JP3220755B2 - Air liquefaction separation method and apparatus - Google Patents

Air liquefaction separation method and apparatus

Info

Publication number
JP3220755B2
JP3220755B2 JP24942391A JP24942391A JP3220755B2 JP 3220755 B2 JP3220755 B2 JP 3220755B2 JP 24942391 A JP24942391 A JP 24942391A JP 24942391 A JP24942391 A JP 24942391A JP 3220755 B2 JP3220755 B2 JP 3220755B2
Authority
JP
Japan
Prior art keywords
air
gas
liquefied gas
liquefied
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24942391A
Other languages
Japanese (ja)
Other versions
JPH0587448A (en
Inventor
秀幸 本田
泰治 岸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP24942391A priority Critical patent/JP3220755B2/en
Publication of JPH0587448A publication Critical patent/JPH0587448A/en
Application granted granted Critical
Publication of JP3220755B2 publication Critical patent/JP3220755B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • F25J3/04357Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04472Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
    • F25J3/04496Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/42Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being nitrogen

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、空気液化分離方法及び
装置に関し、詳しくは、製品ガスや製品液化ガスの需要
変動や電力料金の昼夜の差に対して、原料空気を精留分
離する空気精留分離部における精留塔の運転条件を最適
な状態に保って効率よく運転することができる空気液化
分離方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air liquefaction separation method and apparatus, and more particularly, to air for rectifying and separating raw material air in response to fluctuations in demand for product gas or product liquefied gas and differences in power rates between day and night. The present invention relates to an air liquefaction separation method and apparatus capable of efficiently operating a rectification column in a rectification separation section while maintaining operating conditions in an optimum state.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来か
ら空気を原料として液化精留分離により、酸素,窒素,
アルゴン等の各種ガス,液化ガスを製造することが行わ
れている。このような空気液化分離装置において、製品
酸素ガスや製品窒素ガスの需要変動に対応するように構
成したものが各種開発されている。
2. Description of the Related Art Conventionally, oxygen, nitrogen,
Production of various gases such as argon and liquefied gases has been performed. In such an air liquefaction / separation device, various devices configured to cope with fluctuations in demand for product oxygen gas and product nitrogen gas have been developed.

【0003】例えば、特公昭61−51233号公報や
特開平3−63490号公報に記載されている装置で
は、製品酸素ガスの需要変動に対応するため、液化酸素
貯槽,液化窒素貯槽,液化空気貯槽等の設備を設け、液
化酸素,液化窒素,液化空気を必要に応じてそれぞれ導
入,導出するようにしている。
For example, in the apparatuses described in Japanese Patent Publication No. 61-51233 and Japanese Patent Laid-Open Publication No. Hei 3-63490, a liquefied oxygen storage tank, a liquefied nitrogen storage tank, and a liquefied air storage tank are used to cope with fluctuations in demand for product oxygen gas. Equipment such as liquefied oxygen, liquefied nitrogen, and liquefied air are introduced and led out as needed.

【0004】しかしながら、上述の装置では、酸素ガス
の需要が変動した場合、液化ガスの流れ方向を逆にした
り、寒冷量を調節するために膨張タービンの流量を変化
させたり、あるいは原料空気の供給量を変化させたりす
る必要がある。
However, in the above-described apparatus, when the demand for oxygen gas fluctuates, the flow direction of the liquefied gas is reversed, the flow rate of the expansion turbine is changed in order to adjust the amount of cooling, or the supply of raw air is performed. It is necessary to change the amount.

【0005】これにより、各部の流量が変化して精留塔
内の操作条件が変化し、精留効率が低下することがある
だけでなく、酸素ガスの需要変動に応じて各部が安定運
転するようになるまで時間がかかるという問題があっ
た。
[0005] As a result, the flow rate of each part changes and the operating conditions in the rectification column change, so that not only the rectification efficiency may decrease, but also each part operates stably in response to fluctuations in oxygen gas demand. There was a problem that it took time until it came to be.

【0006】そこで、空気液化分離装置として、液化ガ
スを多く採取するものでは、装置の運転に多くの寒冷量
を必要とすることから、精留塔を含む空気精留分離部に
付随させてガス液化サイクル部を設け、該ガス液化サイ
クル部で製造した液化ガスを空気精留分離部の寒冷源と
して精留塔内に供給するものが知られている。
Therefore, an air liquefaction / separation apparatus that collects a large amount of liquefied gas requires a large amount of refrigeration to operate the apparatus. It is known that a liquefaction cycle section is provided, and the liquefied gas produced in the gas liquefaction cycle section is supplied into a rectification column as a cold source of an air rectification separation section.

【0007】図4は上記ガス液化サイクル部を備えた空
気液化分離装置の一般的な系統を示すものである。圧
縮,精製された原料空気は、管1から空気精留分離部A
の主熱交換器2に導入され、戻りガスと熱交換すること
により冷却された後、精留塔の下部塔3に導入され、精
留作用により下部塔上部の窒素ガスと下部塔底部の酸素
富化液化空気とに分離する。
FIG. 4 shows a general system of an air liquefaction / separation apparatus having the above-mentioned gas liquefaction cycle section. The compressed and purified raw air is supplied from the pipe 1 to the air rectification separation section A.
After being cooled by exchanging heat with the return gas, it is introduced into the lower tower 3 of the rectification tower, where the nitrogen gas at the top of the lower tower and the oxygen at the bottom of the lower tower are rectified by the rectification. Separate with enriched liquefied air.

【0008】下部塔底部の酸素富化液化空気は、管4に
抜き出されて過冷器5,減圧弁6を経て上部塔7の中段
に導入される。また、下部塔3上部の窒素ガスは、主凝
縮蒸発器8で液化して液化窒素となり、下部塔3の還流
液となる他、一部が管9から前記過冷器5,減圧弁10
を経て上部塔7の頂部に導入されるとともに、さらにそ
の一部が管11,弁12を経て液化窒素貯槽13に製品
液化窒素として貯えられる。
[0008] The oxygen-enriched liquefied air at the bottom of the lower tower is withdrawn through a pipe 4 and introduced into a middle stage of an upper tower 7 via a subcooler 5 and a pressure reducing valve 6. The nitrogen gas in the upper part of the lower tower 3 is liquefied in the main condensing evaporator 8 to become liquefied nitrogen, which becomes a reflux liquid of the lower tower 3 and a part thereof is connected to the supercooler 5, the pressure reducing valve 10 through the pipe 9.
The liquid is introduced into the top of the upper tower 7 via the pipe 11, and a part of the liquid is further stored as liquefied nitrogen in the liquefied nitrogen storage tank 13 through the pipe 11 and the valve 12.

【0009】上部塔7に導入された前記酸素富化液化空
気と液化窒素は、上部塔7での精留作用により上部塔頂
部の高純度窒素ガスと上部塔底部の液化酸素とに分離す
る。上部塔頂部の高純度窒素ガスは管14に抜き出さ
れ、前記過冷器5,主熱交換器2を経た後、弁15,管
16を介して製品窒素ガスとして採取される。また、上
部塔7底部からは管17により製品液化酸素が抜き出さ
れるとともに、管18からは主凝縮蒸発器8で蒸発した
酸素ガスが抜き出され、主熱交換器2,管19を経て製
品として採取される。さらに、上部塔7の中段からは、
管20により排ガスが抜き出され、過冷器5,主熱交換
器2,管21を介して排出される。
The oxygen-enriched liquefied air and liquefied nitrogen introduced into the upper tower 7 are separated into high-purity nitrogen gas at the top of the upper tower and liquefied oxygen at the bottom of the upper tower by rectification in the upper tower 7. The high-purity nitrogen gas at the top of the upper tower is extracted into a pipe 14, passes through the subcooler 5 and the main heat exchanger 2, and is collected as a product nitrogen gas via a valve 15 and a pipe 16. The product liquefied oxygen is extracted from the bottom of the upper tower 7 by a pipe 17, and the oxygen gas evaporated by the main condensing evaporator 8 is extracted from the pipe 18, and the product is passed through the main heat exchanger 2 and the pipe 19. Collected as Furthermore, from the middle stage of the upper tower 7,
Exhaust gas is extracted by the pipe 20 and discharged through the subcooler 5, the main heat exchanger 2, and the pipe 21.

【0010】一方、前記上部塔7頂部から管14に抜き
出されて前記管16から採取される窒素ガスの一部は、
弁15の手前で管22に分岐し、弁23を通ってガス液
化サイクル部Bに導入される。この窒素ガスは、まず圧
縮機24,25で高圧に圧縮され、第1循環熱交換器2
6,第2循環熱交換器27で戻りガスと熱交換すること
により冷却された後、膨張弁28から気液分離器29に
導入される。
On the other hand, part of the nitrogen gas extracted from the top of the upper tower 7 to the pipe 14 and collected from the pipe 16 is:
Before the valve 15, it branches into a pipe 22, and is introduced into the gas liquefaction cycle section B through a valve 23. This nitrogen gas is first compressed to a high pressure by the compressors 24 and 25, and the first circulation heat exchanger 2
6. After being cooled by exchanging heat with the return gas in the second circulation heat exchanger 27, the gas is introduced from the expansion valve 28 into the gas-liquid separator 29.

【0011】また、前記第1循環熱交換器26出口で管
30に分岐した窒素ガスは、膨張タービン31で膨張し
て寒冷を発生した後、前記気液分離器29から管32に
抜き出された窒素ガスと合流して管33から第2循環熱
交換器27,第1循環熱交換器26で常温に戻された
後、前記圧縮機24,25の中段に戻される。
The nitrogen gas branched to the pipe 30 at the outlet of the first circulating heat exchanger 26 is expanded by the expansion turbine 31 to generate cold, and then extracted from the gas-liquid separator 29 to the pipe 32. After being returned to room temperature by the second circulation heat exchanger 27 and the first circulation heat exchanger 26 from the pipe 33 after being merged with the nitrogen gas, it is returned to the middle stage of the compressors 24 and 25.

【0012】そして、前記気液分離器29内の液化窒素
は、空気精留分離部Aの寒冷源として、管34,弁35
を経て前記下部塔3の中段に常時所定量が供給される。
The liquefied nitrogen in the gas-liquid separator 29 is supplied to the pipe 34 and the valve 35 as a cold source of the air rectifying / separating section A.
, A predetermined amount is constantly supplied to the middle stage of the lower tower 3.

【0013】このように構成された空気液化分離装置に
おいては、全体の設備消費電力の内60〜70%が前記
ガス液化サイクル部Bで消費しており、運転コストの大
半を占めていた。
In the air liquefaction / separation apparatus configured as described above, 60 to 70% of the total power consumption of the equipment is consumed in the gas liquefaction cycle section B, which occupies most of the operation cost.

【0014】一方、圧縮機等を駆動するための電力は、
昼間の料金に比べて夜間が安く設定されている。従っ
て、昼間には圧縮機をできるだけ抑えて運転し、夜間に
増量運転することが望ましい。従って、上述の空気液化
分離装置においても、ガス液化サイクル部Bを夜間の電
力料金の安い時間帯のみに運転するようにすれば、全体
の設備消費電力を大幅に低減することが可能となる。
On the other hand, electric power for driving a compressor or the like is as follows:
The night time is cheaper than the day time. Therefore, it is desirable to operate the compressor as much as possible during the daytime and to increase the amount of operation at nighttime. Therefore, also in the above-described air liquefaction / separation apparatus, if the gas liquefaction cycle section B is operated only during the time period when the nighttime electricity rate is low, the power consumption of the entire facility can be significantly reduced.

【0015】しかしながら、上記装置構成では、ガス液
化サイクル部Bで液化した液化窒素を、直接下部塔3に
供給しているため、ガス液化サイクル部Bを昼間停止す
ると、空気精留分離部Aは寒冷源を失い、装置の運転を
継続することができなくなってしまう。
However, in the above-described apparatus configuration, the liquefied nitrogen liquefied in the gas liquefaction cycle section B is directly supplied to the lower tower 3. Therefore, when the gas liquefaction cycle section B is stopped in the daytime, the air rectification separation section A The cold source is lost, and the operation of the device cannot be continued.

【0016】また、上述のようなガス液化サイクル部を
前述の需要変動対応型の装置に組み込むことも可能であ
るが、この場合も、製品の需要変動に対応してガス液化
サイクル部の運転状態を変化させたり、各部の流量を変
化させる必要があるため、前記同様に空気精留分離部の
状態が変化して分離効率が低下したり、運転状態が安定
するまでの時間が長くかかるという問題がある。
The above-described gas liquefaction cycle unit can be incorporated in the above-mentioned demand fluctuation type apparatus. In this case, too, the operation state of the gas liquefaction cycle unit is changed in response to fluctuations in product demand. It is necessary to change the flow rate of each part, or change the flow rate of each part. Therefore, similarly to the above, the state of the air rectification separation part changes, the separation efficiency decreases, and it takes a long time until the operation state is stabilized. There is.

