JP4313389B2 - Operation method of helium purifier - Google Patents

Operation method of helium purifier Download PDF

Info

Publication number
JP4313389B2
JP4313389B2 JP2006280214A JP2006280214A JP4313389B2 JP 4313389 B2 JP4313389 B2 JP 4313389B2 JP 2006280214 A JP2006280214 A JP 2006280214A JP 2006280214 A JP2006280214 A JP 2006280214A JP 4313389 B2 JP4313389 B2 JP 4313389B2
Authority
JP
Japan
Prior art keywords
gas
helium
regeneration
impurities
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006280214A
Other languages
Japanese (ja)
Other versions
JP2008096055A (en
Inventor
卓也 熊木
大輔 市瀬
将和 永見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2006280214A priority Critical patent/JP4313389B2/en
Publication of JP2008096055A publication Critical patent/JP2008096055A/en
Application granted granted Critical
Publication of JP4313389B2 publication Critical patent/JP4313389B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/0685Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of noble gases
    • F25J3/069Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of noble gases of helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/0007Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • F25J1/0037Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0065Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • F25J1/0224Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop in combination with an internal quasi-closed refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0249Controlling refrigerant inventory, i.e. composition or quantity
    • F25J1/025Details related to the refrigerant production or treatment, e.g. make-up supply from feed gas itself
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/20Processes or apparatus using other separation and/or other processing means using solidification of components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/02Separating impurities in general from the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/20Integration in an installation for liquefying or solidifying a fluid stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • F25J2270/06Internal refrigeration with work-producing gas expansion loop with multiple gas expansion loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/30Quasi-closed internal or closed external helium refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2280/00Control of the process or apparatus
    • F25J2280/02Control in general, load changes, different modes ("runs"), measurements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2280/00Control of the process or apparatus
    • F25J2280/20Control for stopping, deriming or defrosting after an emergency shut-down of the installation or for back up system

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

この発明は、例えば、ヘリウム液化機内に付設され、不純ヘリウムガス中の酸素や窒素などの不純物を凝縮、凝固させて除去し、精製するためのヘリウム精製装置の運転方法に関する。   The present invention relates to a method of operating a helium purifier, which is attached to a helium liquefier, for example, to condense, solidify, remove and purify impurities such as oxygen and nitrogen in an impure helium gas.

ヘリウム液化機によって製造された液化ヘリウムは、極低温用冷却媒体などとして使用された後に回収され、再度ヘリウム液化機において液化され、循環使用されるようになっているが、回収されたヘリウムガス中には、不純物、例えば酸素、窒素などが含まれることがあり、再液化に際しては、予めこれを除去して精製する必要があり、ヘリウム液化機には、ヘリウム精製装置が付設されていることが多い。このようなヘリウム液化機としては、例えば「超伝導・低温工学ハンドブック」オーム社刊、1993年、第234頁、図4.138に記載されているものなどが知られている。   The liquefied helium produced by the helium liquefier is recovered after being used as a cryogenic cooling medium, etc., liquefied again in the helium liquefier, and is circulated for use. May contain impurities such as oxygen, nitrogen, etc., and when re-liquefying, it is necessary to remove and purify in advance, and the helium liquefier may be equipped with a helium purifier. Many. As such a helium liquefier, for example, those described in “Superconductivity / Cryogenic Engineering Handbook”, published by Ohm, 1993, page 234, FIG. 4.138 are known.

図1は、この種のヘリウム液化機の一例を示すもので、図1中、二点鎖線で包囲した部分がヘリウム精製装置である。図1中、上述の二点鎖線で包囲したヘリウム精製装置以外は、ヘリウム液化機本体部分である。   FIG. 1 shows an example of this type of helium liquefier. In FIG. 1, a portion surrounded by a two-dot chain line is a helium purifier. In FIG. 1, the helium liquefier main part is other than the helium purifier surrounded by the two-dot chain line.

このヘリウム液化機本体部分は、熱交換器21、22、23、24、25、26、27、膨張タービン28、29、JT(ジュールトムソン)弁30、液化ヘリウム貯槽31、バッファータンク32、圧縮機33を備えた周知の構成のものであり、その動作については説明を省略する。   The helium liquefier main body includes heat exchangers 21, 22, 23, 24, 25, 26, 27, expansion turbines 28, 29, JT (Joule Thompson) valve 30, liquefied helium storage tank 31, buffer tank 32, and compressor. This is of a known configuration provided with 33, and the description of its operation is omitted.

図1中のヘリウム精製装置の部分を図2および図3に拡大して示す。このヘリウム精製装置では、ヘリウムの精製運転とヘリウム精製に使用した熱交換器の再生運転を交互に行うようになっている。
図2、図3では、ヘリウム精製装置の熱交換器HX10、HX11、HX12を実用装置での配置を模擬して示しており、3基の熱交換器HX10〜HX12がいずれも立設状態で並んで設けられており、各熱交換器のガス流路の向きが鉛直方向に沿うようになっている。
A portion of the helium purification apparatus in FIG. 1 is shown in an enlarged manner in FIGS. In this helium purification apparatus, helium purification operation and heat exchanger regeneration used for helium purification are alternately performed.
2 and 3, the heat exchangers HX10, HX11, and HX12 of the helium purification apparatus are shown by simulating the arrangement in the practical apparatus, and the three heat exchangers HX10 to HX12 are all arranged in an upright state. The direction of the gas flow path of each heat exchanger is set along the vertical direction.

なお、図2および図3では、図1に示した熱交換器HX9を省略している。
図2は、このヘリウム精製装置の精製運転の状態を示す。
不純ヘリウムガスは、図示されていないヘリウム回収精製系により、水分が除去された高圧となっており、図1での減圧弁V1により精製運転に応じた圧力2〜3MPa・Gとされて、弁V2から精製装置に導入される。
2 and 3, the heat exchanger HX9 shown in FIG. 1 is omitted.
FIG. 2 shows the state of the purification operation of this helium purification apparatus.
The impure helium gas has a high pressure from which water has been removed by a helium recovery and purification system (not shown). The pressure is reduced to 2 to 3 MPa · G according to the purification operation by the pressure reducing valve V1 in FIG. It is introduced into the purifier from V2.

弁V2からの不純物を含む不純ヘリウムガスは、熱交換器HX10、HX11、HX12を順次通過し、ここにおいて戻り低温ガスと熱交換して冷却される。
このとき含まれる不純物は、熱交換器HX11の低温部および不純物濃度によっては熱交換器HX12の温度の高い部分で凝縮し、液化した不純物が熱交換器HX10〜HX12よりも鉛直方向下方に配置された気液分離器LVに重力によって自然流入して、ここで分離除去される。
The impure helium gas containing impurities from the valve V2 sequentially passes through the heat exchangers HX10, HX11, and HX12, where it returns to the low-temperature gas and is cooled.
The impurities contained at this time are condensed in the low temperature part of the heat exchanger HX11 and the high temperature part of the heat exchanger HX12 depending on the impurity concentration, and the liquefied impurities are arranged vertically below the heat exchangers HX10 to HX12. The gas-liquid separator LV naturally flows in by gravity and is separated and removed here.

このようにして不純物量が少なくなった不純ヘリウムガスは、熱交換器HX12の低温部に向かうにつれ、不純物は凝縮、凝固し、凝縮分は重力により落下して気液分離器LVに流れ、凝固分は熱交換器HX12の壁面に付着して除去される。
このように不純物が除去された精製ヘリウムガスは、熱交換器HX12を出て弁V3を経由し、弁V7により流量調節されて導入される高純度の低温ヘリウムガスと合流する。
The impure helium gas whose amount of impurities is reduced in this way is condensed and solidified as it goes to the low temperature portion of the heat exchanger HX12, and the condensed matter falls due to gravity and flows to the gas-liquid separator LV to be solidified. Minutes adhere to the wall surface of the heat exchanger HX12 and are removed.
The purified helium gas from which impurities have been removed in this way exits the heat exchanger HX12, passes through the valve V3, and merges with the high-purity low-temperature helium gas introduced by adjusting the flow rate by the valve V7.

合流した不純物を含まない高純ヘリウムガスは、熱交換器HX12、HX11、HX10と流れ、不純ヘリウムガスと熱交換し、図1に示した熱交換器HX9で常温まで昇温され、弁V4を経由して液化機の低圧側に至り、プロセスガスとして液化される。   The high purity helium gas that does not contain impurities flows with the heat exchangers HX12, HX11, and HX10, exchanges heat with the impure helium gas, is heated to room temperature in the heat exchanger HX9 shown in FIG. Via, it reaches the low pressure side of the liquefier and is liquefied as process gas.

気液分離器LVで分離された液化不純物は、気液分離器LV内の液化不純物の液面レベルに応じて自動開閉する弁V5により系外に排出される。
冷却のための低温ヘリウムガスは、熱交換器HX12の冷端部の温度を一定とするように弁V7によりその流量が制御されており、不純ヘリウムガスの流量は、熱交換器HX12の不純ガス出口側での圧力が一定となるように弁V2により制御されている。
The liquefied impurities separated by the gas-liquid separator LV are discharged out of the system by a valve V5 that automatically opens and closes according to the liquid level of the liquefied impurities in the gas-liquid separator LV.
The flow rate of the low-temperature helium gas for cooling is controlled by the valve V7 so that the temperature of the cold end of the heat exchanger HX12 is constant, and the flow rate of the impure helium gas is the impure gas of the heat exchanger HX12. It is controlled by a valve V2 so that the pressure on the outlet side is constant.

