JP2006266532A - Air separating device and its operating method - Google Patents

Air separating device and its operating method Download PDF

Info

Publication number
JP2006266532A
JP2006266532A JP2005082041A JP2005082041A JP2006266532A JP 2006266532 A JP2006266532 A JP 2006266532A JP 2005082041 A JP2005082041 A JP 2005082041A JP 2005082041 A JP2005082041 A JP 2005082041A JP 2006266532 A JP2006266532 A JP 2006266532A
Authority
JP
Japan
Prior art keywords
heat exchange
nitrogen gas
liquefied
liquefied oxygen
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005082041A
Other languages
Japanese (ja)
Inventor
Masahiro Ikeda
雅博 池田
Kazunari Arai
一成 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2005082041A priority Critical patent/JP2006266532A/en
Publication of JP2006266532A publication Critical patent/JP2006266532A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04787Heat exchange, e.g. main heat exchange line; Subcooler, external reboiler-condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04824Stopping of the process, e.g. defrosting or deriming; Back-up procedures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04854Safety aspects of operation
    • F25J3/0486Safety aspects of operation of vaporisers for oxygen enriched liquids, e.g. purging of liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • F25J3/04878Side by side arrangement of multiple vessels in a main column system, wherein the vessels are normally mounted one upon the other or forming different sections of the same column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • F25J3/04884Arrangement of reboiler-condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • F25J2240/44Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/04Down-flowing type boiler-condenser, i.e. with evaporation of a falling liquid film
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air separating device and its operation method capable of eliminating impurities accumulated in a falling liquid film type condenser of a main condenser while continuously operating the air separating device. <P>SOLUTION: In this air separating device applying the falling liquid film type condenser composed of a plurality of heat exchange cores 14, 15 in the main condenser 11, the heat exchange cores 14, 15 are respectively provided with valves 17a, 17b for stopping introduction of a nitrogen gas, on passages 14a, 15a introducing the nitrogen gas as warm fluid to the heat exchangers 14, 15. A weight reducing operation is performed in the air separating device, the introduction of nitrogen gas as warm fluid to the heat exchange cores as cleaned objects among the plurality of heat exchange cores is stopped, the introduction of liquefied oxygen as cold fluid to the heat exchange cores is continued, and components of high boiling point accumulated on a liquefied oxygen-side heat transfer face of the heat exchange cores is cleaned and eliminated by the liquefied oxygen. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、空気分離装置及びその運転方法に関し、詳しくは、主凝縮器に使用した流下液膜式凝縮器の伝熱面に蓄積した高沸点成分を洗浄する手段を備えた空気分離装置及びその運転方法に関する。   The present invention relates to an air separation device and a method for operating the same, and more particularly, to an air separation device including means for cleaning high boiling point components accumulated on a heat transfer surface of a falling liquid film type condenser used in a main condenser and its It relates to the driving method.

工業的に酸素、窒素を製造する装置として、空気を原料とした複精留塔による低温蒸留によって製造する深冷分離方法を適用した空気分離装置が一般的である。その典型的な空気分離装置は、運転圧力が約6バール(bar)の中圧塔及び約1.4バールの低圧塔から構成されており、その中圧塔と低圧塔とは熱的に結合されている。つまり、中圧塔頂の窒素ガスを液化し、低圧塔底の液体酸素を気化させるために、主凝縮器が設置されている。その主凝縮器には、浸潤式のプレートフィン式熱交換器が多く用いられている。この方式の主凝縮器では、液体酸素の液ヘッドがあるので、主凝縮器中間部で温度差が小さくなる部分がある。   As an apparatus for industrially producing oxygen and nitrogen, an air separation apparatus to which a cryogenic separation method produced by low-temperature distillation using a double rectification column using air as a raw material is generally used. The typical air separation apparatus consists of a medium pressure column with an operating pressure of about 6 bar and a low pressure column of about 1.4 bar, the medium pressure column and the low pressure column being thermally coupled. Has been. That is, the main condenser is installed to liquefy the nitrogen gas at the top of the intermediate pressure tower and vaporize the liquid oxygen at the bottom of the low pressure tower. As the main condenser, an infiltrating plate fin heat exchanger is often used. In the main condenser of this system, since there is a liquid oxygen liquid head, there is a part where the temperature difference becomes small in the middle part of the main condenser.

この浸潤式主凝縮器に対して改良された流下液膜式凝縮器(DFR)が実用化されている(例えば、特許文献1参照。)。この流下液膜式凝縮器は、主凝縮器自体が液化酸素に浸潤していないので、主凝縮器内の温度差が略一定となり、小温度差でも運転が可能となる。このため、従来に比較して中圧塔運転圧力は低くなり、製品動力の原単位を大きく改善できる。   A falling liquid film type condenser (DFR) improved with respect to this infiltration type main condenser has been put into practical use (for example, see Patent Document 1). Since the main condenser itself is not infiltrated with liquefied oxygen, the temperature difference in the main condenser is substantially constant, and this falling liquid film type condenser can be operated even with a small temperature difference. For this reason, the operation pressure of the intermediate pressure tower is lower than the conventional one, and the basic unit of product power can be greatly improved.