【0017】そこで本発明は、製品(各種ガス及び液化
ガス)の需要変動により製品の産出量を変化させる場合
でも空気精留分離部の状態を変化させることがなく、さ
らに上述のガス液化サイクルを昼間の電力料金が高い時
間帯に停止させても空気精留分離部を安定した状態で運
転することができ、電力を効率よく使用して運転コスト
を低減させることができる空気液化分離方法及び装置を
提供することを目的としている。
Therefore, the present invention provides a gas liquefaction cycle which does not change the state of the air rectification and separation section even when the output of the product is changed due to fluctuations in demand for the product (various gas and liquefied gas). An air liquefaction separation method and apparatus that can operate the air rectification separation section in a stable state even when stopped during a time period when daytime power rates are high, and can efficiently use power to reduce operation costs. It is intended to provide.

【0018】さらに、本発明は、上記液化サイクル部を
有する空気液化分離装置において、液化サイクル部の起
動・停止時の運転操作の簡略化、所要時間の短縮、及び
このときの精留塔内の状態の変動を防止し、効率よく生
産し得る空気液化分離方法及び装置を提供することも目
的とするものである。
Further, the present invention provides an air liquefaction / separation apparatus having the above-mentioned liquefaction cycle section, which simplifies the operation of starting and stopping the liquefaction cycle section, shortens the required time, and reduces the time required in the rectification column. It is another object of the present invention to provide an air liquefaction / separation method and apparatus capable of preventing state fluctuations and efficiently producing air.

【0019】[0019]

【課題を解決するための手段】上記した目的を達成する
ため、本発明の空気液化分離方法は、原料空気を圧縮,
精製,冷却して精留し、酸素,窒素等を分離する空気液
化分離方法において、寒冷発生手段を有しない空気精留
分離部にて前記原料空気と熱交換した後の窒素ガスの一
部を空気精留分離部から導出し、ガス液化サイクル部に
導入して液化し、得られた液化ガスを貯槽に貯留すると
ともに、該貯槽内の前記液化ガスの所定量を前記空気精
留分離部に運転用寒冷源として常時供給することを特徴
とし、また、前記ガス液化サイクル部は、特定の時間帯
のみ運転されるものであり、さらに、前記貯槽内の液化
ガスを主副2基の液化ガスポンプのいずれか一方で空気
精留分離部に供給するとともに、主副の液化ガスポンプ
の運転切替時間中に空気精留分離部が必要とする液化ガ
スを、あらかじめ液化ガスポンプの下流側に貯留してお
くことを特徴としている。
In order to achieve the above-mentioned object, the air liquefaction separation method of the present invention comprises the steps of:
In an air liquefaction separation method for purifying, cooling and rectifying to separate oxygen, nitrogen and the like, a nitrogen gas after heat exchange with the raw material air in an air rectifying / separating section having no cold generation means.
The liquefied gas is introduced into the gas liquefaction cycle unit, liquefied, and the obtained liquefied gas is stored in a storage tank, and a predetermined amount of the liquefied gas in the storage tank is separated by the air rectification separation unit. Characterized in that the gas liquefaction cycle section is supplied at all times as a cold source for operation to the section.
Only the liquefied gas in the storage tank is supplied to the air rectification and separation section by one of the two main and sub liquefied gas pumps, and during the operation switching time of the main and sub liquefied gas pumps. The liquefied gas required by the air rectification and separation unit is stored in advance on the downstream side of the liquefied gas pump.

【0020】また、本発明の空気液化分離装置は、原料
空気を圧縮,精製,冷却して精留し、酸素,窒素等を分
離する寒冷発生手段を有しない空気精留分離部と、該空
気精留分離部にて前記原料空気と熱交換した後の窒素ガ
スの一部を空気精留分離部から導出する分岐管と、該分
岐管で導出した窒素ガスを液化するガス液化サイクル部
と、該ガス液化サイクル部で液化した液化ガスを貯留す
る貯槽と、該貯槽内の液化ガスの所定量を前記空気精留
分離部に運転用寒冷源として常時供給する液化ガス供給
系統とを備えていることを特徴とし、さらに、前記液化
ガス供給系統に、いずれか一方が運転される主副2基の
液化ガスポンプを設けるとともに、該主副の液化ガスポ
ンプの下流側に、液化ガスポンプの運転切替時間中に空
気精留分離部が必要とする液化ガスを貯留する貯槽を設
けたこと、さらに、該貯槽に多孔板を設けたことを特徴
としている。
The air liquefaction / separation apparatus of the present invention comprises an air rectification / separation unit having no cold generating means for compressing, purifying, cooling and rectifying raw air to separate oxygen, nitrogen and the like; Nitrogen gas after heat exchange with the raw material air in the rectification separation section
A branch pipe that leads a part of the air from the air rectification separation section,
A gas liquefaction cycle unit for liquefying the nitrogen gas derived from the manifold, a storage tank for storing the liquefied gas liquefied in the gas liquefaction cycle unit, and a predetermined amount of the liquefied gas in the storage tank operated by the air rectification separation unit And a liquefied gas supply system that constantly supplies a liquefied gas supply system as a cold source for use. Further, the liquefied gas supply system is provided with two main and sub liquefied gas pumps, one of which is operated. Downstream of the secondary liquefied gas pump, a storage tank for storing the liquefied gas required by the air rectifying and separating unit during the operation switching time of the liquefied gas pump is provided, and a perforated plate is provided in the storage tank. And

【0021】[0021]

【作 用】上記構成によれば、ガス液化サイクル部の運
転を変化させても、あるいは一時中断しても、空気精留
分離部には、貯槽内に貯留されている液化ガスが常時所
定量供給されるので、空気精留分離部の状態が変化する
ことはなく安定した条件で運転を継続することができ
る。例えば酸素ガスや窒素ガスの需要が減少したときに
は、前記ガス液化サイクル部を稼働させ、余剰となるガ
スを液化して液化ガスとして貯槽に貯留するような運転
を行い、ガスの需要が増大した場合には、ガス液化サイ
クル部を停止させて空気精留分離部から導出されるガス
を全量製品ガスとして送り出すような運転を行うことが
できる。この場合、空気精留分離部が必要とする寒冷
は、前記貯槽から常時所定量が供給されているため、空
気精留分離部の状態が変化することはない。即ち、これ
らの切換時の運転操作の簡略化、時間の短縮ができ、精
留塔の状態の変動が防止できる。
[Operation] According to the above configuration, even if the operation of the gas liquefaction cycle section is changed or temporarily stopped, the rectified gas stored in the storage tank is always kept at a predetermined amount in the air rectification separation section. Since the air is supplied, the operation of the air rectification and separation section can be continued under stable conditions without change. For example, when the demand for oxygen gas or nitrogen gas decreases, the gas liquefaction cycle unit is operated, an operation is performed such that excess gas is liquefied and stored in a storage tank as a liquefied gas, and when the demand for gas increases. In such a case, it is possible to perform an operation in which the gas liquefaction cycle unit is stopped and the gas derived from the air rectification separation unit is sent out as a total product gas. In this case, since a predetermined amount of cold required by the air rectification and separation unit is constantly supplied from the storage tank, the state of the air rectification and separation unit does not change. That is, it is possible to simplify the operation at the time of these switchings, to shorten the time, and to prevent a change in the state of the rectification column.

【0022】また、夜間の電力料金の安い時間帯に前記
ガス液化サイクル部を運転し、得られた液化ガスを空気
精留分離部に供給しながら貯槽内に貯留し、昼間の電力
料金が高い時間帯にはガス液化サイクル部を停止させて
貯槽内の液化ガスを使用するようにすることにより、安
価な電力を使用して効率よく空気液化分離装置を運転す
ることができる。
Further, the gas liquefaction cycle section is operated during a time period when the nighttime electricity rate is low, and the obtained liquefied gas is stored in a storage tank while being supplied to the air rectification separation section, so that the daytime electricity rate is high. By stopping the gas liquefaction cycle section and using the liquefied gas in the storage tank during the time period, the air liquefaction / separation apparatus can be efficiently operated using inexpensive power.

【0023】[0023]

【実施例】以下、本発明を、図面に示す実施例に基づい
て、さらに詳細に説明する。尚、以下の説明において、
前記図4に示した従来装置と同一要素のものには同一符
号を付して、その詳細な説明は省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in more detail with reference to the embodiments shown in the drawings. In the following description,
The same components as those of the conventional device shown in FIG. 4 are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0024】まず図1において、空気精留分離部Aとガ
ス液化サイクル部Bとは、前記図4に示した装置と略同
様に構成されており、空気精留分離部Aにおいて、原料
空気は、管1から主熱交換器2を経て下部塔3及び上部
塔7からなる精留塔に導入され、精留分離されて管14
から高純度窒素ガスが、管17から製品液化酸素が、管
18から製品酸素ガスが、管20から排ガスが、それぞ
れ導出される。管14から導出した高純度窒素ガスは、
主熱交換器2で原料ガスと熱交換された後、管16から
製品窒素ガスとして採取されるが、この製品窒素ガスの
一部は、管16から分岐する管22に導出してガス液化
サイクル部Bに導入する
First, in FIG. 1, the air rectification separation section A and the gas liquefaction cycle section B are configured substantially in the same manner as the apparatus shown in FIG. From the pipe 1 through the main heat exchanger 2 to the rectification tower consisting of the lower tower 3 and the upper tower 7, where it is rectified and separated from the pipe 14.
, A product liquefied oxygen from the pipe 17, a product oxygen gas from the pipe 18, and an exhaust gas from the pipe 20. The high-purity nitrogen gas derived from the pipe 14 is
After heat exchange with the raw material gas in the main heat exchanger 2,
It is collected as product nitrogen gas.
Part of the gas is led to a pipe 22 that branches off from the pipe 16 to liquefy gas.
Introduced to cycle section B.

【0025】また、ガス液化サイクル部Bは、分岐管2
2を介して導入された窒素ガスを、圧縮機24,25,
循環熱交換器26,27,膨張弁28,気液分離器29
及び膨張タービン31により液化し、弁35から導出す
る。
The gas liquefaction cycle section B includes a branch pipe 2
2 through the compressors 24, 25,
Circulating heat exchangers 26 and 27, expansion valve 28, gas-liquid separator 29
And liquefied by the expansion turbine 31 and extracted from the valve 35.

【0026】そして、本実施例装置では、上記弁35か
ら導出された液化窒素を貯留する貯槽51と、該貯槽5
1内の液化窒素を送り出す液化ガスポンプ52と、減圧
弁53とを有する液化ガス供給系統を設けている。即
ち、上記弁35から導出された液化窒素を貯槽51内に
貯留するとともに、該貯槽51から、空気精留分離部A
が必要とする寒冷量に相当する液化窒素を液化ガスポン
プ52で送出し、減圧弁53で供給先、図1においては
上部塔7の圧力に応じた圧力に減圧して供給するように
構成している。なお、貯槽51内の圧力が十分に高い場
合には、液化ガスポンプ52を省略することもできる。
In the apparatus of this embodiment, a storage tank 51 for storing the liquefied nitrogen derived from the valve 35 is provided.
A liquefied gas supply system having a liquefied gas pump 52 for sending out the liquefied nitrogen in 1 and a pressure reducing valve 53 is provided. That is, while liquefied nitrogen derived from the valve 35 is stored in the storage tank 51, the air rectification separation section A is stored in the storage tank 51.
Liquefied nitrogen corresponding to the required amount of refrigeration is sent out by a liquefied gas pump 52, and the pressure is reduced by a pressure reducing valve 53 to a pressure corresponding to the pressure of the upper tower 7 in FIG. I have. When the pressure in the storage tank 51 is sufficiently high, the liquefied gas pump 52 may be omitted.

【0027】このように構成し、ガス液化サイクル部B
の液化能力と貯槽51の容量を適当に設定することによ
り、ガス液化サイクル部Bの運転状態に関係無く常時一
定量の液化窒素を空気精留分離部Aに供給することが可
能になる。例えば、電力料金の安価な夜間にガス液化サ
イクル部Bを運転して液化窒素を貯槽51内に貯え、電
力料金の高い昼間はガス液化サイクル部Bを停止させて
貯槽51内の液化窒素を空気精留分離部Aに供給するよ
うにすることが可能になる。
The gas liquefaction cycle section B constructed as described above
By appropriately setting the liquefaction capacity and the capacity of the storage tank 51, it is possible to always supply a constant amount of liquefied nitrogen to the air rectification and separation section A regardless of the operation state of the gas liquefaction cycle section B. For example, the gas liquefaction cycle section B is operated during the night when the power rate is low to store liquefied nitrogen in the storage tank 51, and the gas liquefaction cycle section B is stopped during the day when the power rate is high and the liquefied nitrogen in the storage tank 51 is converted to air. It can be supplied to the rectification separation section A.

【0028】また、製品窒素ガスの需要が変動するもの
においては、管16から送り出される製品窒素ガスの需
要量が少なくなったときに、余剰となる高純度窒素ガス
を管22からガス液化サイクル部Bに導入して液化する
ようにすることにより、高純度窒素ガスを無駄に排出し
たり、精留塔の運転状態を変化させることなく必要量の
製品窒素ガスを需要先に供給することができる。一方、
製品窒素ガスの需要量が最大の場合には、ガス液化サイ
クル部Bを止め、管14から導出される高純度窒素ガス
の全量を製品として送り出すことができる。
In the case where the demand for the product nitrogen gas fluctuates, when the demand amount of the product nitrogen gas sent out from the pipe 16 decreases, excess high-purity nitrogen gas is supplied from the pipe 22 to the gas liquefaction cycle section. By introducing it into B and liquefying it, it is possible to supply a required amount of product nitrogen gas to a demand destination without wastefully discharging high-purity nitrogen gas or changing the operation state of the rectification column. . on the other hand,
When the demand amount of the product nitrogen gas is the maximum, the gas liquefaction cycle section B can be stopped and the entire amount of the high-purity nitrogen gas derived from the pipe 14 can be sent out as a product.

【0029】さらに、製品窒素ガスの需要は、通常昼間
が多く、夜間が少ないため、上述の場合においても、夜
間の安価な電力を有効に利用することが可能である。
Further, since the demand for the product nitrogen gas is usually large in the daytime and small in the nighttime, even in the above-mentioned case, the inexpensive power at night can be effectively used.

【0030】なお、貯槽51内の液化窒素は、必要に応
じて製品として取り出すことができ、また、需要増大時
のバックアップとして気化圧送することもできる。さら
に、酸素の需要変動に対応する場合には、ガス液化サイ
クル部Bに酸素ガスを導入して液化したり、あるいは上
記ガス液化サイクル部Bで得た液化窒素を寒冷源として
酸素ガスを液化するように、熱交換器と液化酸素貯槽と
配管とを適宜に設ければよい。
The liquefied nitrogen in the storage tank 51 can be taken out as a product as required, or can be sent by vaporization as a backup when demand increases. Further, in order to cope with fluctuations in the demand for oxygen, oxygen gas is introduced into the gas liquefaction cycle section B for liquefaction, or oxygen gas is liquefied using the liquefied nitrogen obtained in the gas liquefaction cycle section B as a cold source. As described above, the heat exchanger, the liquefied oxygen storage tank, and the piping may be appropriately provided.

【0031】次に図2に示す実施例は、前記液化ガスポ
ンプ52の故障時を考慮してサブポンプ52aを設ける
とともに、該液化ガスポンプ52,52aの下流に緩衝
貯槽54を設けたものである。
Next, in the embodiment shown in FIG. 2, a sub-pump 52a is provided in consideration of a failure of the liquefied gas pump 52, and a buffer storage tank 54 is provided downstream of the liquefied gas pumps 52, 52a.

【0032】上記緩衝貯槽54は、図3に詳細に示すよ
うに、該貯槽54内の中間位置に目皿状の多孔板等から
なる隔離板60を設け、該隔離板60により、その上下
における温度差のある液が混合しないようにしてある。
即ち、該貯槽54内に供給される液化窒素は、液化窒素
貯槽51の圧力が0.3kg/cm2 G程度であり、そ
の飽和液を液化ガスポンプ52で昇圧しているため、そ
の分過冷液となっている。そこで、供給液は隔離板60
の下部の液中に供給し、貯槽54上部のガス層にはガス
は供給されず、管56は下部塔下部塔3と接続している
のみである。
As shown in detail in FIG. 3, the buffer storage tank 54 is provided with a separating plate 60 made of a perforated plate or the like at an intermediate position in the storing tank 54, and the upper and lower parts of the separating plate 60 are provided by the separating plate 60. Liquids with temperature differences are prevented from mixing.
That is, the liquefied nitrogen supplied into the storage tank 54 has a pressure in the liquefied nitrogen storage tank 51 of about 0.3 kg / cm 2 G and the saturated liquid is pressurized by the liquefied gas pump 52, so It is liquid. Therefore, the supply liquid is supplied to the separator 60.
And the gas is not supplied to the gas layer above the storage tank 54, and the pipe 56 is only connected to the lower tower 3.

【0033】また、上記のようにサブポンプ52aを設
けることにより、主たる液化ガスポンプ52が故障等に
より停止し、液化窒素の送り出しをサブポンプ52aに
切替える場合、サブポンプ52aが安定運転するまでの
間、即ち、液化ガスポンプの運転切替時間中に空気精留
分離部Aが必要とする液化窒素を、前記緩衝貯槽54内
の液化窒素で賄うことができる。
Further, by providing the sub-pump 52a as described above, when the main liquefied gas pump 52 is stopped due to a failure or the like and the supply of liquefied nitrogen is switched to the sub-pump 52a, until the sub-pump 52a operates stably, that is, The liquefied nitrogen required by the air rectification and separation unit A during the operation switching time of the liquefied gas pump can be covered by the liquefied nitrogen in the buffer storage tank 54.

【0034】従って、液化ガスポンプ52が故障しても
一定量の液化ガスを空気精留分離部Aに継続して供給す
ることが可能となり、精留塔の操作条件を変化させずに
安定した状態で運転を継続することができる。
Therefore, even if the liquefied gas pump 52 breaks down, a constant amount of liquefied gas can be continuously supplied to the air rectifying and separating section A, and a stable state can be obtained without changing the operating conditions of the rectifying tower. The operation can be continued.

【0035】次に、図2に示す実施例装置の操作状態の
一例を説明する。原料空気圧縮機により5.5kg/cm2
Gまで圧縮され、前処理設備により水,二酸化炭素が除
去された原料空気10000Nm3 /hは、管1により
空気精留分離部Aの主熱交換器2に導入され、戻りガス
と熱交換することにより−170℃まで冷却され、精留
塔下部塔3に導入される。
Next, an example of an operation state of the embodiment apparatus shown in FIG. 2 will be described. 5.5kg / cm 2 by raw material air compressor
The raw material air 10000 Nm 3 / h, which has been compressed to G and from which water and carbon dioxide have been removed by the pretreatment equipment, is introduced into the main heat exchanger 2 of the air rectification and separation section A by the pipe 1 and exchanges heat with the return gas. Thereby, it is cooled to -170 ° C and introduced into the lower tower 3 of the rectification column.

【0036】下部塔3に導入された原料空気は、精留作
用により分離され、管9から液化窒素3800Nm3
h、管4から酸素富化液化空気6200Nm3 /hが抜
き出される。管9から抜き出された液化窒素は、過冷器
5で戻りガスと熱交換することにより−188℃まで過
冷却された後、貯槽51から液化ガスポンプ52,緩衝
貯槽54,減圧弁53を介して管55から供給される液
化窒素1300Nm3 /hと合流して上部塔7の上部に
導入される。また、管4に抜き出された酸素富化液化空
気も、過冷器5で−178℃まで過冷却された後、上部
塔7に導入される。
The raw air introduced into the lower tower 3 is separated by rectification, and liquefied nitrogen 3800 Nm 3 /
h, 6200 Nm 3 / h of oxygen-enriched liquefied air is withdrawn from the pipe 4. The liquefied nitrogen extracted from the pipe 9 is supercooled to −188 ° C. by exchanging heat with the return gas in the supercooler 5, and then from the storage tank 51 via the liquefied gas pump 52, the buffer storage tank 54, and the pressure reducing valve 53. And liquefied nitrogen 1300 Nm 3 / h supplied from the pipe 55 and introduced into the upper part of the upper tower 7. The oxygen-enriched liquefied air extracted from the pipe 4 is also supercooled to -178 ° C. by the supercooler 5 and then introduced into the upper tower 7.

【0037】上記液化窒素及び酸素富化液化空気は、上
部塔7の精留作用により分離され、管17から製品液化
酸素900Nm3 /h、管18から製品酸素ガス110
0Nm3 /h、管14から高純度窒素ガス8200Nm
3 /h、管20から排ガス1100Nm3 /hが抜き出
される。管14及び管20から抜き出された高純度窒素
ガスと排ガスは、前記過冷器5で熱交換した後、管18
からの酸素ガスと共に主熱交換器2で前記原料空気と熱
交換して常温となり、製品及び排ガスとしてそれぞれ送
り出される。
The liquefied nitrogen and oxygen-enriched liquefied air are separated by the rectification of the upper tower 7, and the product liquefied oxygen 900 Nm 3 / h from the pipe 17 and the product oxygen gas 110
0 Nm 3 / h, high-purity nitrogen gas 8200 Nm from pipe 14
3 / h, and 1100 Nm 3 / h of exhaust gas are withdrawn from the pipe 20. The high-purity nitrogen gas and the exhaust gas extracted from the pipes 14 and 20 are subjected to heat exchange in the
In the main heat exchanger 2, heat exchange with the raw material air is carried out together with the oxygen gas from the furnace, the temperature of the raw material air becomes room temperature, and the product air and the exhaust gas are sent out.

【0038】管14から送り出された高純度窒素ガス
は、200Nm3 /hが管16を経て製品として送ら
れ、8000Nm3 /hが管22に分岐してガス液化サ
イクル部Bに液化用の窒素ガスとして導入される。この
窒素ガスは、まず圧縮機24で圧縮された後、管33か
らの循環戻り窒素ガス72000Nm3 /hと合流し、
さらに圧縮機25で50kg/cm2 Gに圧縮される。この
高圧の窒素ガス80000Nm3 /hは、第1循環熱交
換器26で戻りガスと熱交換することにより−100℃
まで冷却され、その一部9500Nm3 /hがさらに第
2循環熱交換器27で戻りガスと熱交換することにより
−162℃まで冷却された後、膨張弁28で8.5kg/
cm2 Gに減圧膨張して気液分離器29に導入され、窒素
ガスと液化窒素とに分離する。
The high-purity nitrogen gas sent out from the pipe 14 is sent as a product at 200 Nm 3 / h through the pipe 16, and 8000 Nm 3 / h is branched to the pipe 22 and supplied to the gas liquefaction cycle part B for liquefaction nitrogen. Introduced as gas. This nitrogen gas is first compressed by the compressor 24, and then joins with the circulating return nitrogen gas 72,000Nm 3 / h from the pipe 33,
Further, it is compressed to 50 kg / cm 2 G by the compressor 25. The high-pressure nitrogen gas of 80,000 Nm 3 / h is subjected to heat exchange with the return gas in the first circulating heat exchanger 26 to −100 ° C.
9500 Nm 3 / h was further cooled to −162 ° C. by exchanging heat with the return gas in the second circulation heat exchanger 27, and then 8.5 kg / h at the expansion valve 28.
It is expanded under reduced pressure to cm 2 G and introduced into the gas-liquid separator 29 where it is separated into nitrogen gas and liquefied nitrogen.

【0039】また、前記第1循環熱交換器26出口で管
30に分岐した窒素ガス70500Nm3 /hは、膨張
タービン31で8.5kg/cm2 Gまでエントロピー膨張
して寒冷を発生し、上記気液分離器29から管32に抜
き出された窒素ガス1500Nm3 /hと合流して管3
3から第2循環熱交換器27,第1循環熱交換器26で
液化用の窒素ガスと熱交換し、常温に戻された後、前記
圧縮機24,25の中段に戻される。
The nitrogen gas 70500 Nm 3 / h branched to the pipe 30 at the outlet of the first circulating heat exchanger 26 is entropy-expanded to 8.5 kg / cm 2 G by the expansion turbine 31 to generate cold. The nitrogen gas 1500 Nm 3 / h extracted from the gas-liquid separator 29 to the pipe 32 is
From 3, heat is exchanged with nitrogen gas for liquefaction in the second circulating heat exchanger 27 and the first circulating heat exchanger 26, and after returning to room temperature, it is returned to the middle stage of the compressors 24 and 25.

【0040】一方、気液分離器29で分離した液化窒素
8000Nm3 /hは、貯槽51に送られ、空気精留分
離部Aの寒冷源用液化窒素及び製品液化窒素として貯え
られる。
On the other hand, 8000 Nm 3 / h of liquefied nitrogen separated by the gas-liquid separator 29 is sent to the storage tank 51 and stored as liquefied nitrogen for cold source and product liquefied nitrogen in the air rectification separation section A.

【0041】貯槽51内の液化窒素は、1300Nm3
/hが液化ガスポンプ52により7kg/cm2 Gに昇圧さ
れて送り出され、容量0.5m3 の緩衝貯槽54,減圧
弁53を経て常時管55から前記上部塔7に供給され
る。なお、この例においては、緩衝貯槽54内の圧力保
持のため、管56にてガス相が下部塔3と連結されてい
る。
The liquefied nitrogen in the storage tank 51 is 1300 Nm 3
/ H is pressurized to 7 kg / cm 2 G by the liquefied gas pump 52 and sent out. The gas is constantly supplied to the upper tower 7 from the pipe 55 through the buffer storage tank 54 having a capacity of 0.5 m 3 and the pressure reducing valve 53. Note that, in this example, the gas phase is connected to the lower tower 3 by a pipe 56 in order to maintain the pressure in the buffer storage tank 54.

【0042】そして、製品窒素ガスの需要が増大した場
合には、上記ガス液化サイクル部Bの運転を停止し、管
22に分岐する窒素ガスを全て管16から送り出すこと
により、製品として8200Nm3 /hの高純度窒素ガ
スを送り出すことができる。このとき、精留塔には、前
記貯槽51内の液化窒素が前記同様にして寒冷源として
供給されているため、精留塔の操作状態は一定してお
り、最適な状態で運転を継続することができる。
When the demand for the product nitrogen gas increases, the operation of the gas liquefaction cycle section B is stopped, and all the nitrogen gas branched to the pipe 22 is sent out from the pipe 16 so that 8200 Nm 3 / h of high-purity nitrogen gas. At this time, since the liquefied nitrogen in the storage tank 51 is supplied to the rectification tower as a cold source in the same manner as described above, the operation state of the rectification tower is constant, and the operation is continued in an optimal state. be able to.

【0043】また、電力料金を考慮した場合は、上記運
転を電力料金の安価な時間帯、即ち夜間や休日等に行
い、昼間の電力料金の高い時間帯はガス液化サイクル部
Bを止めることにより、電力を有効に利用した運転を行
うことができ、製品の電力源単位を大幅に低減すること
が可能となる。
When the power rate is taken into consideration, the above-mentioned operation is performed during a time period when the power rate is low, that is, at night or on holidays, and during the time when the power rate is high in the daytime, the gas liquefaction cycle section B is stopped. In addition, it is possible to perform an operation using electric power effectively, and it is possible to greatly reduce the power source unit of the product.

【0044】さらに、上記ガス液化サイクル部Bの運転
及び停止に際しても、寒冷源となる液化窒素は常時一定
量が精留塔に供給されているため、運転切替え時の状態
変化を生じることがない。
Further, even when the gas liquefaction cycle section B is operated and stopped, a constant amount of liquefied nitrogen, which is a cold source, is always supplied to the rectification column, so that there is no change in the state when the operation is switched. .

【0045】したがって、この運転モードの切替えに際
し、運転操作の繁雑さを無くして短時間内に切替操作を
終了させることができ、また、モード切替えに際して精
留分離部Aの状態は、液化サイクル部Bの状態変化の影
響を全く受けることがなく、安定した運転を継続でき
る。
Therefore, when the operation mode is switched, the operation can be completed within a short period of time without complicating the operation. In addition, when the mode is switched, the state of the rectification / separation section A is changed to the liquefaction cycle section. Stable operation can be continued without being affected by the state change of B at all.

【0046】なお、上記空気精留分離部A及びガス液化
サイクル部Bの構成は、採取する製品の種類等に応じて
適宜最適な構成とすることができる。即ち、本実施例
は、窒素ガスを液化する場合について説明を行ったが、
酸素を液化して貯留し、精留塔に導入したり、液化空気
の貯留,導入を行う場合にも適用することができる。ま
た、空気液化分離部Aには、寒冷発生手段を有しない場
合が効果が大であるが、寒冷発生手段を有している場合
でも同様に適用することができる。特に、本発明は、精
留塔の操作状態を常に一定にできることから、アルゴン
採取系統を備えた空気液化分離装置に適用することによ
り、アルゴンの採取を高効率で行うことができる。
The configurations of the air rectification section A and the gas liquefaction cycle section B can be appropriately optimized according to the type of the product to be collected. That is, in this embodiment, the case where the nitrogen gas is liquefied has been described.
The present invention can also be applied to the case where oxygen is liquefied and stored and introduced into a rectification tower, or the storage and introduction of liquefied air. The effect is great when the air liquefaction / separation section A does not have the cold generating means, but the same can be applied to the case where the cold liquefying means is provided. In particular, since the present invention can always keep the operation state of the rectification column constant, it is possible to collect argon with high efficiency by applying it to an air liquefaction / separation apparatus equipped with an argon collection system.

【0047】[0047]

【発明の効果】以上説明したように、本発明によれば、
精留塔を含む空気精留分離部の運転状態を全く変化させ
ずに製品の送出量を変化させたり、昼夜の電力料金の差
に応じた運転を行うことが可能であり、特に運転モード
切替えの影響を無くして必要な量の製品を常に安定した
状態で、かつ低コストで製造することができる。
As described above, according to the present invention,
It is possible to change the amount of product delivered without changing the operation state of the air rectification and separation unit including the rectification tower at all, and to operate according to the difference in electricity rates between day and night. The required amount of product can be always manufactured in a stable state at low cost without the influence of the above.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例を示す空気液化分離装置の
系統図である。
FIG. 1 is a system diagram of an air liquefaction / separation apparatus showing one embodiment of the present invention.

【図2】 本発明の他の実施例を示す空気液化分離装置
の系統図である。
FIG. 2 is a system diagram of an air liquefaction / separation apparatus showing another embodiment of the present invention.

【図3】 緩衝貯槽部分の拡大図である。FIG. 3 is an enlarged view of a buffer storage portion.

【図4】 従来の空気液化分離装置の一例を示す系統図
である。
FIG. 4 is a system diagram showing an example of a conventional air liquefaction / separation apparatus.

【符号の説明】[Explanation of symbols]

2…熱交換器 3…下部塔 7…上部塔 24,
25…圧縮機 26…第1循環熱交換器 27…第2循環熱交換器
29…気液分離器 31…膨張タービン 51…貯槽 52…液化ガス
ポンプ 53…減圧弁 54…緩衝貯槽 A…空気精留分離部 B…ガス液
化サイクル部
2 heat exchanger 3 lower tower 7 upper tower 24
25 Compressor 26 First circulation heat exchanger 27 Second circulation heat exchanger
29 gas-liquid separator 31 expansion turbine 51 storage tank 52 liquefied gas pump 53 pressure reducing valve 54 buffer storage tank A air rectification separation section B gas liquefaction cycle section

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 原料空気を圧縮,精製,冷却して精留
し、酸素,窒素等を分離する空気液化分離方法におい
て、寒冷発生手段を有しない空気精留分離部にて前記原
料空気と熱交換した後の窒素ガスの一部を空気精留分離
部から導出し、ガス液化サイクル部に導入して液化し、
得られた液化ガスを貯槽に貯留するとともに、該貯槽内
の前記液化ガスの所定量を前記空気精留分離部に運転用
寒冷源として常時供給することを特徴とする空気液化分
離方法。
1. A compressed feed air, purified, cooled and fractionated, oxygen in cryogenic air separation method for separating nitrogen or the like, wherein the cold generating means at no air rectifying separation unit Hara
Fractionation of nitrogen gas after heat exchange with feed air by air rectification
From the gas liquefaction cycle section to liquefy,
An air liquefaction separation method comprising storing the obtained liquefied gas in a storage tank and constantly supplying a predetermined amount of the liquefied gas in the storage tank to the air rectification and separation unit as a cold source for operation.
【請求項2】 前記ガス液化サイクル部は、特定の時間
帯のみ運転されることを特徴とする請求項1記載の空気
液化分離方法。
2. The air liquefaction separation method according to claim 1, wherein the gas liquefaction cycle section is operated only during a specific time zone.
【請求項3】 前記貯槽内の液化ガスを主副2基の液化
ガスポンプのいずれか一方で空気精留分離部に供給する
とともに、主副の液化ガスポンプの運転切替時間中に空
気精留分離部が必要とする液化ガスを、あらかじめ液化
ガスポンプの下流側に貯留しておくことを特徴とする請
求項1記載の空気液化分離方法。
3. The liquefied gas in the storage tank is supplied to the air rectification / separation unit by one of the main and sub liquefied gas pumps, and the air rectification / separation unit is operated during the operation switching time of the main and sub liquefied gas pumps. 2. The air liquefaction separation method according to claim 1, wherein the liquefied gas required by the method is stored in advance on the downstream side of the liquefied gas pump.
【請求項4】 原料空気を圧縮,精製,冷却して精留
し、酸素,窒素等を分離する寒冷発生手段を有しない
気精留分離部と、該空気精留分離部にて前記原料空気と
熱交換した後の窒素ガスの一部を空気精留分離部から導
出する分岐管と、該分岐管で導出した窒素ガスを液化す
るガス液化サイクル部と、該ガス液化サイクル部で液化
した液化ガスを貯留する貯槽と、該貯槽内の液化ガスの
所定量を前記空気精留分離部に運転用寒冷源として常時
供給する液化ガス供給系統とを備えていることを特徴と
する空気液化分離装置。
4. An air rectification and separation unit which does not have a cold generating means for compressing, purifying, cooling and rectifying the raw air to separate oxygen, nitrogen and the like, and the air rectification and separation unit And the raw material air
Part of the nitrogen gas after heat exchange is introduced from the air rectification separation section.
A branch pipe for discharging, a gas liquefaction cycle unit for liquefying the nitrogen gas derived from the branch pipe, a storage tank for storing the liquefied gas liquefied in the gas liquefaction cycle unit, and a predetermined amount of the liquefied gas in the storage tank. A liquefied gas supply system which constantly supplies a liquefied gas as an operation cold source to the air rectification and separation unit.
【請求項5】 前記液化ガス供給系統に、いずれか一方
が運転される主副2基の液化ガスポンプを設けるととも
に、該主副の液化ガスポンプの下流側に、液化ガスポン
プの運転切替時間中に空気精留分離部が必要とする液化
ガスを貯留する貯槽を設けたことを特徴とする請求項4
記載の空気液化分離装置。
5. The liquefied gas supply system is provided with two main and sub liquefied gas pumps, one of which is operated, and the other is provided downstream of the main and sub liquefied gas pumps during the operation switching time of the liquefied gas pump. 5. A storage tank for storing a liquefied gas required by the rectifying / separating section is provided.
An air liquefaction separation device as described.
【請求項6】 前記液化ガスポンプの下流側に設けた液
化ガス貯槽は、貯留液中に多孔板が設けられていること
を特徴とする請求項5記載の空気液化分離装置。
6. The air liquefaction / separation apparatus according to claim 5, wherein the liquefied gas storage tank provided on the downstream side of the liquefied gas pump has a perforated plate provided in the stored liquid.
JP24942391A 1991-09-27 1991-09-27 Air liquefaction separation method and apparatus Expired - Fee Related JP3220755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24942391A JP3220755B2 (en) 1991-09-27 1991-09-27 Air liquefaction separation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24942391A JP3220755B2 (en) 1991-09-27 1991-09-27 Air liquefaction separation method and apparatus

Publications (2)

Publication Number Publication Date
JPH0587448A JPH0587448A (en) 1993-04-06
JP3220755B2 true JP3220755B2 (en) 2001-10-22

Family

ID=17192757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24942391A Expired - Fee Related JP3220755B2 (en) 1991-09-27 1991-09-27 Air liquefaction separation method and apparatus

Country Status (1)

Country Link
JP (1) JP3220755B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2842124B1 (en) * 2002-07-09 2005-03-25 Air Liquide METHOD FOR CONDUCTING AN ELECTRIC POWER GAS-GENERATING PLANT AND THIS PRODUCTION PLANT
US7228715B2 (en) * 2003-12-23 2007-06-12 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Cryogenic air separation process and apparatus
FR2913104B1 (en) * 2007-02-28 2009-11-27 Air Liquide PROCESS AND APPARATUS FOR SUPPLYING NITROGEN.
JP6129437B2 (en) * 2014-12-19 2017-05-17 オリンパス株式会社 Substrate unit, operation input unit, energy treatment tool, and method for manufacturing substrate unit

Also Published As

Publication number Publication date
JPH0587448A (en) 1993-04-06

Similar Documents

Publication Publication Date Title
US5953937A (en) Process and apparatus for the variable production of a gaseous pressurized product
US5566556A (en) Process and unit for supplying a gas under pressure to an installation that consumes a constituent of air
US6131407A (en) Natural gas letdown liquefaction system
JP3457949B2 (en) Oxygen generation method and apparatus for cryogenic air separation unit combined with centralized gasifier
US5941098A (en) Method and plant for supplying a variable flow rate of a gas from air
JPH08175806A (en) Method and plant for manufacturing gaseous oxygen under pressure
MXPA98000557A (en) Procedure and device for the production of variable quantities of a gaseosopresurized product
US9797654B2 (en) Method and device for oxygen production by low-temperature separation of air at variable energy consumption
EP0798524A2 (en) Ultra high purity nitrogen and oxygen generator unit
CA2375570C (en) Process and apparatus for separating a gas mixture with emergency operation
JP3220755B2 (en) Air liquefaction separation method and apparatus
JP3208547B2 (en) Liquefaction method of permanent gas using cold of liquefied natural gas
JP2873473B2 (en) Air liquefaction separation method
JPH02293575A (en) Air separation device
US9458762B2 (en) Method and device for generating electrical energy
JP2005265392A (en) Air liquefying separating device and its operating method
JP2873469B2 (en) A device that liquefies and separates and supplies air in response to fluctuations in demand
JPH0627620B2 (en) Air liquefaction separation method and device suitable for oxygen demand fluctuation
JPH09170872A (en) Introducing method of multicomponent liquid supply raw-material flow into distillation column
JP3331415B2 (en) Air liquefaction separation method and apparatus
CN109297043B (en) Low-energy-consumption stable gas supply method and system
JPH0611254A (en) Liquefaction/separation method for air and device thereof utilizing lng cold heat
KR930003211B1 (en) Air seperating apparatus
JP3306668B2 (en) Air liquefaction separation method and apparatus
JP4908740B2 (en) Cryogenic air separator operation method

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070817

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees