EP3631327B1 - Method and apparatus for air separation by cryogenic distillation - Google Patents
Method and apparatus for air separation by cryogenic distillation Download PDFInfo
- Publication number
- EP3631327B1 EP3631327B1 EP18736971.5A EP18736971A EP3631327B1 EP 3631327 B1 EP3631327 B1 EP 3631327B1 EP 18736971 A EP18736971 A EP 18736971A EP 3631327 B1 EP3631327 B1 EP 3631327B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- air
- pressure
- compressor
- column
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 43
- 238000000926 separation method Methods 0.000 title claims description 28
- 238000004821 distillation Methods 0.000 title claims description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 69
- 239000007788 liquid Substances 0.000 claims description 61
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 37
- 239000001301 oxygen Substances 0.000 claims description 37
- 229910052760 oxygen Inorganic materials 0.000 claims description 37
- 229910052757 nitrogen Inorganic materials 0.000 claims description 33
- 238000009834 vaporization Methods 0.000 claims description 26
- 230000008016 vaporization Effects 0.000 claims description 22
- 238000007906 compression Methods 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 230000006835 compression Effects 0.000 claims description 10
- 239000012530 fluid Substances 0.000 claims description 10
- 238000009833 condensation Methods 0.000 claims description 8
- 230000005494 condensation Effects 0.000 claims description 6
- 239000012263 liquid product Substances 0.000 claims description 5
- 238000013459 approach Methods 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 4
- 239000007789 gas Substances 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 32
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 19
- 229910052786 argon Inorganic materials 0.000 description 16
- 238000003860 storage Methods 0.000 description 12
- 238000000746 purification Methods 0.000 description 9
- 239000000047 product Substances 0.000 description 7
- 230000009977 dual effect Effects 0.000 description 5
- 238000004064 recycling Methods 0.000 description 5
- 239000002699 waste material Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 238000005086 pumping Methods 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 239000006200 vaporizer Substances 0.000 description 3
- 235000021183 entrée Nutrition 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000004172 nitrogen cycle Methods 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 230000036284 oxygen consumption Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0012—Primary atmospheric gases, e.g. air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0012—Primary atmospheric gases, e.g. air
- F25J1/0015—Nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0035—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
- F25J1/0037—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0045—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0221—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
- F25J1/0224—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop in combination with an internal quasi-closed refrigeration loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0228—Coupling of the liquefaction unit to other units or processes, so-called integrated processes
- F25J1/0234—Integration with a cryogenic air separation unit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04048—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
- F25J3/04054—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04048—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
- F25J3/0406—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/04084—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/0409—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04163—Hot end purification of the feed air
- F25J3/04169—Hot end purification of the feed air by adsorption of the impurities
- F25J3/04181—Regenerating the adsorbents
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04218—Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
- F25J3/04224—Cores associated with a liquefaction or refrigeration cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04278—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using external refrigeration units, e.g. closed mechanical or regenerative refrigeration units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04303—Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04333—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/04339—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04333—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/04339—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air
- F25J3/04345—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air and comprising a gas work expansion loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04333—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/04351—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04333—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/04351—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
- F25J3/04357—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen and comprising a gas work expansion loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
- F25J3/04387—Details relating to the work expansion, e.g. process parameter etc. using liquid or hydraulic turbine expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
- F25J3/04393—Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04472—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
- F25J3/04496—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist
- F25J3/04503—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems
- F25J3/04509—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems within the cold part of the air fractionation, i.e. exchanging "cold" within the fractionation and/or main heat exchange line
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04472—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
- F25J3/04496—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist
- F25J3/04503—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems
- F25J3/04509—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems within the cold part of the air fractionation, i.e. exchanging "cold" within the fractionation and/or main heat exchange line
- F25J3/04515—Simultaneously changing air feed and products output
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04642—Recovering noble gases from air
- F25J3/04648—Recovering noble gases from air argon
- F25J3/04654—Producing crude argon in a crude argon column
- F25J3/04666—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
- F25J3/04672—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
- F25J3/04678—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04642—Recovering noble gases from air
- F25J3/04648—Recovering noble gases from air argon
- F25J3/04721—Producing pure argon, e.g. recovered from a crude argon column
- F25J3/04727—Producing pure argon, e.g. recovered from a crude argon column using an auxiliary pure argon column for nitrogen rejection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/04—Processes or apparatus using separation by rectification in a dual pressure main column system
- F25J2200/06—Processes or apparatus using separation by rectification in a dual pressure main column system in a classical double column flow-sheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/60—Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
- F25J2205/66—Regenerating the adsorption vessel, e.g. kind of reactivation gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/42—Nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/50—Oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/02—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
- F25J2240/10—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/58—Processes or apparatus involving steps for recycling of process streams the recycled stream being argon or crude argon
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/30—External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
- F25J2250/42—One fluid being nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/30—External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
- F25J2250/58—One fluid being argon or crude argon
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/02—Internal refrigeration with liquid vaporising loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/90—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
Definitions
- the present invention relates to a method and apparatus for the separation of air by cryogenic distillation.
- it relates to methods and apparatus for producing oxygen and / or nitrogen under elevated pressure.
- the gaseous oxygen produced by the air separation units is usually at an elevated pressure of about 20 to 50 bar.
- the basic distillation scheme is usually a double column process producing oxygen at the bottom of the second column, operated at a pressure of 1 to 4 bar.
- the oxygen must be compressed to a higher pressure, either through an oxygen compressor or through the process of pumping liquid. Due to the safety concerns associated with oxygen compressors, newer oxygen generating units use the liquid pumping process.
- an additional booster is needed to raise some of the feed air or nitrogen to a higher pressure, within the range of 40 to 80 bar. . In essence, the booster replaces the oxygen compressor.
- One of the goals of developing new process cycles is to reduce the energy consumption of an oxygen production unit.
- FIG. 1 This prior art is illustrated on Figure 1 .
- a double column 2 comprising a first column 8 and a second column 9 operating at a lower pressure than the first column, thermally connected by a reboiler / condenser 10. All of the feed air is compressed in a compressor 6 to the pressure of the first column 8, purified in the purification unit 7, and subdivided into three.
- a flow 502 is sent to a booster 503, cooled in a water cooler (not shown), and further cooled in the heat exchanger 5, then expanded in a turbine 501 coupled to the booster 503.
- the expanded air 502 is sent to the second column.
- Another part of the air is sent to the heat exchanger 5 at substantially the same pressure as the first column 8.
- the third flow is compressed in a compressor 230 and sent to the heat exchanger, where it condenses.
- the liquefied air is subdivided between the first column 8 and the second column 9 by the valves 231 and 240.
- a flow rate of liquid enriched in oxygen LR is expanded and sent from the first column to the second column via valve 25.
- the flow rate of liquid enriched in nitrogen LP is expanded and sent from the first column to the second column.
- Pure liquid nitrogen NLMP 43 is produced by the first column, then cooled again in the heat exchanger 24 and expanded in the valve 143 and sent to a storage 144.
- the high pressure nitrogen gas 39 is withdrawn at the top from the first column and heated in the heat exchanger to form a product flow 40.
- the liquid oxygen OL is withdrawn from the bottom of the second column 9, pressurized by a pump 37 and sent in part as a flow 38 to heat exchanger 5, where it vaporizes by heat exchange with pressurized air to form pressurized oxygen gas.
- the remainder of the liquid oxygen 52 is withdrawn as a liquid product.
- An overhead gas flow enriched in nitrogen NR is withdrawn from the second column 9, heated in the heat exchanger 5 in the form of a flow 33.
- Argon is produced by using a column of impure argon 3 and pure argon 4.
- the impure argon column is fed by a flow 16 coming from the second column 9.
- a liquid flow 17 is sent. from the base of the impure argon column 3 to the second column 9.
- a rich liquid is sent to the overhead condenser 12 of column 3 through the valve 26 and is evaporated to form a flow rate 27 which is returned to the second column .
- a product flow 19 is sent to the condenser 20 and from there forms the flow 19.
- the flow 19 is condensed in the heat exchanger 20 and subdivided 49 into the flow 48 which is sent to the waste flow 33 at the point of intersection. 50, and another flow.
- the other flow is sent through valve 21 to column 4.
- the pure argon column 4 produces a product flow of 45.
- the top condenser 13 of the pure argon column 4 is supplied with the liquid rich in nitrogen LP coming from the first column through the valve 34, and the nitrogen. vaporized is withdrawn by the valve 35 in the form of a flow 33 and cooled in the sub-cooler 24.
- the bottom reboiler 14 of the pure argon column is heated using air, and the liquefied air 23 is sent to the first column.
- a purge flow 46 is also withdrawn.
- the condenser 20 is supplied with the liquid rich in nitrogen LP through the valve 31, and the vaporized liquid is sent through the valve 32 to the waste flow 33.
- the Figure 2 shows the relationship between heat exchange in kcal / h and temperature for fluids cooling and heating in exchanger 5.
- a cold compression process as described in US-A-5,475,980 , provides a technique for controlling an oxygen production unit with a single air compressor.
- the air to be distilled is cooled in the heat exchanger, then is again compressed by a booster controlled by an expansion machine, the effluent of which is sent to the first column of a double column process. , the one that operates at the highest pressure.
- the discharge pressure of the air compressor is of the order of 15 bar, which is likewise very advantageous for the purification unit.
- a disadvantage of this approach is the increase in the size of the heat exchanger due to the additional recycling of the flow, which is representative of a cold compression unit. It is possible to reduce the size of the exchanger by opening the temperature approaches of the exchanger. However, this would lead to inefficient use of energy, and higher compressor discharge pressure, which would increase the cost.
- part of the feed air is subjected to further compression in a hot booster, while at least part of the air is still compressed in a cold booster.
- the air coming from the two boosters is liquefied, and part of the cold compressed air is expanded in a Claude turbine.
- US-A-5,901,576 describes various arrangements of cold compression schemes using the expansion of a rich liquid vaporized from the bottom of the first column, or the expansion of high pressure nitrogen to drive the cold compressor. In some cases, engine-driven cold compressors have also been used. These methods also operate with feed air at approximately the first column pressure, and in most cases a booster is also needed.
- US-A-6 626 008 describes a heat pump cycle using a cold compressor to improve the distillation process for the production of low purity oxygen for a dual vaporizer oxygen production process.
- a low air pressure, and a booster, are also representative of this type of process.
- EP-A-1 972 875 describes means for improving the above processes using a cold compressor, in particular by introducing all of the feed air flows into the columns at a temperature close to the temperature of the column at the point where the flow is introduced, with the aim of reducing the thermodynamic irreversibility of the system. But it requires the addition of at least one additional compression stage.
- the present invention therefore aims to resolve the drawbacks of these processes, in particular by introducing all the feed air flows into the columns at a temperature close to the temperature of the column at the point where the flow is introduced, into the aim of reducing the thermodynamic irreversibility of the system without adding an additional compression stage.
- the overall cost of the products of an oxygen production unit can therefore be reduced.
- the main improvement is due to the use of an air booster (Booster Air Compressor (BAC)) to recycle the air once it has been used to recover the heat produced by the vaporization of a liquid. high pressure in the main heat exchanger.
- Booster Air Compressor BAC
- Cleaned and cooled air is sent from the first compressor to the column system for separation.
- an apparatus for separating air by cryogenic distillation according to claim 14.
- a double column 2 comprising a first column 8 and a second column 9 provided, thermally connected by a reboiler / condenser 10. All of the feed air is compressed in the compressor 6 to a pressure of at least one bar greater than the pressure of the first column 8, preferably substantially equal to the pressure of the first column 8, allowing a pressure drop in the intermediate pipes, purified in the purification unit 7 and subdivided into three.
- a flow 502 is sent to a booster 503, cooled in a water cooler (not shown), then further cooled in the heat exchanger 5, then expanded in a turbine 501, coupled to the booster 503.
- the expanded air 502 is sent to the second column.
- Another part 507 of the air is sent to the heat exchanger 5 under a pressure substantially equal to that of the first column 8.
- the third flow 505 is compressed in a compressor 230 and sent to the heat exchanger, where it condenses.
- the compressor 230 is a four-stage centrifugal compressor 230A, 230B, 230C and 230D, for example of the integrated speed multiplication type cooled by water intercoolers 232A, 232B, 232C and a chiller. final 232D.
- the compressor suction pressure is 5.5 bar abs
- the intermediate pressures are 10.2 bar abs, 18.9 bar abs and 35.1 bar abs
- the final outlet pressure is 65 bar abs.
- the suction flow is 26.5% of the total air flow.
- the liquefied air is subdivided between the first column 8, the second column 9, and the fractions to be expanded in the valves 116A, 116B and 116C.
- a flow of oxygen enriched liquid LR is expanded and sent from the first column to the second column.
- a flow of liquid enriched in LP nitrogen is expanded and sent from the first column to the second column.
- Pure liquid nitrogen NLMP is produced by the first column 8, again cooled in the heat exchanger 24 and expanded in the valve 143 and sent to storage 144.
- the high pressure gaseous nitrogen 39 is withdrawn at the top of the first column and heated in the heat exchanger to form a product flow 40.
- the liquid oxygen OL is withdrawn from the bottom of the second column 9, pressurized by a pump 37 and sent in part as a flow 38 to heat exchanger 5, where it vaporizes by heat exchange with pressurized air to form pressurized gaseous oxygen.
- the remainder of the liquid oxygen 52 is withdrawn as a liquid product.
- An overhead gas flow NR, enriched in nitrogen, is withdrawn from the second column 9, heated in the heat exchanger 5 in the form of a flow 33.
- Argon is produced by using the column of impure argon 3 and pure argon 4.
- the column of impure argon is fed by the flow 16 coming from the second column 9.
- a flow of liquid 17 is sent from the base of the impure argon column 3 to the second column 9.
- the oxygen enriched liquid is sent to the overhead condenser 12 of column 3 through the valve 26 and evaporated to form the flow 27, which is returned to the second column.
- a product flow 19 is sent to the condenser 20, and from there forms the flow 19.
- the flow 19 is condensed in the heat exchanger 20 and subdivided into a flow 48 which is sent to the waste flow 33 at point d. 'intersection 50, and another flow.
- the other flow is sent through valve 21 to column 4.
- the pure argon column 4 produces a product flow of 45.
- the top condenser 13 of the pure argon column 4 is supplied with the nitrogen-rich LP liquid coming from the first column via the valve 34, and vaporized nitrogen is withdrawn through valve 35 as a flow 33 and cooled in sub-cooler 24.
- Bottom reboiler 14 of the pure argon column is heated using air, and liquefied air 23 is sent to the first column.
- a purge flow 46 is likewise withdrawn.
- the nitrogen-rich liquid 43 is collected through the valve 143 in the storage 144.
- the condenser 20 is supplied with the nitrogen-rich LP liquid through the valve 31, and the vaporized liquid is sent through the valve 32 to the waste flow 33.
- the air flow 505 under 65 bar is subdivided into two. Part of the air is expanded in valve 231 and sent to columns 8 and 9 in liquid form.
- the rest of the air 107 is subdivided into three fractions 107A, 107B, 107C.
- the fraction of air 107A recycled between the first stage 230A and the second stage 230B corresponds to 1.08% of the total air flow. It is expanded in the valve 116A from 65 bar abs to approximately 10.2 bar abs and introduced into the heat exchanger 5, where it is vaporized, heated after vaporization to give a recycle air 107A.
- the fraction of air 107B recycled between the second stage 230B and the third stage 230C corresponds to 0.84% of the total air flow. It is expanded in the valve 116B from 65 bar abs to approximately 18.9 bar abs and introduced into the heat exchanger 5, where it is vaporized, heated after vaporization to give a recycle air 107B.
- the fraction of air 107C recycled between the third stage 230C and the fourth stage 230D corresponds to 22.08% of the total air flow. It is expanded in the valve 116C from 65 bar abs to approximately 35.1 bar abs and introduced into the heat exchanger 5, where it is vaporized, heated after vaporization to give a recycle air 107C.
- These three air fractions represent a total recirculation air flow rate of 24% of the total air flow rate, which means that the fluid 505 corresponds to a flow rate of 50.5% of the total air flow rate, and that the flow rate through valve 231 is 26.5%.
- the vaporization of the three air fractions 107A, 107B and 107C takes place in the heat exchanger 5 respectively at temperatures of about -166 ° C, -155 ° C and -142 ° C, as can be seen on the Figure 4 , which is lower than the vaporization temperature of oxygen, which is about -125 ° C.
- a phase separator should be added if the expanded flow is a two-phase fluid, the liquid phase being introduced into the heat exchanger 5 and the vapor phase being mixed with the flow 107.
- condensation covers the condensation of a form. vapor in a liquid or partially liquid form. It also covers the pseudo-condensation of a supercritical fluid when it is cooled from a temperature above the supercritical temperature to a temperature below the supercritical temperature.
- the Figure 4 presents the exchange diagram corresponding to the process of Figure 3 .
- a less optimized variant of the Figure 3 should involve subdividing flow 107 into one or two fractions and recycling these fractions, after vaporization, with return to compressor 230.
- valves, 231, 116A, 116B and 116C could be replaced by liquid turbines, that is to say an expansion system producing work in order to reduce the irreversibility associated with isenthalpic expansion. These liquid turbines could be installed in parallel or in series.
- Compressor 230 in the base case, is considered to be an engine driven machine, but could also be driven by a steam turbine or gas turbine (the same as for Main Air Compressor 6) .
- any of the four compressor stages 230A, 230B, 230C and 230D could be driven by an expansion machine for any of the fluids of this cryogenic air separation process, preferably at low. temperature.
- any of the four compressor stages 230A, 230B, 230C, and 230D could have a suction temperature below room temperature, preferably slightly above the vaporization temperature of oxygen, at about -125 ° C.
- specific energy kWh / Nm3 of O2
- the specific energy necessary for the production of oxygen under 40 bar abs according to the invention is 92.9, c ' that is, a gain of 7.1%.
- Fractions 107A, 107B, 107C could be separated from the air passing through 231 and extracted from heat exchanger 5 at a temperature above the temperature of the cold end of heat exchanger 5.
- the process can be modified to vaporize the pumped liquid nitrogen, as an additional flow or as a flow replacing the pumped oxygen flow.
- the compressor 230 should be supplied with at least part of the high pressure nitrogen gas 40.
- liquid buffers 131, 152 are added to the storage unit, and release cryogenic liquids to decorrelate ASU oxygen production from customer consumption. In addition, it helps reduce energy consumption at peak times without reducing the flow of oxygen to the end user, and increasing oxygen consumption at off-peak hours without increasing the flow of oxygen. oxygen to the end user.
- the supply air is compressed in the compressor 6 and purified in the purification unit 7 and subdivided into two.
- a flow 505 is compressed in a compressor 230 and is sent to the heat exchanger, where it undergoes partial condensation, or "pseudo-condensation", because it is above the critical pressure.
- the compressor 230 is considered to be a four-stage centrifugal compressor 230A, 230B, 230C and 230D, for example of the integrated speed multiplier type, cooled by water intercoolers 232A, 232B, 232C and a 232D aftercooler.
- the compressor suction pressure is 5.5 bar abs
- the intermediate pressures are 10.2 bar abs, 18.9 bar abs and 35.1 bar abs
- final pressure 65 bar abs The suction flow rate is 23% of the total air flow when no cryogenic liquid is stored or discharged.
- the flow 505 is divided into a first secondary flow 505A, which goes directly to the heat exchanger 5, and a second secondary flow 505B, which goes to the refrigeration unit 102 to be cooled to -5 ° C and introduced into heat exchanger 5.
- a first fraction of the high pressure air is withdrawn and sent to a two-phase expansion machine 116D, reintroduced into the heat exchanger. heat 5 to be heated and recycled to 35.1 bar abs in compressor 230 at the level of stage 230D as flow 107D.
- This first fraction has a flow rate of 18.4% of the total air flow rate.
- a second fraction is cooled to -192.2 ° C by complete passage through the heat exchanger 5 and is expanded in the valve 231 to be sent to the liquid air storage unit 131 (LAIR) as flow 234.
- the flow rate of this second fraction is only 23% of the total air flow coming from the main air compressor 6.
- a fraction 107 is withdrawn from the cold end of the heat exchanger 5 and subdivided into three.
- the fraction of air 107A recycled between the first stage 230A and the second stage 230B corresponds to 1.1% of the total air flow. It is expanded in the valve 116A from 65 bar abs to approximately 10.2 bar abs and introduced into the heat exchanger 5, where it is evaporated, heated after vaporization to give a recycling air 107A.
- the fraction of air 107B recycled between the second stage 230B and the third stage 230C corresponds to 3.15% of the total air flow. It is expanded in the valve 116B from 65 bar abs to approximately 18.9 bar abs and is introduced into the heat exchanger 5, where it is vaporized, heated after vaporization to give a recycle air 107B.
- the air fraction 107C is expanded in the valve 116C from 65 bar abs to approximately 1.2 bar abs and is introduced into the heat exchanger 5, where it is vaporized, heated after vaporization to give a recycle air 107C which can be used to regenerate air purifiers if ASU 101 is not running. It represents 4.45% of the total air flow.
- a liquid oxygen storage tank 152 fed by ASU 101 supplies oxygen 151 to the system.
- a liquid oxygen pump 37 pressurizes the oxygen to the required pressure level before introduction into the heat exchanger 5, where it undergoes vaporization or pseudo-vaporization.
- the ASU 101 is supplied by air 510 from the same compressor 6 (MAC) and by liquid air 235 which is used to compensate for the production of liquid oxygen 150.
- MAC compressor 6
- the flow 510 is cooled in a heat exchanger independent of the heat exchanger 5 by heat exchange with the nitrogen gas coming from the air separation unit (not shown). It is possible to cool the cold flow 510 in the heat exchanger 5, but this would make the system less flexible.
- valves 231, 116A, 116B and 116C could be replaced by turbines expanding liquid, that is to say an expansion system producing work, in order to reduce the irreversibility associated with isenthalpic expansion.
- These liquid expansion turbines could be installed in parallel and / or in series.
- the air separation unit operates such that the amount of liquid oxygen stored in the storage tank 152 increases.
- the amount of liquid oxygen vaporized in the heat exchanger 5 is less than the liquid oxygen produced by the air separation unit.
- the air flows 510 are sent to the air separation unit through a heat exchanger independent of the heat exchanger 5, and an air flow 235 is sent to the heat exchanger unit. separation of air from the storage tank 131, and liquid oxygen 150 is sent to the storage tank 152. However, the amount of liquid air sent to the tank 131 exceeds the amount of air therein. withdrawn, and the quantity of liquid oxygen sent to the vessel 152 exceeds the quantity of liquid oxygen which is withdrawn therefrom.
- the air separation unit does not work, which is not covered by the object of the claimed invention, or Operates at low capacity, usually 50% or less of maximum capacity, even though the total oxygen produced is much greater than 50% of maximum capacity.
- No air is sent to the air separation unit through the flows 510 and 235.
- the liquid oxygen stored in the tank 152 is vaporized to give the flow of gaseous oxygen. Regeneration of the purification unit 7 is carried out by using the flow rate 107C.
- the liquid air produced by the vaporization of liquid oxygen is stored in the storage tank 131 during peak periods, and no gaseous or liquid air is sent to the air separation unit 101.
- the process can be modified to vaporize the pumped liquid nitrogen as an additional flow, or as a flow replacing the pumped oxygen flow.
- a nitrogen cycle (rather than an air cycle), as seen in the figure. Figure 6 .
- the compressor 230 is supplied with at least part of the high pressure gaseous nitrogen 40.
- Compressed nitrogen is cooled and condensed in heat exchanger 5.
- the compressed nitrogen is then subdivided into at least two portions, three portions being presented here, expanded to at least two different pressures, and vaporized in the heat exchanger 5.
- the vaporized nitrogen from the valves 116A and 116B is returned to intermediate positions of the nitrogen compressor 230, and the vaporized nitrogen from the valve 116C can be used to regenerate the purification unit if the separation unit of air does not work.
- Liquid nitrogen produced 234 is expanded in valve 231 and stored in storage unit 131 for use.
- liquid oxygen can be vaporized against nitrogen in periods when the air separation unit is not operating, for example periods when electricity is particularly expensive.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Separation By Low-Temperature Treatments (AREA)
Description
La présente invention concerne un procédé et un appareil pour la séparation de l'air par distillation cryogénique. Elle concerne en particulier des procédés et un appareil pour produire de l'oxygène et/ou de l'azote sous une pression élevée.The present invention relates to a method and apparatus for the separation of air by cryogenic distillation. In particular, it relates to methods and apparatus for producing oxygen and / or nitrogen under elevated pressure.
L'oxygène gazeux produit par les unités de séparation de l'air est habituellement à une pression élevée d'environ 20 à 50 bar. Le schéma de distillation de base est habituellement un procédé à double colonne produisant de l'oxygène au fond de la deuxième colonne, exploitée sous une pression de 1 à 4 bar. L'oxygène doit être comprimé à une pression plus élevée, grâce à un compresseur d'oxygène ou grâce au procédé de pompage de liquide. Du fait des problèmes de sécurité associés aux compresseurs d'oxygène, les unités de production d'oxygène les plus récentes utilisent le procédé de pompage de liquide. Pour vaporiser l'oxygène liquide sous une pression élevée, on a besoin d'un surpresseur additionnel pour élever une partie de l'air ou de l'azote d'alimentation à une pression plus élevée, comprise dans la plage de 40 à 80 bar. Par essence, le surpresseur remplace le compresseur d'oxygène. L'un des buts du développement de nouveaux cycles de procédé est de diminuer la consommation d'énergie d'une unité de production d'oxygène.The gaseous oxygen produced by the air separation units is usually at an elevated pressure of about 20 to 50 bar. The basic distillation scheme is usually a double column process producing oxygen at the bottom of the second column, operated at a pressure of 1 to 4 bar. The oxygen must be compressed to a higher pressure, either through an oxygen compressor or through the process of pumping liquid. Due to the safety concerns associated with oxygen compressors, newer oxygen generating units use the liquid pumping process. To vaporize liquid oxygen under high pressure, an additional booster is needed to raise some of the feed air or nitrogen to a higher pressure, within the range of 40 to 80 bar. . In essence, the booster replaces the oxygen compressor. One of the goals of developing new process cycles is to reduce the energy consumption of an oxygen production unit.
Dans un effort de réduction de cette consommation d'énergie, il est souhaitable d'introduire tous les débits d'air d'alimentation dans les colonnes à une température proche de la température de la colonne, au point où le débit est introduit, pour réduire l'irréversibilité thermodynamique du système. Malheureusement, on ne peut y arriver avec un cycle de pompage "classique".In an effort to reduce this energy consumption, it is desirable to introduce all the feed air flows into the columns at a temperature close to the temperature of the column, at the point where the flow is introduced, to reduce the thermodynamic irreversibility of the system. Unfortunately, this cannot be achieved with a "classic" pumping cycle.
