at range or pressure higher than range set during pressurization in pump or compressor
EP1189003B1 (en) Process and apparatus for air separation by cryogenic distillation
WO2012136939A2 (en) Method and device for separating air by cryogenic distillation
EP3252408B1 (en) Method for purifying natural gas and for liquefying carbon dioxide
EP3913310A1 (en) Method and device for air separation by cryogenic distilling
WO2018020091A1 (en) Method and apparatus for scrubbing at cryogenic temperature in order to produce a mixture of hydrogen and nitrogen
FR2973485A1 (en) Method for separating air by cryogenic distillation in column system, involves withdrawing liquid containing specific mol percent of oxygen from bottom of low pressure column, where liquid is pressurized and vaporized to form gaseous oxygen
FR2830928A1 (en) Separation of air by cryogenic distillation with heat exchange cooling the compressed and purified inlet air before it is introduced into the medium pressure column at between 6 and 9 bars
EP1063485B1 (en) Device and process for air separation by cryogenic distillation
FR2837564A1 (en) Distillation of air to produce oxygen, nitrogen and pure argon, extracts oxygen of specified purity and subjects argon to catalytic de-oxygenation
FR2862004A1 (en) Enriching a flow of pressurised gas in one of its components by dividing the gas into two fractions, separating one fraction to obtain an enriched gas and mixing that gas with the other fraction
FR2990748A1 (en) METHOD AND APPARATUS FOR DISTILLATION AT SUBAMBIAN TEMPERATURE
WO2022162041A1 (en) Method and apparatus for separating a flow rich in carbon dioxide by distillation to produce liquid carbon dioxide
FR2867262A1 (en) Separation of air by cryogenic distillation and installation using thermally interconnected medium and low pressure columns
FR3120431A1 (en) Purification of carbon monoxide by cryogenic distillation
FR2910603A1 (en) Carbon monoxide, hydrogen, methane and nitrogen mixture separating method, involves separating mixture at cold temperature by overhead condensation of carbon monoxide/methane separating column and boiling of discharge and separating columns
FR2874249A1 (en) Air separation by cryogenic distillation using medium and low pressure columns, for production of oxygen and/or nitrogen, with residual stream extracted from low pressure column to maintain product purity

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

B565 Issuance of search results under rule 164(2) epc

Effective date: 20211005

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220524

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR