JP2006266532A - Air separating device and its operating method - Google Patents
Air separating device and its operating method Download PDFInfo
- Publication number
- JP2006266532A JP2006266532A JP2005082041A JP2005082041A JP2006266532A JP 2006266532 A JP2006266532 A JP 2006266532A JP 2005082041 A JP2005082041 A JP 2005082041A JP 2005082041 A JP2005082041 A JP 2005082041A JP 2006266532 A JP2006266532 A JP 2006266532A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchange
- nitrogen gas
- liquefied
- liquefied oxygen
- heat exchanger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/04309—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04787—Heat exchange, e.g. main heat exchange line; Subcooler, external reboiler-condenser
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04812—Different modes, i.e. "runs" of operation
- F25J3/04824—Stopping of the process, e.g. defrosting or deriming; Back-up procedures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04854—Safety aspects of operation
- F25J3/0486—Safety aspects of operation of vaporisers for oxygen enriched liquids, e.g. purging of liquids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04866—Construction and layout of air fractionation equipments, e.g. valves, machines
- F25J3/04872—Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
- F25J3/04878—Side by side arrangement of multiple vessels in a main column system, wherein the vessels are normally mounted one upon the other or forming different sections of the same column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04866—Construction and layout of air fractionation equipments, e.g. valves, machines
- F25J3/04872—Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
- F25J3/04884—Arrangement of reboiler-condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2235/00—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
- F25J2235/50—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/40—Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
- F25J2240/44—Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval the fluid being nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/50—Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/04—Down-flowing type boiler-condenser, i.e. with evaporation of a falling liquid film
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/20—Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Description
本発明は、空気分離装置及びその運転方法に関し、詳しくは、主凝縮器に使用した流下液膜式凝縮器の伝熱面に蓄積した高沸点成分を洗浄する手段を備えた空気分離装置及びその運転方法に関する。 The present invention relates to an air separation device and a method for operating the same, and more particularly, to an air separation device including means for cleaning high boiling point components accumulated on a heat transfer surface of a falling liquid film type condenser used in a main condenser and its It relates to the driving method.
工業的に酸素、窒素を製造する装置として、空気を原料とした複精留塔による低温蒸留によって製造する深冷分離方法を適用した空気分離装置が一般的である。その典型的な空気分離装置は、運転圧力が約6バール(bar)の中圧塔及び約1.4バールの低圧塔から構成されており、その中圧塔と低圧塔とは熱的に結合されている。つまり、中圧塔頂の窒素ガスを液化し、低圧塔底の液体酸素を気化させるために、主凝縮器が設置されている。その主凝縮器には、浸潤式のプレートフィン式熱交換器が多く用いられている。この方式の主凝縮器では、液体酸素の液ヘッドがあるので、主凝縮器中間部で温度差が小さくなる部分がある。 As an apparatus for industrially producing oxygen and nitrogen, an air separation apparatus to which a cryogenic separation method produced by low-temperature distillation using a double rectification column using air as a raw material is generally used. The typical air separation apparatus consists of a medium pressure column with an operating pressure of about 6 bar and a low pressure column of about 1.4 bar, the medium pressure column and the low pressure column being thermally coupled. Has been. That is, the main condenser is installed to liquefy the nitrogen gas at the top of the intermediate pressure tower and vaporize the liquid oxygen at the bottom of the low pressure tower. As the main condenser, an infiltrating plate fin heat exchanger is often used. In the main condenser of this system, since there is a liquid oxygen liquid head, there is a part where the temperature difference becomes small in the middle part of the main condenser.
この浸潤式主凝縮器に対して改良された流下液膜式凝縮器(DFR)が実用化されている(例えば、特許文献1参照。)。この流下液膜式凝縮器は、主凝縮器自体が液化酸素に浸潤していないので、主凝縮器内の温度差が略一定となり、小温度差でも運転が可能となる。このため、従来に比較して中圧塔運転圧力は低くなり、製品動力の原単位を大きく改善できる。 A falling liquid film type condenser (DFR) improved with respect to this infiltration type main condenser has been put into practical use (for example, see Patent Document 1). Since the main condenser itself is not infiltrated with liquefied oxygen, the temperature difference in the main condenser is substantially constant, and this falling liquid film type condenser can be operated even with a small temperature difference. For this reason, the operation pressure of the intermediate pressure tower is lower than the conventional one, and the basic unit of product power can be greatly improved.
空気分離装置では、原料空気に一酸化二窒素や二酸化炭素等の高沸点不純物が微量混入する場合があり、これらの不純物は、低圧塔下部の主凝縮器に濃縮される。従来の浸潤式主凝縮器では、液化酸素側伝熱面は常に液化酸素に浸潤した状態であるが、流下液膜式凝縮器では酸素伝熱面の一部は完全に乾燥し、その部分で高沸点不純物が蓄積する懸念がある。 In the air separation device, trace amounts of high-boiling impurities such as dinitrogen monoxide and carbon dioxide may be mixed in the raw air, and these impurities are concentrated in the main condenser at the lower part of the low-pressure column. In the conventional infiltration type main condenser, the liquefied oxygen side heat transfer surface is always infiltrated with liquefied oxygen, but in the falling liquid film type condenser, part of the oxygen heat transfer surface is completely dried, There is a concern that high-boiling impurities accumulate.
特に、大気中に約0.3ppm存在する一酸化二窒素は、固化点が−102℃と高く、揮発度が小さい特徴がある。したがって、一酸化二窒素を微量に含む液化酸素が気化する際に、液相への一酸化二窒素の濃縮や、伝熱面での固化が懸念される物質である。このために、主凝縮器に流下液膜式凝縮器を採用した空気分離装置では、定期的に、主凝縮器に一酸化二窒素等が蓄積しないように処理する必要がある。 In particular, dinitrogen monoxide present at about 0.3 ppm in the atmosphere is characterized by a high solidification point of −102 ° C. and low volatility. Therefore, when liquefied oxygen containing a small amount of dinitrogen monoxide is vaporized, it is a substance that is likely to be concentrated in the liquid phase and solidified on the heat transfer surface. For this reason, in an air separation apparatus that employs a falling liquid film type condenser as the main condenser, it is necessary to periodically treat the main condenser so as not to accumulate dinitrogen monoxide or the like.
空気分離装置を連続運転しながら、主凝縮器に蓄積した閉塞物質(高沸点不純物)を除去する方法として、複数の浸潤式主凝縮器を有する空気分離装置において、閉塞物質を除去する対象となる凝縮器に導入される窒素ガス及び液化酸素を遮断し、外部から常温の酸素を主凝縮器に導入し、主凝縮器に蓄積した閉塞物質を昇華させて除去することが提案されている(例えば、特許文献2参照。)。
前記特許文献2に記載された方法では、低温で運転されている凝縮器を常温まで加温するための時間とエネルギーとが必要となり、かつ、処理後に凝縮器の運転を再開する場合には、常温の主凝縮器を運転温度まで冷却する時間と寒冷が必要となる。つまり、不純物の除去を行う都度、エネルギー(熱及び寒冷)が必要である。また、凝縮器の洗浄には、その都度、製品純度を有する酸素ガスが必要であり、収率に影響をもたらしていた。 In the method described in Patent Document 2, it takes time and energy to warm the condenser operating at a low temperature to room temperature, and when the operation of the condenser is resumed after processing, Time and cooling to cool the main condenser at room temperature to the operating temperature are required. That is, energy (heat and cold) is required each time impurities are removed. Further, each time the condenser is washed, oxygen gas having product purity is required, which has an influence on the yield.
そこで本発明は、主凝縮器に流下液膜式凝縮器を用いた空気分離装置において、空気分離装置を連続運転しながら流下液膜式凝縮器内に蓄積した不純物を除去することができる空気分離装置及びその運転方法を提供することを目的としている。 Therefore, the present invention provides an air separation apparatus that uses a falling liquid film type condenser as a main condenser, and can remove impurities accumulated in the falling liquid film type condenser while continuously operating the air separation apparatus. It aims at providing a device and its operating method.
