JPH02293575A - Air separation device - Google Patents

Air separation device

Info

Publication number
JPH02293575A
JPH02293575A JP11565189A JP11565189A JPH02293575A JP H02293575 A JPH02293575 A JP H02293575A JP 11565189 A JP11565189 A JP 11565189A JP 11565189 A JP11565189 A JP 11565189A JP H02293575 A JPH02293575 A JP H02293575A
Authority
JP
Japan
Prior art keywords
air
liquid
tank
air separation
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11565189A
Other languages
Japanese (ja)
Inventor
Masayuki Tanaka
正幸 田中
Tetsuo Senchi
泉地 哲夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP11565189A priority Critical patent/JPH02293575A/en
Publication of JPH02293575A publication Critical patent/JPH02293575A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/0489Modularity and arrangement of parts of the air fractionation unit, in particular of the cold box, e.g. pre-fabrication, assembling and erection, dimensions, horizontal layout "plot"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04339Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air
    • F25J3/04345Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04472Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
    • F25J3/04496Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist
    • F25J3/04503Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems
    • F25J3/04509Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems within the cold part of the air fractionation, i.e. exchanging "cold" within the fractionation and/or main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/40One fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/42One fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/50One fluid being oxygen

Abstract

PURPOSE:To effectively utilize cold/heat energy of liquid composition components and to alleviate power consumption upon separation of liquid by air separating means by liquefying the air by cold/heat energy of the composition component, and feeding the liquefied air to a refining tower as material air and cold source. CONSTITUTION:Air separating means A of an air separator is composed of a first air compressor 11, a main heat exchanger 2, a refining tower 3 for separating LN2 and LO2 from the air, and an expansion turbine 6. Supply means B is composed of a LN2 tank 4, a LO2 tank 5, output pumps 41, 51, a second air compressor 12, an evaporator 7 for thermally exchanging product LN2, product LO2 with the air, and a liquid air tank 8. In the evaporator 7, the LN2, LO2 from conduits 411, 511 are thermally exchanged with the air from a conduit 120, the LN2, LO2 are gasified, and supplied to a demand destination as products GN2, GO2. The air is liquefied, stored in a liquid air tank 8, supplied to a refining tower 3, and utilized as material air and as part of cold source in case of separating.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、原料空気から液体酸素(LO2)や液体窒
素(LN2 )などを分離回収し、これらを製鉄所など
の需要先に供給する空気分離装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention is an air system that separates and recovers liquid oxygen (LO2), liquid nitrogen (LN2), etc. from raw air, and supplies these to customers such as steel plants. This relates to a separation device.

〔従来の技術〕[Conventional technology]

従来、空気分離手段としては例えば第2図に示すような
ものが知られている。この装置によるプロセスを以下に
説明する。
Conventionally, as an air separation means, one shown in FIG. 2, for example, is known. The process using this device will be explained below.

まず原料空気は、原料空気圧縮機11により圧縮され、
図示しない吸着塔により原料空気中の水分(1−120
>および炭酸ガス(CO2 )などが吸着除去され、前
処理された残りの原料空気が深冷部C内の主熱交換器2
に送られる。この主熱交換器2で上記原料空気は、その
沸点近くまで冷却された後に、導管111を通して精溜
塔3に入れられる。
First, the raw air is compressed by the raw air compressor 11,
Moisture in the feed air (1-120
>, carbon dioxide (CO2), etc. are adsorbed and removed, and the remaining pretreated raw air is sent to the main heat exchanger 2 in the cryogenic section C.
sent to. The feed air is cooled to near its boiling point in the main heat exchanger 2 and then introduced into the rectification column 3 through a conduit 111.

このNM塔3は下塔31と、上塔32と、これら両者間
で熱交換を行う主蒸発器33とから構成され、上記主熱
交換器2からの原料空気はまずこの精溜塔3の下塔31
下部に入れられる。
This NM column 3 is composed of a lower column 31, an upper column 32, and a main evaporator 33 that exchanges heat between them. Lower tower 31
It can be placed at the bottom.

下塔31に入った原料空気はこの下塔31内を上昇する
間に遠流LN2と接触し、しだいにそのN2m1度が高
められ、下塔31m’i部では高純度N2となる。この
N2は主蒸発&I33に入り上塔32のLO2と熱交換
して凝縮することによりLN2となる。このLN2は、
その一部が還流液として上塔32頂部に導管311を通
して供給され、残部が還流液として下塔31頂部に戻さ
れる。
The raw material air that has entered the lower column 31 comes into contact with the far-flow LN2 while rising in the lower column 31, and its N2ml degree is gradually increased, becoming high purity N2 in the lower column 31m'i section. This N2 enters the main evaporator &I 33, exchanges heat with LO2 in the upper column 32, and condenses to become LN2. This LN2 is
A part of the reflux liquid is supplied to the top of the upper column 32 through the conduit 311, and the remainder is returned to the top of the lower column 31 as a reflux liquid.

この還流液は下塔31を下っていく間にこの下塔31内
を上昇してくる原料空気と接触してo2濃度が高められ
、この下塔31底部に02が40%程度含まれる液体空
気となって溜められる。そしてこの液体空気は下塔31
底部から取出されて上塔32中部に導管312を通して
供給される。
While this reflux liquid goes down the lower column 31, it comes into contact with the raw material air rising in the lower column 31, and the O2 concentration is increased, and the liquid air containing about 40% O2 at the bottom of the lower column 31. It is accumulated as follows. And this liquid air is in the lower tower 31
It is taken out from the bottom and fed into the middle of the upper column 32 through a conduit 312.

この液体空気は、上塔32中部から下方に流れる間に0
2が濃縮されて上塔32底部には高純度のLO2が溜り
、このLO2は上記蒸発633のN2と熱交換してガス
化した後、導管320を通してガス酸素《以下GO2と
いう》として取出される。このGO2は主熱交換器2に
上記導管320を通して送られ、この主熱交換器2で原
料空気と熱交換され、これが製品GO2として需要先に
供給される。一方、上塔32頂部からは高純度N2が取
出され、この高純度N2は主熱交換器2に導管321を
通して送られ、この主熱交換器2で原料空気を冷却した
後、製品ガス窒素《以下製品GN2という》として需要
先に供給される。
While this liquid air flows downward from the middle of the upper tower 32, it becomes zero.
2 is condensed and high-purity LO2 accumulates at the bottom of the upper column 32, and this LO2 is gasified by heat exchange with the N2 from the evaporation 633, and then taken out as gaseous oxygen (hereinafter referred to as GO2) through the conduit 320. . This GO2 is sent to the main heat exchanger 2 through the conduit 320, where it exchanges heat with the raw material air, and is supplied to customers as product GO2. On the other hand, high-purity N2 is taken out from the top of the upper column 32, and this high-purity N2 is sent to the main heat exchanger 2 through a conduit 321, and after cooling the raw material air in the main heat exchanger 2, it is used as a product gas nitrogen. The product is supplied to customers as "Product GN2" hereinafter.

また上記LN2 、LO2の分離精製のための寒冷は、
膨脹タービン6によって原料空気の一部を断熱膨脹させ
て発生させ、これを精溜塔3の上塔32中部に専管60
0を通して供給している。
In addition, the refrigeration for separation and purification of LN2 and LO2 is
A part of the raw material air is adiabatically expanded and generated by the expansion turbine 6, and is passed through a dedicated pipe 60 to the middle of the upper column 32 of the rectification column 3.
It is supplied through 0.

なお上塔32上部からは純度の低いN2が図示しない導
管を通して取出され、この低純度N2を利用して上記前
処理用吸着塔の再生が行われる。
Note that low-purity N2 is taken out from the upper part of the upper column 32 through a conduit (not shown), and this low-purity N2 is used to regenerate the pretreatment adsorption column.

一方、上記需要先が転炉や電気炉などを用いた製鉄所で
ある場合には、上記製品GO2などの消費特性が連続的
でなく、間欠的であるために、上記空気分離手段からの
製品GO2などの供給も間欠的にする必要がある。とこ
ろが、上記空気分離手段においては、定常状態での運転
を継続することによりほぼ一定の純度の製品GN2や製
品Go2が得られるために、需要先での需要に応じてそ
の運転を途中で停止したり変illざせたりすることは
できない。
On the other hand, if the above-mentioned demand destination is a steel mill using a converter or an electric furnace, the consumption characteristics of the above-mentioned product GO2 etc. are not continuous but intermittent, so the product from the above-mentioned air separation means is It is also necessary to supply GO2 etc. intermittently. However, in the above-mentioned air separation means, since the product GN2 and the product Go2 of almost constant purity can be obtained by continuing operation in a steady state, the operation may be stopped midway depending on the demand at the customer. You cannot change or change it.

このため従来は、第2図に示す空気分離手段と需要先と
の間に製品GO2などを蓄えるガスホルダーHからなる
供給手段を設けることが行なわれている。この場合は、
上記空気分離手段の′ll続運転により製造された製品
GO2などを上記ガスホルダーに高圧下で蓄え、このガ
スホルダーHから製品G02゛などを需要に応じて需要
先へ供給するようにされる。
For this reason, conventionally, a supply means consisting of a gas holder H for storing the product GO2 etc. has been provided between the air separation means shown in FIG. 2 and the consumer. in this case,
The product GO2 and the like produced by the continuous operation of the air separation means are stored under high pressure in the gas holder H, and the product G02 and the like are supplied from the gas holder H to the customer according to demand.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、供給手段として上記ガスホルダー■を設けた
場合には、需要先への供給が停止されている・間も製品
GO2などがガスホルダーに蓄えられるために、比較的
大容量のガスホルダーが必要となる。このためこのガス
ホルダーによって空気分離装置がかなり大規模になる。
However, when the above-mentioned gas holder ■ is installed as a supply means, a relatively large capacity gas holder is required because the product GO2 is stored in the gas holder even when the supply to the demand destination is stopped. becomes. This gas holder therefore makes the air separation device quite large.

ここで空気分離装置をコンパクトにするために、第3図
に示すように供給手段として製品LN2タンク4や製品
LO2タンク5を設け、これらのタンクにN2や02を
ガスの状態ではなく液体の状態で蓄えるようにすること
が考えられる。この場合には、精溜塔3の下塔31頂部
のLN2が導管311を通して取出される際に、そのL
N2の一部が製品しN2として導管400を通して上記
製品LN2タンク4に取出され、また精溜@3の上塔3
2底部のLO2が導管500を通して製品Lo2として
製品LO2タンク5に取出される。そしてこの製品LN
2タンク4や顎品LO2タンク5からは、1N2やLO
2が需要先からの需要に応じてポンプ41.51によっ
て取出され、このLN2やLO2は蒸発器40.50に
よってガス化され、製品GN2や製品GO2として霊要
先に供給される。
In order to make the air separation device compact, a product LN2 tank 4 and a product LO2 tank 5 are provided as supply means as shown in Fig. 3, and N2 and 02 are supplied to these tanks in a liquid state rather than a gas state. One idea is to store it in In this case, when the LN2 at the top of the lower column 31 of the rectification column 3 is taken out through the conduit 311, the LN2
A part of the N2 is taken out as product N2 through the conduit 400 to the product LN2 tank 4, and also to the upper column 3 of the rectifier @3.
2 bottom LO2 is taken out through conduit 500 to product LO2 tank 5 as product Lo2. And this product LN
From 2 tank 4 and jaw goods LO2 tank 5, 1N2 and LO
2 is taken out by a pump 41.51 in response to demand from a consumer, and this LN2 and LO2 are gasified by an evaporator 40.50 and supplied to a spiritual destination as product GN2 and product GO2.

ところが第3図に示す供給手段と空気分離手段とを組谷
せた構成では、蒸発器40.50において製品LN2や
製品LO2が大気や温水などと熱交換されるために、こ
の製品LN2や製品102が有する冷熱エネルギーがま
ったく利用されないまま無駄に放出されてしまう。
However, in the structure shown in FIG. 3 in which the supply means and the air separation means are combined in a valley, product LN2 and product LO2 exchange heat with the atmosphere and hot water in the evaporator 40.50. The cold energy possessed by 102 is not utilized at all and is wasted.

この発明は、このような事情に鑑みてなされたものであ
り、需要先での需要変動に対応して製品ガスを供給する
ことができ、しかも供給に際するエネルギーを有効利用
して液化分離に伴う動力消費を低減することができる空
気分離装置を提供することを目的としている。
This invention was made in view of the above circumstances, and it is possible to supply product gas in response to demand fluctuations at the customer, and moreover, it is possible to effectively utilize the energy during supply to perform liquefaction separation. It is an object of the present invention to provide an air separation device that can reduce the accompanying power consumption.

(課題を解決するための手段〕 上記目的を達成するために、この発明の請求項1では、
空気圧縮機と、この空気圧縮機により取入れた原料空気
を冷却する主篇交換器と、冷却された原料空気から選択
的に組成成分を液状で分離する精溜塔とを有する空気分
離手段からなる空気分離装置において、上記空気分離手
段には上記液状組成成分を気化させて需要先に供給する
供給手段が設けられ、この供給手段は上記液状組成成分
を蓄えるように上記精溜塔と接続された組成成分タンク
と、空気圧縮機によって取入れた空気を上記組成成分タ
ンクから取出した液状組成成分によって冷却する第2の
熱交換器と、この第2の熱交換器によって液化された空
気を蓄える液体空気タンクとが備えられ、この液体空気
タンクと精溜塔とは上記液体空気タンク内の液体空気が
精溜塔に供給可能に互いに接続されているように構成し
た。
(Means for Solving the Problems) In order to achieve the above object, claim 1 of this invention:
It consists of an air separation means having an air compressor, a main exchanger that cools the raw material air taken in by the air compressor, and a rectification column that selectively separates constituent components in liquid form from the cooled raw material air. In the air separation device, the air separation means is provided with a supply means for vaporizing the liquid composition component and supplying it to a consumer, and this supply means is connected to the rectification column so as to store the liquid composition component. a component tank, a second heat exchanger that cools the air taken in by the air compressor with the liquid component taken out from the component tank, and liquid air that stores the air liquefied by the second heat exchanger. The liquid air tank and the rectification tower are connected to each other so that the liquid air in the liquid air tank can be supplied to the rectification tower.

請求項2では、請求項1において複数の空気分離手段と
、一つの供給手段とによって構成されるようにした。
In a second aspect of the present invention, the air conditioner according to the first aspect is constituted by a plurality of air separation means and one supply means.

請求項3では、組成成分として、窒素および酸素のいず
れか一方、または双方を選択して原料空気から分離する
ように構成した。
In the third aspect of the present invention, one or both of nitrogen and oxygen is selected as a composition component and separated from the raw air.

請求項4では、液体空気タンクからの液体空気が精溜塔
に原料空気として供給されるように構成した。
According to a fourth aspect of the present invention, the liquid air from the liquid air tank is supplied to the rectification column as raw air.

請求項5では、液体空気タンクからの液体空気が精溜塔
に分離のためなどの寒冷源として供給されるように構成
した。
In claim 5, the liquid air from the liquid air tank is supplied to the rectification column as a cold source for separation.

請求項6では、空気分離手段と供給手段とで必要なすべ
ての寒冷を発生する寒冷発生手段を上記供給手段側に設
けて構成した。
In a sixth aspect of the present invention, a cold generation means for generating all the cold necessary for the air separation means and the supply means is provided on the side of the supply means.

(作用) 上記請求項1の構成によれば、組成成分タンクから取出
された液状組成成分の冷熱エネルギーによって空気が液
化されるために、上記冷熱エネルギーを有効利用するこ
とができる。さらに液化された空気を原料空気および寒
冷源として精溜塔に送ることにより、寒冷発生のための
動力を低減することができる。
(Function) According to the structure of claim 1, since the air is liquefied by the cold energy of the liquid component taken out from the component tank, the cold energy can be effectively utilized. Furthermore, by sending the liquefied air to the rectification tower as raw air and a cold source, the power required to generate cold can be reduced.

請求項2の構成によれば、一つの空気分離手段に対して
一つの供給手段を組合せる場合と比べて装置がコンパク
トになる。
According to the structure of claim 2, the apparatus becomes more compact than when one supply means is combined with one air separation means.

(実施例) 第1図において、空気分離*@は空気分離手段Aと供給
手段Bとから構成される。空気分離手段Aは、第1の空
気圧縮機11と、原料空気を前処理する吸着塔(図示せ
ず)と、原料空気を冷却する主熱交換器2と、原料空気
からLN2およびLo2を分離する精溜塔3と、寒冷を
発生させる膨脹タービン6とから基本構成されている。
(Example) In FIG. 1, air separation *@ is composed of air separation means A and supply means B. The air separation means A includes a first air compressor 11, an adsorption tower (not shown) that pre-treats the feed air, a main heat exchanger 2 that cools the feed air, and separates LN2 and Lo2 from the feed air. It basically consists of a rectification column 3 that generates cooling, and an expansion turbine 6 that generates refrigeration.

また供給手段Bは、製品LN2を蓄えるLN2タンク4
と、製品LO2を蓄える製品LO2タンク5と、それぞ
れのタンク4.5から製品LN2や液体LO2を取出す
ポンプ41.51と、第2の空気圧縮機12と、上記製
品上N2や製品LO2とこの第2の空気圧縮機12によ
って取入れた空気とを互いに熱交換させる蒸発器(第2
の熱交換器)7と、この蒸発器7によって液化された空
気を蓄える液体空気タンク8とから基本構成されている
In addition, the supply means B includes an LN2 tank 4 that stores the product LN2.
, a product LO2 tank 5 that stores product LO2, a pump 41.51 that extracts product LN2 and liquid LO2 from each tank 4.5, a second air compressor 12, and a product LO2 tank 5 that stores the product LO2 and the product LO2. An evaporator (second
It basically consists of a heat exchanger) 7 and a liquid air tank 8 that stores the air liquefied by the evaporator 7.

上記空気分離手段八における前処理用吸着塔は一対の吸
着器からなり、一方の吸着器で原料空気から水分(H2
 0)および炭酸ガス<CO2)を吸着除去する間に、
他方の吸着器は精溜塔3からの比較的低純度のN2によ
って再生されるように構成されている。
The pretreatment adsorption tower in the air separation means 8 consists of a pair of adsorbers, one of which is used to extract moisture (H2
0) and carbon dioxide <CO2), while adsorbing and removing
The other adsorber is configured to be regenerated with relatively low purity N2 from rectification column 3.

上記第1の空気圧縮機11は上記前処理用吸着塔が介在
された導管110によって主熱交換器2と接続され、こ
の主熱交換器2は導管111によってlillli塔3
の下塔31下部と接続される。主熱交換器2でその液化
温度付近まで冷却された原料空気は、導管111によっ
て下塔31下部に導入される。
The first air compressor 11 is connected to the main heat exchanger 2 through a conduit 110 in which the pretreatment adsorption tower is interposed, and the main heat exchanger 2 is connected to the lilli column 3 through a conduit 111.
It is connected to the lower part of the lower tower 31. The raw air cooled to around its liquefaction temperature in the main heat exchanger 2 is introduced into the lower part of the lower column 31 through a conduit 111.

上記精溜塔3は、下塔31と、上塔32と、これらの間
に設けられた蒸発器33とから構成される。下塔31頂
部には受皿34が設けられ、この受皿34には導管31
1と導管400との一端が接続されている。一方の導管
311は上塔32上部に接続され、他方の導管400は
製品LN2タンク4と接続されている。また下塔31底
部と上塔32中部とは導管312によって接続されてい
る。また上記上塔32頂部は導管321によって主熱交
換器2と接続されている。また上塔32底部には導管5
00の一端が接続され、この導管500はLO2タンク
5と接続されている。
The rectifying column 3 is composed of a lower column 31, an upper column 32, and an evaporator 33 provided between them. A saucer 34 is provided at the top of the lower tower 31, and the conduit 31 is placed in the saucer 34.
1 and a conduit 400 are connected at one end. One conduit 311 is connected to the upper part of the upper tower 32, and the other conduit 400 is connected to the product LN2 tank 4. Further, the bottom of the lower tower 31 and the middle part of the upper tower 32 are connected by a conduit 312. Further, the top of the upper column 32 is connected to the main heat exchanger 2 through a conduit 321. Also, at the bottom of the upper tower 32 is a conduit 5.
00 is connected, and this conduit 500 is connected to the LO2 tank 5.

また主熱交換器2内でw#管110が分岐され、この分
岐管600は膨服タービン6を介在して精溜塔3の上塔
32中部に接続されている。さらに上塔32上部には図
示しないyg管が接続され、この導管は主熱交換器2を
介して再生用ガスを前処理用吸着塔に供給するように上
記前処理用吸着塔と接続されている。
Further, the w# pipe 110 is branched within the main heat exchanger 2, and this branch pipe 600 is connected to the middle part of the upper column 32 of the rectification column 3 via the expansion turbine 6. Further, a YG pipe (not shown) is connected to the upper part of the upper column 32, and this conduit is connected to the pretreatment adsorption tower so as to supply regeneration gas to the pretreatment adsorption tower via the main heat exchanger 2. There is.

LN2タンク4およびLO2タンク5にはポンプ41.
51が接続され、このポンプ41.51は導管411,
511によってLN2やLO2を送給可能に蒸発器7と
接続され、この蒸発器7はガス化された製品GN2や製
品GO2が転炉や電気炉などを有する製鉄所LKI要先
》まで送給可能に導管412.512にようて上記需要
先と接続されている。
The LN2 tank 4 and the LO2 tank 5 are equipped with a pump 41.
51 is connected, and this pump 41.51 is connected to the conduit 411,
511, it is connected to the evaporator 7 so that LN2 and LO2 can be sent, and this evaporator 7 can send the gasified products GN2 and GO2 to the LKI destination of the steelworks that has converters, electric furnaces, etc. It is connected to the above-mentioned customer through conduits 412 and 512.

また第2の空気圧縮機12は導管120によって蒸発器
7と接続され、この蒸発器7は液化された液体空気を送
給可能に導管121によって液体空気タンク8と接続さ
れている。さらにこの液体空気タンク8には導管122
の一端がm続され、この導管122の他端は液体空気を
送給可能に精溜塔3の下塔31中部と接続されている。
The second air compressor 12 is also connected by a conduit 120 to an evaporator 7, which is connected to a liquid air tank 8 by a conduit 121 so as to be able to supply liquefied liquid air. Furthermore, this liquid air tank 8 has a conduit 122.
One end of the conduit 122 is connected to the other end of the conduit 122, and the other end of the conduit 122 is connected to the middle part of the lower column 31 of the rectification column 3 so as to be able to supply liquid air.

なお上記導管120には、図示しない第2の前処理用吸
着塔が介在されている。
Note that a second pretreatment adsorption tower (not shown) is interposed in the conduit 120.

つぎに、上記構成の空気分離装置によるプロセスを、ま
ず空気分離手段Aでの基本的なプロセスから説明する。
Next, the process performed by the air separation apparatus having the above configuration will be explained, starting with the basic process in the air separation means A.

原料空気は、第1の空気圧縮ll11により圧縮され、
図示しない吸着塔により原料空気中の水分(H2 0)
および炭酸ガス(CO2 )などが吸着除去され、前処
理された残りの原料空気が深冷部C内の主熱交換器2に
l管110を通して送られる。この主熱交換器2で上記
原料空気は、その沸点近くまで冷却された後に、導管1
11を通して精溜塔3の下塔31に入れられる。
The raw air is compressed by a first air compressor ll11,
Moisture (H20) in the raw air is removed by an adsorption tower (not shown).
Carbon dioxide (CO2) and the like are adsorbed and removed, and the remaining pretreated raw material air is sent to the main heat exchanger 2 in the cryogenic section C through the l pipe 110. In this main heat exchanger 2, the feed air is cooled to near its boiling point, and then
11 into the lower column 31 of the rectification column 3.

下塔31に入った原料空気はこの下塔31内を上昇する
間に還流LN2と接触し、しだいにそのN2濃度が高め
られ、下塔31頂部では高純UN2となる。このN2は
主蒸発器33に入り.L塔32のLO2と熱交換して凝
抛することによりLN2となる。このLN2は、その一
部が還流液として上塔32頂部に導管311を通して供
給され、他の一部がyIJt1400を通してLN2タ
ンク4に送られ、また残部が還流液として下塔31頂部
に戻される。
The raw material air that has entered the lower column 31 comes into contact with the reflux LN2 while rising in the lower column 31, and its N2 concentration is gradually increased, becoming highly pure UN2 at the top of the lower column 31. This N2 enters the main evaporator 33. It exchanges heat with LO2 in the L tower 32 and condenses to become LN2. A portion of this LN2 is supplied as a reflux liquid to the top of the upper column 32 through the conduit 311, another portion is sent to the LN2 tank 4 through the yIJt1400, and the remainder is returned to the top of the lower column 31 as a reflux liquid.

この還流液は下W131を下っていく間にこの下塔31
内を上昇してくる原料空気と接触してo2m度が高めら
れ、この下塔31底部に02が40%程度含まれる液体
空気となって溜められる。そしてこの液体空気は下塔3
1底部から取出されて上塔32中部に尋管312を通し
て供給される。
While this reflux liquid goes down the lower W131, this lower tower 31
The o2m temperature is increased by contact with the raw material air rising inside, and is stored at the bottom of the lower column 31 as liquid air containing about 40% O2. And this liquid air is in the lower tower 3
1 is taken out from the bottom and supplied to the middle of the upper tower 32 through a fathom tube 312.

この液体空気は、上塔32中部から.下方に流れる間に
02が濃縮されて上塔32底部には高純度のLO2が溜
り、このLO2の一部は蒸発器33でN2と熱交換して
LO2は蒸発してGO2となり、これが上塔32での精
溜塔上昇ガスとなって精留操作が行われる。残りの10
2は導管500を通して取出され、LO2タンク5に蓄
えられる。
This liquid air is supplied from the middle of the upper tower 32. While flowing downward, 02 is concentrated and high purity LO2 accumulates at the bottom of the upper column 32. A part of this LO2 exchanges heat with N2 in the evaporator 33, and LO2 evaporates to become GO2, which is then transferred to the upper column. The gas rises in the rectification column at 32 and undergoes a rectification operation. remaining 10
2 is removed through conduit 500 and stored in LO2 tank 5.

一方、上塔32頂部からは高純度N2が取出され、この
高純度N2は主熱交換B2に導管321を通して送られ
、この主熱交換器2で原料空気を冷却する。
On the other hand, high-purity N2 is taken out from the top of the upper column 32, and is sent to the main heat exchanger B2 through a conduit 321, where the main heat exchanger 2 cools the feed air.

また第1の空気圧縮機12によって主熱交換器2に送ら
れた原料空気の一部は膨脹タービン6で断熱膨服されて
寒冷が発生され、これを精溜塔3の上塔32中部に導管
600を通して供給される。
In addition, a part of the raw air sent to the main heat exchanger 2 by the first air compressor 12 is adiabatically expanded by the expansion turbine 6 to generate cold, which is transferred to the middle part of the upper column 32 of the rectification column 3. It is fed through conduit 600.

供給手段Bでは、ポンプ41.51の作動により需要先
からの需要に応じてLN2やLO2が蒸発器7に導管4
11.511を通して送られる。
In the supply means B, LN2 and LO2 are supplied to the evaporator 7 through the conduit 4 according to the demand from the customer by operating the pumps 41 and 51.
11. Sent through 511.

一方、第2の空気圧縮l112も上記需要に応じて作動
され、これにより空気が取入れられ、この空気は図示し
ない第2の前処理用吸着塔により前処理された後、蒸発
器7に々管120を通して送られる。
On the other hand, the second air compressor 112 is also operated according to the above demand, thereby taking in air. After being pretreated by a second pretreatment adsorption tower (not shown), this air is piped to the evaporator 7. 120.

この蒸発器7では導管411.511からのLN2およ
びLO2と、導管120からの空気とが熱交換される。
In this evaporator 7, heat is exchanged between LN2 and LO2 from conduit 411.511 and air from conduit 120.

これによって上記LN2やLO2はガス化され、製品G
N2や製品GO2として需要先に導管412.512を
通して供給される。
As a result, the above LN2 and LO2 are gasified, and the product G
It is supplied to customers as N2 and product GO2 through conduits 412 and 512.

また、上記空気は上記LN2などによって冷却されて液
化し、液体空気が導管121を通して液体空気タンク8
に蓄えられる。この液体空気タンク8の液体空気は、連
続運転されている空気分離手段Aの精溜塔3へ導管12
2を通してその下塔31中部に一定流量供給される。こ
れによって上記液体空気は導管111から供給される原
料空気とともに原料空気として利用され、また分離に際
する寒冷源の一部としても利用される。
Further, the air is cooled and liquefied by the LN2, etc., and the liquid air passes through the conduit 121 to the liquid air tank 8.
is stored in The liquid air in the liquid air tank 8 is passed through a conduit 12 to the rectification column 3 of the air separation means A which is continuously operated.
A constant flow rate is supplied to the middle part of the lower column 31 through 2. As a result, the liquid air is used as raw material air together with the raw material air supplied from the conduit 111, and is also used as part of the cold source during separation.

このように導管600を通して供給される膨脹タービン
6からの寒冷の他に、導管122を通して供給手段Bか
ら液体空気としての寒冷が精溜塔3に供給されるために
、この液体空気が供給されない場合と比べて、空気分離
手段Aでの寒冷発生量を上記供給手段Bから供給される
寒冷の分だけ減らすことができ、これによりその寒冷発
生に要する動力を低減することができる。
In addition to the refrigeration from the expansion turbine 6 supplied through the conduit 600, refrigeration as liquid air is supplied to the rectification column 3 from the supply means B through the conduit 122, so that if this liquid air is not supplied, Compared to this, the amount of cold generated by the air separation means A can be reduced by the amount of cold supplied from the supply means B, thereby reducing the power required to generate the cold.

さらに従来の供給手段としてガスホルダーを用いる場合
に比べて、液体の状態で蓄えることができるために、装
置全体をコンパクトにすることができる。
Furthermore, compared to the case where a gas holder is used as a conventional supply means, since the gas can be stored in a liquid state, the entire device can be made more compact.

第4図には第2実施例が示されている。これは供給手段
Bの蒸発器7に膨脹タービン《寒冷発生手段)6aを設
け、この膨脹タービンによって第2の空気圧縮機12か
らの空気の一部を断熱膨脹させて寒冷を発生させ、この
寒冷を蒸発器7での空気の液化を促進し、ここで得られ
る寒冷を液体空気の形で空気分離手段Aに与えるように
構成したものである。これにより、空気分離手段Aで分
離などに必要な寒冷や供給手段Bでの低温維持のための
寒冷などが上記膨脹タービン6aによって発生され、こ
れにより第1実施例における空気分離手段Aでの膨脹タ
ービン6(第1図参照)を省略することができる。
A second embodiment is shown in FIG. This is achieved by installing an expansion turbine (cold generation means) 6a in the evaporator 7 of the supply means B, which adiabatically expands a part of the air from the second air compressor 12 to generate cold; The evaporator 7 promotes the liquefaction of the air, and the resulting cold air is supplied to the air separation means A in the form of liquid air. As a result, the expansion turbine 6a generates refrigeration necessary for separation in the air separation means A and refrigeration for maintaining low temperature in the supply means B, and thereby the expansion in the air separation means A in the first embodiment The turbine 6 (see FIG. 1) can be omitted.

なお上記第1および第2実施例における他の態様を以下
に説明する。
Other aspects of the first and second embodiments will be described below.

A.上記実施例では、一つの空気分離手段八と一つの供
給手段Bとによって空気分離装置を構成しているが、こ
れに限らず、複数の空気分離装置A.A.・・・と一つ
の供給手段Bとによって空気分離装置を構成してもよい
。′この場合には複数の精溜塔からのLN2やLO2な
どをLN2タンクやLO2タンクなどに蓄えるとともに
、液体空気タンクから複数の精溜塔に液体空気が供給さ
れるように構成すればよい。これによって一つの空気分
離手段A毎に一つの供給手段Bを備える場合に比べて装
置がコンパクトになる。
A. In the above embodiment, the air separation device is constituted by one air separation means 8 and one supply means B, but the present invention is not limited to this, and a plurality of air separation devices A. A. ... and one supply means B may constitute an air separation apparatus. 'In this case, LN2, LO2, etc. from a plurality of rectification columns may be stored in an LN2 tank, a LO2 tank, etc., and liquid air may be supplied from a liquid air tank to a plurality of rectification columns. This makes the apparatus more compact than when one supply means B is provided for each air separation means A.

B.上記実施例では、組成成分としてN2とO2との2
成分を選択し、原料空気からLN2とL02とを分離し
て需要先に供給するようにしているが、これに限らず、
いずれか一方のみを原料空気から分離して供給するよう
に構成してもよい。
B. In the above embodiment, N2 and O2 are used as the composition components.
Although the components are selected and LN2 and L02 are separated from the raw air and supplied to customers, the method is not limited to this.
It may be configured such that only one of them is separated from the raw material air and supplied.

さらに原料空気からアルゴンを液状で分離して需要先に
供給するように構成してもよい。さらに、例えば原料空
気からLN2とGO2とに分離してLN2について上記
実施例を適用するようにしてもよい。
Furthermore, the arrangement may be such that argon is separated from the raw material air in liquid form and supplied to the consumer. Furthermore, for example, the raw air may be separated into LN2 and GO2, and the above embodiments may be applied to LN2.

C.上記実施例では、液体空気タンク8からの液体空気
を精溜塔3の下塔31中部に供給するようにしているが
、これに限らず、例えば膨脹タービン6からの寒冷供給
先である精溜塔3の上塔32中部に供給するように構成
してもよい。
C. In the above embodiment, the liquid air from the liquid air tank 8 is supplied to the middle part of the lower column 31 of the rectifying column 3, but the present invention is not limited to this. It may be configured to be supplied to the middle part of the upper tower 32 of the tower 3.

D.上記実施例では空気分離手段Aと供給手段Bとのそ
れぞれに空気圧縮機11.12を設けているが、これに
限らず、例えば一つの空気圧縮機によって両手段A.B
へ空気を分配供給させるように構成してもよい。
D. In the above embodiment, air compressors 11 and 12 are provided for each of the air separation means A and the supply means B, but the present invention is not limited to this. B
It may be configured to distribute and supply air to.

E.上記実施例におけるポンプ41.51を第5図に示
すように導管400,500に設け、このポンプ418
.51aによってタンク4.5内の圧力を上げることに
より、内部のLO2 .LN2を送給させるようにして
もよい。
E. The pumps 41, 51 in the above embodiment are provided in the conduits 400, 500 as shown in FIG.
.. By increasing the pressure in tank 4.5 by means of 51a, the internal LO2. LN2 may also be supplied.

F.また需要先で要求されるLN2などの圧力が比較的
低い場合には第1図,第5図に示すポンプ41.41a
,51.51aを省略してもよい。
F. In addition, if the pressure of LN2 or the like required at the demand site is relatively low, the pump 41.41a shown in Figures 1 and 5
, 51.51a may be omitted.

この場合には精溜塔3から導管400.500を通して
取出される際の102 .LN2の圧力によって′m要
先まで送給すればよい。
In this case, 102. The pressure of LN2 can be used to feed it to the desired destination.

〔発明の効果〕 この発明の請求項1の空気分離装置によれば、空気分離
手段の定常運転を継続しつつ、供給手段によって製品ガ
スの供給を需要先での需要変動に対応して行うことがで
きる。しかも供給に際し、液状組成成分の冷熱エネルギ
ーを空気の液化に有効利用することができ、この液体空
気を空気分離手段での寒冷源として利用することにより
、上記供給手段を設けない場合に比べて空気分離手段で
の液化分離に伴う動力消費を軽減することができる。
[Effects of the Invention] According to the air separation device according to claim 1 of the present invention, the supply means can supply the product gas in response to demand fluctuations at the demand destination while continuing the steady operation of the air separation means. I can do it. Furthermore, during supply, the cooling energy of the liquid composition components can be effectively used to liquefy the air, and by using this liquid air as a cold source in the air separation means, the air Power consumption associated with liquefaction separation in the separation means can be reduced.

請求項2の構成によれば、一つの空気分離手段に対して
一つの供給手段を組合せる,場合と比べて装置をコンパ
クトにすることができる。
According to the structure of claim 2, the apparatus can be made more compact than in the case where one supply means is combined with one air separation means.

請求項3の構成によれば、需要先としての製鉄所などか
ら必要とされるGO2などを、その需要変動に対応して
確実に供給することができる。
According to the configuration of claim 3, it is possible to reliably supply GO2 and the like required by a steel mill or the like as a demand destination in response to demand fluctuations.

請求項4の構成によれば、供給手段からの液体空気を原
料空気め一部としても利用することができる。
According to the configuration of claim 4, the liquid air from the supply means can also be used as part of the raw material air reservoir.

請求項6の構成によれば、寒冷発生手段を空気分離手段
側に設ける必要がなく、装置全体を簡易に構成すること
ができる。
According to the configuration of claim 6, there is no need to provide the cold generation means on the air separation means side, and the entire apparatus can be configured simply.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の第1実施例を示す説明図、第2図は
従来の空気分離装置を示す説明図、第3図は従来の課題
を解決するために考えられる構成を示す説明図、第4図
は第2実施例を示す説明図、第5図は第1実施例の他の
態様を示す説明図、第6図は上記第1実施例の第5図と
は異なる他の態様を示す説明図である。 2・・・主熱交換器、3・・・精溜塔、4・・・LN2
タンク、5・・・LO2タンク、6a・・・膨脹タービ
ン、7・・・蒸発器、8・・・液体空気タンク、11.
12・・・空気圧縮機、A・・・空気分離手段、B・・
・供給手段。
FIG. 1 is an explanatory diagram showing a first embodiment of the present invention, FIG. 2 is an explanatory diagram showing a conventional air separation device, and FIG. 3 is an explanatory diagram showing a configuration considered to solve the conventional problems. FIG. 4 is an explanatory diagram showing the second embodiment, FIG. 5 is an explanatory diagram showing another aspect of the first embodiment, and FIG. 6 is an explanatory diagram showing another aspect of the first embodiment, which is different from FIG. 5. FIG. 2... Main heat exchanger, 3... Rectification column, 4... LN2
Tank, 5... LO2 tank, 6a... Expansion turbine, 7... Evaporator, 8... Liquid air tank, 11.
12...Air compressor, A...Air separation means, B...
・Means of supply.

Claims (1)

【特許請求の範囲】 1、空気圧縮機と、この空気圧縮機により取入れた原料
空気を冷却する主熱交換器と、冷却された原料空気から
選択的に組成成分を液状で分離する精溜塔とを有する空
気分離手段からなる空気分離装置において、上記空気分
離手段には上記液状組成成分を気化させて需要先に供給
する供給手段が設けられ、この供給手段は上記液状組成
成分を蓄えるように上記精溜塔と接続された組成成分タ
ンクと、空気圧縮機によって取入れた空気を上記組成成
分タンクから取出した液状組成成分によつて冷却する第
2の熱交換器と、この第2の熱交換器によって液化され
た空気を蓄える液体空気タンクとが備えられ、この液体
空気タンクと精溜塔とは上記液体空気タンク内の液体空
気が精溜塔に供給可能になるように互いに接続されてい
ることを特徴とする空気分離装置。 2、複数の空気分離手段と、一つの供給手段とによって
構成されることを特徴とする請求項1記載の空気分離装
置。 3、組成成分として、窒素および酸素のいずれか一方、
または双方を選択して原料空気から分離することを特徴
とする請求項1または請求項2記載の空気分離装置。 4、液体空気タンクからの液体空気が精溜塔に原料空気
として供給されるように構成されていることを特徴とす
る請求項1〜3のいずれかに記載の空気分離装置。 5、液体空気タンクからの液体空気が精溜塔に寒冷源と
して供給されるように構成されていることを特徴とする
請求項1〜3のいずれかに記載の空気分離装置。 6、空気分離手段と供給手段とで必要なすべての寒冷を
発生する寒冷発生手段を上記供給手段側に設けたことを
特徴とする請求項1〜5のいずれかに記載の空気分離装
置。
[Claims] 1. An air compressor, a main heat exchanger that cools the feed air taken in by the air compressor, and a rectification column that selectively separates constituent components in liquid form from the cooled feed air. In the air separation device comprising an air separation means, the air separation means is provided with a supply means for vaporizing the liquid composition component and supplying it to a consumer, and the supply means stores the liquid composition component. a component tank connected to the rectification column; a second heat exchanger that cools the air taken in by the air compressor with the liquid component taken out from the component tank; and the second heat exchanger. and a liquid air tank for storing air liquefied by the liquid air tank, and the liquid air tank and the rectification tower are connected to each other so that the liquid air in the liquid air tank can be supplied to the rectification tower. An air separation device characterized by: 2. The air separation device according to claim 1, comprising a plurality of air separation means and one supply means. 3. Either nitrogen or oxygen as a composition component,
3. The air separation apparatus according to claim 1, wherein one or both are selected and separated from the raw material air. 4. The air separation apparatus according to any one of claims 1 to 3, wherein the air separation apparatus is configured such that liquid air from the liquid air tank is supplied to the rectification column as raw air. 5. The air separation apparatus according to any one of claims 1 to 3, wherein the air separation apparatus is configured such that liquid air from the liquid air tank is supplied to the rectification column as a cold source. 6. The air separation device according to any one of claims 1 to 5, characterized in that a cold generation means for generating all the cold necessary for the air separation means and the supply means is provided on the side of the supply means.
JP11565189A 1989-05-08 1989-05-08 Air separation device Pending JPH02293575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11565189A JPH02293575A (en) 1989-05-08 1989-05-08 Air separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11565189A JPH02293575A (en) 1989-05-08 1989-05-08 Air separation device

Publications (1)

Publication Number Publication Date
JPH02293575A true JPH02293575A (en) 1990-12-04

Family

ID=14667917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11565189A Pending JPH02293575A (en) 1989-05-08 1989-05-08 Air separation device

Country Status (1)

Country Link
JP (1) JPH02293575A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0628778A1 (en) * 1993-06-07 1994-12-14 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and high pressure gas supply unit for an air constituent consuming installation
JPH07151462A (en) * 1993-09-15 1995-06-16 Air Prod And Chem Inc Method for low temperature separation of compressed materialair for producing high pressured oxygen and nitrogen product
EP0694746A1 (en) * 1994-07-29 1996-01-31 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for the production of a gas under pressure in variable quantities
EP0842385B2 (en) 1995-07-21 2003-12-03 Linde Aktiengesellschaft Method and device for the production of variable amounts of a pressurized gaseous product
JP2006522307A (en) * 2003-04-02 2006-09-28 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method and apparatus for the supply of gas under pressure
FR2929697A1 (en) * 2008-04-07 2009-10-09 Air Liquide PROCESS FOR PRODUCING VARIABLE GASEOUS NITROGEN AND VARIABLE GAS OXYGEN BY AIR DISTILLATION
JP2010036056A (en) * 2008-07-31 2010-02-18 Chiyoda Kako Kensetsu Kk Heating module and cooling module
EP2400249A1 (en) * 2010-06-25 2011-12-28 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Air separation method and facility for cryogenic distilling
JP2013117371A (en) * 2011-12-01 2013-06-13 L'air Liquide-Sa Pour L'etude & L'exploitation Des Procedes Georges Claude Method of operation of cryogenic air separation unit
JP2013198900A (en) * 2013-05-01 2013-10-03 Chiyoda Kako Kensetsu Kk Cooling module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55128754A (en) * 1979-03-28 1980-10-04 Hitachi Ltd Combined rectification column for air separator
JPS5636754A (en) * 1979-09-04 1981-04-10 Canon Inc Debugging system
JPS6380185A (en) * 1986-09-22 1988-04-11 株式会社 大分サンソセンタ− Air liquefying separator proper to fluctuation of demand
JPS63143482A (en) * 1986-12-05 1988-06-15 株式会社日立製作所 Tsa adsorption type air low-temperature separator
JPS63282474A (en) * 1987-05-12 1988-11-18 花王株式会社 Production unit for nitrogen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55128754A (en) * 1979-03-28 1980-10-04 Hitachi Ltd Combined rectification column for air separator
JPS5636754A (en) * 1979-09-04 1981-04-10 Canon Inc Debugging system
JPS6380185A (en) * 1986-09-22 1988-04-11 株式会社 大分サンソセンタ− Air liquefying separator proper to fluctuation of demand
JPS63143482A (en) * 1986-12-05 1988-06-15 株式会社日立製作所 Tsa adsorption type air low-temperature separator
JPS63282474A (en) * 1987-05-12 1988-11-18 花王株式会社 Production unit for nitrogen

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5566556A (en) * 1993-06-07 1996-10-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and unit for supplying a gas under pressure to an installation that consumes a constituent of air
FR2706195A1 (en) * 1993-06-07 1994-12-16 Air Liquide Method and unit for supplying pressurized gas to an installation consuming an air component.
EP0628778B2 (en) 1993-06-07 2001-03-21 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and high pressure gas supply unit for an air constituent consuming installation
EP0628778A1 (en) * 1993-06-07 1994-12-14 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and high pressure gas supply unit for an air constituent consuming installation
US5505052A (en) * 1993-06-07 1996-04-09 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and unit for supplying a gas under pressure to an installation that consumes a constituent of air
CN1045656C (en) * 1993-06-07 1999-10-13 乔治·克劳德方法的研究开发空气股份有限公司 Process and unit for supplying a gas under pressure to an installation that consumes a constituent of air
JPH07151462A (en) * 1993-09-15 1995-06-16 Air Prod And Chem Inc Method for low temperature separation of compressed materialair for producing high pressured oxygen and nitrogen product
FR2723184A1 (en) * 1994-07-29 1996-02-02 Grenier Maurice PROCESS AND PLANT FOR THE PRODUCTION OF GAS OXYGEN UNDER PRESSURE WITH VARIABLE FLOW RATE
US5526647A (en) * 1994-07-29 1996-06-18 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and installation for the production of gaseous oxygen under pressure at a variable flow rate
EP0694746A1 (en) * 1994-07-29 1996-01-31 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for the production of a gas under pressure in variable quantities
EP0842385B2 (en) 1995-07-21 2003-12-03 Linde Aktiengesellschaft Method and device for the production of variable amounts of a pressurized gaseous product
JP2006522307A (en) * 2003-04-02 2006-09-28 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method and apparatus for the supply of gas under pressure
FR2929697A1 (en) * 2008-04-07 2009-10-09 Air Liquide PROCESS FOR PRODUCING VARIABLE GASEOUS NITROGEN AND VARIABLE GAS OXYGEN BY AIR DISTILLATION
JP2010036056A (en) * 2008-07-31 2010-02-18 Chiyoda Kako Kensetsu Kk Heating module and cooling module
EP2400249A1 (en) * 2010-06-25 2011-12-28 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Air separation method and facility for cryogenic distilling
JP2013117371A (en) * 2011-12-01 2013-06-13 L'air Liquide-Sa Pour L'etude & L'exploitation Des Procedes Georges Claude Method of operation of cryogenic air separation unit
JP2013198900A (en) * 2013-05-01 2013-10-03 Chiyoda Kako Kensetsu Kk Cooling module

Similar Documents

Publication Publication Date Title
US9759482B2 (en) Argon production method and apparatus
JP3086857B2 (en) Method for generating cold, cooling cycle using this method, and air rectification method and apparatus using this method
US6196021B1 (en) Industrial gas pipeline letdown liquefaction system
JPH06347163A (en) Method and equipment for supplying facility comsuming one component of air with gas under pressure
JPS61190277A (en) High-purity nitrogen and oxygen gas production unit
CN106595221B (en) Oxygen generation system and oxygen generation method
JPH09310970A (en) Method and apparatus for producing high pressure oxygen
JPH02293575A (en) Air separation device
JP4276520B2 (en) Operation method of air separation device
EP0798524A2 (en) Ultra high purity nitrogen and oxygen generator unit
JP2007147113A (en) Nitrogen manufacturing method and device
JP3719832B2 (en) Ultra high purity nitrogen and oxygen production equipment
JPH11325717A (en) Separation of air
JPH0455682A (en) Air separating device
JP3208547B2 (en) Liquefaction method of permanent gas using cold of liquefied natural gas
JP2003028567A (en) Method and system for manufacturing liquid hydrogen
JPS6140909B2 (en)
JP4202971B2 (en) Nitrogen production method and apparatus
JP2873469B2 (en) A device that liquefies and separates and supplies air in response to fluctuations in demand
KR930003211B1 (en) Air seperating apparatus
JP3181546B2 (en) Method and apparatus for producing nitrogen and argon from air
JP3220755B2 (en) Air liquefaction separation method and apparatus
JPH0942831A (en) Highly pure nitrogen gas producing apparatus
JPH11325720A (en) Manufacture of ultra-high-purity nitrogen gas and device therefor
JP2000180051A (en) Manufacture of ultrahigh purity nitrogen