精製された高純度ヘリウムガスは、図1に示すヘリウム液化機本体において液化されて液体ヘリウム貯槽31に蓄えられるとともに、液化プロセスの余剰ガスとしてバッファータンク32に貯蔵される。
余剰ガスとしてバッファータンク32に高純ヘリウムガスを貯蔵する理由は、この精製装置が連続的に精製運転されるのではなく、再生運転を必要とするため、その間、液化運転を続行できるだけの高純ヘリウムガスが必要となるためである。
The purified high-purity helium gas is liquefied in the helium liquefier main body shown in FIG. 1 and stored in the liquid helium storage tank 31 and also stored in the buffer tank 32 as surplus gas in the liquefaction process.
The reason why high purity helium gas is stored in the buffer tank 32 as surplus gas is that the refining apparatus does not continuously perform refining operation but requires regeneration operation. This is because helium gas is required.

高純ヘリウムガスを外部からボンベなどにより供給することは可能であるが、不純ヘリウムガスを精製して液化することを目的としている装置であるため、外部からの高純ヘリウムガスの供給なしに、精製装置を運転しながら液化運転を連続的に行う必要があり、このためにも、バッファータンク32に高純ヘリウムガスを貯蔵している。
なお、上記説明は、不純ヘリウムガスが十分ある場合について述べているが、不純ヘリウムガスがなくなり、精製装置の運転を継続することができない場合には、高純ヘリウムガスを供給して液化運転を行うことは言うまでもない。
Although it is possible to supply high purity helium gas from the outside with a cylinder or the like, since it is an apparatus intended to purify and liquefy impure helium gas, without supplying high purity helium gas from the outside, It is necessary to continuously perform the liquefaction operation while operating the purification apparatus, and for this purpose, the high purity helium gas is stored in the buffer tank 32.
In the above description, the case where there is sufficient impure helium gas is described. However, when the impure helium gas disappears and the operation of the purification apparatus cannot be continued, high purity helium gas is supplied to perform the liquefaction operation. Needless to say.

従って、精製運転を終了し、再生運転に移行するためのタイミングとしては、図1(図2、図3)の例では、バッファータンク32の圧力が上限値に達するか、一連の熱交換器の圧力損失が、図2での圧力スイッチPSにより検出されるか、いずれかの場合としている。   Therefore, as the timing for finishing the refining operation and shifting to the regeneration operation, in the example of FIG. 1 (FIGS. 2 and 3), the pressure of the buffer tank 32 reaches the upper limit value or the series of heat exchangers It is assumed that the pressure loss is detected by the pressure switch PS in FIG.

図3は、再生運転状態を示す。弁V9より液化プロセスからの常温高圧ヘリウムガスがヘリウム精製装置に導入される。この常温高圧ガスは、熱交換器HX10、HX11、HX12の精製運転時の高純ヘリウムガス流路を通過する。不純ヘリウムガス流路には弁V10を経由して少量のガスをパージガスとして供給し、弁V6より図示しないガスバックに回収する。
ガスバックに回収されたガスは、昇圧され乾燥器により水分を除去され、不純ヘリウムガスとしてこの精製装置に供給される。
FIG. 3 shows the regeneration operation state. The room temperature and high pressure helium gas from the liquefaction process is introduced into the helium purifier from the valve V9. This room-temperature high-pressure gas passes through the high-pure helium gas flow path during the purification operation of the heat exchangers HX10, HX11, and HX12. A small amount of gas is supplied as purge gas to the impure helium gas flow path via the valve V10, and is recovered to a gas back (not shown) from the valve V6.
The gas recovered in the gas bag is pressurized, moisture is removed by a dryer, and supplied to the purifier as impure helium gas.

この再生操作により精製装置の一連の熱交換器HX10〜HX12が加温され、不純ヘリウムガス流路側の伝熱壁面に付着している不純物固体が融解する。この再生運転の間は、先に述べたように貯蔵されたバッファータンク32内の高純ヘリウムガスを使って液化運転は継続され、精製運転時とは逆に、該バッファータンクの圧力は減少していく。
再生運転が終了すれば、熱交換器HX10〜HX12を再冷却した後、精製運転を再開する。以降、この運転パターンが繰り返され、バッチ式の精製装置であっても、不純物を含むヘリウムガスを精製処理し、液化運転を連続的に行えることになる。
By this regeneration operation, the series of heat exchangers HX10 to HX12 of the purification apparatus are heated, and the impurity solid adhering to the heat transfer wall surface on the impure helium gas flow path side is melted. During this regeneration operation, the liquefaction operation is continued using the high purity helium gas stored in the buffer tank 32 as described above, and the pressure in the buffer tank is decreased, contrary to the purification operation. To go.
When the regeneration operation is completed, the refining operation is resumed after the heat exchangers HX10 to HX12 are recooled. Thereafter, this operation pattern is repeated, and even in a batch-type purification apparatus, helium gas containing impurities can be purified and liquefaction operation can be performed continuously.

このような精製装置を使って液化運転を行った時、先述のように、液化機のバッファータンク32の圧力は精製運転時に上昇し、再生運転および再冷却運転時には減少することになり、その時間変化は図4に示す三角形のような形となる。
再生運転およびその後の再冷却運転の回数を少なくし、高純ヘリウムガスのガスバックへの回収量を減らすために、精製運転をバッファータンク32の圧力が一定になるように不純ガス流量を調節(減少させて)し、熱交換器の圧力損失がある値になるまで精製運転を継続し、その後再生運転を行うことも実施されている。この場合には、同バッファータンク32の圧力変化は、図5の台形のような形となり、図4に比べて精製運転時間が長くる。
When a liquefaction operation is performed using such a refining device, the pressure in the buffer tank 32 of the liquefier increases during the refining operation and decreases during the regenerating operation and the recooling operation, as described above. The change is like a triangle shown in FIG.
In order to reduce the number of regeneration operations and subsequent recooling operations and reduce the amount of high-pure helium gas recovered in the gas bag, the purification operation is adjusted to adjust the impure gas flow rate so that the pressure in the buffer tank 32 is constant ( It is also practiced to continue the refining operation until the pressure loss of the heat exchanger reaches a certain value, and then perform the regeneration operation. In this case, the pressure change in the buffer tank 32 has a trapezoidal shape as shown in FIG. 5, and the purification operation time is longer than that in FIG.

このような運転パターンを安定に繰り返して実施するためには、図4や図5に示すように、精製運転時には、バッファータンク32の圧力を常に設定値まで上昇することが必要であり、設定圧力まで上昇しない場合には液化運転を続行するための高純ヘリウムガスが不足し、外部よりこのための高純ヘリウムガスを補給しなくてはならなくなる。   In order to carry out such an operation pattern stably and repeatedly, as shown in FIGS. 4 and 5, it is necessary to always increase the pressure of the buffer tank 32 to a set value during the purification operation. If the temperature does not rise, the high-pure helium gas for continuing the liquefaction operation is insufficient, and the high-pure helium gas for this purpose must be replenished from the outside.

これを避けるためには、精製運転中に不純物による閉塞によって精製運転が行えなくなり、再生運転に切り替えざるを得ないような運転を行わないことが重要である。このためには、再生運転により、その前の精製運転で固化していた不純物を完全に除去しておくことが必要である。
この再生運転の終了は、通常ヘリウム精製装置に設置されている温度計で計測された温度により判断しているが、精製運転および再生運転を何回も実施して最適な温度を決定しなくてはならなかった。
In order to avoid this, it is important not to perform an operation in which the refining operation cannot be performed due to blockage due to impurities during the refining operation, and the operation must be switched to the regeneration operation. For this purpose, it is necessary to completely remove impurities solidified in the previous purification operation by the regeneration operation.
The end of this regeneration operation is usually judged by the temperature measured by the thermometer installed in the helium purifier, but it is necessary to carry out the purification operation and the regeneration operation many times to determine the optimum temperature. I didn't.

このようなヘリウム精製装置の再生方法に関しては、特許第2812568号公報に、加温ガスをこれらの熱交換器それぞれに並列的に供給し、精製運転時に形成される温度分布をできるだけ維持しようとする方法が提案されており、温度が100Kとなった時点を再生運転の終了と判断しているが、この温度の決定根拠は述べられておらず、この温度が不適当であった場合には、やはり何回も精製運転、再生運転を行って最適な温度を決定しなくてはならない。   Regarding the regeneration method of such a helium refining apparatus, Japanese Patent No. 2812568 discloses that a heated gas is supplied in parallel to each of these heat exchangers to maintain the temperature distribution formed during the refining operation as much as possible. A method has been proposed, and it is determined that the regeneration operation has ended when the temperature reaches 100 K. However, the basis for determining this temperature is not stated, and if this temperature is inappropriate, After all, it is necessary to carry out refining operation and regeneration operation many times to determine the optimum temperature.

また、同種のヘリウム精製装置に関する特開平6−241654号公報においても、窒素や酸素の固化に関して述べられているものの、気液分離することにより固化する不純物を最小限に抑えるとの記述があるが、再生運転の終了時点に関しては明確に記述されていない。
このように従来の技術では、この種の精製装置では再生が必要であると認められているものの、再生運転の終了を判断する明確な判断基準がなく、精製運転および再生運転を繰り返し行い、再生終了と判断できる最適な温度を模索しなくてはならない。
特許第2812568号公報 特開平6−241654号公報 「超伝導・低温工学ハンドブック」オーム社刊、1993年、第234〜235頁
Japanese Patent Laid-Open No. 6-241654 relating to the same type of helium purifier also describes the solidification of nitrogen and oxygen, but there is a description that the impurities solidified by gas-liquid separation are minimized. The end point of the regeneration operation is not clearly described.
Thus, although the conventional technology recognizes that regeneration is necessary for this type of refiner, there is no clear criteria for judging the end of regeneration operation, and refining operation and regeneration operation are repeated to perform regeneration. We have to find the optimum temperature that can be judged as the end.
Japanese Patent No. 2812568 JP-A-6-241654 "Superconductivity / Cryogenic Engineering Handbook", published by Ohm, 1993, pp.234-235

よって、本発明における課題は、ヘリウム液化機内部の低温ヘリウムガスを利用し、不純物を含むヘリウムガスから凝縮、凝固により不純物を除去する精製装置において、外部より高純ヘリウムガスを供給することなしに、安定して精製運転を行い液化に必要な高純ヘリウムガスを精製できるようにするための、再生運転終了の明確な判断方法を提供することにある。   Therefore, a problem in the present invention is that a high-purity helium gas is not supplied from the outside in a purification apparatus that uses low-temperature helium gas inside a helium liquefier and removes impurities from helium gas containing impurities by condensation and solidification. An object of the present invention is to provide a clear determination method of the end of the regeneration operation so that the high purity helium gas necessary for liquefaction can be purified stably.

かかる課題を解決するため、
請求項1にかかる発明は、不純ヘリウムガスを熱交換器に通して冷却し、不純ヘリウムガス中の不純物を凝縮させて気液分離器に導入して分離したのち、さらに冷却して残留不純物を前記熱交換器内に凝固させて除去する精製運転と、
ついで、前記熱交換器に加温再生ガスを流して熱交換器内に凝固している残留不純物を融解して液状として前記気液分離器に導入して分離する再生運転を行うヘリウム精製装置の運転に際して、
再生運転中での気液分離器内の液面変化がなくなった時点を再生運転の終了時点と判断することを特徴とするヘリウム精製装置の運転方法である。
To solve this problem,
According to the first aspect of the present invention, the impure helium gas is cooled by passing through a heat exchanger, the impurities in the impure helium gas are condensed, introduced into the gas-liquid separator and separated, and further cooled to remove the residual impurities. A refining operation for solidifying and removing in the heat exchanger;
Next, a helium purifier for performing a regeneration operation in which a heated regeneration gas is allowed to flow through the heat exchanger to melt residual impurities solidified in the heat exchanger and is introduced into the gas-liquid separator as a liquid and separated. When driving
An operation method of a helium purification apparatus, characterized in that a time point at which the liquid level in the gas-liquid separator during the regenerating operation disappears is determined as a regenerating operation end point.

請求項2にかかる発明は、前記気液分離器内の液面変化がなくなった時点でのヘリウム精製装置の温度を再生運転の終了の指標とすることを特徴とする請求項1記載のヘリウム精製装置の運転方法である。   The invention according to claim 2 is characterized in that the temperature of the helium purifier at the time when the liquid level in the gas-liquid separator has disappeared is used as an indicator of the end of the regeneration operation. It is the operation method of an apparatus.

本発明にあっては、精製運転によって、熱交換器内に凝固した固体状の不純物は再生時に融解して液体となり、精製装置内の気液分離器に貯液され適宜外部に排出される。
従って、精製装置内の固化不純物が無くなった場合、気液分離器の液面は上昇せず、一定値となる。この液面の上昇がなくなった時点を再生が終了し、固化した不純物が除去された時点と判断することが可能となる。
In the present invention, the solid impurities solidified in the heat exchanger by the refining operation are melted at the time of regeneration into a liquid, stored in the gas-liquid separator in the refining apparatus, and appropriately discharged outside.
Therefore, when there are no solidified impurities in the refining apparatus, the liquid level of the gas-liquid separator does not rise and becomes a constant value. Regeneration is completed when the liquid level no longer rises, and it can be determined that solidified impurities are removed.

また、一度、この操作を実施し、精製装置の液面が上昇しなくなった時の精製装置内の温度を把握しておけば、再生のための加温再生ガスの流量を変更しない限り、この温度により再生運転の終了を把握することも可能となる。
よって、必要かつ十分な再生が行われるので、外部より高純ヘリウムガスを供給することなしに、安定して精製運転を行い液化に必要な高純ヘリウムガスを得ることができる。
Also, once this operation is performed and the temperature inside the purifier when the liquid level of the purifier no longer rises is known, this can be done unless the flow rate of the heated regeneration gas for regeneration is changed. It is also possible to grasp the end of the regeneration operation based on the temperature.
Therefore, since necessary and sufficient regeneration is performed, the high purity helium gas necessary for liquefaction can be obtained stably by performing the purification operation without supplying the high purity helium gas from the outside.

図6は、図2、図3に示すヘリウム精製装置における運転経過時間と気液分離器LVの液状不純物の液面の変化および精製装置内の温度、例えば図3に示すTWで表される温度との関係を示すグラフであり、横軸は運転経過時間を表し、左側縦軸は精製装置内の温度TWを、右縦軸は精製装置内の気液分離器LVの液面を示している。   FIG. 6 shows the operation elapsed time in the helium purification apparatus shown in FIGS. 2 and 3, the change in the liquid level of the liquid impurities in the gas-liquid separator LV, and the temperature in the purification apparatus, for example, the temperature represented by TW shown in FIG. The horizontal axis represents the operation elapsed time, the left vertical axis represents the temperature TW in the purifier, and the right vertical axis represents the liquid level of the gas-liquid separator LV in the purifier. .

図6で示されるように、再生運転前の精製運転時(時間軸で0.12時間まで)には、精製装置の温度TWは、一定に約75Kに調整されており、精製運転により凝縮された不純物液体が気液分離器LVに貯液されて、液面が少しずつ上昇している。その後、再生運転を開始しており、これは精製装置の温度が上昇していることでわかる。   As shown in FIG. 6, during the purification operation before the regeneration operation (up to 0.12 hours on the time axis), the temperature TW of the purification device is constantly adjusted to about 75K and is condensed by the purification operation. The impure liquid is stored in the gas-liquid separator LV, and the liquid level gradually increases. Thereafter, the regeneration operation is started, which can be seen from the fact that the temperature of the purifier is increasing.

一方、気液分離器LVの液面は、精製装置温度TWが100K程度になるまで顕著に上昇せず、その後徐々に上昇をはじめている。結局、この液面上昇が無くなるのは、前記温度が170Kから180Kのあたりであり、ここまで再生を実施しないと、この精製装置では固化した不純物を完全に除去できないことが分かる。   On the other hand, the liquid level of the gas-liquid separator LV does not rise remarkably until the purifier temperature TW reaches about 100K, and thereafter gradually begins to rise. Eventually, the rise in the liquid level disappears when the temperature is around 170K to 180K, and it can be seen that this refining apparatus cannot completely remove the solidified impurities unless the regeneration is performed so far.

このように再生運転時の気液分離器LV内の液面変化を監視し、液面変化が無くなった時点で再生を終了とする再生運転を実施することにより、精製装置内のすべての不純物は液体として取り除かれ、次の精製運転において残留していた不純物の固化で精製運転時間が短くなるようなことがなく、精製運転、再生運転を安定して繰り返し実施することが可能となる。   In this way, by monitoring the liquid level change in the gas-liquid separator LV during the regeneration operation and carrying out the regeneration operation that terminates the regeneration when the liquid level change disappears, all impurities in the purifier are removed. The purification operation time is not shortened due to solidification of impurities that have been removed as a liquid and remained in the next purification operation, and the purification operation and the regeneration operation can be stably and repeatedly performed.

図5のように、バッファータンク32の圧力を一定とするような精製運転は、図4に示すようなバッファータンク32の圧力が上限値に達すると直ちに再生運転を行う運転方法よりも、精製運転時間が長くなるため、固化する不純物量が多くなり、再生運転の終了を更に厳密に判断しないと、すぐに熱交換器が閉塞する傾向となるが、この判断方法を適用することにより、問題なく精製運転を繰り返し行うことが可能となる。   As shown in FIG. 5, the refining operation in which the pressure in the buffer tank 32 is kept constant is more refined than the operation method in which the regeneration operation is performed immediately when the pressure in the buffer tank 32 reaches the upper limit as shown in FIG. Since the time becomes longer, the amount of impurities to solidify increases, and if the end of the regeneration operation is not judged more strictly, the heat exchanger tends to close immediately, but there is no problem by applying this judgment method. It is possible to repeat the purification operation.

また、本発明の運転方法によれば、固化して蓄積された窒素などの不純物を完全に液体として除去できる(炭酸ガスのような高沸点成分は既に気化しパージされて除去されている)ため、固化した不純物が蓄積される範囲は熱交換器の構造などにも依存するが、どのような構造であっても、再生時に気液分離器LVの液面変化を監視して再生運転を行えば、内部に固化していた不純物をほぼ完全に除去することが可能となる。   Further, according to the operation method of the present invention, solidified and accumulated impurities such as nitrogen can be completely removed as a liquid (high boiling components such as carbon dioxide have already been vaporized and purged and removed). The range in which solidified impurities are accumulated depends on the structure of the heat exchanger, etc., but whatever the structure, the regeneration operation is monitored by monitoring the change in the liquid level of the gas-liquid separator LV during regeneration. For example, the impurities solidified inside can be almost completely removed.

一方、ヘリウム精製装置を構成する全熱交換器を常温まで加温することによっても完全な再生を行えるが、この場合には必要以上に加温を行ってしまうため、次の精製運転を開始できるまでの時間が長くなってしまい、この間の液化運転を継続するための高純ヘリウムガスが不足し、外部より液化のための高純ヘリウムガスの供給が必要となってしまう。   On the other hand, complete regeneration can also be performed by heating the total heat exchanger constituting the helium purification apparatus to room temperature, but in this case, since the heating is performed more than necessary, the next purification operation can be started. The time required until the liquefaction operation during this time becomes long, and there is a shortage of high-pure helium gas for continuing the liquefaction operation.

ヘリウム精製装置は、別設備で回収された不純物を含むヘリウムのための精製装置であるため、前述のように、対象となる不純物は、空気成分、特に窒素、酸素であり、これらの濃度が変化しても凝縮による除去量が変化するだけで、気相側の不純物濃度はあまり変化せず、ほぼ1%程度となる。
従って、不純物が固化する範囲も、位置を明確に定めることは困難であるが、熱交換器内部の位置としてはほとんど変わらず、本発明の方法を適用すれば、再生運転の終了時点を明確に定めることが可能となる。
このように、本発明の方法を用いることにより、精製装置を構成する熱交換器の構造や不純物濃度が相違しても、再生運転の終了を的確に判断することが可能となる。
Since the helium purifier is a purifier for helium containing impurities recovered in a separate facility, as described above, the target impurities are air components, particularly nitrogen and oxygen, and their concentrations change. Even if the removal amount by condensation only changes, the impurity concentration on the gas phase side does not change so much, but is about 1%.
Therefore, it is difficult to clearly determine the position where the impurities solidify, but the position inside the heat exchanger is hardly changed, and if the method of the present invention is applied, the end point of the regeneration operation is clearly defined. It can be determined.
In this way, by using the method of the present invention, it is possible to accurately determine the end of the regeneration operation even if the structure and impurity concentration of the heat exchanger constituting the purification apparatus are different.

さらに、再生運転時の流量条件を常に一定となるように設定しておけば、再生運転時の気液分離器LVの液面変化を毎回監視せずとも、先に述べたように、再生運転時に気液分離器LVの液面変化が無くなった時点での精製装置内の代表的な温度を把握しておけば、以降は、この温度によって再生運転の終了時点を判断することが可能となる。   Furthermore, if the flow conditions during the regeneration operation are always set to be constant, the regeneration operation can be performed as described above without monitoring the liquid level change of the gas-liquid separator LV during the regeneration operation every time. If the representative temperature in the purification apparatus at the time when the liquid level change of the gas-liquid separator LV disappears at times, it is possible to determine the end point of the regeneration operation from this temperature thereafter. .

本発明の運転方法により、ヘリウム精製装置の再生を実施すれば、精製装置の熱交換器の構造、再生運転時の流路構成、及び再生完了の判断用温度計設置位置などに依存せず、普遍的に再生完了の状態を明確に判断することができる。
これにより十分な再生を実施できるため、精製運転も安定して実施でき、したがって、このような精製装置を使った液化連続運転を安定して実施することが可能となる。
According to the operation method of the present invention, if the regeneration of the helium purification apparatus is carried out, it does not depend on the structure of the heat exchanger of the purification apparatus, the flow path configuration during the regeneration operation, the thermometer installation position for judging the completion of regeneration, etc. It is possible to clearly determine the state of completion of reproduction universally.
As a result, sufficient regeneration can be carried out, so that the refining operation can also be carried out stably. Therefore, the continuous liquefaction operation using such a purifying apparatus can be carried out stably.

本発明の対象となるヘリウム精製装置を含むヘリウム液化機の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the helium liquefier containing the helium refinement | purification apparatus used as the object of this invention. 図1の精製装置の精製運転状態を示すフロー図である。It is a flowchart which shows the refinement | purification driving | running state of the refiner | purifier of FIG. 図1の精製装置の加温再生状態を示すフロー図である。It is a flowchart which shows the heating regeneration state of the refiner | purifier of FIG. ヘリウム精製装置運転時のバッファータンク圧力変化の一例を示すグラフである。It is a graph which shows an example of a buffer tank pressure change at the time of helium refining device operation. ヘリウム精製装置運転時のバッファータンク圧力変化の他の例を示すグラフである。It is a graph which shows the other example of the buffer tank pressure change at the time of helium refiner | purifier operation. ヘリウム精製装置運転時の気液分離器内の液面変化と精製装置温度の変化を示すグラフである。It is a graph which shows the liquid level change in a gas-liquid separator at the time of helium refinement | purification apparatus driving | operation, and the change of refiner | purifier temperature.

符号の説明Explanation of symbols

HX10、HX11、HX12・・熱交換器、LV・・気液分離器液、V1〜V10・・弁 HX10, HX11, HX12 ... Heat exchanger, LV ... Gas-liquid separator liquid, V1-V10 ... Valve

Claims (2)

不純ヘリウムガスを熱交換器に通して冷却し、不純ヘリウムガス中の不純物を凝縮させて気液分離器に導入して分離したのち、さらにこの不純ヘリウムガスを冷却して残留不純物を前記熱交換器内に凝固させて除去する精製運転と、
ついで、前記熱交換器に加温再生ガスを流して熱交換器内に凝固している残留不純物を融解して液状として前記気液分離器に流入して分離する再生運転を行うヘリウム精製装置の運転に際して、
再生運転中での前記気液分離器内の液面変化がなくなった時点を再生運転の終了時点と判断することを特徴とするヘリウム精製装置の運転方法。
Impure helium gas is cooled by passing through a heat exchanger, impurities in the impure helium gas are condensed, introduced into a gas-liquid separator and separated, and then the impure helium gas is further cooled to remove the residual impurities from the heat exchange. Refining operation to solidify and remove in the vessel;
Next, a helium purifier for performing a regeneration operation in which a warm regeneration gas is flowed through the heat exchanger to melt residual impurities solidified in the heat exchanger and flow into the gas-liquid separator as a liquid to separate them. When driving
A method of operating a helium purification apparatus, characterized in that a time point at which the liquid level in the gas-liquid separator during the regenerating operation disappears is determined as a regenerating operation end point.
前記気液分離器内の液面変化がなくなった時点でのヘリウム精製装置の温度を再生運転の終了の指標とすることを特徴とする請求項1記載のヘリウム精製装置の運転方法。   2. The method of operating a helium purifier according to claim 1, wherein the temperature of the helium purifier at the time when the liquid level in the gas-liquid separator disappears is used as an indicator of the end of the regeneration operation.
JP2006280214A 2006-10-13 2006-10-13 Operation method of helium purifier Active JP4313389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006280214A JP4313389B2 (en) 2006-10-13 2006-10-13 Operation method of helium purifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006280214A JP4313389B2 (en) 2006-10-13 2006-10-13 Operation method of helium purifier

Publications (2)

Publication Number Publication Date
JP2008096055A JP2008096055A (en) 2008-04-24
JP4313389B2 true JP4313389B2 (en) 2009-08-12

Family

ID=39379080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006280214A Active JP4313389B2 (en) 2006-10-13 2006-10-13 Operation method of helium purifier

Country Status (1)

Country Link
JP (1) JP4313389B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5074433B2 (en) * 2009-02-20 2012-11-14 大陽日酸株式会社 Hydrogen removal device
FR3066809B1 (en) * 2017-05-24 2020-01-31 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
CN116558229B (en) * 2023-04-11 2024-03-19 中国科学院理化技术研究所 Helium purifier capable of continuously working and purifying method

Also Published As

Publication number Publication date
JP2008096055A (en) 2008-04-24

Similar Documents

Publication Publication Date Title
CA2136382C (en) Process for removing elemental sulfur from a gas stream
JP4313389B2 (en) Operation method of helium purifier
US4238211A (en) Method of employing a first contaminant to prevent freeze-out of a second contaminant during cryogenic processing of a gaseous stream
US20080202160A1 (en) Method and device for fractionated cryocondensation
JP6354516B2 (en) Cryogenic air separation device and cryogenic air separation method
JPH08254389A (en) Separating method of gas mixture by low-temperature distribution
ITMI20072021A1 (en) PROCEDURE FOR REDUCING CONCENTRATION OF SALTS IN AN AQUEOUS CURRENT THAT CONTAINS THEM
JP5074433B2 (en) Hydrogen removal device
US20060230766A1 (en) Circulation-type liquid helium reliquefaction apparatus with contaminant discharge function, method of discharging contaminant from the apparatus, and refiner and transfer tube both of which are used for the apparatus
KR20150069389A (en) A natural gas regeneration system
JP5577705B2 (en) Fluorine gas generator
JP4823760B2 (en) Cooling method and regenerator using LNG cold
CN218178620U (en) Low-temperature liquid adsorber cooling device
US3097940A (en) Process for purifying gases
JP3644918B2 (en) Air separation device and air separation method
JP2006266532A (en) Air separating device and its operating method
JP4494158B2 (en) Gas generator and method for adjusting piping temperature of gas generator
JPH0579715A (en) Helium refining device
JPS6129768B2 (en)
US2700431A (en) Purification of chlorine
JP2812568B2 (en) Gas introduction device in refinery
NL2026277B1 (en) Deep cooler
JPS638395B2 (en)
JP2007232329A (en) Cold utilization method
JP4827233B2 (en) Forward freeze concentration method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4313389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250