JPH0455682A - Air separating device - Google Patents

Air separating device

Info

Publication number
JPH0455682A
JPH0455682A JP2164686A JP16468690A JPH0455682A JP H0455682 A JPH0455682 A JP H0455682A JP 2164686 A JP2164686 A JP 2164686A JP 16468690 A JP16468690 A JP 16468690A JP H0455682 A JPH0455682 A JP H0455682A
Authority
JP
Japan
Prior art keywords
air
conduit
tank
air separation
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2164686A
Other languages
Japanese (ja)
Inventor
Masayuki Tanaka
正幸 田中
Tetsuo Senchi
泉地 哲夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2164686A priority Critical patent/JPH0455682A/en
Publication of JPH0455682A publication Critical patent/JPH0455682A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • F25J3/04357Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04363Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04472Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
    • F25J3/04496Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist
    • F25J3/04503Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems
    • F25J3/04509Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems within the cold part of the air fractionation, i.e. exchanging "cold" within the fractionation and/or main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/42One fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/50One fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

PURPOSE:To reduce the power consumption for generating cold heat by a method wherein the cold heat energy of liquid constituents of composition, taken out of the tank of the constituents of composition upon supplying product gas, is utilized for the liquefying of N2 taken out of a fractionating tower under the condition of gas. CONSTITUTION:An air separating means A is constituted of an air compressor 11, a main heat exchanger 2 for cooling material air, a fractionating tower 3 for separating LN2 and LO2 from the material air and an expansion turbine 6 for generating cold heat. In a supplying means B, LO2 is sent into an evaporator (second heat exchanger) 7 in accordance with demand from a demanding party by the operation of a pump 51. In this case, heat exchange is effected between the LO2 and GN2 from a conduit 120. According to the heat exchange, the LO2 is gasified and is supplied as product GO2 while GN2 is cooled and liquefied by the LO2 and is reserved in a LN2 tank. The given flow rate of LN2 in the LN2 tank 8 is supplied to the top of the lower tower 31 of the fractionating tower 3 of the air separating means A operated continuously.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、原料空気から液体酸素(Lo2)や液体窒
素(LN2)などを分離回収し、これらを製鉄所などの
需要先に供給する空気分離装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention is an air system that separates and recovers liquid oxygen (Lo2), liquid nitrogen (LN2), etc. from raw air and supplies these to customers such as steel plants. This relates to a separation device.

〔従来の技術〕[Conventional technology]

従来、空気分離手段としては例えば第5図に示すような
ものが知られている。この装置によるプロセスを以下に
説明する。
Conventionally, as an air separation means, one shown in FIG. 5, for example, is known. The process using this device will be explained below.

まず原料空気は、原料空気圧縮機11により圧縮され、
図示しない吸着塔により原料空気中の水分(N20)お
よび炭酸ガス(CO2)などが吸着除去され、前処理さ
れた残りの原料空気が深冷部C内の主熱交換器2に送ら
れる。この主熱交換器2で上記原料空気は、その沸点近
くまで冷却された後に、導管111を通して精溜塔3に
入れられる。
First, the raw air is compressed by the raw air compressor 11,
Moisture (N20), carbon dioxide (CO2), and the like in the feed air are adsorbed and removed by an adsorption tower (not shown), and the remaining pretreated feed air is sent to the main heat exchanger 2 in the cryogenic section C. The feed air is cooled to near its boiling point in the main heat exchanger 2 and then introduced into the rectification column 3 through a conduit 111.

この精溜塔3は下塔31と、上塔32と、これら両者間
で熱交換を行う主蒸発器33とから構成され、上記主熱
交換器2からの原料空気はまずこの精溜塔3の下塔31
下部に入れられる。
This rectifying column 3 is composed of a lower column 31, an upper column 32, and a main evaporator 33 that exchanges heat between the two.The raw air from the main heat exchanger 2 is first transferred to the rectifying column lower tower 31
It can be placed at the bottom.

下塔31に入った原料空気はこの下塔31内を上昇する
間に還流しN2と接触し、しだいにそのN2濃度が高め
られ、下塔31頂部では高純度N2となる。二〇N2は
主蒸発器33に入り上塔32のLo2と熱交換して凝縮
することによりLN2となる。このLN2は、その一部
が還流液として上塔32頂部に導管311を通して供給
され、残部が還流液として下塔31頂部に戻される。
The raw material air that has entered the lower column 31 comes into contact with reflux and N2 while rising in the lower column 31, and its N2 concentration is gradually increased, and at the top of the lower column 31, it becomes highly purified N2. 20N2 enters the main evaporator 33, exchanges heat with Lo2 in the upper tower 32, and condenses to become LN2. A portion of this LN2 is supplied as a reflux liquid to the top of the upper column 32 through the conduit 311, and the remainder is returned to the top of the lower column 31 as a reflux liquid.

この還流液は下塔31を下っていく間にこの下塔31内
を上昇してくる原料空気と接触して02濃度が高められ
、この下塔31底部に02が40%程度含まれる液体空
気となって溜められる。そしてこの液体空気は下塔31
底部から取出されて上塔32中部に導管312を通して
供給される。
While going down the lower column 31, this reflux liquid comes into contact with the raw material air rising in the lower column 31, and the 02 concentration is increased, and the liquid air containing about 40% 02 at the bottom of the lower column 31. It is accumulated as follows. And this liquid air is in the lower tower 31
It is taken out from the bottom and fed into the middle of the upper column 32 through a conduit 312.

この液体空気は、上塔32中部から下方に流れる間に0
2が濃縮されて上塔32底部には高純度のLO2が溜り
、このLO2は上記蒸発器33のN2と熱交換してガス
化した後、導管320を通してガス酸素(以下GO2と
いう)として取出される。このCO2は主熱交換器2に
上記導管320を通して送られ、この主熱交換器2で原
料空気と熱交換され、これが製品GO2として需要先に
供給される。一方、上塔32頂部からは高純度N2が取
出され、この高純度N2は主熱交換器2に導管321を
通して送られ、この主熱交換器2で原料空気を冷却した
後、製品ガス窒素(以下製品GN2という)として需要
先に供給される。
While this liquid air flows downward from the middle of the upper tower 32, it becomes zero.
2 is concentrated and high-purity LO2 accumulates at the bottom of the upper column 32, and this LO2 is gasified by heat exchange with N2 in the evaporator 33, and then taken out as gaseous oxygen (hereinafter referred to as GO2) through the conduit 320. Ru. This CO2 is sent to the main heat exchanger 2 through the conduit 320, where it exchanges heat with the raw material air, and is supplied to customers as product GO2. On the other hand, high-purity N2 is taken out from the top of the upper column 32, and this high-purity N2 is sent to the main heat exchanger 2 through a conduit 321. After cooling the feed air in the main heat exchanger 2, the product gas nitrogen ( The product is supplied to demand customers as product GN2 (hereinafter referred to as product GN2).

また上記しN2、L○2の分離精製のための寒冷は、膨
張タービン6によって原料空気の一部を断熱膨張させて
発生させ、これを精溜塔3の上塔32中部に導管600
を通して供給している。
Furthermore, the above-mentioned refrigeration for separating and refining N2 and L○2 is generated by adiabatically expanding a part of the raw material air using the expansion turbine 6, and this is sent to the middle part of the upper column 32 of the rectification column 3 through a conduit 600.
It is supplied through.

なお上塔32上部からは純度の低いN2が図示しない導
管を通して取出され、この低純度N2を利用して上記前
処理用吸着塔の再生が行われる。
Note that low-purity N2 is taken out from the upper part of the upper column 32 through a conduit (not shown), and this low-purity N2 is used to regenerate the pretreatment adsorption column.

一方、上記需要先が転炉や電気炉などを用いた製鉄所で
ある場合には、上記製品GO2などの消費特性が連続的
でなく、間欠的であるために、上記空気分離手段からの
製品GO2などの供給も間欠的に行う必要がある。とこ
ろが、上記空気分離手段においては、定常状態での運転
を継続することによりほぼ一定の純度の製品GN2や製
品G02が効率良く得られるために、需要先での需要に
応じてその運転を途中で急に停止したり変動させたりす
ることはできない。
On the other hand, if the above-mentioned demand destination is a steel mill using a converter or an electric furnace, the consumption characteristics of the above-mentioned product GO2 etc. are not continuous but intermittent, so the product from the above-mentioned air separation means is It is also necessary to supply GO2 and the like intermittently. However, in the above-mentioned air separation means, products GN2 and G02 of almost constant purity can be efficiently obtained by continuing operation in a steady state, so the operation may be stopped midway depending on the demand at the customer. It cannot be suddenly stopped or changed.

このため従来は、第5図に示す空気分離手段と需要先と
の間に製品Go2などを蓄えるガスホルダーHからなる
供給手段を設けることが行なわれている。この場合は、
上記空気分離手段の連続運転により製造された製品Go
2などを上記ガスホルダーに高圧下で蓄え、このガスホ
ルダーHから製品GO2などを需要に応じて需要先へ供
給するようにされる。
For this reason, conventionally, a supply means consisting of a gas holder H for storing the product Go2 and the like has been provided between the air separation means shown in FIG. 5 and the consumer. in this case,
Product Go manufactured by continuous operation of the above air separation means
2 and the like are stored under high pressure in the gas holder H, and the product GO2 and the like are supplied from this gas holder H to the demand destination according to demand.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、供給手段として上記ガスホルダーHを設けた
場合には、需要先への供給が停止されている間も製品G
O2などがガスホルダーに蓄えられるために、比較的大
容量のガスホルダーが必要となる。このためこのガスホ
ルダーによって空気分離装置がかなり大規模になる。
However, if the gas holder H is installed as a supply means, the product
Since O2 and the like are stored in the gas holder, a relatively large capacity gas holder is required. This gas holder therefore makes the air separation device quite large.

ここで空気分離装置をコンパクトにするために、第6図
に示すように供給手段として製品LN2タンク4や製品
L02タンク5を設け、これらのタンクにN2や02を
ガスの状態ではなく液体の状態で蓄えるようにすること
が考えられる。この場合には、精溜塔3の下塔31頂部
のLN2が導管311を通して取出される際に、そのL
N2の一部が製品LN2として導管400を通して上記
製品LN2タンク4に取出され、また精溜塔3の上塔3
2底部のLO2が導管500を通して製品LO2として
製品LO。タンク5に取出される。そしてこの製品LN
2タンク4や製品LO2タンク5からは、LN2やLO
2が需要先からの需要に応じてポンプ41.51によっ
て取出され、このLN2やL02は蒸発器40.50に
よってガス化され、製品GN2や製品Go2として需要
先に供給される。
In order to make the air separation device more compact, a product LN2 tank 4 and a product L02 tank 5 are provided as supply means as shown in FIG. One idea is to store it in In this case, when the LN2 at the top of the lower column 31 of the rectification column 3 is taken out through the conduit 311, the LN2
A part of the N2 is taken out as product LN2 through the conduit 400 to the product LN2 tank 4, and also to the upper column 3 of the rectification column 3.
2 bottom LO2 passes through conduit 500 to product LO2 as product LO2. It is taken out to tank 5. And this product LN
2 tank 4 and product LO2 tank 5, LN2 and LO
2 is taken out by a pump 41.51 in response to demand from a consumer, and this LN2 and L02 are gasified by an evaporator 40.50 and supplied to the consumer as product GN2 and product Go2.

ところが第6図に示す供給手段と空気分離手段とを組合
せた構成では、蒸発器40.50において製品LN2や
製品LO2が大気や温水などと熱交換されるために、こ
の製品LN2や製品LO2が有する冷熱エネルギーがま
ったく利用されないまま無駄に放出されてしまう。
However, in the configuration in which the supply means and the air separation means are combined as shown in FIG. The available cooling energy is not utilized at all and is wasted.

この発明は、このような事情に鑑みてなされたものであ
り、需要先での需要変動に対応して製品ガスを供給する
ことができ、しかも供給に際するエネルギーを有効利用
して液化分離に伴う動力消費を低減することができる空
気分離装置を提供することを目的としている。
This invention was made in view of the above circumstances, and it is possible to supply product gas in response to demand fluctuations at the customer, and moreover, it is possible to effectively utilize the energy during supply to perform liquefaction separation. It is an object of the present invention to provide an air separation device that can reduce the accompanying power consumption.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、この発明の請求項1では、
空気圧縮機と、この空気圧縮機により取入れた原料空気
を冷却する主熱交換器と、冷却された原料空気から選択
的に組成成分を液状で分離する精溜塔とを有する空気分
離手段からなる空気分離装置において、上記空気分離手
段には上記液状組成成分を気化させて需要先に供給する
供給手段が設けられ、この供給手段は上記液状組成成分
を蓄えるように上記精溜塔と接続された組成成分タンク
と、上記精留塔での分離過程で生成されたN2を上記組
成成分タンクから取出した液状組成成分によって冷却す
る第2の熱交換器と、この第2の熱交換器によって液化
されたN2を蓄えるLN2タンクとが備えられ、このL
N2タンクと精溜塔とは上記しN2タンク内のLN2を
精溜塔に供給可能に互いに接続されているように構成し
た。
In order to achieve the above object, in claim 1 of this invention,
Consisting of an air compressor, a main heat exchanger that cools the feed air taken in by the air compressor, and a rectification column that selectively separates constituent components in liquid form from the cooled feed air. In the air separation device, the air separation means is provided with a supply means for vaporizing the liquid composition component and supplying it to a consumer, and this supply means is connected to the rectification column so as to store the liquid composition component. a component tank; a second heat exchanger that cools N2 generated in the separation process in the rectification column with the liquid component taken out from the component tank; This LN2 tank is equipped with an LN2 tank that stores N2.
The N2 tank and the rectification column were configured to be connected to each other so that the LN2 in the N2 tank could be supplied to the rectification column as described above.

請求項2では、請求項1において複数の空気分離手段と
、一つの供給手段とによって構成されるようにした。
In a second aspect of the present invention, the air conditioner according to the first aspect is constituted by a plurality of air separation means and one supply means.

請求項3では、液状組成成分がL02であるように構成
した。
In claim 3, the liquid composition component is L02.

請求項4では、LN2タンクからのLN2が精溜塔に分
離のためなどの寒冷源として供給されるように構成した
In claim 4, the LN2 tank is configured to supply LN2 from the LN2 tank to the rectification column as a cold source for separation.

請求項5では、空気分離手段と供給手段とで必要なすべ
ての寒冷を発生する寒冷発生手段を上記供給手段側に設
けて構成した。
In a fifth aspect of the present invention, a cold generation means for generating all the cold necessary for the air separation means and the supply means is provided on the side of the supply means.

〔作用〕[Effect]

上記請求項1の構成によれば、組成成分タンクから取出
された液状組成成分の冷熱エネルギーによって、精留塔
からガス状態で取出されたN2が液化されるために、上
記冷熱エネルギーを有効利用することができる。さらに
液化されたN2を還流LN2および寒冷源として精溜塔
に送ることにより、寒冷発生のための動力を低減するこ
とができる。
According to the configuration of claim 1, the N2 taken out in a gaseous state from the rectification column is liquefied by the cold energy of the liquid composition taken out from the composition tank, so that the cold energy is effectively used. be able to. Further, by sending the liquefied N2 to the rectification column as the reflux LN2 and a cold source, the power required for generating cold can be reduced.

請求項2の構成によれば、一つの空気分離手段に対して
一つの供給手段を組合せる場合と比べて装置がコンパク
トになる。
According to the structure of claim 2, the apparatus becomes more compact than when one supply means is combined with one air separation means.

〔実施例〕〔Example〕

第1実施例を示す第1図において、空気分離装置は空気
分離手段Aと供給手段Bとから構成される。空気分離手
段Aは、空気圧縮機11と、原料空気を前処理する吸着
塔(図示せず)と、原料空気を冷却する主熱交換器2と
、原料空気からLN2およびL02を分離する精溜塔3
と、寒冷を発生させる膨張タービン6とから基本構成さ
れている。また供給手段Bは、製品LO2を蓄える製品
L02タンク5と、このタンク5から製品Lo2を取出
すポンプ51と、N2圧縮機12と、上記製品LO2と
このN2圧縮機12によって送られてくるN2とを互い
に熱交換させる蒸発器(第2の熱交換器)7と、この蒸
発器7によって液化されたN2を蓄える(N2タンク8
とから基本構成されている。
In FIG. 1 showing the first embodiment, the air separation apparatus is composed of air separation means A and supply means B. In FIG. The air separation means A includes an air compressor 11, an adsorption tower (not shown) that pre-treats the feed air, a main heat exchanger 2 that cools the feed air, and a rectifier that separates LN2 and L02 from the feed air. tower 3
It basically consists of: and an expansion turbine 6 that generates cold. In addition, the supply means B includes a product L02 tank 5 for storing the product L02, a pump 51 for taking out the product L02 from the tank 5, an N2 compressor 12, and the product L02 and the N2 sent by the N2 compressor 12. An evaporator (second heat exchanger) 7 that exchanges heat with each other, and an N2 tank 8 that stores N2 liquefied by this evaporator 7.
It basically consists of.

上記空気分離手段Aにおける前処理用吸着塔は一対の吸
着器からなり、一方の吸着器で原料空気から水分(N2
0)および炭酸ガス(CO2)を吸着除去する間に、他
方の吸着器は精溜塔3からの比較的低純度のN2によっ
て再生されるように構成されている。
The adsorption tower for pretreatment in the air separation means A is composed of a pair of adsorbers, one of which is used to extract moisture (N2
0) and carbon dioxide (CO2), the other adsorber is configured to be regenerated by relatively low purity N2 from the rectification column 3.

上記空気圧縮機11は上記前処理用吸着塔が介在された
導管110によって主熱交換器2と接続され、この主熱
交換器2は導管111によって精溜塔3の下塔31下部
と接続される。主熱交換器2でその液化温度付近まで冷
却された原料空気は、導管111によって下塔31下部
に導入される。
The air compressor 11 is connected to the main heat exchanger 2 through a conduit 110 in which the pretreatment adsorption tower is interposed, and the main heat exchanger 2 is connected to the lower part of the lower column 31 of the rectification column 3 through a conduit 111. Ru. The raw air cooled to around its liquefaction temperature in the main heat exchanger 2 is introduced into the lower part of the lower column 31 through a conduit 111.

上記精溜塔3は、下塔31と、上塔32と、これらの間
に設けられた蒸発器33とから構成される。下塔31頂
部には受皿34が設けられ、この受皿34には導管31
1の一端が接続され、その他端は上塔32上部に接続さ
れている。下塔31底部には導管312の一端が接続さ
れ、この導管312の他端は上塔32中部と接続されて
いる。
The rectifying column 3 is composed of a lower column 31, an upper column 32, and an evaporator 33 provided between them. A saucer 34 is provided at the top of the lower tower 31, and the conduit 31 is placed in the saucer 34.
1 is connected, and the other end is connected to the upper part of the upper tower 32. One end of a conduit 312 is connected to the bottom of the lower tower 31, and the other end of this conduit 312 is connected to the middle part of the upper tower 32.

また上記上塔32頂部には導管321の一端が接続され
、この導管321の他端は主熱交換器2と接続されてい
る。この主熱交換器2には、導管322の一端か上記導
管321と互いに連通するように接続され、その他端は
供給手段BのN2圧縮機12と接続されている。また上
塔32底部には導管500の一端が接続され、この導管
500の他端はL02タンク5と接続されている。
Further, one end of a conduit 321 is connected to the top of the upper tower 32, and the other end of this conduit 321 is connected to the main heat exchanger 2. One end of the conduit 322 is connected to the main heat exchanger 2 so as to communicate with the conduit 321, and the other end is connected to the N2 compressor 12 of the supply means B. Further, one end of a conduit 500 is connected to the bottom of the upper tower 32, and the other end of this conduit 500 is connected to the L02 tank 5.

上記導管110は主熱交換器2内で分岐され、この分岐
管600は膨脹タービン6を介して精溜塔3の上塔32
中部に接続されている。さらに上塔32上部には図示し
ない導管が接続され、この導管は主熱交換器2を介して
再生用ガスを前処理用吸着塔に供給するように上記前処
理用吸着塔と接続されている。
The conduit 110 is branched within the main heat exchanger 2, and this branch pipe 600 is connected to the upper column 32 of the rectification column 3 via the expansion turbine 6.
Connected to the central part. Furthermore, a conduit (not shown) is connected to the upper part of the upper column 32, and this conduit is connected to the pretreatment adsorption tower so as to supply regeneration gas to the pretreatment adsorption tower via the main heat exchanger 2. .

LO2タンク5にはポンプ51が接続され、このポンプ
51は導管511によってLO3を送給可能に蒸発器7
と接続され、この蒸発器7はガス化された製品G02を
転炉や電気炉などを有する製鉄所(需要先)まで送給可
能に導管512によって上記需要先と接続されている。
A pump 51 is connected to the LO2 tank 5, and this pump 51 can supply LO3 to the evaporator 7 through a conduit 511.
The evaporator 7 is connected to the customer through a conduit 512 so that the gasified product G02 can be delivered to the steelworks (the customer) having a converter, electric furnace, etc.

またN2圧縮機12は導管120によって蒸発器7と接
続され、この蒸発器7は液化されたN2を送給可能に導
管121によってLN2タンク8と接続されている。さ
らにこのLN2タンク8には導管122の一端が接続さ
れ、この導管122の他端はLN2を送給可能に精溜塔
3の下塔31頂部と接続されている。
The N2 compressor 12 is also connected to the evaporator 7 by a conduit 120, and the evaporator 7 is connected to the LN2 tank 8 by a conduit 121 so that liquefied N2 can be delivered. Further, one end of a conduit 122 is connected to this LN2 tank 8, and the other end of this conduit 122 is connected to the top of the lower column 31 of the rectification column 3 so that LN2 can be supplied.

つぎに、上記構成の空気分離装置によるプロセスを、ま
ず空気分離手段Aでの基本的なプロセスから説明する。
Next, the process performed by the air separation apparatus having the above configuration will be explained, starting with the basic process in the air separation means A.

原料空気は、第1の空気圧縮機11により圧縮され、図
示しない吸着塔により原料空気中の水分(N20)およ
び炭酸ガス(CO2)などが吸着除去され、前処理され
た残りの原料空気が深冷部C内の主熱交換器2に導管1
10を通して送られる。この主熱交換器2で上記原料空
気は、その沸点近くまで冷却された後に、導管111を
通して精溜塔3の下塔31に入れられる。
The raw air is compressed by the first air compressor 11, moisture (N20), carbon dioxide (CO2), etc. in the raw air are adsorbed and removed by an adsorption tower (not shown), and the remaining pretreated raw air is deep-seated. Conduit 1 to main heat exchanger 2 in cold section C
Sent through 10. The feed air is cooled to near its boiling point in the main heat exchanger 2 and then introduced into the lower column 31 of the rectification column 3 through a conduit 111.

下塔31に入った原料空気はこの下塔31内を上昇する
間に還流しN2と接触し、しだいにそのN2濃度が高め
られ、下塔31頂部では高純度N2となる。このN2は
主蒸発器33に入り上塔32のL02と熱交換して凝縮
することによりLN2となる。このLN2は、その一部
が還流液として上塔32頂部に導管311を通して供給
され、残部が還流液として下塔31頂部に戻される。
The raw material air that has entered the lower column 31 comes into contact with reflux and N2 while rising in the lower column 31, and its N2 concentration is gradually increased, and at the top of the lower column 31, it becomes highly purified N2. This N2 enters the main evaporator 33, exchanges heat with L02 in the upper column 32, and condenses to become LN2. A portion of this LN2 is supplied as a reflux liquid to the top of the upper column 32 through the conduit 311, and the remainder is returned to the top of the lower column 31 as a reflux liquid.

この還流液は下塔31を下っていく間にこの下塔31内
を上昇してくる原料空気と接触して02濃度が高められ
、この下塔31底部に0゜が40%程度含まれる液体空
気となって溜められる。そしてこの液体空気は下塔31
底部から取出されて上塔32中部に導管312を通して
供給される。
While this reflux liquid goes down the lower column 31, it comes into contact with the raw material air rising in the lower column 31, and the 02 concentration is increased, and the bottom of the lower column 31 contains a liquid containing about 40% of 0°. It becomes air and accumulates. And this liquid air is in the lower tower 31
It is taken out from the bottom and fed into the middle of the upper column 32 through a conduit 312.

この液体空気は、上塔32中部から下方に流れる間に0
2が濃縮されて上塔32底部には高純度のLO2が溜り
、このL02の一部は蒸発器33でN2と熱交換してL
o2は蒸発してCO2となり、これが上塔32での精溜
塔上昇ガスとなって精留操作が行われる。残りのLO2
は導管500を通して取出され、L02タンク5に蓄え
られる。
While this liquid air flows downward from the middle of the upper tower 32, it becomes zero.
2 is condensed and high-purity LO2 accumulates at the bottom of the upper column 32, and a part of this L02 is exchanged with N2 in the evaporator 33 to become L02.
The o2 evaporates to become CO2, which becomes the rising gas in the rectification column in the upper column 32 and performs the rectification operation. remaining LO2
is removed through conduit 500 and stored in L02 tank 5.

また空気圧縮機12によって主熱交換器2に送られた原
料空気の一部は膨脹タービン6で断熱膨脹されて寒冷が
発生され、これが精溜塔3の上塔32中部に導管600
を通して供給される。
Further, a part of the raw air sent to the main heat exchanger 2 by the air compressor 12 is adiabatically expanded by the expansion turbine 6 to generate cold, which is passed through the conduit 600 to the middle of the upper column 32 of the rectification column 3.
supplied through.

一方、上塔32頂部からは高純度N2が取出され、この
高純度N2は主熱交換器2に導管321を通して送られ
、この主熱交換器2で原料空気を冷却する。この主熱交
換器2で原料空気と熱交換したGN2は、導管322を
通して供給手段BのN2圧縮機12に送られ、このN2
圧縮機12で圧縮されて導管120を通して蒸発器7に
送られる。
On the other hand, high-purity N2 is taken out from the top of the upper column 32, and is sent to the main heat exchanger 2 through a conduit 321, where the feed air is cooled. The GN2 that has undergone heat exchange with the raw air in the main heat exchanger 2 is sent to the N2 compressor 12 of the supply means B through the conduit 322, and this N2
It is compressed by compressor 12 and sent to evaporator 7 through conduit 120.

また上記供給手段Bでは、ポンプ51の作動により需要
先からの需要に応じてL02が蒸発器7に導管511を
通して送られる。この蒸発器7では上記しO2と、上記
導管120からのGN2とが熱交換される。これによっ
て上記しO2はガス化され、製品G02として導管51
2を通して需要先に供給されるとともに、上記GN2は
上記L02によって冷却されて液化し、LN2が導管1
21を通してLN2タンク8に蓄えられる。このLN2
タンク8のLN2は、連続運転されている空気分離手段
Aの精溜塔3へ導管122を通してその下塔31頂部に
一定流量供給される。これによって上記LN2は精留塔
3内での還流しN2として利用されるとともに、分離に
際する寒冷源の一部としても利用される。
Further, in the supply means B, L02 is sent to the evaporator 7 through the conduit 511 according to the demand from the consumer by operating the pump 51. In this evaporator 7, the above-described O2 and the GN2 from the conduit 120 are heat exchanged. As a result, the O2 mentioned above is gasified, and the product G02 is produced in the conduit 51.
At the same time, the GN2 is cooled and liquefied by the L02, and LN2 is supplied to the consumer through the conduit 1.
21 and is stored in the LN2 tank 8. This LN2
LN2 in the tank 8 is supplied at a constant flow rate to the top of the lower column 31 of the rectification column 3 of the air separation means A, which is continuously operated, through the conduit 122. As a result, the LN2 is used as refluxed N2 in the rectification column 3, and is also used as part of the cold source during separation.

このように導管600を通して供給される膨張タービン
6からの寒冷の他に、導管122を通して供給手段Bか
らLN2としての寒冷が精溜塔3に供給されるために、
このLN2が供給されない場合と比べて、空気分離手段
Aでの寒冷発生量を上記供給手段Bから供給される寒冷
の分だけ減らすことができ、これによりその寒冷発生に
要する動力を低減することができる。
In addition to the refrigeration from the expansion turbine 6 supplied through the conduit 600, refrigeration as LN2 is supplied to the rectification column 3 from the supply means B through the conduit 122.
Compared to the case where this LN2 is not supplied, the amount of cold generated by the air separation means A can be reduced by the amount of cold supplied from the supply means B, thereby reducing the power required to generate the cold. can.

さらに従来の供給手段としてガスホルダーH(第5図参
照)を用いる場合に比べて、需要先に供給する製品を液
体の状態で蓄えることができるために、装置全体をコン
パクトにすることができる。
Furthermore, compared to the case where a gas holder H (see FIG. 5) is used as a conventional supply means, the product to be supplied to a customer can be stored in a liquid state, so that the entire apparatus can be made more compact.

第2図には第2実施例が示されている。これは、第1実
施例(第1図参照)の構成に導管323および324を
付加するとともに、上記第1実施例における導管322
にGN2取出し用分岐管322a、120aを設けたも
のである。上記導管323は、その一端が精留塔3の上
塔32の底部、他端が主熱交換器2にそれぞれ接続され
、上記導管324はその一端が上記導管323と互いに
連通するように上記主熱交換器2に接続され、上記導管
324の他端は導管512と合流するように接続されて
いる。すなわち上記導管323によって上塔32から取
出されたGO2は主熱交換器2に送られ、主熱交換器2
で原料空気を冷却することにより熱交換され、この熱交
換後の602が導管324を通して導管512内のGO
2と合流される。
A second embodiment is shown in FIG. This adds conduits 323 and 324 to the configuration of the first embodiment (see FIG. 1), and also adds conduits 323 and 324 to the configuration of the first embodiment (see FIG. 1).
Branch pipes 322a and 120a for taking out GN2 are provided in the main body. The conduit 323 has one end connected to the bottom of the upper column 32 of the rectification column 3, and the other end connected to the main heat exchanger 2, and the conduit 324 has one end connected to the main heat exchanger 2 so as to communicate with the conduit 323. The conduit 324 is connected to the heat exchanger 2, and the other end of the conduit 324 is connected to join the conduit 512. That is, GO2 taken out from the upper tower 32 through the conduit 323 is sent to the main heat exchanger 2;
The raw air is cooled at
It will be merged with 2.

また導管322の途中には分岐管322aが上記導管3
22内のGN2を取出し可能に設けられ、また導管12
0の途中には分岐管120aが上記導管120内のGN
2を取出し可能に設けられている。
Further, a branch pipe 322a is provided in the middle of the conduit 322.
GN2 in the conduit 12 can be taken out.
0, a branch pipe 120a is connected to the GN in the conduit 120.
2 can be taken out.

この第2実施例によれば、需要先へ供給可能な製品G0
2の供給源として導管512からのものと、導管324
からのものとの2経路を設けることができる。この導管
324からのGO2は空気分離手段Aの定常運転により
一定流量が継続して供給されるために、この導管324
からのGO2を需要先で最低限必要とする一定供給量(
ベースロード量)と対応させて供給するようにし、そし
て需要量の変動時、すなわち上記一定供給量を超える一
時的な需要増に対してはLO2タンク5から蒸発させた
導管512からの602により対処するようにすること
ができる。したがって需要先の様々な需要変動に対して
も、空気分離手段Aの定常運転を維持しつつ、より確実
に対処することができる。
According to this second embodiment, the product G0 that can be supplied to the demand destination
2 from conduit 512 and from conduit 324.
It is possible to provide two routes to and from. Since GO2 from this conduit 324 is continuously supplied at a constant flow rate due to the steady operation of the air separation means A, this conduit 324
The minimum required supply amount of GO2 from the demand destination (
602 from the conduit 512 evaporated from the LO2 tank 5 is used to deal with fluctuations in demand, that is, temporary increases in demand exceeding the above-mentioned constant supply amount. You can do as you like. Therefore, it is possible to more reliably cope with various demand fluctuations at the demand destination while maintaining steady operation of the air separation means A.

また上記第2実施例によれば、分岐管322aを通して
低圧の製品GN2、分岐管120aを通してN2圧縮機
12により圧縮された高圧の製品GN2をそれぞれ取出
すことができる。これにより需要先での要求に応じて低
圧もしくは高圧の製品GN2の供給を行うことができる
。しかも、この第2実施例では、一つのN2圧縮機12
によりGN2の圧送のための加圧と、製品として要求さ
れる所定圧力への加圧との両機能を発揮させることがで
き、装置全体のコンパクト化に寄与することができる。
Further, according to the second embodiment, the low-pressure product GN2 can be taken out through the branch pipe 322a, and the high-pressure product GN2 compressed by the N2 compressor 12 can be taken out through the branch pipe 120a. This makes it possible to supply the low-pressure or high-pressure product GN2 according to the demands of the demand destination. Moreover, in this second embodiment, one N2 compressor 12
This makes it possible to perform both functions of pressurizing the GN2 and pressurizing to a predetermined pressure required as a product, thereby contributing to making the entire device more compact.

第3図には第3実施例が示されている。これは上記第2
実施例(第2図参照)の構成に新たに他の蒸発器9など
を付加したものである。この第3実施例では、LN2タ
ンク8に導管800の一端が接続され、この導管800
の他端が上記蒸発器9と接続され、この導管800を通
して上記LN2タンク8内のLN2が上記蒸発器9に供
給される。そしてこの蒸発器9の出口側には導管810
の一端が接続され、この導管810を通して上記蒸発器
9てガス化したN2  (GN2 )が大気に放出され
る。
A third embodiment is shown in FIG. This is the second above
This is a configuration in which another evaporator 9 and the like are newly added to the configuration of the embodiment (see FIG. 2). In this third embodiment, one end of a conduit 800 is connected to the LN2 tank 8, and this conduit 800
The other end is connected to the evaporator 9, and LN2 in the LN2 tank 8 is supplied to the evaporator 9 through this conduit 800. A conduit 810 is provided on the outlet side of this evaporator 9.
N2 (GN2) gasified in the evaporator 9 is discharged to the atmosphere through this conduit 810.

また導管324と合流した後、需要先までのばされた導
管512には、製品G02を需要先まで圧送するための
02圧縮機13が介在されるとともに、この02圧縮機
13の下流側に製品GO2を引込み可能に分岐管513
の一端が接続されている。この分岐管513の他端は上
記蒸発器9に接続され、上記分岐管513を通して送ら
れた製品G○2が上記蒸発器9で導管800からのLN
2によって冷却、液化される。この蒸発器9とL○2タ
ンク5とは導管514によって接続され、この導管51
4を通して上記蒸発器9で液化された02(LO2)が
上記L02タンク5に戻される。
In addition, in the conduit 512 that is extended to the demand destination after merging with the conduit 324, an 02 compressor 13 is interposed to convey the product G02 under pressure to the demand destination. Branch pipe 513 that allows GO2 to be drawn in
is connected at one end. The other end of this branch pipe 513 is connected to the evaporator 9, and the product G○2 sent through the branch pipe 513 is transferred to the evaporator 9 from LN from the conduit 800.
2, it is cooled and liquefied. This evaporator 9 and L○2 tank 5 are connected by a conduit 514, and this conduit 51
4, the 02 (LO2) liquefied in the evaporator 9 is returned to the L02 tank 5.

この第3実施例では、0゜圧縮機13によって圧縮され
、導管512を通して需要先に供給される途中において
も、その導管512内の製品G02を分岐管513によ
って蒸発器9に導き、この蒸発器9で液化することによ
り、L02タンク5に戻すことができる。これにより需
要先での急激な需要変動、例えば需要量がピーク値から
急減した場合などに、その変動が大きすぎたり、早すぎ
たりして上記02圧縮機13が上記変動に追従できない
ときに、上記分岐管513から製品G○2を分岐させる
ことにより、上記変動に対1.でも対処することができ
る。しかも分岐させた製品G。
In this third embodiment, the product G02 in the conduit 512 is guided to the evaporator 9 through the branch pipe 513 even while being compressed by the 0° compressor 13 and being supplied to the consumer through the conduit 512. By liquefying it in step 9, it can be returned to the L02 tank 5. As a result, when there is a sudden change in demand at a demand destination, such as when the demand quantity suddenly decreases from its peak value, the 02 compressor 13 cannot follow the change because the change is too large or too fast. By branching the product G○2 from the branch pipe 513, the above fluctuation can be addressed in 1. But it can be dealt with. Moreover, it is a branched product G.

2を廃棄することなく、LO2に変換させてLO2タン
ク5に再び戻すことができ、ロスを無くすことができる
。さらに上記製品GO2をL02に液化するエネルギー
として、特別な冷熱を使用せずに空気分離手段Aの運転
により大量に得られたLN2タンク8内のLN2を用い
ているために、効率的に行うことができる。
2 can be converted into LO2 and returned to the LO2 tank 5 without being discarded, thereby eliminating loss. Furthermore, as the energy for liquefying the product GO2 into L02, the LN2 in the LN2 tank 8 obtained in large quantities by the operation of the air separation means A is used without using special cold energy, so it can be done efficiently. I can do it.

第4図には第4実施例が示されている。これは供給手段
B側に設けた膨脹タービン6aによって第1実施例(第
1図参照)における空気分離手段Aの膨脹タービンを省
略するように構成したものである。すなわち供給手段B
の蒸発器7に膨脹タービン(寒冷発生手段)6aを設け
、この膨脹タービンによってN2圧縮機12からのN2
の一部を断熱膨張させて寒冷を発生させ、この寒冷によ
って蒸発器7でのN2の液化を促進し、ここで得られる
寒冷をLN2の形で空気分離手段Aに与えるように構成
したものである。これにより、空気分離手段Aで分離な
どに必要な寒冷や供給手段Bでの低温維持のための寒冷
などが上言己膨張タービン6aによって発生され、これ
により第1実施例における空気分離手段Aでの膨脹ター
ビン6(第1図参照)を省略することができ、上記空気
分離手段Aのコンパクト化を図ることができる。
A fourth embodiment is shown in FIG. This configuration is such that the expansion turbine 6a provided on the supplying means B side is used to omit the expansion turbine of the air separation means A in the first embodiment (see FIG. 1). That is, supply means B
An expansion turbine (cold generation means) 6a is provided in the evaporator 7 of the evaporator 7, and the N2 from the N2 compressor 12 is
A portion of the LN2 is adiabatically expanded to generate cold, this cold promotes the liquefaction of N2 in the evaporator 7, and the cold obtained here is supplied to the air separation means A in the form of LN2. be. As a result, the self-expansion turbine 6a generates the cold necessary for separation in the air separation means A and the cold for maintaining low temperature in the supply means B, and thereby the air separation means A in the first embodiment The expansion turbine 6 (see FIG. 1) can be omitted, and the air separation means A can be made more compact.

なお上記第1〜第4の実施例における他の態様を以下に
説明する。
Other aspects of the first to fourth embodiments will be described below.

A、上記実施例では、一つの空気分離手段Aと一つの供
給手段Bとによって空気分離装置を構成しているが、こ
れに限らず、複数の空気分離装置A、A、・・・と一つ
の供給手段Bとによって空気分離装置を構成してもよい
。この場合には複数の精溜塔からのL02を一つのLO
2タンクに蓄えるとともに、一つのLN2タンクから複
数の精溜塔にLN2が供給されるように構成すればよい
。これによつて一つの空気分離手段A毎に一つの供給手
段Bを備える場合に比べて装置がコンパクトになる。
A. In the above embodiment, the air separation device is composed of one air separation means A and one supply means B, but it is not limited to this. The air separation device may be constituted by two supply means B. In this case, L02 from multiple rectification columns is combined into one LO
LN2 may be stored in two tanks and may be configured to be supplied from one LN2 tank to a plurality of rectification columns. This makes the apparatus more compact than when one supply means B is provided for each air separation means A.

B、上記実施例では、精留塔から取出す液状組成成分と
してL02を選択し、原料空気からGN2とLO2とを
分離してそのLO2から得られるGO2を需要先に供給
するようにしているが、これに限らず、上記しO2に加
えて、例えば精留塔の受皿34からLN2を液状組成成
分として取出して製品として需要先に供給するように構
成してもよい。さらに原料空気からアルゴンを液状で分
離して需要先に供給するように構成してもよい。
B. In the above example, L02 is selected as the liquid composition component taken out from the rectification column, GN2 and LO2 are separated from the raw air, and GO2 obtained from the LO2 is supplied to the consumer. However, the present invention is not limited to this, and in addition to the above-mentioned O2, for example, LN2 may be taken out as a liquid composition component from the tray 34 of the rectification column and supplied to the consumer as a product. Furthermore, the arrangement may be such that argon is separated from the raw material air in liquid form and supplied to the consumer.

C0上記実施例では、LN2タンク8からのLN2を精
溜塔3の下塔31頂部に供給するようにしているが、こ
れに限らず、例えば膨脹タービン6からの寒冷供給先で
ある精溜塔3の上塔32中部に供給するように構成して
もよい。
C0 In the above embodiment, LN2 from the LN2 tank 8 is supplied to the top of the lower column 31 of the rectifying column 3, but the present invention is not limited to this, and for example, the LN2 is supplied to the rectifying column which is the cold supply destination from the expansion turbine 6. It may also be configured such that it is supplied to the middle part of the upper tower 32 of No. 3.

D、上記実施例におけるポンプ51をLO2タンク5の
下流側ではなく、例えば上流側である導管500に介在
させ、このポンプによってタンク5内の圧力を上げるこ
とにより、内部のLO2を送給させるようにしてもよい
D. The pump 51 in the above embodiment is placed not on the downstream side of the LO2 tank 5, but for example in the conduit 500 on the upstream side, and by increasing the pressure inside the tank 5 with this pump, the internal LO2 is supplied. You may also do so.

E、また需要先で要求されるGO2などの圧力が比較的
低い場合には第1図などに示すポンプ51を省略しても
よい。この場合には精溜塔3から導管500を通して取
出される際のLO2の圧力によって需要先まで送給すれ
ばよい。
Furthermore, if the pressure of GO2 or the like required by the customer is relatively low, the pump 51 shown in FIG. 1 may be omitted. In this case, the pressure of LO2 taken out from the rectification column 3 through the conduit 500 may be used to deliver it to the consumer.

〔発明の効果〕〔Effect of the invention〕

この発明の請求項1の空気分離装置によれば、空気分離
手段の定常運転を継続しつつ、供給手段によって製品ガ
スの供給を需要先での需要変動に対応して行うことがで
きる。しかも供給に際し、液状組成成分の冷熱エネルギ
ーを精留塔から取出したGN2の液化に有効利用するこ
とができ、これにより得られるLN2を空気分離手段で
の寒冷源として利用することにより、上記供給手段を設
けない場合に比べて空気分離手段での液化分離に伴う動
力消費を軽減することができる。
According to the air separation apparatus of claim 1 of the present invention, the supply means can supply the product gas in response to demand fluctuations at the demand site while continuing the steady operation of the air separation means. Moreover, during supply, the cold energy of the liquid composition components can be effectively used to liquefy the GN2 taken out from the rectification column, and the LN2 obtained thereby can be used as a cold source in the air separation means, thereby reducing the amount of heat generated by the supply means. The power consumption associated with liquefaction separation by the air separation means can be reduced compared to the case where no air separation means is provided.

請求項2の構成によれば、一つの空気分離手段に対して
一つの供給手段を組合せる場合と比べて装置をコンパク
トにすることができる。
According to the configuration of claim 2, the apparatus can be made more compact than when one supply means is combined with one air separation means.

請求項3の構成によれば、需要先としての製鉄所などか
ら必要とされるG O2を、その需要変動に対応して確
実に供給することができる。
According to the configuration of claim 3, GO2 required by a steel mill or the like as a demand destination can be reliably supplied in response to demand fluctuations.

請求項5の構成によれば、寒冷発生手段を空気分離手段
側に設ける必要がなく、装置全体を簡易に構成すること
ができる。
According to the configuration of claim 5, there is no need to provide the cold generation means on the air separation means side, and the entire apparatus can be configured simply.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第1実施例を示す説明図、第2図は
第2実施例を示す説明図、第3図は第3実施例を示す説
明図、第4図は第4実施例を示す説明図、第5図は従来
の空気分離装置を示す説明図、第6図(よ従来の課題を
解決するために考えられる構成を示す説明図である。 2・・・主熱交換器、3・・・精溜塔、5・・・LO2
タンク、6a・・・膨脹タービン、7・・・蒸発器、8
・・・LN2タンク、11・・・空気圧縮機、12・・
・N2圧縮機、A・・・空気分離手段、B・・・供給手
段。 第  5 図 特許出願人      株式会社神戸製鋼所代 理 人
       弁理士 小谷悦司同         
弁理士 長1)正向         弁理士 伊藤孝
夫C′
Fig. 1 is an explanatory diagram showing a first embodiment of the invention, Fig. 2 is an explanatory diagram showing a second embodiment, Fig. 3 is an explanatory diagram showing a third embodiment, and Fig. 4 is an explanatory diagram showing a fourth embodiment. FIG. 5 is an explanatory diagram showing a conventional air separation device, and FIG. 6 is an explanatory diagram showing a possible configuration for solving the conventional problems. 2... Main heat exchanger , 3... Rectification tower, 5... LO2
Tank, 6a... Expansion turbine, 7... Evaporator, 8
...LN2 tank, 11...Air compressor, 12...
- N2 compressor, A...air separation means, B...supply means. Figure 5 Patent applicant Kobe Steel Co., Ltd. Representative Patent attorney Etsushi Kotani
Patent Attorney Chief 1) Masamukai Patent Attorney Takao Ito C'

Claims (1)

【特許請求の範囲】 1、空気圧縮機と、この空気圧縮機により取入れた原料
空気を冷却する主熱交換器と、冷却された原料空気から
選択的に組成成分を液状で分離する精溜塔とを有する空
気分離手段からなる空気分離装置において、上記空気分
離手段には上記液状組成成分を気化させて需要先に供給
する供給手段が設けられ、この供給手段は上記液状組成
成分を蓄えるように上記精溜塔と接続された組成成分タ
ンクと、上記精留塔での分離過程で生成された窒素を上
記組成成分タンクから取出した液状組成成分によって冷
却する第2の熱交換器と、この第2の熱交換器によって
液化された窒素を蓄える液体窒素タンクとが備えられ、
この液体窒素タンクと精溜塔とは上記液体窒素タンク内
の液体窒素を精溜塔に供給可能になるように互いに接続
されていることを特徴とする空気分離装置。 2、複数の空気分離手段と、一つの供給手段とによって
構成されることを特徴とする請求項1記載の空気分離装
置。 3、液状組成成分が液体酸素であることを特徴とする請
求項1または請求項2記載の空気分離装置。 4、液体窒素タンクからの液体窒素が精溜塔に寒冷源と
して供給されるように構成されていることを特徴とする
請求項1〜3のいずれかに記載の空気分離装置。 5、空気分離手段と供給手段とで必要なすべての寒冷を
発生する寒冷発生手段を上記供給手段側に設けたことを
特徴とする請求項1〜4のいずれかに記載の空気分離装
置。
[Claims] 1. An air compressor, a main heat exchanger that cools the feed air taken in by the air compressor, and a rectification column that selectively separates constituent components in liquid form from the cooled feed air. In the air separation device comprising an air separation means, the air separation means is provided with a supply means for vaporizing the liquid composition component and supplying it to a consumer, and the supply means stores the liquid composition component. a component tank connected to the rectification column; a second heat exchanger that cools nitrogen generated in the separation process in the rectification column by the liquid component taken out from the component tank; a liquid nitrogen tank for storing nitrogen liquefied by the heat exchanger No. 2;
An air separation device characterized in that the liquid nitrogen tank and the rectification column are connected to each other so that the liquid nitrogen in the liquid nitrogen tank can be supplied to the rectification column. 2. The air separation device according to claim 1, comprising a plurality of air separation means and one supply means. 3. The air separation device according to claim 1 or 2, wherein the liquid composition component is liquid oxygen. 4. The air separation apparatus according to any one of claims 1 to 3, wherein the air separation apparatus is configured so that liquid nitrogen from the liquid nitrogen tank is supplied to the rectification column as a cold source. 5. The air separation device according to any one of claims 1 to 4, characterized in that a cold generation means for generating all the cold necessary for the air separation means and the supply means is provided on the side of the supply means.
JP2164686A 1990-06-22 1990-06-22 Air separating device Pending JPH0455682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2164686A JPH0455682A (en) 1990-06-22 1990-06-22 Air separating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2164686A JPH0455682A (en) 1990-06-22 1990-06-22 Air separating device

Publications (1)

Publication Number Publication Date
JPH0455682A true JPH0455682A (en) 1992-02-24

Family

ID=15797930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2164686A Pending JPH0455682A (en) 1990-06-22 1990-06-22 Air separating device

Country Status (1)

Country Link
JP (1) JPH0455682A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0842385B2 (en) 1995-07-21 2003-12-03 Linde Aktiengesellschaft Method and device for the production of variable amounts of a pressurized gaseous product
JP2005273959A (en) * 2004-03-23 2005-10-06 Kobe Steel Ltd Low-temperature air separating apparatus and method operating the same
JP2007502964A (en) * 2003-05-28 2007-02-15 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method and arrangement for back-up supply of pressurized gas by cryogenic liquid spray
JP2010032129A (en) * 2008-07-29 2010-02-12 Air Water Inc Air separator
CN105823302A (en) * 2016-05-18 2016-08-03 杭州杭氧股份有限公司 Air separation device and method capable of achieving oxygen inner and outer compression procedure interchange
FR3062197A3 (en) * 2017-05-24 2018-07-27 Air Liquide METHOD AND APPARATUS FOR SEPARATING AIR BY CRYOGENIC DISTILLATION
FR3119225A1 (en) * 2021-01-27 2022-07-29 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and installation for the emergency supply of a gas

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945998A (en) * 1972-09-11 1974-05-02
JPS5242158A (en) * 1975-09-30 1977-04-01 Yokogawa Hokushin Electric Corp Device for measuring breaking time of relay

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945998A (en) * 1972-09-11 1974-05-02
JPS5242158A (en) * 1975-09-30 1977-04-01 Yokogawa Hokushin Electric Corp Device for measuring breaking time of relay

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0842385B2 (en) 1995-07-21 2003-12-03 Linde Aktiengesellschaft Method and device for the production of variable amounts of a pressurized gaseous product
JP2007502964A (en) * 2003-05-28 2007-02-15 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method and arrangement for back-up supply of pressurized gas by cryogenic liquid spray
JP2005273959A (en) * 2004-03-23 2005-10-06 Kobe Steel Ltd Low-temperature air separating apparatus and method operating the same
JP2010032129A (en) * 2008-07-29 2010-02-12 Air Water Inc Air separator
CN105823302A (en) * 2016-05-18 2016-08-03 杭州杭氧股份有限公司 Air separation device and method capable of achieving oxygen inner and outer compression procedure interchange
CN105823302B (en) * 2016-05-18 2018-12-28 杭州杭氧股份有限公司 It is a kind of to be able to achieve the air-separating plant and method that compression process exchanges inside and outside oxygen
FR3062197A3 (en) * 2017-05-24 2018-07-27 Air Liquide METHOD AND APPARATUS FOR SEPARATING AIR BY CRYOGENIC DISTILLATION
FR3119225A1 (en) * 2021-01-27 2022-07-29 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and installation for the emergency supply of a gas

Similar Documents

Publication Publication Date Title
US6196021B1 (en) Industrial gas pipeline letdown liquefaction system
US5505052A (en) Process and unit for supplying a gas under pressure to an installation that consumes a constituent of air
EP1043558B1 (en) Integrated apparatus for generating power and/or oxygen enriched fluid, and process thereof
US6131407A (en) Natural gas letdown liquefaction system
US2959022A (en) Manipulation of nitrogen-contaminated natural gases
TWI687633B (en) Oxygen production system and oxygen production method
JPH09310970A (en) Method and apparatus for producing high pressure oxygen
US2959021A (en) Process for air separation by liquefaction and rectification
JPH0455682A (en) Air separating device
JPH02293575A (en) Air separation device
US3058315A (en) Process for supplying a gaseous product to meet a fluctuating demand
US3174293A (en) System for providing gas separation products at varying rates
US2685180A (en) Gasifying an extraneous liquefied gas and simultaneously liquefying another gas
JP3748677B2 (en) Method and apparatus for producing low purity oxygen
JP2873469B2 (en) A device that liquefies and separates and supplies air in response to fluctuations in demand
JP3181546B2 (en) Method and apparatus for producing nitrogen and argon from air
JP3220755B2 (en) Air liquefaction separation method and apparatus
KR930003211B1 (en) Air seperating apparatus
JPH0942831A (en) Highly pure nitrogen gas producing apparatus
JP3492955B2 (en) Air separation device and operating method thereof
JP2920392B2 (en) Supercooling method of liquefied nitrogen in air liquefaction separator
JPH0399190A (en) Method of manufacturing oxygen
JPH11118350A (en) Separating method of air and air separating system
JPH0328682A (en) Separation of air and equipment for the same
JPH0611254A (en) Liquefaction/separation method for air and device thereof utilizing lng cold heat