空気分離装置では、原料空気に一酸化二窒素や二酸化炭素等の高沸点不純物が微量混入する場合があり、これらの不純物は、低圧塔下部の主凝縮器に濃縮される。従来の浸潤式主凝縮器では、液化酸素側伝熱面は常に液化酸素に浸潤した状態であるが、流下液膜式凝縮器では酸素伝熱面の一部は完全に乾燥し、その部分で高沸点不純物が蓄積する懸念がある。   In the air separation device, trace amounts of high-boiling impurities such as dinitrogen monoxide and carbon dioxide may be mixed in the raw air, and these impurities are concentrated in the main condenser at the lower part of the low-pressure column. In the conventional infiltration type main condenser, the liquefied oxygen side heat transfer surface is always infiltrated with liquefied oxygen, but in the falling liquid film type condenser, part of the oxygen heat transfer surface is completely dried, There is a concern that high-boiling impurities accumulate.

特に、大気中に約0.3ppm存在する一酸化二窒素は、固化点が−102℃と高く、揮発度が小さい特徴がある。したがって、一酸化二窒素を微量に含む液化酸素が気化する際に、液相への一酸化二窒素の濃縮や、伝熱面での固化が懸念される物質である。このために、主凝縮器に流下液膜式凝縮器を採用した空気分離装置では、定期的に、主凝縮器に一酸化二窒素等が蓄積しないように処理する必要がある。   In particular, dinitrogen monoxide present at about 0.3 ppm in the atmosphere is characterized by a high solidification point of −102 ° C. and low volatility. Therefore, when liquefied oxygen containing a small amount of dinitrogen monoxide is vaporized, it is a substance that is likely to be concentrated in the liquid phase and solidified on the heat transfer surface. For this reason, in an air separation apparatus that employs a falling liquid film type condenser as the main condenser, it is necessary to periodically treat the main condenser so as not to accumulate dinitrogen monoxide or the like.

空気分離装置を連続運転しながら、主凝縮器に蓄積した閉塞物質(高沸点不純物)を除去する方法として、複数の浸潤式主凝縮器を有する空気分離装置において、閉塞物質を除去する対象となる凝縮器に導入される窒素ガス及び液化酸素を遮断し、外部から常温の酸素を主凝縮器に導入し、主凝縮器に蓄積した閉塞物質を昇華させて除去することが提案されている(例えば、特許文献2参照。)。
特開2000−111247号公報 特開2001−221567号公報
As a method of removing clogged substances (high boiling point impurities) accumulated in the main condenser while continuously operating the air separator, the air separator having a plurality of infiltration type main condensers is a target for removing clogged substances. It has been proposed to block nitrogen gas and liquefied oxygen introduced into the condenser, introduce oxygen at room temperature from the outside into the main condenser, and sublimate and remove the clogging substances accumulated in the main condenser (for example, , See Patent Document 2).
JP 2000-111247 A JP 2001-221567 A

前記特許文献2に記載された方法では、低温で運転されている凝縮器を常温まで加温するための時間とエネルギーとが必要となり、かつ、処理後に凝縮器の運転を再開する場合には、常温の主凝縮器を運転温度まで冷却する時間と寒冷が必要となる。つまり、不純物の除去を行う都度、エネルギー(熱及び寒冷)が必要である。また、凝縮器の洗浄には、その都度、製品純度を有する酸素ガスが必要であり、収率に影響をもたらしていた。   In the method described in Patent Document 2, it takes time and energy to warm the condenser operating at a low temperature to room temperature, and when the operation of the condenser is resumed after processing, Time and cooling to cool the main condenser at room temperature to the operating temperature are required. That is, energy (heat and cold) is required each time impurities are removed. Further, each time the condenser is washed, oxygen gas having product purity is required, which has an influence on the yield.

そこで本発明は、主凝縮器に流下液膜式凝縮器を用いた空気分離装置において、空気分離装置を連続運転しながら流下液膜式凝縮器内に蓄積した不純物を除去することができる空気分離装置及びその運転方法を提供することを目的としている。   Therefore, the present invention provides an air separation apparatus that uses a falling liquid film type condenser as a main condenser, and can remove impurities accumulated in the falling liquid film type condenser while continuously operating the air separation apparatus. It aims at providing a device and its operating method.

上記目的を達成するため、本発明の空気分離装置は、主凝縮器に複数の熱交換コアからなる流下液膜式凝縮器を用いた空気分離装置において、各熱交換器コアに温流体である窒素ガスをそれぞれ導入する各経路に、前記窒素ガスの導入を停止するための弁をそれぞれ設けたことを特徴としている。   In order to achieve the above object, the air separation device of the present invention is a hot fluid in each heat exchanger core in the air separation device using a falling liquid film type condenser comprising a plurality of heat exchange cores in the main condenser. Each path for introducing nitrogen gas is provided with a valve for stopping the introduction of the nitrogen gas.

また、本発明の空気分離装置の運転方法は、主凝縮器に複数の熱交換コアからなる流下液膜式凝縮器を用いた空気分離装置の運転方法において、前記空気分離装置を減量運転するとともに、複数の熱交換コアの中の洗浄対象となる熱交換コアへの温流体である窒素ガスの導入を停止し、該熱交換器コアへの冷流体である液化酸素の導入を継続し、該液化酸素によって該熱交換コアの液化酸素側伝熱面に蓄積した高沸点成分を洗浄除去することを特徴としている。   In addition, the operation method of the air separation device according to the present invention is a method of operating an air separation device using a falling liquid film type condenser having a plurality of heat exchange cores as a main condenser, and performs a reduction operation of the air separation device. Stopping the introduction of nitrogen gas, which is a warm fluid, into the heat exchange core to be cleaned in the plurality of heat exchange cores, and continuing the introduction of liquefied oxygen, which is a cold fluid, into the heat exchanger core, The high boiling point component accumulated on the liquefied oxygen side heat transfer surface of the heat exchange core is washed away with liquefied oxygen.

本発明によれば、空気分離装置の連続運転が可能となる。また、従来のように無駄なエネルギーを使う必要がなく、製品の収率にも影響を与えることがない。   According to the present invention, the air separator can be continuously operated. Further, there is no need to use wasted energy as in the prior art, and the yield of the product is not affected.

図1は本発明を適用した主凝縮器の一形態例を示す系統図である。主凝縮器11は、中圧塔12の頂部の窒素ガスと、低圧塔13の底部の液化酸素とを熱交換させることにより、窒素ガスを液化するとともに液化酸素を気化するものであって、低圧塔13の下部空間内に設置されている。   FIG. 1 is a system diagram showing an embodiment of a main condenser to which the present invention is applied. The main condenser 11 heat-exchanges the nitrogen gas at the top of the intermediate pressure tower 12 and the liquefied oxygen at the bottom of the low pressure tower 13 to liquefy the nitrogen gas and vaporize the liquefied oxygen. It is installed in the lower space of the tower 13.

本形態例に示す主凝縮器11は、2個の熱交換器コア14,15を備えており、各熱交換器コア14,15には、中圧塔12の窒素ガスを凝縮通路上部に導入する窒素ガス経路14a、15aと、液化した窒素を凝縮通路下部から抜き出して中圧塔12に戻す液化窒素経路14b、15bと、低圧塔13底部に溜まっている液化酸素をポンプ16で揚液し、蒸発通路上部に供給する液化酸素経路14c、15cとが設けられている。   The main condenser 11 shown in this embodiment includes two heat exchanger cores 14 and 15, and the nitrogen gas of the intermediate pressure tower 12 is introduced into the upper part of the condensation passage in each of the heat exchanger cores 14 and 15. The nitrogen gas passages 14a and 15a to be discharged, the liquefied nitrogen passages 14b and 15b for extracting the liquefied nitrogen from the lower portion of the condensation passage and returning to the intermediate pressure tower 12, and the liquefied oxygen accumulated at the bottom of the low pressure tower 13 is pumped by the pump 16. The liquefied oxygen passages 14c and 15c for supplying the upper part of the evaporation passage are provided.

なお、蒸発通路で蒸発しなかった液化酸素は、蒸発通路の下端から低圧塔13の底部に流下する。前記窒素ガス経路14a、15aには、各熱交換器コア14,15への窒素ガスの導入を停止するための弁17a、17bがそれぞれ設けられている。   The liquefied oxygen that has not evaporated in the evaporation passage flows down from the lower end of the evaporation passage to the bottom of the low-pressure column 13. The nitrogen gas paths 14a and 15a are provided with valves 17a and 17b for stopping the introduction of nitrogen gas into the heat exchanger cores 14 and 15, respectively.

通常の運転時には、前記弁17a、17bは共に開であり、中圧塔12から経路18に抜き出された窒素ガスは、窒素ガス経路14a、15aに分岐して両方の熱交換器コア14,15の凝縮通路にそれぞれ温流体として導入される。また、低圧塔13から経路19に抜き出された液化酸素はポンプ16で揚液され、経路20から液化酸素経路14c、15cに分岐して両方の熱交換器コア14,15の蒸発通路にそれぞれ冷流体として導入される。   During normal operation, the valves 17a and 17b are both open, and the nitrogen gas extracted from the intermediate pressure tower 12 to the path 18 is branched into the nitrogen gas paths 14a and 15a, so that both the heat exchanger cores 14 and Each of the 15 condensation passages is introduced as a warm fluid. The liquefied oxygen extracted from the low-pressure tower 13 to the path 19 is pumped by the pump 16 and branches from the path 20 to the liquefied oxygen paths 14c and 15c to the evaporation passages of both the heat exchanger cores 14 and 15, respectively. Introduced as a cold fluid.

各熱交換器コア14,15の凝縮通路に流入した窒素ガスは、蒸発通路を流下する液化酸素と熱交換を行い、凝縮液化して液化窒素となり、液化窒素経路14b、15bに抜き出されて経路21から中圧塔12の頂部に還流液として導入される。また、各熱交換器コア14,15の蒸発通路に流入した酸素ガスは、液化酸素側伝熱面を伝わって流下しながら凝縮通路を流れる窒素ガスと熱交換を行い、その一部が蒸発気化して酸素ガスとなり、蒸発通路内を上昇してそのまま低圧塔13の上昇ガスとなる。   The nitrogen gas flowing into the condensation passages of the heat exchanger cores 14 and 15 exchanges heat with liquefied oxygen flowing down the evaporation passages, condenses and liquefies into liquefied nitrogen, and is extracted into the liquefied nitrogen passages 14b and 15b. It is introduced from the path 21 to the top of the intermediate pressure tower 12 as a reflux liquid. The oxygen gas flowing into the evaporation passages of the heat exchanger cores 14 and 15 exchanges heat with the nitrogen gas flowing through the condensation passage while flowing down the liquefied oxygen side heat transfer surface, and part of the oxygen gas is evaporated. It becomes oxygen gas, rises in the evaporation passage, and directly rises in the low pressure column 13.

一方の熱交換器コア14の液化酸素側伝熱面に蓄積した高沸点成分を洗浄除去する際には、まず、空気分離装置を減量運転して中圧塔12に導入する原料空気を減量するとともに、窒素ガス経路14aの弁17aを閉じて熱交換器コア14への窒素ガスの導入を停止する。   When the high-boiling components accumulated on the liquefied oxygen side heat transfer surface of one heat exchanger core 14 are washed and removed, first, the air separation device is operated to reduce the amount of raw air introduced into the intermediate pressure tower 12. At the same time, the valve 17a of the nitrogen gas path 14a is closed to stop the introduction of the nitrogen gas into the heat exchanger core 14.

これにより、熱交換器コア14の凝縮通路に温流体が供給されない状態となるので、熱交換器コア14の蒸発通路を流れる液化酸素は温流体によって加熱されないため、気化することなく液状のまま液化酸素側伝熱面を伝わって流下し、熱交換器コア14の液化酸素側伝熱面に蓄積した高沸点成分を液中に取り込んで低圧塔13の底部に流下する状態となる。したがって、熱交換器コア14の液化酸素側伝熱面に蓄積した高沸点成分が液化酸素により除去されて液化酸素側伝熱面が洗浄される。   As a result, since the warm fluid is not supplied to the condensation passage of the heat exchanger core 14, the liquefied oxygen flowing through the evaporation passage of the heat exchanger core 14 is not heated by the warm fluid, and is thus liquefied without being vaporized. The high boiling point component that has flowed down the oxygen side heat transfer surface and accumulated on the liquefied oxygen side heat transfer surface of the heat exchanger core 14 is taken into the liquid and flows down to the bottom of the low pressure column 13. Therefore, the high boiling point component accumulated on the liquefied oxygen side heat transfer surface of the heat exchanger core 14 is removed by the liquefied oxygen, and the liquefied oxygen side heat transfer surface is cleaned.

熱交換器コア14の液化酸素側伝熱面を洗浄した後、弁17aを開いて熱交換器コア14での運転を再開するとともに、窒素ガス経路15aの弁17bを閉じて熱交換器コア15への窒素ガスの導入を停止することにより、前記同様にして熱交換器コア15の液化酸素側伝熱面に蓄積した高沸点成分を液化酸素により除去して液化酸素側伝熱面を洗浄することができる。   After washing the liquefied oxygen side heat transfer surface of the heat exchanger core 14, the valve 17a is opened to restart the operation in the heat exchanger core 14, and the valve 17b of the nitrogen gas path 15a is closed to close the heat exchanger core 15 By stopping the introduction of nitrogen gas to the liquefied oxygen side heat transfer surface, the high-boiling components accumulated on the liquefied oxygen side heat transfer surface of the heat exchanger core 15 are removed by liquefied oxygen in the same manner as described above. be able to.

このような洗浄操作を定期的に行うことにより、液化酸素側伝熱面に高沸点成分が大量に蓄積することを回避でき、空気分離装置を長期間にわたって安定した状態で連続運転することができる。   By periodically performing such a washing operation, it is possible to avoid the accumulation of a large amount of high-boiling components on the liquefied oxygen side heat transfer surface, and it is possible to continuously operate the air separation device in a stable state over a long period of time. .

図2は、本発明を複式精留塔を備えた空気分離装置に適用した一形態例を示す系統図である。なお、主凝縮器の部分は、図面の見やすさを考慮して拡大して表している。   FIG. 2 is a system diagram showing an embodiment in which the present invention is applied to an air separation apparatus equipped with a double rectification column. Note that the main condenser portion is shown enlarged in view of the drawing.

この空気分離装置は、原料空気圧縮機31で所定圧力に圧縮され、アフタークーラー32で冷却された後、切換使用される吸着器33で水分や二酸化炭素等の空気中の不純物が除去されて精製される。この精製空気は、主熱交換器34で製品ガス等と熱交換することによって露点付近まで冷却されて低温空気となる。この低温空気は、経路35を通って中圧塔36の下部に導入され、この中圧塔36での蒸留操作によって塔頂部の窒素ガスと塔底部の酸素富化液化空気とに分離する。   This air separation device is compressed to a predetermined pressure by a raw material air compressor 31 and cooled by an after cooler 32, and then purified by removing impurities in the air such as moisture and carbon dioxide by an adsorber 33 used for switching. Is done. This purified air is cooled to the vicinity of the dew point by heat exchange with the product gas or the like in the main heat exchanger 34 to become low-temperature air. This low-temperature air is introduced into the lower part of the intermediate pressure tower 36 through the path 35, and is separated into nitrogen gas at the top of the tower and oxygen-enriched liquefied air at the bottom of the tower by distillation operation in the intermediate pressure tower 36.

中圧塔36の底部から経路37に抜き出された酸素富化液化空気は、過冷器38及び減圧弁39を通って低圧塔40の中段に導入され、この低圧塔40での蒸留操作により、塔頂部の窒素ガスと塔底部の液化酸素とに分離する。   The oxygen-enriched liquefied air extracted from the bottom of the intermediate pressure column 36 to the path 37 is introduced into the middle stage of the low pressure column 40 through the supercooler 38 and the pressure reducing valve 39, and is distilled by this low pressure column 40. Then, it is separated into nitrogen gas at the top of the column and liquefied oxygen at the bottom of the column.

中圧塔36の頂部から経路41に抜き出された窒素ガスは、その一部、例えば10%程度が経路42に分岐し、熱交換器34で前記精製空気と熱交換することによって中間温度まで昇温した後、膨張タービン43で断熱膨張することにより寒冷を発生させる。膨張タービン43から経路44に流出した低温、低圧力の窒素ガスは、再び主熱交換器34を通って常温付近まで昇温した後、経路45から系外に取り出される。   A part of, for example, about 10% of the nitrogen gas extracted from the top of the intermediate pressure tower 36 into the path 41 branches to the path 42, and heat exchange with the purified air in the heat exchanger 34 leads to an intermediate temperature. After the temperature rises, cold is generated by adiabatic expansion in the expansion turbine 43. The low-temperature, low-pressure nitrogen gas that has flowed out of the expansion turbine 43 into the path 44 is again heated to near room temperature through the main heat exchanger 34 and then taken out of the system from the path 45.

また、前記経路41から経路46に分岐した窒素ガスは、主凝縮器51に温流体として導入される。この主凝縮器51は、容器52内に同一性能の4基の熱交換器コア53,54,55,56を収納したものであって、各熱交換器コア53,54,55,56には、前記同様に、窒素ガスを凝縮通路上部に導入する窒素ガス経路53a,54a,55a,56aと、液化窒素を凝縮通路下部から抜き出す液化窒素経路53b,54b,55b,56bと、液化酸素を蒸発通路上部に供給する液化酸素経路53c,54c,55c,56cとが設けられ、前記窒素ガス経路53a,54a,55a,56aには、各熱交換器コア53,54,55,56への窒素ガスの導入を停止するための弁57a,57b,57c,57dがそれぞれ設けられている。   The nitrogen gas branched from the path 41 to the path 46 is introduced into the main condenser 51 as a warm fluid. The main condenser 51 includes four heat exchanger cores 53, 54, 55, 56 having the same performance in a container 52, and each of the heat exchanger cores 53, 54, 55, 56 includes Similarly, the nitrogen gas passages 53a, 54a, 55a, 56a for introducing nitrogen gas into the upper portion of the condensation passage, the liquefied nitrogen passages 53b, 54b, 55b, 56b for extracting liquefied nitrogen from the lower portion of the condensation passage, and the liquefied oxygen are evaporated. Liquefied oxygen passages 53c, 54c, 55c, and 56c are provided in the upper part of the passage, and nitrogen gas to the heat exchanger cores 53, 54, 55, and 56 is provided in the nitrogen gas passages 53a, 54a, 55a, and 56a. Valves 57a, 57b, 57c, and 57d for stopping the introduction of each are provided.

また、前記容器52の底部には熱交換器コア53,54,55,56で気化せずに容器底部に流下した液化酸素を抜き出す液化酸素抜出経路58が設けられ、容器52の上部には、熱交換器コア53,54,55,56で気化した酸素ガスを抜き出す酸素ガス抜出経路59が設けられている。   Further, a liquefied oxygen extraction path 58 for extracting liquefied oxygen that has flowed down to the bottom of the container without being vaporized by the heat exchanger cores 53, 54, 55, 56 is provided at the bottom of the container 52. An oxygen gas extraction path 59 for extracting oxygen gas vaporized by the heat exchanger cores 53, 54, 55, and 56 is provided.

通常運転時は、弁57a,57b,57c,57dは全て開であり、前記経路46の窒素ガスは、各窒素ガス経路53a,54a,55a,56aにそれぞれ分岐し、全ての熱交換器コア53,54,55,56の凝縮通路に導入される。各凝縮通路を流れる液化窒素は、隣接する蒸発通路を流れる冷流体である液化酸素と熱交換することにより、凝縮液化して液化窒素となる。   During normal operation, the valves 57a, 57b, 57c, and 57d are all open, and the nitrogen gas in the path 46 branches into the nitrogen gas paths 53a, 54a, 55a, and 56a, respectively, and all the heat exchanger cores 53 are provided. , 54, 55, 56 are introduced into the condensation passages. The liquefied nitrogen flowing through each condensation passage is condensed and liquefied to liquefied nitrogen by exchanging heat with liquefied oxygen, which is a cold fluid flowing through the adjacent evaporation passage.

この液化窒素は、液化窒素経路53b,54b,55b,56bにそれぞれ抜き出されて液化窒素経路60に合流する。液化窒素経路60を流れる液化窒素は、一部が中圧塔経路61に分岐して中圧塔36の頂部に還流液として導入される。また、液化窒素経路60から低圧塔経路62に分岐した液化窒素は、過冷器38及び減圧弁63を通って低圧塔40の頂部に還流液として導入される。   The liquefied nitrogen is extracted into the liquefied nitrogen passages 53b, 54b, 55b, and 56b, and merges with the liquefied nitrogen passage 60. A part of the liquefied nitrogen flowing through the liquefied nitrogen passage 60 is branched into the intermediate pressure tower passage 61 and introduced as a reflux liquid to the top of the intermediate pressure tower 36. The liquefied nitrogen branched from the liquefied nitrogen path 60 to the low pressure column path 62 is introduced as a reflux liquid to the top of the low pressure column 40 through the supercooler 38 and the pressure reducing valve 63.

一方、低圧塔40の底部から液化酸素ポンプ64に抜き出された液化酸素は、その一部が経路65に分岐して低圧塔40の底部に循環し、残部が経路66を通って主凝縮器51に冷流体として導入される。この液化酸素は、各液化酸素経路53c,54c,55c,56cに分岐して全ての熱交換器コア53,54,55,56の蒸発経路に導入され、隣接する凝縮通路を流れる温流体である液化窒素と熱交換を行い、一部が蒸発気化して酸素ガスとなり、蒸発経路内から容器52の上部に上昇する。   On the other hand, part of the liquefied oxygen extracted from the bottom of the low-pressure column 40 to the liquefied oxygen pump 64 is branched into the path 65 and circulated to the bottom of the low-pressure column 40, and the remainder passes through the path 66 to the main condenser. 51 is introduced as a cold fluid. This liquefied oxygen is a warm fluid that branches into the liquefied oxygen paths 53c, 54c, 55c, and 56c, is introduced into the evaporation paths of all the heat exchanger cores 53, 54, 55, and 56, and flows through the adjacent condensation passages. Heat exchange with liquefied nitrogen is performed, and a part thereof is evaporated and becomes oxygen gas, which rises from the evaporation path to the upper portion of the container 52.

また、蒸発しなかった液化酸素は、蒸発経路内から容器52の底部に流下する。容器52から液化酸素抜出経路58に抜き出された液化酸素と酸素ガス抜出経路59に抜き出された酸素ガスは、経路67に合流した後、低圧塔40の下部に導入され、酸素ガスは低圧塔40の上昇ガスとなる。   Further, the liquefied oxygen that has not evaporated flows down from the evaporation path to the bottom of the container 52. The liquefied oxygen extracted from the container 52 to the liquefied oxygen extraction path 58 and the oxygen gas extracted to the oxygen gas extraction path 59 merge into the path 67 and are then introduced into the lower portion of the low-pressure column 40, where oxygen gas Becomes the rising gas of the low-pressure column 40.

そして、低圧塔40の頂部からは、窒素ガスが経路68に抜き出され、過冷器38、主熱交換器34を通って経路69から系外に取り出される。また、低圧塔40の下部からは、酸素ガスが経路70に抜き出され、主熱交換器34を通って経路71から系外に取り出される。   Nitrogen gas is extracted from the top of the low-pressure column 40 to the path 68, passes through the supercooler 38 and the main heat exchanger 34, and is extracted from the path 69 to the outside of the system. Further, from the lower part of the low-pressure column 40, oxygen gas is extracted into the path 70, passes through the main heat exchanger 34, and is extracted out of the system from the path 71.

熱交換器コア53,54,55,56の中の1基、例えば熱交換器コア53を洗浄する場合は、この熱交換器コア53に窒素ガスを導入する窒素ガス経路53aの弁57aを閉じ、熱交換器コア53への窒素ガスの導入を停止する。この状態で液化酸素経路53cからの液化酸素の導入を継続することにより、熱交換器コア53の蒸発通路における液化酸素側伝熱面が洗浄され、液化酸素側伝熱面に蓄積した高沸点成分が除去される。   When cleaning one of the heat exchanger cores 53, 54, 55, 56, for example, the heat exchanger core 53, the valve 57 a of the nitrogen gas path 53 a for introducing nitrogen gas into the heat exchanger core 53 is closed. Then, the introduction of nitrogen gas into the heat exchanger core 53 is stopped. In this state, by continuing the introduction of liquefied oxygen from the liquefied oxygen path 53c, the liquefied oxygen side heat transfer surface in the evaporation passage of the heat exchanger core 53 is washed, and the high boiling point component accumulated on the liquefied oxygen side heat transfer surface Is removed.

ここで、4基の熱交換器コア53,54,55,56の窒素液化能力の合計が原料空気量に対して90%相当であった場合(10%は膨張タービンへ流れる。)、熱交換器コア53,54,55,56の中の1基、例えば熱交換器コア53を洗浄するときの窒素液化能力は、3基の熱交換器コア54,55,56の合計となり、原料空気量に対して68%(=90%×3/4)になる。したがって、1基の熱交換器コアを洗浄するときには、原料空気量を22%(=90%−68%)減量した減量運転を行う必要がある。   Here, when the total of the nitrogen liquefaction capacities of the four heat exchanger cores 53, 54, 55, and 56 corresponds to 90% of the amount of raw material air (10% flows to the expansion turbine), heat exchange is performed. The nitrogen liquefaction capacity when washing one of the heat exchanger cores 53, 54, 55, 56, for example, the heat exchanger core 53 is the sum of the three heat exchanger cores 54, 55, 56, and the amount of raw material air 68% (= 90% × 3/4). Therefore, when cleaning one heat exchanger core, it is necessary to perform a reduction operation in which the amount of raw material air is reduced by 22% (= 90% -68%).

このような洗浄操作を各熱交換器コア53,54,55,56に対して定期的にそれぞれ行うことにより、主凝縮器51を構成する流下液膜式凝縮器の各液化酸素側伝熱面に蓄積する一酸化二窒素等の高沸点成分を洗浄除去することができる。これにより、空気分離装置を連続運転しながら液化酸素側伝熱面を洗浄できるので、空気分離装置の連続運転可能時間を延長することができる。   Such a cleaning operation is periodically performed on each of the heat exchanger cores 53, 54, 55, 56, so that each liquefied oxygen side heat transfer surface of the falling liquid film type condenser constituting the main condenser 51 is obtained. It is possible to wash away high-boiling components such as dinitrogen monoxide accumulated in the substrate. Thereby, since the liquefied oxygen side heat transfer surface can be cleaned while continuously operating the air separator, the continuous operation time of the air separator can be extended.

本発明を適用した主凝縮器の一形態例を示す系統図である。It is a systematic diagram which shows one example of the main condenser to which this invention is applied. 本発明を複式精留塔を備えた空気分離装置に適用した一形態例を示す系統図である。It is a systematic diagram which shows the example of 1 form which applied this invention to the air separation apparatus provided with the double rectification tower.

符号の説明Explanation of symbols

11…主凝縮器、12…中圧塔、13…低圧塔、14,15…熱交換器コア、14a、15a…窒素ガス経路、14b、15b…液化窒素経路、14c、15c…液化酸素経路、16…液化酸素をポンプ、17a、17b…弁、31…原料空気圧縮機、32…アフタークーラー、33…吸着器、34…主熱交換器、36…中圧塔、38…過冷器、39…減圧弁、40…低圧塔、43…膨張タービン、51…主凝縮器、52…容器、53,54,55,56…熱交換器コア、53a,54a,55a,56a…窒素ガス経路、53b,54b,55b,56b…液化窒素経路、53c,54c,55c,56c…液化酸素経路、57a,57b,57c,57d…弁、58…液化酸素抜出経路、59…酸素ガス抜出経路、60…液化窒素経路、61…中圧塔経路、62…低圧塔経路、63…減圧弁、64…液化酸素ポンプ   DESCRIPTION OF SYMBOLS 11 ... Main condenser, 12 ... Medium pressure tower, 13 ... Low pressure tower, 14, 15 ... Heat exchanger core, 14a, 15a ... Nitrogen gas path, 14b, 15b ... Liquefied nitrogen path, 14c, 15c ... Liquefied oxygen path, DESCRIPTION OF SYMBOLS 16 ... Pump liquefied oxygen, 17a, 17b ... Valve, 31 ... Raw material air compressor, 32 ... After cooler, 33 ... Adsorber, 34 ... Main heat exchanger, 36 ... Medium pressure tower, 38 ... Supercooler, 39 ... pressure reducing valve, 40 ... low pressure column, 43 ... expansion turbine, 51 ... main condenser, 52 ... vessel, 53, 54, 55, 56 ... heat exchanger core, 53a, 54a, 55a, 56a ... nitrogen gas path, 53b , 54b, 55b, 56b ... liquefied nitrogen path, 53c, 54c, 55c, 56c ... liquefied oxygen path, 57a, 57b, 57c, 57d ... valve, 58 ... liquefied oxygen extraction path, 59 ... oxygen gas extraction path, 60 ... liquefied nitrogen pathway, 1 ... medium pressure column path, 62 ... pressure column path, 63 ... pressure reducing valve, 64 ... liquid oxygen pump

Claims (2)

主凝縮器に複数の熱交換コアからなる流下液膜式凝縮器を用いた空気分離装置において、各熱交換器コアに温流体である窒素ガスをそれぞれ導入する各経路に、前記窒素ガスの導入を停止するための弁をそれぞれ設けたことを特徴とする空気分離装置。   In an air separation apparatus using a falling film membrane condenser composed of a plurality of heat exchange cores in the main condenser, introduction of the nitrogen gas into each path for introducing nitrogen gas as a warm fluid into each heat exchanger core An air separating device provided with a valve for stopping the operation. 主凝縮器に複数の熱交換コアからなる流下液膜式凝縮器を用いた空気分離装置の運転方法において、前記空気分離装置を減量運転するとともに、複数の熱交換コアの中の洗浄対象となる熱交換コアへの温流体である窒素ガスの導入を停止し、該熱交換器コアへの冷流体である液化酸素の導入を継続し、該液化酸素によって該熱交換コアの液化酸素側伝熱面に蓄積した高沸点成分を洗浄除去することを特徴とする空気分離装置の運転方法。   In the operation method of the air separation apparatus using the falling liquid film type condenser composed of a plurality of heat exchange cores in the main condenser, the air separation apparatus is operated in a reduced amount and becomes a washing target in the plurality of heat exchange cores. The introduction of nitrogen gas, which is a warm fluid, into the heat exchange core is stopped, the introduction of liquefied oxygen, which is a cold fluid, into the heat exchanger core is continued, and the liquefied oxygen side heat transfer of the heat exchange core is performed by the liquefied oxygen A method for operating an air separation device, wherein high-boiling components accumulated on a surface are washed away.
JP2005082041A 2005-03-22 2005-03-22 Air separating device and its operating method Pending JP2006266532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005082041A JP2006266532A (en) 2005-03-22 2005-03-22 Air separating device and its operating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005082041A JP2006266532A (en) 2005-03-22 2005-03-22 Air separating device and its operating method

Publications (1)

Publication Number Publication Date
JP2006266532A true JP2006266532A (en) 2006-10-05

Family

ID=37202715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005082041A Pending JP2006266532A (en) 2005-03-22 2005-03-22 Air separating device and its operating method

Country Status (1)

Country Link
JP (1) JP2006266532A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102844639A (en) * 2009-10-27 2012-12-26 国际壳牌研究有限公司 Apparatus and method for cooling and liquefying fluid
WO2015094428A3 (en) * 2013-12-16 2015-09-03 Praxair Technology, Inc. Main heat exchange system and method for reboiling
WO2015167699A3 (en) * 2014-05-01 2015-12-30 Praxair Technology, Inc. System and method for production of argon by cryogenic rectification of air
US10060673B2 (en) 2014-07-02 2018-08-28 Praxair Technology, Inc. Argon condensation system and method
US10337792B2 (en) 2014-05-01 2019-07-02 Praxair Technology, Inc. System and method for production of argon by cryogenic rectification of air

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102844639A (en) * 2009-10-27 2012-12-26 国际壳牌研究有限公司 Apparatus and method for cooling and liquefying fluid
WO2011051226A3 (en) * 2009-10-27 2014-05-15 Shell Internationale Research Maatschappij B.V. Apparatus and method for cooling and liquefying a fluid
US9046302B2 (en) 2009-10-27 2015-06-02 Shell Oil Company Apparatus and method for cooling and liquefying a fluid
US9920988B2 (en) 2013-12-16 2018-03-20 Praxair Technology, Inc. Main heat exchange system and method for reboiling
US9453674B2 (en) 2013-12-16 2016-09-27 Praxair Technology, Inc. Main heat exchange system and method for reboiling
WO2015094428A3 (en) * 2013-12-16 2015-09-03 Praxair Technology, Inc. Main heat exchange system and method for reboiling
WO2015167699A3 (en) * 2014-05-01 2015-12-30 Praxair Technology, Inc. System and method for production of argon by cryogenic rectification of air
US9291389B2 (en) 2014-05-01 2016-03-22 Praxair Technology, Inc. System and method for production of argon by cryogenic rectification of air
CN105934642A (en) * 2014-05-01 2016-09-07 普莱克斯技术有限公司 System and method for production of argon by cryogenic rectification of air
US9599396B2 (en) 2014-05-01 2017-03-21 Praxair Technology, Inc. System and method for production of crude argon by cryogenic rectification of air
US10337792B2 (en) 2014-05-01 2019-07-02 Praxair Technology, Inc. System and method for production of argon by cryogenic rectification of air
US10060673B2 (en) 2014-07-02 2018-08-28 Praxair Technology, Inc. Argon condensation system and method
US10082333B2 (en) 2014-07-02 2018-09-25 Praxair Technology, Inc. Argon condensation system and method
US10190819B2 (en) 2014-07-02 2019-01-29 Praxair Technology, Inc. Argon condensation system and method
US10247471B2 (en) 2014-07-02 2019-04-02 Praxair Technology, Inc. Argon condensation system and method

Similar Documents

Publication Publication Date Title
KR100192874B1 (en) Air separation
TWI301883B (en) Air separation process utilizing refrigeration extracted form lng for production of liquid oxygen
US20060260358A1 (en) Gas separation liquefaction means and processes
TW200923300A (en) System to cold compress an air stream using natural gas refrigeration
JPH0618164A (en) Three tower type cryogenic rectification system
JPH03505119A (en) Rectification column product liquid intermediate reflux for sub-ambient cascades
JP2002327981A (en) Cryogenic air-separation method of three-tower type
JP2006266532A (en) Air separating device and its operating method
JP2009030966A (en) Method and device for producing argon by low-temperature air separation
JP2004028572A (en) Air fractionation process and air fractionation installation provided with mixing column and krypton and/or xenon recovery device
TWI628401B (en) Verfahren und vorrichtung zur sauerstoffgewinnung durch tieftemperaturzerlegung von luft mit variablem energieverbrauch
JP2017078532A (en) Oxygen producing system and oxygen producing method
JP3842526B2 (en) PFC recovery using condensation
JP4276520B2 (en) Operation method of air separation device
JP4401999B2 (en) Air separation method and air separation device
JP3719832B2 (en) Ultra high purity nitrogen and oxygen production equipment
JPH09184681A (en) Method for manufacturing super high-purity oxygen and nitrogen
JP3737611B2 (en) Method and apparatus for producing low purity oxygen
TW202117249A (en) Process and system for the cryogenic separation of air
JPH1047853A (en) Method and device for separating air
JP2000329456A (en) Method and device for separating air
JP2010025513A (en) Method and device for manufacturing nitrogen
JP4519010B2 (en) Air separation device
JP4230213B2 (en) Air liquefaction separation apparatus and method
KR100198013B1 (en) Process for introducing a multicomponent liquid feed stream at pressure p2 into a distillation column operating at low pressure p1