Cet art antérieur est illustré sur la
Un débit 502 est envoyé à un surpresseur 503, refroidi dans un refroidisseur d'eau (non représenté), et encore plus refroidi dans l'échangeur de chaleur 5, puis détendu dans une turbine 501 couplée au surpresseur 503. L'air détendu 502 est envoyé à la deuxième colonne.A
Une autre partie de l'air est envoyée à l'échangeur de chaleur 5 sensiblement sous la même pression que la première colonne 8.Another part of the air is sent to the
Le troisième débit est comprimé dans un compresseur 230 et envoyé dans l'échangeur de chaleur, où il se condense. L'air liquéfié est subdivisé entre la première colonne 8 et la deuxième colonne 9 par les vannes 231 et 240.The third flow is compressed in a
Un débit de liquide enrichi en oxygène LR est détendu et envoyé de la première colonne à la deuxième colonne par la vanne 25. Le débit de liquide enrichi en azote LP est détendu et envoyé de la première colonne à la deuxième colonne. De l'azote liquide pur NLMP 43 est produit par la première colonne, puis refroidi de nouveau dans l'échangeur de chaleur 24 et détendu dans la vanne 143 et envoyé à un stockage 144. L'azote gazeux haute pression 39 est soutiré en tête de la première colonne et chauffé dans l'échangeur de chaleur pour former un débit de produit 40. L'oxygène liquide OL est soutiré du fond de la deuxième colonne 9, pressurisé par une pompe 37 et envoyé en partie sous forme d'un débit 38 à l'échangeur de chaleur 5, où il se vaporise par échange de chaleur avec l'air pressurisé pour former un oxygène gazeux pressurisé. Le reste de l'oxygène liquide 52 est soutiré sous forme d'un produit liquide. Un débit gazeux de tête enrichi en azote NR est soutiré de la deuxième colonne 9, chauffé dans l'échangeur de chaleur 5 sous forme d'un débit 33.A flow rate of liquid enriched in oxygen LR is expanded and sent from the first column to the second column via valve 25. The flow rate of liquid enriched in nitrogen LP is expanded and sent from the first column to the second column. Pure liquid nitrogen NLMP 43 is produced by the first column, then cooled again in the
De l'argon est produit par utilisation d'une colonne d'argon impur 3 et d'argon pur 4. La colonne d'argon impur est alimentée par un débit 16 provenant de la deuxième colonne 9. Un débit de liquide 17 est envoyé de la base de la colonne d'argon impur 3 à la deuxième colonne 9. Un liquide riche est envoyé au condenseur de tête 12 de la colonne 3 par la vanne 26 et est évaporé pour former un débit 27 qui est renvoyé à la deuxième colonne. Un débit de produit 19 est envoyé au condenseur 20 et de là forme le débit 19. Le débit 19 est condensé dans l'échangeur de chaleur 20 et subdivisé 49 en le débit 48 qui est envoyé au débit de déchets 33 au point d'intersection 50, et un autre débit. L'autre débit est envoyé par la vanne 21 à la colonne 4.Argon is produced by using a column of impure argon 3 and pure argon 4. The impure argon column is fed by a flow 16 coming from the second column 9. A liquid flow 17 is sent. from the base of the impure argon column 3 to the second column 9. A rich liquid is sent to the
La colonne d'argon pur 4 produit un débit de produit 45. Le condenseur de tête 13 de la colonne d'argon pur 4 est alimenté par le liquide riche en azote LP provenant de la première colonne par la vanne 34, et l'azote vaporisé est soutiré par la vanne 35 sous forme d'un débit 33 et refroidi dans le sous-refroidisseur 24.The pure argon column 4 produces a product flow of 45. The
Le rebouilleur de fond 14 de la colonne d'argon pur est chauffé par utilisation d'air, et l'air liquéfié 23 est envoyé à la première colonne.The
Un débit de purge 46 est lui aussi soutiré.A
Le condenseur 20 est alimenté par le liquide riche en azote LP par la vanne 31, et le liquide vaporisé est envoyé par la vanne 32 au débit de déchets 33.The
La
Certaines versions différentes du procédé de compression à froid sont aussi décrites dans la technique antérieure, comme dans
Dans
Un procédé de compression à froid, tel que décrit dans
Ce faisant, la pression de refoulement du compresseur d'air est de l'ordre de 15 bar, ce qui est de même très avantageux pour l'unité de purification. Un inconvénient de cette approche réside dans l'augmentation de la taille de l'échangeur de chaleur en raison du recyclage supplémentaire de l'écoulement, qui est représentatif d'une unité de compression à froid. Il est possible de réduire la taille de l'échangeur en ouvrant les approches de température de l'échangeur. Cependant, cela conduirait à une utilisation inefficace de l'énergie, et à une pression de refoulement plus élevée du compresseur, ce qui augmenterait le coût.In doing so, the discharge pressure of the air compressor is of the order of 15 bar, which is likewise very advantageous for the purification unit. A disadvantage of this approach is the increase in the size of the heat exchanger due to the additional recycling of the flow, which is representative of a cold compression unit. It is possible to reduce the size of the exchanger by opening the temperature approaches of the exchanger. However, this would lead to inefficient use of energy, and higher compressor discharge pressure, which would increase the cost.
Dans
La présente invention vise donc à résoudre les inconvénients de ces procédés, en particulier par introduction de tous les débits d'air d'alimentation dans les colonnes à une température proche de la température de la colonne en le point où le débit est introduit, dans le but de réduire l'irréversibilité thermodynamique du système sans ajouter un étage additionnel de compression. Le coût global des produits d'une unité de production d'oxygène peut donc être réduit. L'amélioration principale est due à l'utilisation d'un surpresseur d'air (Booster Air Compressor (BAC)) pour recycler l'air une fois qu'il a été utilisé pour récupérer la chaleur produite par la vaporisation d'un liquide haute pression dans l'échangeur de chaleur principal.The present invention therefore aims to resolve the drawbacks of these processes, in particular by introducing all the feed air flows into the columns at a temperature close to the temperature of the column at the point where the flow is introduced, into the aim of reducing the thermodynamic irreversibility of the system without adding an additional compression stage. The overall cost of the products of an oxygen production unit can therefore be reduced. The main improvement is due to the use of an air booster (Booster Air Compressor (BAC)) to recycle the air once it has been used to recover the heat produced by the vaporization of a liquid. high pressure in the main heat exchanger.
Tous les pourcentages mentionnés sont des pourcentages en moles.All the percentages mentioned are percentages in moles.
Un procédé et un appareil selon les préambules des revendications 1 et 14 respectivement est connu de
Selon la présente invention, il est prévu un procédé pour séparer l'air par distillation cryogénique dans un système de colonnes comprenant une première colonne et une deuxième colonne opérant à une plus basse pression que la première colonne, comprenant les étapes de :
- i) compression de la totalité de l'air d'alimentation dans un premier compresseur jusqu'à une première pression de sortie d'au plus un bar supérieur à la pression de la première colonne, de préférence sensiblement égale à la pression de la première colonne,
- ii) envoi d'une première partie de l'air sous la première pression de sortie à un deuxième compresseur, et compression de l'air à une deuxième pression de sortie,
- iii) refroidissement et condensation d'au moins une partie de l'air sous la deuxième pression de sortie dans un échangeur de chaleur,
- iv) prélèvement du liquide d'une colonne du système de colonnes, pressurisation du liquide et vaporisation du liquide par échange de chaleur dans l'échangeur de chaleur,
- v) détente d'au moins une fraction de l'air refroidi et condensé sous la deuxième pression de sortie jusqu'à une pression intermédiaire comprise entre la première pression de sortie et la deuxième pression de sortie, au moins vaporisation partielle dudit air dans l'échangeur de chaleur, éventuellement chauffage dudit air dans l'échangeur de chaleur caractérisé en ce qu'au moins une partie de cet air est envoyée au deuxième compresseur pour être comprimée jusqu'à la deuxième pression de sortie.
- i) compressing all of the supply air in a first compressor to a first outlet pressure of at most one bar greater than the pressure of the first column, preferably substantially equal to the pressure of the first column,
- ii) supplying a first part of the air under the first outlet pressure to a second compressor, and compressing the air to a second outlet pressure,
- iii) cooling and condensing at least part of the air under the second outlet pressure in a heat exchanger,
- iv) taking liquid from a column of the column system, pressurizing the liquid and vaporizing the liquid by heat exchange in the heat exchanger,
- v) expansion of at least a fraction of the cooled and condensed air under the second outlet pressure to an intermediate pressure between the first outlet pressure and the second outlet pressure, at least partial vaporization of said air in the heat exchanger, optionally heating said air in the heat exchanger, characterized in that at least part of this air is sent to the second compressor to be compressed up to the second outlet pressure.
De l'air épuré et refroidi est envoyé du premier compresseur au système de colonnes pour s'y séparer.Cleaned and cooled air is sent from the first compressor to the column system for separation.
Selon d'autres aspects facultatifs de l'invention qui peuvent être combinés entre eux :
- la détente est réalisée dans au moins une vanne.
- la détente est réalisée dans au moins une turbine et produit du travail.
- la température de l'au moins une fraction avant détente est inférieure à la somme de la température de la vaporisation du liquide et l'approche de température minimale dans l'échangeur de chaleur.
- le deuxième compresseur est un compresseur multi-étages.
- ladite au moins une troisième pression est au moins la pression d'entrée de l'un des étages du deuxième compresseur.
- un étage du deuxième compresseur est entraîné par une machine de détente d'un fluide du procédé.
- la température d'entrée de la machine de détente est inférieure à la température ambiante.
- au moins un étage du deuxième compresseur a une température d'aspiration inférieure à la température ambiante.
- la température d'aspiration est supérieure à la température de vaporisation du liquide, mais en est proche.
- le liquide est un débit enrichi en oxygène.
- le liquide est un débit enrichi en azote.
- le débit de production du ou des produits liquides n'est pas supérieur à 10% de l'air d'alimentation, de préférence n'est pas supérieur à 5% de l'air d'alimentation.
- the expansion is carried out in at least one valve.
- the expansion is carried out in at least one turbine and produces work.
- the temperature of the at least one fraction before expansion is less than the sum of the temperature of the vaporization of the liquid and the minimum temperature approaching in the heat exchanger.
- the second compressor is a multistage compressor.
- said at least a third pressure is at least the inlet pressure of one of the stages of the second compressor.
- a second compressor stage is driven by a process fluid expansion machine.
- the inlet temperature of the expansion machine is lower than the ambient temperature.
- at least one stage of the second compressor has a suction temperature lower than the ambient temperature.
- the suction temperature is higher than the vaporization temperature of the liquid, but is close to it.
- the liquid is an oxygen enriched flow.
- the liquid is a flow enriched in nitrogen.
- the production rate of the liquid product (s) is not more than 10% of the feed air, preferably is not more than 5% of the feed air.
Selon un autre aspect de l'invention, il est prévu un appareil pour séparer l'air par distillation cryogénique selon la revendication 14.According to another aspect of the invention, there is provided an apparatus for separating air by cryogenic distillation according to
L'invention va être maintenant décrite plus en détail par référence aux
Dans la forme de réalisation de la
Un débit 502 est envoyé à un surpresseur 503, refroidi dans un refroidisseur d'eau (non représenté), puis encore refroidi dans l'échangeur de chaleur 5, puis détendu dans une turbine 501, couplée au surpresseur 503. L'air détendu 502 est envoyé à la deuxième colonne.A
Une autre partie 507 de l'air est envoyée à l'échangeur de chaleur 5 sous une pression sensiblement égale à celle de la première colonne 8.Another part 507 of the air is sent to the
Le troisième débit 505 est comprimé dans un compresseur 230 et envoyé à l'échangeur de chaleur, où il se condense. Dans ce cas, on considère que le compresseur 230 est un compresseur centrifuge à quatre étages 230A, 230B, 230C et 230D, par exemple du type à multiplication de vitesse intégrée refroidi par des refroidisseurs intermédiaires d'eau 232A, 232B, 232C et un refroidisseur final 232D. La pression d'aspiration du compresseur est de 5,5 bar abs, les pressions intermédiaires sont de 10,2 bar abs, 18,9 bar abs et 35,1 bar abs, et la pression finale de sortie est de 65 bar abs. Le débit d'aspiration est de 26,5% du débit total de l'air. L'air liquéfié est subdivisé entre la première colonne 8, la deuxième colonne 9, et les fractions à détendre dans les vannes 116A, 116B et 116C.The
Un débit de liquide enrichi en oxygène LR est détendu et envoyé de la première colonne à la deuxième colonne. Un débit de liquide enrichi en azote LP est détendu et envoyé de la première colonne à la deuxième colonne.A flow of oxygen enriched liquid LR is expanded and sent from the first column to the second column. A flow of liquid enriched in LP nitrogen is expanded and sent from the first column to the second column.
De l'azote liquide pur NLMP est produit par la première colonne 8, de nouveau refroidi dans l'échangeur de chaleur 24 et détendu dans la vanne 143 et envoyé au stockage 144. L'azote gazeux haute pression 39 est soutiré en tête de la première colonne et chauffé dans l'échangeur de chaleur pour former un débit de produit 40. L'oxygène liquide OL est soutiré du fond de la deuxième colonne 9, pressurisé par une pompe 37 et envoyé en partie sous forme d'un débit 38 à l'échangeur de chaleur 5, où il se vaporise par échange de chaleur avec l'air pressurisé pour former de l'oxygène gazeux pressurisé. Le reste de l'oxygène liquide 52 est soutiré sous forme d'un produit liquide. Un débit gazeux NR de tête, enrichi en azote, est soutiré de la deuxième colonne 9, chauffé dans l'échangeur de chaleur 5 sous forme d'un débit 33.Pure liquid nitrogen NLMP is produced by the first column 8, again cooled in the
De l'argon est produit par utilisation de la colonne d'argon impur 3 et d'argon pur 4. La colonne d'argon impur est alimentée par le débit 16 provenant de la deuxième colonne 9. Un débit de liquide 17 est envoyé de la base de la colonne d'argon impur 3 à la deuxième colonne 9. Le liquide enrichi en oxygène est envoyé au condenseur de tête 12 de la colonne 3 par la vanne 26 et évaporé pour former le débit 27, qui est renvoyé à la deuxième colonne. Un débit de produit 19 est envoyé au condenseur 20, et, de là, forme le débit 19. Le débit 19 est condensé dans l'échangeur de chaleur 20 et subdivisé en un débit 48 qui est envoyé au débit de déchets 33 au point d'intersection 50, et un autre débit. L'autre débit est envoyé par la vanne 21 à la colonne 4.Argon is produced by using the column of impure argon 3 and pure argon 4. The column of impure argon is fed by the flow 16 coming from the second column 9. A flow of liquid 17 is sent from the base of the impure argon column 3 to the second column 9. The oxygen enriched liquid is sent to the
La colonne d'argon pur 4 produit un débit de produit 45. Le condenseur de tête 13 de la colonne d'argon pur 4 est alimenté par le liquide LP riche en azote provenant de la première colonne par l'intermédiaire de la vanne 34, et l'azote vaporisé est soutiré par la vanne 35 sous forme d'un débit 33 et refroidi dans le sous-refroidisseur 24. Le rebouilleur de fond 14 de la colonne d'argon pur est chauffé par utilisation d'air, et l'air liquéfié 23 est envoyé à la première colonne.The pure argon column 4 produces a product flow of 45. The
Un débit de purge 46 est de même soutiré.A
Le liquide 43 riche en azote est recueilli par l'intermédiaire de la vanne 143 dans le stockage 144.The nitrogen-
Le condenseur 20 est alimenté par le liquide LP riche en azote par l'intermédiaire de la vanne 31, et le liquide vaporisé est envoyé par la vanne 32 au débit de déchets 33.The
Après refroidissement et condensation dans l'échangeur de chaleur 5 vers l'extrémité froide de l'échangeur de chaleur, le débit d'air 505 sous 65 bar est subdivisé en deux. Une partie de l'air est détendue dans la vanne 231 et envoyée aux colonnes 8 et 9 sous forme liquide.After cooling and condensation in the
Le reste de l'air 107 est subdivisé en trois fractions 107A, 107B, 107C. La fraction d'air 107A recyclée entre le premier étage 230A et le deuxième étage 230B correspond à 1,08% du débit d'air total. Elle est détendue dans la vanne 116A de 65 bar abs à environ 10,2 bar abs et introduite dans l'échangeur de chaleur 5, où elle est vaporisée, chauffée après vaporisation pour donner un air de recyclage 107A.The rest of the
La fraction d'air 107B recyclée entre le deuxième étage 230B et le troisième étage 230C correspond à 0,84% du débit d'air total. Elle est détendue dans la vanne 116B de 65 bar abs à environ 18,9 bar abs et introduite dans l'échangeur de chaleur 5, où elle est vaporisée, chauffée après vaporisation pour donner un air de recyclage 107B.The fraction of
La fraction d'air 107C recyclée entre le troisième étage 230C et le quatrième étage 230D correspond à 22,08% du débit d'air total. Elle est détendue dans la vanne 116C de 65 bar abs à environ 35,1 bar abs et introduite dans l'échangeur de chaleur 5, où elle est vaporisée, chauffée après vaporisation pour donner un air de recyclage 107C.The fraction of
Ces trois fractions d'air représentent un débit total d'air de recyclage de 24% du débit d'air total, ce qui signifie que le fluide 505 correspond à un débit de 50,5% du débit d'air total, et que le débit par la vanne 231 est de 26,5%. La vaporisation des trois fractions d'air 107A, 107B et 107C a lieu dans l'échangeur de chaleur 5 respectivement à des températures d'environ -166°C, -155°C et -142°C, comme on peut le voir sur la
La
Une variante moins optimisée de la
Pour simplifier le procédé décrit ci-dessus, considérant les faibles débits de 107A et de 107B, il est possible de conserver une fraction d'air recyclé unique 107C.To simplify the process described above, considering the low flow rates of 107A and 107B, it is possible to keep a single
Les vannes, 231, 116A, 116B et 116C pourraient être remplacées par des turbines à liquide, c'est-à-dire un système de détente produisant du travail dans le but de diminuer l'irréversibilité associée à la détente isenthalpique. Ces turbines à liquide pourraient installées en parallèle ou en série.The valves, 231, 116A, 116B and 116C could be replaced by liquid turbines, that is to say an expansion system producing work in order to reduce the irreversibility associated with isenthalpic expansion. These liquid turbines could be installed in parallel or in series.
Le compresseur 230, dans le cas de base, est considéré comme étant une machine entraînée par un moteur, mais pourrait aussi être entraîné par une turbine à vapeur ou une turbine à gaz (le même que celui pour le Compresseur d'Air Principal 6). En tant que variante, l'un quelconque des quatre étages de compresseur 230A, 230B, 230C et 230D pourrait être entraîné par une machine de détente de l'un quelconque des fluides de ce procédé de séparation cryogénique d'air, de préférence à basse température. En outre, l'un quelconque des quatre étages de compresseur 230A, 230B, 230C et 230D pourrait avoir une température d'aspiration inférieure à la température ambiante, de préférence légèrement supérieure à la température de vaporisation de l'oxygène, à environ -125°C. En termes d'énergie spécifique (kWh/Nm3 d'O2), si la technique antérieure correspond à 100, l'énergie spécifique nécessaire à la production d'oxygène sous 40 bar abs selon l'invention est de 92,9, c'est-à-dire un gain de 7,1%.
Les fractions 107A, 107B, 107C pourraient être séparées de la partir de l'air passant par 231 et extraites de l'échangeur de chaleur 5 à une température supérieure à la température de l'extrémité froide de l'échangeur de chaleur 5.
Le procédé peut être modifié pour vaporiser l'azote liquide pompé, en tant que débit additionnel ou en tant que débit remplaçant le débit d'oxygène pompé.The process can be modified to vaporize the pumped liquid nitrogen, as an additional flow or as a flow replacing the pumped oxygen flow.
Il est de même possible d'utiliser un cycle d'azote (plutôt qu'un cycle d'air) dans une variante qui n'est pas couverte par les revendications. Dans ce cas, le compresseur 230 devrait être alimenté par au moins une partie de l'azote gazeux haute pression 40.It is also possible to use a nitrogen cycle (rather than an air cycle) in a variant which is not covered by the claims. In this case, the
Il est de même possible d'utiliser l'invention pour réduire la pression de calcul de l'échangeur de chaleur 5, c'est-à-dire la deuxième pression d'air avec une plus faible pénalité d'énergie grâce au recyclage du débit 107.It is likewise possible to use the invention to reduce the design pressure of the
Les procédés illustrés présentent des systèmes à double colonne, mais on comprendra aisément que l'invention s'applique à des systèmes à triple colonne.The illustrated methods show dual column systems, but it will be readily understood that the invention applies to triple column systems.
Ils pourraient aussi être utilisés avec des cycles de procédé produisant de l'oxygène de faible pureté (habituellement, de l'O2 à 95% au lieu d'O2 à 99,5%), tels que les cycles de procédé "à double vaporiseur".They could also be used with process cycles producing low purity oxygen (usually 95% O2 instead of 99.5% O2), such as "dual vaporizer" process cycles. ".
Dans la forme de réalisation de la
En particulier, des tampons liquides 131, 152 sont ajoutés à l'unité de stockage, et libèrent des liquides cryogéniques pour décorréler la production d'oxygène par l'ASU de la consommation par le client. En outre, il permet de réduire la consommation d'énergie aux heures de pointe sans réduire le débit d'oxygène allant vers l'utilisateur final, et l'augmentation de la consommation d'oxygène aux heures creuses, sans augmentation du débit d'oxygène vers l'utilisateur final.In particular,
L'air d'alimentation est comprimé dans le compresseur 6 et purifié dans l'unité de purification 7 et subdivisé en deux.The supply air is compressed in the compressor 6 and purified in the
Un débit 505 est comprimé dans un compresseur 230 et est envoyé à l'échangeur de chaleur, où il subit une condensation partielle, ou "pseudo-condensation", car il se trouve au-delà de la pression critique. Dans ce cas, on considère que le compresseur 230 est un compresseur centrifuge à quatre étages 230A, 230B, 230C et 230D, par exemple du type à multiplicateur de vitesse intégré, refroidi par des refroidisseurs intermédiaires d'eau 232A, 232B, 232C et un refroidisseur final 232D. La pression d'aspiration du compresseur est de 5,5 bar abs, les pressions intermédiaires sont de 10,2 bar abs, 18,9 bar abs et 35,1 bar abs, pression finale 65 bar abs. Le débit d'aspiration est de 23% du débit d'air total quand aucun liquide cryogénique n'est stocké ou déstocké.A
Le débit 505 est divisé en un premier débit secondaire 505A, qui va directement à l'échangeur de chaleur 5, et un deuxième débit secondaire 505B, qui va à l'unité de réfrigération 102 pour être refroidi à -5°C et introduit dans l'échangeur de chaleur 5.The
En un point intermédiaire de l'échangeur de chaleur 5, à une température de -124°C, une première fraction de l'air haute pression est soutirée et envoyée à une machine de détente à deux phases 116D, réintroduit dans l'échangeur de chaleur 5 pour être chauffé et recyclé à 35,1 bar abs dans le compresseur 230 au niveau de l'étage 230D en tant que débit 107D. Cette première fraction a un débit de 18,4% du débit d'air total.At an intermediate point of the
Une deuxième fraction est refroidie à -192,2°C par passage complet à travers l'échangeur de chaleur 5 et est détendue dans la vanne 231 pour être envoyée à l'unité de stockage 131 d'air liquide (LAIR) en tant que débit 234. Le débit de cette deuxième fraction n'est que de 23% du débit d'air total provenant du compresseur d'air principal 6.A second fraction is cooled to -192.2 ° C by complete passage through the
Une fraction 107 est soutirée de l'extrémité froide de l'échangeur de chaleur 5 et subdivisée en trois. La fraction d'air 107A recyclée entre le premier étage 230A et le deuxième étage 230B correspond à 1,1% du débit d'air total. Elle est détendue dans la vanne 116A de 65 bar abs à environ 10,2 bar abs et introduite dans l'échangeur de chaleur 5, où elle est évaporée, chauffée après vaporisation pour donner un air de recyclage 107A.A
La fraction d'air 107B recyclée entre le deuxième étage 230B et le troisième étage 230C correspond à 3,15% du débit d'air total. Elle est détendue dans la vanne 116B de 65 bar abs à environ 18,9 bar abs et est introduite dans l'échangeur de chaleur 5, où elle est vaporisée, chauffée après vaporisation pour donner un air de recyclage 107B.The fraction of
La fraction d'air 107C est détendue dans la vanne 116C de 65 bar abs à environ 1,2 bar abs et est introduite dans l'échangeur de chaleur 5, où elle est vaporisée, chauffée après vaporisation pour donner un air de recyclage 107C qui peut être utilisé pour régénérer des purificateur d'air si l'ASU 101 n'est pas en marche. Elle représente 4,45% du débit d'air total.The
Ces trois fractions d'air 107A, 107B, 107C, et la première fraction d'air détendue dans la turbine 116D représentent un débit total d'air de recyclage de 27,1% du débit d'air total provenant du compresseur 230, ce qui signifie que le fluide 505 représente 50,1% du débit d'air total provenant du compresseur principal 6, et le débit passant par la vanne 231 correspond à 23% du débit d'air total.These three
Une cuve de stockage d'oxygène liquide 152 alimentée par l'ASU 101 fournit l'oxygène 151 au système. Une pompe d'oxygène liquide 37 pressurise l'oxygène jusqu'au niveau de pression requis avant introduction dans l'échangeur de chaleur 5, où il subit une vaporisation ou une pseudo-vaporisation.A liquid
L'ASU 101 est alimentée par un air 510 provenant du même compresseur 6 (MAC) et par l'air liquide 235 qui est utilisé pour compenser la production d'oxygène liquide 150.The
Le débit 510 est refroidi dans un échangeur de chaleur indépendant de l'échangeur de chaleur 5 par échange de chaleur avec l'azote gazeux provenant de l'unité de séparation d'air (non représentée). Il est possible de refroidir le débit froid 510 dans l'échangeur de chaleur 5, mais cela rendrait le système moins flexible.The
Dans une alternative qui n'est pas couverte par l'objet de l'invention revendiquée, il est de même possible d'avoir l'unité de séparation d'air et ce système de récupération du froid en des emplacements distincts. Dans ce cas, on aurait un système de compresseur fournissant de l'air à l'ASU et un autre système compresseur fournissant de l'air au système de récupération de froid, et le transport de l'air liquide 235 et de l'oxygène liquide 150 peut être réalisé par camion ou canalisation. Les stockages de liquide 152 et 131 doivent aussi être doublés sur chaque site.In an alternative which is not covered by the object of the claimed invention, it is likewise possible to have the air separation unit and this cold recovery system in separate locations. In this case, we would have a compressor system supplying air to the ASU and another compressor system supplying air to the cold recovery system, and the transport of
Dans une autre alternative qui n'est pas couverte par l'objet de l'invention revendiquée, il pourrait aussi y avoir des systèmes compresseurs distincts fournissant de l'air à l'ASU et au système de récupération de froid quand les deux unités se trouvent sur le même emplacement, si cela est considéré comme étant plus commode et/ou plus efficace. C'est particulièrement le cas quand les deux unités ne fonctionnent pas simultanément à la même capacité. Un compresseur unique exigerait une dynamique de mesure précise et perdrait son efficacité à faible capacité. Avec des systèmes de compresseurs différents, il est possible d'optimiser la dynamique de mesure sur chaque machine.In another alternative which is not covered by the object of the claimed invention, there could also be separate compressor systems supplying air to the ASU and to the cold recovery system when the two units are running. are in the same location, if this is considered to be more convenient and / or more efficient. This is especially the case when the two units are not operating simultaneously at the same capacity. A single compressor would require precise measurement dynamics and lose efficiency at low capacity. With different compressor systems, it is possible to optimize the measurement dynamics on each machine.
Pour simplifier le procédé décrit ci-dessus, considérant les faibles débits de 107A et de 107B, il est possible de maintenir une fraction d'air recyclé unique 107D et de l'air basse pression vers l'unité de purification 107C.To simplify the process described above, considering the low flow rates of 107A and 107B, it is possible to maintain a single
Les vannes 231, 116A, 116B et 116C pourraient être remplacées par des turbines détendant du liquide, c'est-à-dire un système de détente produisant du travail, dans le but de diminuer l'irréversibilité associée à la détente isenthalpique. Ces turbines détendant du liquide pourraient être installées en parallèle et/ou en série.The
Pendant les périodes creuses, quand le coût de l'électricité est inférieur à une valeur donnée, l'unité de séparation d'air fonctionne de telle sorte que la quantité d'oxygène liquide stockée dans la cuve de stockage 152 augmente. La quantité d'oxygène liquide vaporisée dans l'échangeur de chaleur 5 est inférieure à l'oxygène liquide produit par l'unité de séparation d'air.During off-peak periods, when the cost of electricity is lower than a given value, the air separation unit operates such that the amount of liquid oxygen stored in the
Aucun air n'est envoyé à la vanne 116C, et l'unité de purification 7 est régénérée par utilisation d'un débit d'azote provenant de l'unité de séparation d'air 101.No air is sent to the
Les débits d'air 510 sont envoyés à l'unité de séparation d'air par l'intermédiaire d'un échangeur de chaleur indépendant de l'échangeur de chaleur 5, et un débit d'air 235 est envoyé à l'unité de séparation d'air à partir de la cuve de stockage 131, et l'oxygène liquide 150 est envoyé à la cuve de stockage 152. Cependant, la quantité d'air liquide envoyée à la cuve 131 dépasse la quantité d'air qui en est soutirée, et la quantité d'oxygène liquide envoyée à la cuve 152 dépasse la quantité d'oxygène liquide qui en est soutirée.The air flows 510 are sent to the air separation unit through a heat exchanger independent of the
Pendant les périodes de pointe, quand le coût de l'électricité est supérieur à une valeur donnée, l'unité de séparation d'air ne fonctionne pas, ce qui n'est pas couverte par l'objet de l'invention revendiquée, ou fonctionne à faible capacité, habituellement de 50% ou moins de la capacité maximale, même si l'oxygène total produit est très supérieur à 50% de la capacité maximale. Aucun air n'est envoyé à l'unité de séparation d'air par les débits 510 et 235. L'oxygène liquide stocké dans la cuve 152 est vaporisé pour donner le débit d'oxygène gazeux. La régénération de l'unité de purification 7 est réalisée par utilisation du débit 107C.During peak periods, when the cost of electricity is higher than a given value, the air separation unit does not work, which is not covered by the object of the claimed invention, or Operates at low capacity, usually 50% or less of maximum capacity, even though the total oxygen produced is much greater than 50% of maximum capacity. No air is sent to the air separation unit through the
L'air liquide produit par la vaporisation de l'oxygène liquide est stocké dans la cuve de stockage 131 pendant les périodes de pointe, et aucun air gazeux ou liquide n'est envoyé à l'unité de séparation d'air 101.The liquid air produced by the vaporization of liquid oxygen is stored in the
Le procédé peut être modifié pour vaporiser l'azote liquide pompé en tant que débit additionnel, ou en tant que débit remplaçant le débit d'oxygène pompé.The process can be modified to vaporize the pumped liquid nitrogen as an additional flow, or as a flow replacing the pumped oxygen flow.
Dans une alternative qui n'est pas couverte par l'objet de l'invention revendiquée, il est de même possible d'utiliser un cycle d'azote (plutôt qu'un cycle d'air), comme on le voit sur la
Dans ce cas, la totalité de l'air d'alimentation est comprimée dans le compresseur d'air principal 6 jusqu'à la pression requise pour la séparation d'air dans l'ASU 101.In this case, all of the supply air is compressed in the main air compressor 6 to the pressure required for air separation in
L'azote comprimé est refroidi et condensé dans l'échangeur de chaleur 5.Compressed nitrogen is cooled and condensed in
L'azote comprimé est ensuite subdivisé en au moins deux portions, trois portions étant présentées ici, détendu à au moins deux pressions différentes, et vaporisé dans l'échangeur de chaleur 5.The compressed nitrogen is then subdivided into at least two portions, three portions being presented here, expanded to at least two different pressures, and vaporized in the
L'azote vaporisé provenant des vannes 116A et 116B est renvoyé à des positions intermédiaires du compresseur d'azote 230, et l'azote vaporisé provenant de la vanne 116C peut servir à régénérer l'unité de purification si l'unité de séparation d'air ne fonctionne pas.The vaporized nitrogen from the
L'azote liquide produit 234 est détendu dans la vanne 231 et stocké dans l'unité de stockage 131 pour utilisation.Liquid nitrogen produced 234 is expanded in
Ainsi, l'oxygène liquide peut être vaporisé contre l'azote dans les périodes au cours desquelles l'unité de séparation d'air ne fonctionne pas, par exemple les périodes au cours desquelles l'électricité est particulièrement onéreuse.Thus, liquid oxygen can be vaporized against nitrogen in periods when the air separation unit is not operating, for example periods when electricity is particularly expensive.
Ces variantes de l'invention pourraient être utilisées pour récupérer le froid d'un système de secours d'oxygène/azote liquide dans le cas d'une indisponibilité planifiée (maintenance) ou non planifiée (incident) de la ou des unités de séparation d'air.These variants of the invention could be used to recover the cold from an oxygen / liquid nitrogen back-up system in the event of a planned (maintenance) or unplanned (incident) unavailability of the separation unit (s). 'air.
Les procédés illustrés présentent des systèmes à double colonne, mais on comprendra aisément que l'invention s'applique à des systèmes à triple colonne. Elle pourrait aussi être utilisée avec des cycles de procédé produisant de l'oxygène de faible pureté (habituellement de l'O2 à 95% au lieu d'O2 à 99,5%), tels que des cycles de procédé "à double vaporiseur".The illustrated methods show dual column systems, but it will be readily understood that the invention applies to triple column systems. It could also be used with process cycles producing low purity oxygen (usually 95% O2 instead of 99.5% O2), such as "dual vaporizer" process cycles. .
Claims (15)
- Process for the separation of air by cryogenic distillation in a system of columns comprising a first column and a second column operating at a lower pressure than the first column, comprising the steps of:i) compression of all of the feed air in a first compressor (6) up to a first outlet pressure of at most one bar greater than and preferably substantially equal to the pressure of the first column,ii) sending a first part of the air (505) under the first outlet pressure to a second compressor (230), and compression of the air to a second outlet pressure,iii) cooling and condensation of at least a part of the air under the second outlet pressure in a heat exchanger (5),iv) sending an air gas flow under the first outlet pressure to the system of columns, without more forceful compression, and separation of the air in the system of columns,v) withdrawal of the liquid from a column of the system of columns, pressurization of the liquid and vaporization of the liquid (38) by a heat exchange in the heat exchanger, andvi) reduction in pressure of at least a fraction of the cooled and condensed air, from the second outlet pressure to at least a third pressure, at least partial vaporization of said air (107A, 107B, 107C) in the heat exchanger under the at least one third pressure, the third pressure being intermediate between the first outlet pressure and the second outlet pressure, optionally heating said at least partially vaporized air in the heat exchanger, characterized in that at least a vaporized part of this air is sent to the second compressor (230) in order to be compressed up to the second outlet pressure.
- Process according to Claim 1, in which the reduction in pressure is carried out in at least one valve (116A,116B,116C) .
- Process according to Claim 1, in which the reduction in pressure is carried out in at least one turbine and produces work.
- Process according to Claim 1, in which the temperature of the at least one fraction before reduction in pressure is less than the temperature of the vaporization of the liquid and the minimum temperature approach in the heat exchanger.
- Process according to Claim 1, in which the second compressor is a multistage compressor.
- Process according to Claim 5, in which said at least one third pressure is at least the inlet pressure of one of the stages of the second compressor.
- Process according to any one of the preceding claims, in which a stage of the second compressor is driven by a device for the reduction in pressure of a fluid of the process.
- Process according to Claim 7, in which the inlet temperature of the device for the reduction in pressure is less than ambient temperature.
- Process according to any one of the preceding claims, in which at least one stage of the second compressor has a suction temperature which is less than ambient temperature.
- Process according to Claim 9, in which the suction temperature is greater than the vaporization temperature of the liquid, but is close to it.
- Process according to any one of the preceding claims, in which the liquid is a flow enriched in oxygen.
- Process according to any one of the preceding claims, in which the liquid is a flow enriched in nitrogen.
- Process according to any one of the preceding claims, in which the production flow of the final liquid product or products is not greater than 10% of the feed air, preferably is not greater than 5% of the feed air.
- Apparatus for separating air by cryogenic distillation with a system of columns comprising a first column and a second column operating at a lower pressure than the first column, additionally comprising:i) a first compressor (6) for compressing all of the feed air to a first outlet pressure of at most one bar greater than the pressure of the first column,ii) means for sending purified and cooled air from the first compressor at the first pressure to the system of columns in order to be separated therein,iii) a second compressor (230) and a means for sending a first part of the air under the first outlet pressure from the first compressor to the second compressor, in order to compress the air to a second outlet pressure,iv) a heat exchanger (5), in which at least a part of the air under the second outlet pressure is cooled and condensed,v) a means for removing liquid from a column of the system of columns, a means (37) for pressurizing the liquid, a means for sending the pressurized liquid to the heat exchanger and a means for removing the vaporized liquid from the heat exchanger, andvi) a means for reducing in pressure a fraction of the air cooled and condensed under the second outlet pressure to at least a third pressure, the third pressure being intermediate between the first outlet pressure and the second outlet pressure, and a means for sending said pressure-reduced air to the heat exchangercharacterized in that it comprises a means for sending at least a part of said pressure-reduced air, which has been vaporized in the heat exchanger under at least the third pressure, from the heat exchanger to the second compressor, in order to compress it to the second outlet pressure.
- Apparatus according to Claim 14, where the means for reducing in pressure is a valve or a turbine.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1754624A FR3062197B3 (en) | 2017-05-24 | 2017-05-24 | METHOD AND APPARATUS FOR SEPARATING AIR BY CRYOGENIC DISTILLATION |
FR1754619A FR3066809B1 (en) | 2017-05-24 | 2017-05-24 | METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION |
PCT/FR2018/051201 WO2018215716A1 (en) | 2017-05-24 | 2018-05-18 | Method and apparatus for air separation by cryogenic distillation |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3631327A1 EP3631327A1 (en) | 2020-04-08 |
EP3631327B1 true EP3631327B1 (en) | 2021-06-23 |
Family
ID=62815073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18736971.5A Active EP3631327B1 (en) | 2017-05-24 | 2018-05-18 | Method and apparatus for air separation by cryogenic distillation |
Country Status (6)
Country | Link |
---|---|
US (1) | US12025372B2 (en) |
EP (1) | EP3631327B1 (en) |
CN (1) | CN110678710B (en) |
FR (2) | FR3066809B1 (en) |
RU (1) | RU2761562C2 (en) |
WO (1) | WO2018215716A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021016756A1 (en) * | 2019-07-26 | 2021-02-04 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process and apparatus for the separation of air by cryogenic distillation |
CN111928511B (en) * | 2020-08-07 | 2021-09-07 | 西安西热节能技术有限公司 | Liquefied air energy storage peak shaving system and method based on compressor intermediate suction |
US20220112083A1 (en) * | 2020-10-09 | 2022-04-14 | Airgas, Inc. | Method to convert excess liquid oxygen into liquid nitrogen |
FR3119226B1 (en) | 2021-01-25 | 2023-05-26 | Lair Liquide Sa Pour Letude Et Lexploitation De | METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION |
EP4215856A1 (en) * | 2022-08-30 | 2023-07-26 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process and apparatus for air separation by cryogenic distillation |
EP4428475A1 (en) * | 2023-03-08 | 2024-09-11 | Linde GmbH | Heat exchanger and related plants and methods |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE460927C (en) * | 1922-05-27 | 1928-06-09 | Arthur Seligmann Dr Ing | Process for liquefying and separating difficult to condense gases and gas mixtures with the help of external work |
GB2080929B (en) * | 1980-07-22 | 1984-02-08 | Air Prod & Chem | Producing gaseous oxygen |
JPH0455682A (en) * | 1990-06-22 | 1992-02-24 | Kobe Steel Ltd | Air separating device |
JP3213846B2 (en) * | 1991-01-25 | 2001-10-02 | 日本酸素株式会社 | Supercritical gas liquefaction method and apparatus |
US5379598A (en) | 1993-08-23 | 1995-01-10 | The Boc Group, Inc. | Cryogenic rectification process and apparatus for vaporizing a pumped liquid product |
US5475980A (en) | 1993-12-30 | 1995-12-19 | L'air Liquide, Societe Anonyme Pour L'etude L'exploitation Des Procedes Georges Claude | Process and installation for production of high pressure gaseous fluid |
FR2721383B1 (en) | 1994-06-20 | 1996-07-19 | Maurice Grenier | Process and installation for producing gaseous oxygen under pressure. |
GB9513766D0 (en) * | 1995-07-06 | 1995-09-06 | Boc Group Plc | Air separation |
DE19526785C1 (en) * | 1995-07-21 | 1997-02-20 | Linde Ag | Method and device for the variable production of a gaseous printed product |
US5901576A (en) | 1998-01-22 | 1999-05-11 | Air Products And Chemicals, Inc. | Single expander and a cold compressor process to produce oxygen |
US5966967A (en) * | 1998-01-22 | 1999-10-19 | Air Products And Chemicals, Inc. | Efficient process to produce oxygen |
FR2777641B1 (en) | 1998-04-21 | 2000-05-19 | Air Liquide | AIR DISTILLATION PROCESS AND INSTALLATION WITH ARGON PRODUCTION |
US6006545A (en) * | 1998-08-14 | 1999-12-28 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes | Liquefier process |
FR2787560B1 (en) * | 1998-12-22 | 2001-02-09 | Air Liquide | PROCESS FOR CRYOGENIC SEPARATION OF AIR GASES |
EP1067345B1 (en) * | 1999-07-05 | 2004-06-16 | Linde Aktiengesellschaft | Process and device for cryogenic air separation |
US6626008B1 (en) | 2002-12-11 | 2003-09-30 | Praxair Technology, Inc. | Cold compression cryogenic rectification system for producing low purity oxygen |
CN101000191A (en) | 2006-01-11 | 2007-07-18 | 王冬雷 | Refrigerator, freezer with nitrogen generating freshness retaining function |
JP4313389B2 (en) * | 2006-10-13 | 2009-08-12 | 大陽日酸株式会社 | Operation method of helium purifier |
RU2433363C1 (en) * | 2007-08-10 | 2011-11-10 | Л'Эр Ликид, Сосьете Аноним Пур Л'Этюд Э Л'Эксплуатасьон Де Проседе Жорж Клод | Method and apparatus for air separation by cryogenic distillation |
US8429933B2 (en) * | 2007-11-14 | 2013-04-30 | Praxair Technology, Inc. | Method for varying liquid production in an air separation plant with use of a variable speed turboexpander |
CN101482336A (en) * | 2008-05-28 | 2009-07-15 | 上海启元空分技术发展有限公司 | Compression throttling refrigeration method used for air separation |
EP2249128A1 (en) * | 2009-05-08 | 2010-11-10 | Linde Aktiengesellschaft | Measuring assembly and method for monitoring the sump liquid flow in an air decomposition system |
DE102009048456A1 (en) | 2009-09-21 | 2011-03-31 | Linde Aktiengesellschaft | Method and apparatus for the cryogenic separation of air |
EP2600090B1 (en) | 2011-12-01 | 2014-07-16 | Linde Aktiengesellschaft | Method and device for generating pressurised oxygen by cryogenic decomposition of air |
FR2995393B1 (en) * | 2012-09-12 | 2014-10-03 | Air Liquide | METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION |
EP2963367A1 (en) * | 2014-07-05 | 2016-01-06 | Linde Aktiengesellschaft | Method and device for cryogenic air separation with variable power consumption |
-
2017
- 2017-05-24 FR FR1754619A patent/FR3066809B1/en not_active Expired - Fee Related
- 2017-05-24 FR FR1754624A patent/FR3062197B3/en not_active Expired - Fee Related
-
2018
- 2018-05-18 US US16/615,978 patent/US12025372B2/en active Active
- 2018-05-18 RU RU2019140617A patent/RU2761562C2/en active
- 2018-05-18 WO PCT/FR2018/051201 patent/WO2018215716A1/en active Application Filing
- 2018-05-18 CN CN201880033702.6A patent/CN110678710B/en active Active
- 2018-05-18 EP EP18736971.5A patent/EP3631327B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
RU2019140617A3 (en) | 2021-07-19 |
CN110678710B (en) | 2021-12-10 |
RU2761562C2 (en) | 2021-12-09 |
FR3066809B1 (en) | 2020-01-31 |
EP3631327A1 (en) | 2020-04-08 |
US20200132367A1 (en) | 2020-04-30 |
US12025372B2 (en) | 2024-07-02 |
RU2019140617A (en) | 2021-06-10 |
FR3062197A3 (en) | 2018-07-27 |
FR3066809A1 (en) | 2018-11-30 |
FR3062197B3 (en) | 2019-05-10 |
CN110678710A (en) | 2020-01-10 |
WO2018215716A1 (en) | 2018-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3631327B1 (en) | Method and apparatus for air separation by cryogenic distillation | |
EP0504029B1 (en) | Process for the production of gaseous pressurised oxygen | |
US20090078001A1 (en) | Cryogenic Distillation Method and System for Air Separation | |
EP1711765B1 (en) | Cryogenic distillation method and installation for air separation | |
CA2573429A1 (en) | Low temperature air separation process for producing pressurized gaseous product | |
EP2510294B1 (en) | Process and unit for the separation of air by cryogenic distillation | |
EP1623172A1 (en) | Method and system for the production of pressurized air gas by cryogenic distillation of air | |
EP1014020B1 (en) | Cryogenic process for separating air gases | |
CA2832096C (en) | Method and apparatus for liquefying a co2-rich gas | |
EP2694898B1 (en) | Method and device for separating air by cryogenic distillation | |
EP3058297B1 (en) | Method and device for separating air by cryogenic distillation | |
EP1132700B1 (en) | Process and apparatus for air separation by cryogenic distillation | |
FR2973485A1 (en) | Method for separating air by cryogenic distillation in column system, involves withdrawing liquid containing specific mol percent of oxygen from bottom of low pressure column, where liquid is pressurized and vaporized to form gaseous oxygen | |
FR2830928A1 (en) | Separation of air by cryogenic distillation with heat exchange cooling the compressed and purified inlet air before it is introduced into the medium pressure column at between 6 and 9 bars | |
GB2493230A (en) | Air separation by cryogenic distillation | |
FR2837564A1 (en) | Distillation of air to produce oxygen, nitrogen and pure argon, extracts oxygen of specified purity and subjects argon to catalytic de-oxygenation | |
WO2005047790A2 (en) | Method and installation for enriching a gas stream with one of the components thereof | |
EP3877713A1 (en) | Method and apparatus for separating air by cryogenic distillation | |
FR2864213A1 (en) | Producing oxygen, argon or nitrogen as high-pressure gas by distilling air comprises using electricity generated by turbine to drive cold blower | |
FR3014181A1 (en) | METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200102 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210129 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1404650 Country of ref document: AT Kind code of ref document: T Effective date: 20210715 Ref country code: DE Ref legal event code: R096 Ref document number: 602018019050 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210623 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210623 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210623 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210923 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1404650 Country of ref document: AT Kind code of ref document: T Effective date: 20210623 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210623 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210923 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210623 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210623 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210924 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210623 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210623 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211025 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210623 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210623 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210623 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210623 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210623 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210623 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602018019050 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210623 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20220324 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210623 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210623 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20220518 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210623 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220518 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220531 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220518 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220518 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230523 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210623 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210623 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20180518 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240521 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210623 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240521 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240527 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20240521 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210623 |