上記目的を達成するため、本発明の空気分離装置は、主凝縮器に複数の熱交換コアからなる流下液膜式凝縮器を用いた空気分離装置において、各熱交換器コアに温流体である窒素ガスをそれぞれ導入する各経路に、前記窒素ガスの導入を停止するための弁をそれぞれ設けたことを特徴としている。 In order to achieve the above object, the air separation device of the present invention is a hot fluid in each heat exchanger core in the air separation device using a falling liquid film type condenser comprising a plurality of heat exchange cores in the main condenser. Each path for introducing nitrogen gas is provided with a valve for stopping the introduction of the nitrogen gas.
また、本発明の空気分離装置の運転方法は、主凝縮器に複数の熱交換コアからなる流下液膜式凝縮器を用いた空気分離装置の運転方法において、前記空気分離装置を減量運転するとともに、複数の熱交換コアの中の洗浄対象となる熱交換コアへの温流体である窒素ガスの導入を停止し、該熱交換器コアへの冷流体である液化酸素の導入を継続し、該液化酸素によって該熱交換コアの液化酸素側伝熱面に蓄積した高沸点成分を洗浄除去することを特徴としている。 In addition, the operation method of the air separation device according to the present invention is a method of operating an air separation device using a falling liquid film type condenser having a plurality of heat exchange cores as a main condenser, and performs a reduction operation of the air separation device. Stopping the introduction of nitrogen gas, which is a warm fluid, into the heat exchange core to be cleaned in the plurality of heat exchange cores, and continuing the introduction of liquefied oxygen, which is a cold fluid, into the heat exchanger core, The high boiling point component accumulated on the liquefied oxygen side heat transfer surface of the heat exchange core is washed away with liquefied oxygen.
本発明によれば、空気分離装置の連続運転が可能となる。また、従来のように無駄なエネルギーを使う必要がなく、製品の収率にも影響を与えることがない。 According to the present invention, the air separator can be continuously operated. Further, there is no need to use wasted energy as in the prior art, and the yield of the product is not affected.
図1は本発明を適用した主凝縮器の一形態例を示す系統図である。主凝縮器11は、中圧塔12の頂部の窒素ガスと、低圧塔13の底部の液化酸素とを熱交換させることにより、窒素ガスを液化するとともに液化酸素を気化するものであって、低圧塔13の下部空間内に設置されている。
FIG. 1 is a system diagram showing an embodiment of a main condenser to which the present invention is applied. The
本形態例に示す主凝縮器11は、2個の熱交換器コア14,15を備えており、各熱交換器コア14,15には、中圧塔12の窒素ガスを凝縮通路上部に導入する窒素ガス経路14a、15aと、液化した窒素を凝縮通路下部から抜き出して中圧塔12に戻す液化窒素経路14b、15bと、低圧塔13底部に溜まっている液化酸素をポンプ16で揚液し、蒸発通路上部に供給する液化酸素経路14c、15cとが設けられている。
The
なお、蒸発通路で蒸発しなかった液化酸素は、蒸発通路の下端から低圧塔13の底部に流下する。前記窒素ガス経路14a、15aには、各熱交換器コア14,15への窒素ガスの導入を停止するための弁17a、17bがそれぞれ設けられている。
The liquefied oxygen that has not evaporated in the evaporation passage flows down from the lower end of the evaporation passage to the bottom of the low-
通常の運転時には、前記弁17a、17bは共に開であり、中圧塔12から経路18に抜き出された窒素ガスは、窒素ガス経路14a、15aに分岐して両方の熱交換器コア14,15の凝縮通路にそれぞれ温流体として導入される。また、低圧塔13から経路19に抜き出された液化酸素はポンプ16で揚液され、経路20から液化酸素経路14c、15cに分岐して両方の熱交換器コア14,15の蒸発通路にそれぞれ冷流体として導入される。
During normal operation, the
各熱交換器コア14,15の凝縮通路に流入した窒素ガスは、蒸発通路を流下する液化酸素と熱交換を行い、凝縮液化して液化窒素となり、液化窒素経路14b、15bに抜き出されて経路21から中圧塔12の頂部に還流液として導入される。また、各熱交換器コア14,15の蒸発通路に流入した酸素ガスは、液化酸素側伝熱面を伝わって流下しながら凝縮通路を流れる窒素ガスと熱交換を行い、その一部が蒸発気化して酸素ガスとなり、蒸発通路内を上昇してそのまま低圧塔13の上昇ガスとなる。
The nitrogen gas flowing into the condensation passages of the
一方の熱交換器コア14の液化酸素側伝熱面に蓄積した高沸点成分を洗浄除去する際には、まず、空気分離装置を減量運転して中圧塔12に導入する原料空気を減量するとともに、窒素ガス経路14aの弁17aを閉じて熱交換器コア14への窒素ガスの導入を停止する。
When the high-boiling components accumulated on the liquefied oxygen side heat transfer surface of one
これにより、熱交換器コア14の凝縮通路に温流体が供給されない状態となるので、熱交換器コア14の蒸発通路を流れる液化酸素は温流体によって加熱されないため、気化することなく液状のまま液化酸素側伝熱面を伝わって流下し、熱交換器コア14の液化酸素側伝熱面に蓄積した高沸点成分を液中に取り込んで低圧塔13の底部に流下する状態となる。したがって、熱交換器コア14の液化酸素側伝熱面に蓄積した高沸点成分が液化酸素により除去されて液化酸素側伝熱面が洗浄される。
As a result, since the warm fluid is not supplied to the condensation passage of the
熱交換器コア14の液化酸素側伝熱面を洗浄した後、弁17aを開いて熱交換器コア14での運転を再開するとともに、窒素ガス経路15aの弁17bを閉じて熱交換器コア15への窒素ガスの導入を停止することにより、前記同様にして熱交換器コア15の液化酸素側伝熱面に蓄積した高沸点成分を液化酸素により除去して液化酸素側伝熱面を洗浄することができる。
After washing the liquefied oxygen side heat transfer surface of the
このような洗浄操作を定期的に行うことにより、液化酸素側伝熱面に高沸点成分が大量に蓄積することを回避でき、空気分離装置を長期間にわたって安定した状態で連続運転することができる。 By periodically performing such a washing operation, it is possible to avoid the accumulation of a large amount of high-boiling components on the liquefied oxygen side heat transfer surface, and it is possible to continuously operate the air separation device in a stable state over a long period of time. .
図2は、本発明を複式精留塔を備えた空気分離装置に適用した一形態例を示す系統図である。なお、主凝縮器の部分は、図面の見やすさを考慮して拡大して表している。 FIG. 2 is a system diagram showing an embodiment in which the present invention is applied to an air separation apparatus equipped with a double rectification column. Note that the main condenser portion is shown enlarged in view of the drawing.
この空気分離装置は、原料空気圧縮機31で所定圧力に圧縮され、アフタークーラー32で冷却された後、切換使用される吸着器33で水分や二酸化炭素等の空気中の不純物が除去されて精製される。この精製空気は、主熱交換器34で製品ガス等と熱交換することによって露点付近まで冷却されて低温空気となる。この低温空気は、経路35を通って中圧塔36の下部に導入され、この中圧塔36での蒸留操作によって塔頂部の窒素ガスと塔底部の酸素富化液化空気とに分離する。
This air separation device is compressed to a predetermined pressure by a raw
中圧塔36の底部から経路37に抜き出された酸素富化液化空気は、過冷器38及び減圧弁39を通って低圧塔40の中段に導入され、この低圧塔40での蒸留操作により、塔頂部の窒素ガスと塔底部の液化酸素とに分離する。
The oxygen-enriched liquefied air extracted from the bottom of the
中圧塔36の頂部から経路41に抜き出された窒素ガスは、その一部、例えば10%程度が経路42に分岐し、熱交換器34で前記精製空気と熱交換することによって中間温度まで昇温した後、膨張タービン43で断熱膨張することにより寒冷を発生させる。膨張タービン43から経路44に流出した低温、低圧力の窒素ガスは、再び主熱交換器34を通って常温付近まで昇温した後、経路45から系外に取り出される。
A part of, for example, about 10% of the nitrogen gas extracted from the top of the
また、前記経路41から経路46に分岐した窒素ガスは、主凝縮器51に温流体として導入される。この主凝縮器51は、容器52内に同一性能の4基の熱交換器コア53,54,55,56を収納したものであって、各熱交換器コア53,54,55,56には、前記同様に、窒素ガスを凝縮通路上部に導入する窒素ガス経路53a,54a,55a,56aと、液化窒素を凝縮通路下部から抜き出す液化窒素経路53b,54b,55b,56bと、液化酸素を蒸発通路上部に供給する液化酸素経路53c,54c,55c,56cとが設けられ、前記窒素ガス経路53a,54a,55a,56aには、各熱交換器コア53,54,55,56への窒素ガスの導入を停止するための弁57a,57b,57c,57dがそれぞれ設けられている。
The nitrogen gas branched from the
また、前記容器52の底部には熱交換器コア53,54,55,56で気化せずに容器底部に流下した液化酸素を抜き出す液化酸素抜出経路58が設けられ、容器52の上部には、熱交換器コア53,54,55,56で気化した酸素ガスを抜き出す酸素ガス抜出経路59が設けられている。
Further, a liquefied oxygen extraction path 58 for extracting liquefied oxygen that has flowed down to the bottom of the container without being vaporized by the
通常運転時は、弁57a,57b,57c,57dは全て開であり、前記経路46の窒素ガスは、各窒素ガス経路53a,54a,55a,56aにそれぞれ分岐し、全ての熱交換器コア53,54,55,56の凝縮通路に導入される。各凝縮通路を流れる液化窒素は、隣接する蒸発通路を流れる冷流体である液化酸素と熱交換することにより、凝縮液化して液化窒素となる。
During normal operation, the
この液化窒素は、液化窒素経路53b,54b,55b,56bにそれぞれ抜き出されて液化窒素経路60に合流する。液化窒素経路60を流れる液化窒素は、一部が中圧塔経路61に分岐して中圧塔36の頂部に還流液として導入される。また、液化窒素経路60から低圧塔経路62に分岐した液化窒素は、過冷器38及び減圧弁63を通って低圧塔40の頂部に還流液として導入される。
The liquefied nitrogen is extracted into the liquefied
一方、低圧塔40の底部から液化酸素ポンプ64に抜き出された液化酸素は、その一部が経路65に分岐して低圧塔40の底部に循環し、残部が経路66を通って主凝縮器51に冷流体として導入される。この液化酸素は、各液化酸素経路53c,54c,55c,56cに分岐して全ての熱交換器コア53,54,55,56の蒸発経路に導入され、隣接する凝縮通路を流れる温流体である液化窒素と熱交換を行い、一部が蒸発気化して酸素ガスとなり、蒸発経路内から容器52の上部に上昇する。
On the other hand, part of the liquefied oxygen extracted from the bottom of the low-
また、蒸発しなかった液化酸素は、蒸発経路内から容器52の底部に流下する。容器52から液化酸素抜出経路58に抜き出された液化酸素と酸素ガス抜出経路59に抜き出された酸素ガスは、経路67に合流した後、低圧塔40の下部に導入され、酸素ガスは低圧塔40の上昇ガスとなる。
Further, the liquefied oxygen that has not evaporated flows down from the evaporation path to the bottom of the
そして、低圧塔40の頂部からは、窒素ガスが経路68に抜き出され、過冷器38、主熱交換器34を通って経路69から系外に取り出される。また、低圧塔40の下部からは、酸素ガスが経路70に抜き出され、主熱交換器34を通って経路71から系外に取り出される。
Nitrogen gas is extracted from the top of the low-
熱交換器コア53,54,55,56の中の1基、例えば熱交換器コア53を洗浄する場合は、この熱交換器コア53に窒素ガスを導入する窒素ガス経路53aの弁57aを閉じ、熱交換器コア53への窒素ガスの導入を停止する。この状態で液化酸素経路53cからの液化酸素の導入を継続することにより、熱交換器コア53の蒸発通路における液化酸素側伝熱面が洗浄され、液化酸素側伝熱面に蓄積した高沸点成分が除去される。
When cleaning one of the
ここで、4基の熱交換器コア53,54,55,56の窒素液化能力の合計が原料空気量に対して90%相当であった場合(10%は膨張タービンへ流れる。)、熱交換器コア53,54,55,56の中の1基、例えば熱交換器コア53を洗浄するときの窒素液化能力は、3基の熱交換器コア54,55,56の合計となり、原料空気量に対して68%(=90%×3/4)になる。したがって、1基の熱交換器コアを洗浄するときには、原料空気量を22%(=90%−68%)減量した減量運転を行う必要がある。
Here, when the total of the nitrogen liquefaction capacities of the four
このような洗浄操作を各熱交換器コア53,54,55,56に対して定期的にそれぞれ行うことにより、主凝縮器51を構成する流下液膜式凝縮器の各液化酸素側伝熱面に蓄積する一酸化二窒素等の高沸点成分を洗浄除去することができる。これにより、空気分離装置を連続運転しながら液化酸素側伝熱面を洗浄できるので、空気分離装置の連続運転可能時間を延長することができる。
Such a cleaning operation is periodically performed on each of the
11…主凝縮器、12…中圧塔、13…低圧塔、14,15…熱交換器コア、14a、15a…窒素ガス経路、14b、15b…液化窒素経路、14c、15c…液化酸素経路、16…液化酸素をポンプ、17a、17b…弁、31…原料空気圧縮機、32…アフタークーラー、33…吸着器、34…主熱交換器、36…中圧塔、38…過冷器、39…減圧弁、40…低圧塔、43…膨張タービン、51…主凝縮器、52…容器、53,54,55,56…熱交換器コア、53a,54a,55a,56a…窒素ガス経路、53b,54b,55b,56b…液化窒素経路、53c,54c,55c,56c…液化酸素経路、57a,57b,57c,57d…弁、58…液化酸素抜出経路、59…酸素ガス抜出経路、60…液化窒素経路、61…中圧塔経路、62…低圧塔経路、63…減圧弁、64…液化酸素ポンプ
DESCRIPTION OF
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005082041A JP2006266532A (en) | 2005-03-22 | 2005-03-22 | Air separating device and its operating method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005082041A JP2006266532A (en) | 2005-03-22 | 2005-03-22 | Air separating device and its operating method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006266532A true JP2006266532A (en) | 2006-10-05 |
Family
ID=37202715
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005082041A Pending JP2006266532A (en) | 2005-03-22 | 2005-03-22 | Air separating device and its operating method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006266532A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102844639A (en) * | 2009-10-27 | 2012-12-26 | 国际壳牌研究有限公司 | Apparatus and method for cooling and liquefying fluid |
WO2015094428A3 (en) * | 2013-12-16 | 2015-09-03 | Praxair Technology, Inc. | Main heat exchange system and method for reboiling |
WO2015167699A3 (en) * | 2014-05-01 | 2015-12-30 | Praxair Technology, Inc. | System and method for production of argon by cryogenic rectification of air |
US10060673B2 (en) | 2014-07-02 | 2018-08-28 | Praxair Technology, Inc. | Argon condensation system and method |
US10337792B2 (en) | 2014-05-01 | 2019-07-02 | Praxair Technology, Inc. | System and method for production of argon by cryogenic rectification of air |
-
2005
- 2005-03-22 JP JP2005082041A patent/JP2006266532A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102844639A (en) * | 2009-10-27 | 2012-12-26 | 国际壳牌研究有限公司 | Apparatus and method for cooling and liquefying fluid |
WO2011051226A3 (en) * | 2009-10-27 | 2014-05-15 | Shell Internationale Research Maatschappij B.V. | Apparatus and method for cooling and liquefying a fluid |
US9046302B2 (en) | 2009-10-27 | 2015-06-02 | Shell Oil Company | Apparatus and method for cooling and liquefying a fluid |
US9920988B2 (en) | 2013-12-16 | 2018-03-20 | Praxair Technology, Inc. | Main heat exchange system and method for reboiling |
US9453674B2 (en) | 2013-12-16 | 2016-09-27 | Praxair Technology, Inc. | Main heat exchange system and method for reboiling |
WO2015094428A3 (en) * | 2013-12-16 | 2015-09-03 | Praxair Technology, Inc. | Main heat exchange system and method for reboiling |
WO2015167699A3 (en) * | 2014-05-01 | 2015-12-30 | Praxair Technology, Inc. | System and method for production of argon by cryogenic rectification of air |
US9291389B2 (en) | 2014-05-01 | 2016-03-22 | Praxair Technology, Inc. | System and method for production of argon by cryogenic rectification of air |
CN105934642A (en) * | 2014-05-01 | 2016-09-07 | 普莱克斯技术有限公司 | System and method for production of argon by cryogenic rectification of air |
US9599396B2 (en) | 2014-05-01 | 2017-03-21 | Praxair Technology, Inc. | System and method for production of crude argon by cryogenic rectification of air |
US10337792B2 (en) | 2014-05-01 | 2019-07-02 | Praxair Technology, Inc. | System and method for production of argon by cryogenic rectification of air |
US10060673B2 (en) | 2014-07-02 | 2018-08-28 | Praxair Technology, Inc. | Argon condensation system and method |
US10082333B2 (en) | 2014-07-02 | 2018-09-25 | Praxair Technology, Inc. | Argon condensation system and method |
US10190819B2 (en) | 2014-07-02 | 2019-01-29 | Praxair Technology, Inc. | Argon condensation system and method |
US10247471B2 (en) | 2014-07-02 | 2019-04-02 | Praxair Technology, Inc. | Argon condensation system and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100192874B1 (en) | Air separation | |
TWI301883B (en) | Air separation process utilizing refrigeration extracted form lng for production of liquid oxygen | |
US20060260358A1 (en) | Gas separation liquefaction means and processes | |
TW200923300A (en) | System to cold compress an air stream using natural gas refrigeration | |
JPH0618164A (en) | Three tower type cryogenic rectification system | |
JPH03505119A (en) | Rectification column product liquid intermediate reflux for sub-ambient cascades | |
JP2002327981A (en) | Cryogenic air-separation method of three-tower type | |
JP2006266532A (en) | Air separating device and its operating method | |
JP2009030966A (en) | Method and device for producing argon by low-temperature air separation | |
JP2004028572A (en) | Air fractionation process and air fractionation installation provided with mixing column and krypton and/or xenon recovery device | |
TWI628401B (en) | Verfahren und vorrichtung zur sauerstoffgewinnung durch tieftemperaturzerlegung von luft mit variablem energieverbrauch | |
JP2017078532A (en) | Oxygen producing system and oxygen producing method | |
JP3842526B2 (en) | PFC recovery using condensation | |
JP4276520B2 (en) | Operation method of air separation device | |
JP4401999B2 (en) | Air separation method and air separation device | |
JP3719832B2 (en) | Ultra high purity nitrogen and oxygen production equipment | |
JPH09184681A (en) | Method for manufacturing super high-purity oxygen and nitrogen | |
JP3737611B2 (en) | Method and apparatus for producing low purity oxygen | |
TW202117249A (en) | Process and system for the cryogenic separation of air | |
JPH1047853A (en) | Method and device for separating air | |
JP2000329456A (en) | Method and device for separating air | |
JP2010025513A (en) | Method and device for manufacturing nitrogen | |
JP4519010B2 (en) | Air separation device | |
JP4230213B2 (en) | Air liquefaction separation apparatus and method | |
KR100198013B1 (en) | Process for introducing a multicomponent liquid feed stream at pressure p2 into a distillation column operating at low pressure p1 |