JP4908740B2 - Cryogenic air separator operation method - Google Patents

Cryogenic air separator operation method Download PDF

Info

Publication number
JP4908740B2
JP4908740B2 JP2004085308A JP2004085308A JP4908740B2 JP 4908740 B2 JP4908740 B2 JP 4908740B2 JP 2004085308 A JP2004085308 A JP 2004085308A JP 2004085308 A JP2004085308 A JP 2004085308A JP 4908740 B2 JP4908740 B2 JP 4908740B2
Authority
JP
Japan
Prior art keywords
oxygen
main heat
heat exchanger
product
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004085308A
Other languages
Japanese (ja)
Other versions
JP2005273959A (en
Inventor
斉 浅岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004085308A priority Critical patent/JP4908740B2/en
Priority to TW94107912A priority patent/TWI276765B/en
Priority to KR1020050023615A priority patent/KR100694376B1/en
Publication of JP2005273959A publication Critical patent/JP2005273959A/en
Application granted granted Critical
Publication of JP4908740B2 publication Critical patent/JP4908740B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04036Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04381Details relating to the work expansion, e.g. process parameter etc. using work extraction by mechanical coupling of compression and expansion so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04854Safety aspects of operation
    • F25J3/0486Safety aspects of operation of vaporisers for oxygen enriched liquids, e.g. purging of liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/50Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/50One fluid being oxygen

Description

本発明は、深冷空気分離装置の運転方法に係り、より詳しくは、需要先により高圧の製品酸素ガスを供給することができ、しかも運転コストの増大を抑制することを可能ならしめる深冷空気分離装置の運転方法に関する。 The present invention relates to a method of operating a cryogenic air separation equipment, and more particularly, can supply the high pressure product oxygen gas by the demand end, moreover makes it possible to suppress an increase in operating costs cryogenic a method for the operation of the air separation equipment.

鉄鋼業等の工業分野において、ガス酸素(製品酸素)はユーティリティあるいは原材料として使用されており、その供給源として深冷空気分離装置が使用されている。このような深冷空気分離装置の場合には、通常、製品酸素ガスは複式精留塔の上部塔の操作圧力である0.01〜0.02MPaG程度の圧力で上部塔から取出され、取出した酸素ガスを所要圧力に昇圧して需要先に供給している。しかしながら、酸素ガスを所要圧力に昇圧する酸素ガス圧縮機の所要動力が過大であり、所要動力の低減に対する強い要望があった。
酸素ガス圧縮機の所要動力の低減を可能ならしめるようにしたものとしては、例えば後述する構成になるものが公知である。以下、この従来例に係る深冷空気分離装置を、タービン一体式のガスブロワを備えた深冷空気分離装置における制御回路構成を示す図の図3を参照しながら説明する。
In industrial fields such as the steel industry, gaseous oxygen (product oxygen) is used as a utility or raw material, and a chilled air separation device is used as its supply source. In the case of such a cryogenic air separation apparatus, the product oxygen gas is usually taken out from the upper column at a pressure of about 0.01 to 0.02 MPaG, which is the operating pressure of the upper column of the double rectification column. Oxygen gas is boosted to the required pressure and supplied to customers. However, the required power of the oxygen gas compressor for boosting the oxygen gas to the required pressure is excessive, and there has been a strong demand for reducing the required power.
As a device that can reduce the required power of the oxygen gas compressor, for example, a device having a configuration described later is known. Hereinafter, the cryogenic air separation apparatus according to this conventional example will be described with reference to FIG. 3 showing a control circuit configuration in the cryogenic air separation apparatus provided with a turbine-integrated gas blower.

即ち、この従来例に係る深冷空気分離装置は、原料空気を圧縮する原料空気圧縮機51と、この原料空気圧縮機51で圧縮されると共に前冷却装置52で冷却された原料空気を前処理する吸着塔ユニット53と、この吸着塔ユニット53で前処理された空気が原料として送り込まれ、この送り込まれた原料空気から深冷分離法にて窒素や酸素を分離連続生産する精留塔57,58と、前記送り込まれた原料空気を断熱膨張させて前記精留塔へ流入させる寒冷を発生させるための膨張タービン56とを有するコールドボックス55を有しており、製品酸素等の製品ガスの圧力を精留塔上塔57の運転圧力より高圧にすることが必要なプラントに適用される。製品ガス(例えば製品酸素)を深冷状態で精留分離する精留塔は、下塔(中圧塔)58と上塔(低圧塔)57から構成され、両者は主凝縮器90にて互いに熱交換を行うようになっている。この主凝縮器90には下塔58の上部から窒素ガスが供給され、液化された窒素は下塔58の上部に戻されるように構成されている。   That is, the chilled air separation apparatus according to this conventional example includes a raw material air compressor 51 for compressing raw material air, and pretreatment of the raw material air compressed by the raw material air compressor 51 and cooled by the precooling device 52. Adsorbing tower unit 53, and air pretreated in this adsorbing tower unit 53 is fed as a raw material, and rectifying tower 57 for separating and continuously producing nitrogen and oxygen from the fed raw material air by a cryogenic separation method, 58 and an expansion turbine 56 for generating cold that adiabatically expands the fed raw material air and flows into the rectification tower, and pressure of product gas such as product oxygen Is applied to a plant that needs to be higher than the operating pressure of the upper column 57 of the rectification column. A rectifying column for rectifying and separating a product gas (for example, product oxygen) in a deep cooling state is composed of a lower column (intermediate pressure column) 58 and an upper column (low pressure column) 57, both of which are mutually connected by a main condenser 90. Heat exchange is performed. Nitrogen gas is supplied to the main condenser 90 from the upper part of the lower tower 58, and the liquefied nitrogen is returned to the upper part of the lower tower 58.

この従来例に係る深冷空気分離装置によれば、0.03MPaG程度の製品ガス(例えば製品酸素)89を上塔(低圧塔)57からガスの状態で取り出して、空気熱交換器63で温度回復させた後、膨張タービン56の常温側(片側)のブレーキファンを、製品ガス(例えば製品酸素)89を昇圧するためのガスブロワ66として使用される。即ち、このガスブロワ66は、製品となるガス(例えば製品酸素)の圧力が、上塔57の運転圧力より高い圧力レベルで取り合うことができるように、膨張タービン56の回転力を受けて製品ガス90を圧力比で1.36〜1.6程度に昇圧するものである。このように、製品となるガス(例えば製品酸素)の圧力が、上塔57の運転圧力より高い圧力レベルで取り合うことが要求されたプラントにおいて、上塔57から製品ガス(製品酸素等)をガスの状態で取り出し、この取り出された製品ガスを、寒冷発生のための膨張タービン56の片側に設けたブレーキ用ガスブロワ66で昇圧することにより、製品ガス(例えば製品酸素)89を所定の圧力にして送り出すものである。なお、図3において、精留塔の右側に示されてなる符号62は過冷却器である(例えば、特許文献1参照。)。
特開2003−166783号公報
According to the cryogenic air separation apparatus according to this conventional example, a product gas (for example, product oxygen) 89 of about 0.03 MPaG is taken out from the upper column (low pressure column) 57 in a gas state, and the temperature is changed by the air heat exchanger 63. After the recovery, the normal temperature side (one side) brake fan of the expansion turbine 56 is used as a gas blower 66 for boosting the product gas (for example, product oxygen) 89. That is, the gas blower 66 receives the rotational force of the expansion turbine 56 so that the pressure of the product gas (for example, product oxygen) can be met at a pressure level higher than the operating pressure of the upper tower 57, and the product gas 90. Is increased to a pressure ratio of about 1.36 to 1.6. In this way, in a plant where the pressure of the gas (for example, product oxygen) as a product is required to be met at a pressure level higher than the operating pressure of the upper column 57, the product gas (product oxygen or the like) is gasified from the upper column 57. The product gas (for example, product oxygen) 89 is brought to a predetermined pressure by increasing the pressure of the extracted product gas with a brake gas blower 66 provided on one side of the expansion turbine 56 for generating cold. It will be sent out. In addition, in FIG. 3, the code | symbol 62 shown by the right side of a rectification tower is a subcooler (for example, refer patent document 1).
JP 2003-166783 A

上記従来例に係る深冷空気分離装置によれば、コールドボックスから取出される製品酸素ガスの圧力が0.02〜0.08MPaGに限定されている。従って、需要先における製品酸素ガスの必要圧力が、この圧力に一致している場合には非常に有効な装置である。
しかしながら、これ以上の圧力を必要とする場合には、この深冷空気分離装置を使用することができない。勿論、酸素ガス圧縮機を設ければ、より高圧の製品酸素ガスを需要先に供給することができるが、酸素ガス圧縮機の駆動に多大な動力エネルギーを要するので、深冷空気分離装置の運転コストに関して経済的に好ましくない。
According to the cryogenic air separation apparatus according to the conventional example, the pressure of the product oxygen gas taken out from the cold box is limited to 0.02 to 0.08 MPaG. Therefore, it is a very effective device when the required pressure of the product oxygen gas at the demand destination matches this pressure.
However, when a pressure higher than this is required, this cryogenic air separation device cannot be used. Of course, if an oxygen gas compressor is provided, higher-pressure product oxygen gas can be supplied to the customer. However, since driving the oxygen gas compressor requires a large amount of power energy, the operation of the cryogenic air separation device Economically unfavorable in terms of cost.

従って、本発明の目的は、需要先により高圧の製品酸素ガスを供給することができ、しかも運転コストの増大を抑制することを可能ならしめる深冷空気分離装置の運転方法を提供することである。 Accordingly, an object of the present invention, can supply the high pressure product oxygen gas by the demand end, yet to provide a possibly occupied cryogenic air separation equipment operating method to suppress an increase in operating costs is there.

上記課題を解決するために、本発明の請求項1に係る深冷空気分離装置の運転方法は、原料空気を圧縮する原料空気圧縮機を備え、この原料空気圧縮機で圧縮された圧縮空気中の不純物を除去する吸着塔ユニットを備え、不純物除去後の圧縮空気を冷却する主熱交換器を備えると共に、上塔と下塔とからなり、前記主熱交換器で冷却されて導入された空気を酸素と窒素とに分離する複式精留塔を有する空気分離部を備えた深冷空気分離装置において、前記主熱交換器を経て下塔に連通し、吸着塔ユニットを経た原料空気の一部を下塔に導入する第1原料空気ラインと、この第1原料空気ラインから分岐して上塔に連通し、前記主熱交換器の上流側にブロワが介装されると共に、主熱交換器の下流側に膨張タービンが介装され、吸着塔ユニットを経た原料空気の残りを上塔に導入する第2原料空気ラインと、上塔から主熱交換器を介して製品酸素ガスを需要先に供給し、主熱交換器の下流側に酸素ガス圧縮機が介装されてなる第1製品酸素ラインと、上塔の底部から主熱交換器を介して製品酸素ガスを需要先に供給し、主熱交換器と上塔との間に液体酸素ポンプが介装され、前記第1製品酸素ラインの前記酸素ガス圧縮機の下流側に連通する第2製品酸素ラインとを備えてなり、
前記複式精留塔から取出される全製品酸素量の一部を、前記第2製品酸素ラインを介して液体酸素として取出し、取出した液体酸素を液体酸素ポンプで所要圧力に加圧した後に主熱交換器で蒸発させると共に加温して製品酸素ガスとし、残りの製品酸素量を、第1製品酸素ラインを介して酸素ガスとして取出し、取出した酸素ガスを主熱交換器で加温した後に酸素ガス圧縮機で所要圧力に圧縮して製品酸素ガスとするとともに、
前記第2製品酸素ラインを介して、圧力がP(MPaG)の製品酸素ガスを需要先に供給するに際して、全製品酸素量の16.4×P-0.8%以下の酸素ガスが得られる量の液体酸素を取出して前記液体酸素ポンプにより圧縮することを特徴とするものである。
In order to solve the above-mentioned problems, a method for operating a cryogenic air separation device according to claim 1 of the present invention includes a raw air compressor for compressing raw air, and the compressed air compressed by the raw air compressor An adsorption tower unit that removes impurities, a main heat exchanger that cools compressed air after removing impurities, and an upper tower and a lower tower that are cooled and introduced by the main heat exchanger. In the cryogenic air separation apparatus having an air separation section having a double rectification tower for separating oxygen into nitrogen and nitrogen, a part of the raw air passed through the main heat exchanger to the lower tower and passed through the adsorption tower unit A first raw material air line for introducing the gas into the lower tower, a branch from the first raw air line and communicating with the upper tower, and a blower is interposed upstream of the main heat exchanger, and the main heat exchanger An expansion turbine is installed downstream of the adsorption tower unit The second raw material air line for introducing the remaining raw material air into the upper tower, and the product oxygen gas is supplied from the upper tower to the customer through the main heat exchanger, and the oxygen gas compressor is provided downstream of the main heat exchanger. The product oxygen gas is supplied from the bottom of the upper tower to the customer through the main heat exchanger, and a liquid oxygen pump is installed between the main heat exchanger and the upper tower. And a second product oxygen line that communicates with the downstream side of the oxygen gas compressor of the first product oxygen line,
A part of the total product oxygen amount taken out from the double rectification column is taken out as liquid oxygen through the second product oxygen line, and the main heat is applied after the taken out liquid oxygen is pressurized to a required pressure by a liquid oxygen pump. The product oxygen gas is evaporated and heated in the exchanger, and the remaining product oxygen amount is taken out as oxygen gas through the first product oxygen line, and the oxygen gas is heated in the main heat exchanger and then oxygenated. Compressed to the required pressure with a gas compressor to produce product oxygen gas,
When supplying product oxygen gas having a pressure of P (MPaG) to the customer through the second product oxygen line, an amount of oxygen gas that is 16.4 × P −0.8 % or less of the total product oxygen amount is obtained. it is characterized in that the compression by the pre-Symbol LOX pump extracts the liquid oxygen.

本発明の請求項2に係る深冷空気分離装置の運転方法は、原料空気を圧縮する原料空気圧縮機を備え、この原料空気圧縮機で圧縮された圧縮空気中の不純物を除去する吸着塔ユニットを備え、不純物除去後の圧縮空気を冷却する主熱交換器を備えると共に、上塔と下塔とからなり、前記主熱交換器で冷却されて導入された空気を酸素と窒素とに分離する複式精留塔を有する空気分離部を備えた深冷空気分離装置において、前記主熱交換器を経て下塔に連通し、吸着塔ユニットを経た原料空気の一部を下塔に導入する第1原料空気ラインと、この第1原料空気ラインから分岐して上塔に連通し、前記主熱交換器の上流側にブロワが介装されると共に、主熱交換器の下流側に膨張タービンが介装され、吸着塔ユニットを経た原料空気の残りを上塔に導入する第2原料空気ラインと、上塔から主熱交換器を介して製品酸素ガスを第1の需要先に供給し、主熱交換器の下流側に酸素ガス圧縮機が介装されてなる第1製品酸素ラインと、上塔の底部から主熱交換器を介して製品酸素ガスを第2の需要先に供給し、主熱交換器と上塔との間に液体酸素ポンプが介装されてなる第2製品酸素ラインとを備えてなり、
前記複式精留塔から取出される全製品酸素量の一部を、前記第2製品酸素ラインを介して液体酸素として取出し、取出した液体酸素を液体酸素ポンプで所要圧力に加圧した後に主熱交換器で蒸発させると共に加温して製品酸素ガスとし、残りの製品酸素量を、第1製品酸素ラインを介して酸素ガスとして取出し、取出した酸素ガスを主熱交換器で加温した後に酸素ガス圧縮機で所要圧力に圧縮して製品酸素ガスとするとともに、
前記第2製品酸素ラインを介して、圧力がP(MPaG)の製品酸素ガスを需要先に供給するに際して、全製品酸素量の16.4×P-0.8%以下の酸素ガスが得られる量の液体酸素を取出して前記液体酸素ポンプにより圧縮することを特徴とするものである。
The operation method of the cryogenic air separation apparatus according to claim 2 of the present invention includes a raw material air compressor that compresses raw material air, and an adsorption tower unit that removes impurities in the compressed air compressed by the raw material air compressor And a main heat exchanger for cooling the compressed air after removing impurities, and comprising an upper tower and a lower tower, and the air introduced after being cooled by the main heat exchanger is separated into oxygen and nitrogen In the cryogenic air separation apparatus having an air separation section having a double rectification tower, a first part which communicates with the lower tower via the main heat exchanger and introduces a part of the raw air passed through the adsorption tower unit into the lower tower. A raw material air line and a branch from the first raw material air line communicate with the upper tower. A blower is interposed upstream of the main heat exchanger, and an expansion turbine is interposed downstream of the main heat exchanger. The upper part of the raw material air passed through the adsorption tower unit Product oxygen gas is supplied to the first customer from the second raw material air line to be introduced and the main tower through the main heat exchanger, and an oxygen gas compressor is interposed downstream of the main heat exchanger. Product oxygen gas is supplied from the bottom of the first product oxygen line and the upper tower via the main heat exchanger to the second demand destination, and a liquid oxygen pump is interposed between the main heat exchanger and the upper tower. A second product oxygen line
A part of the total product oxygen amount taken out from the double rectification column is taken out as liquid oxygen through the second product oxygen line, and the main heat is applied after the taken out liquid oxygen is pressurized to a required pressure by a liquid oxygen pump. The product oxygen gas is evaporated and heated in the exchanger, and the remaining product oxygen amount is taken out as oxygen gas through the first product oxygen line, and the oxygen gas is heated in the main heat exchanger and then oxygenated. Compressed to the required pressure with a gas compressor to produce product oxygen gas,
When supplying product oxygen gas having a pressure of P (MPaG) to the customer through the second product oxygen line, an amount of oxygen gas that is 16.4 × P −0.8 % or less of the total product oxygen amount is obtained. it is characterized in that the compression by the pre-Symbol LOX pump extracts the liquid oxygen.

本発明の請求項1、2に係る深冷空気分離装置の運転方法によれば、酸素ガスを酸素ガス圧縮機で圧縮することにより、第1製品酸素ラインを介して需要先に製品酸素ガスを供給することができる。また、液体酸素を液体酸素ポンプで圧縮した後、主熱交換器で加温することにより、第2製品酸素ラインを介して需要先に製品酸素ガスを供給することができる。従って、本発明によれば、酸素ガス圧縮機と液体酸素ポンプとを駆動して需要先に製品酸素ガスを供給するが、液体酸素ポンプの駆動力は酸素ガス圧縮機の駆動力よりも遥かに小動力でよいので、需要先に供給する製品酸素ガスの全量を酸素ガス圧縮機で圧縮して供給する場合に比較して、所要動力を削減することができる。また、本発明の請求項1、2に係る深冷空気分離装置の運転方法によれば、主熱交換器により液体酸素と原料空気とを熱交換させて液体酸素を蒸発させ、製品酸素ガスとして需要先に供給するが、全製品酸素量の16.4×P-0.8%以下の酸素ガスが得られる量の液体酸素が上塔から取出される。上塔から取出される液体酸素の量は、原料空気の全量により完全に蒸発させ得る量になるように決定された量であるため、主熱交換器の温度バランスを保持しながら、取り出された液体酸素の全てを蒸発させることができる。また、本発明の請求項2に係る深冷空気分離装置の運転方法によれば、所要圧力が相違する2つの需要先に、それらの需要先が要求する圧力の製品酸素ガスを個別に供給することができる。 According to the operation method of the cryogenic air separation apparatus according to claims 1 and 2 of the present invention, the product oxygen gas is supplied to the customer through the first product oxygen line by compressing the oxygen gas with the oxygen gas compressor. Can be supplied. Further, after compressing liquid oxygen in the liquid body oxygen pump, by heating in the main heat exchanger, it is possible to supply products oxygen gas to the demand end through the second oxygen product line. Therefore, according to the present invention, the oxygen gas compressor and the liquid oxygen pump are driven to supply the product oxygen gas to the customer, but the driving force of the liquid oxygen pump is far greater than the driving force of the oxygen gas compressor. Since small power is sufficient, the required power can be reduced as compared with the case where the entire amount of product oxygen gas supplied to the customer is compressed and supplied by an oxygen gas compressor. Further, according to the operation method of the cryogenic air separation apparatus according to claims 1 and 2 of the present invention, liquid oxygen and raw material air are heat-exchanged by the main heat exchanger to evaporate liquid oxygen, and as product oxygen gas Although supplied to the customer, liquid oxygen is extracted from the upper tower in such an amount that oxygen gas of 16.4 × P −0.8 % or less of the total product oxygen amount can be obtained. Since the amount of liquid oxygen taken out from the upper tower is an amount determined so that it can be completely evaporated by the total amount of raw material air, it was taken out while maintaining the temperature balance of the main heat exchanger. All of the liquid oxygen can be evaporated. Further, according to the operation method of the cryogenic air separation device according to claim 2 of the present invention, the product oxygen gas having the pressure required by the demand destinations is individually supplied to two demand destinations having different required pressures. be able to.

以下、本発明の形態1に係る深冷空気分離装置を、その模式的系統図の図1を参照しながら説明する。   Hereinafter, the cryogenic air separation device according to the first embodiment of the present invention will be described with reference to FIG. 1 of a schematic system diagram thereof.

本発明の形態1に係る深冷空気分離装置は、図1に示すように、図示しないフィルタを介して吸引された原料空気を圧縮する原料空気圧縮機1a、この原料空気圧縮機1aで圧縮された圧縮空気中の不純物を除去する吸着塔ユニット1bが介装されてなる原料空気供給ライン1を備えている。この原料空気供給ライン1から第1原料空気ライン3が分岐しており、この第1原料空気ライン3は主熱交換器2を介して、後述する構成になる空気分離部10に連通している。つまり、吸着塔ユニット1bで不純物が除去された圧縮空気の一部は、第1原料空気ライン3を流れて、主熱交換器2で冷却されて空気分離部10に導入されるようになっている。   As shown in FIG. 1, the cryogenic air separation apparatus according to the first embodiment of the present invention is compressed by a raw material air compressor 1a for compressing raw material air sucked through a filter (not shown) and the raw material air compressor 1a. A raw material air supply line 1 having an adsorption tower unit 1b for removing impurities in the compressed air is provided. A first raw material air line 3 is branched from the raw material air supply line 1, and the first raw material air line 3 communicates with an air separation unit 10 having a configuration to be described later via a main heat exchanger 2. . That is, a part of the compressed air from which impurities are removed by the adsorption tower unit 1 b flows through the first raw material air line 3, is cooled by the main heat exchanger 2, and is introduced into the air separation unit 10. Yes.

また、この原料空気供給ライン1から第2原料空気ライン4が分岐しており、この第2原料空気ライン4は主熱交換器2を介して空気分離部10に連通している。即ち、吸着塔ユニット1bで不純物が除去された圧縮空気の残りが、この第2原料空気ライン4を介して空気分離部10に導入されるようになっている。この第2原料空気ライン4の分岐部と主熱交換器2の間に、原料空気を圧縮するブロワ4aと、このブロワ4aで圧縮された原料空気を冷却するクーラ4bとが介装されている。さらに、この第2原料空気ライン4の主熱交換器2と空気分離部10との間に膨張タービン4cが設けられており、空気分離部10に必要な寒冷を発生するように構成されている。   A second raw material air line 4 is branched from the raw material air supply line 1, and the second raw material air line 4 communicates with the air separation unit 10 via the main heat exchanger 2. That is, the remaining compressed air from which impurities have been removed by the adsorption tower unit 1 b is introduced into the air separation unit 10 via the second raw material air line 4. Between the branch part of the second raw material air line 4 and the main heat exchanger 2, a blower 4a for compressing the raw air and a cooler 4b for cooling the raw air compressed by the blower 4a are interposed. . Further, an expansion turbine 4c is provided between the main heat exchanger 2 and the air separation unit 10 of the second raw material air line 4 so as to generate the necessary cold in the air separation unit 10. .

一方、空気分離部10から図示しない製品需要先に、製品酸素ガスを供給する第1製品酸素ライン5が主熱交換器2、酸素ガス圧縮機5aを介して連通している。さらに、この第1製品酸素ライン5の酸素ガス圧縮機5aの下流側に、空気分離部10から液体酸素ポンプ6a、主熱交換器2を介して第2製品酸素ライン6が合流している。   On the other hand, a first product oxygen line 5 for supplying product oxygen gas communicates from the air separation unit 10 to a product demand destination (not shown) via the main heat exchanger 2 and the oxygen gas compressor 5a. Further, the second product oxygen line 6 joins from the air separation unit 10 via the liquid oxygen pump 6 a and the main heat exchanger 2 to the downstream side of the oxygen gas compressor 5 a of the first product oxygen line 5.

前記空気分離部10は、上塔11aと、この上塔11aの底部の内部に配設されてなる凝縮器11bと、この上塔11aの下側の下塔11cとからなる複式精留塔11と、過冷却器12を備えている。複式精留塔11の下塔11cの底部付近に前記第1原料空気ライン3が連通すると共に、上塔11aの上下方向の中程付近に前記第2原料空気ライン4が連通している。また、前記第2製品酸素ライン6の基端部は複式精留塔11の上塔11aの底部に接続されている。また、前記複式精留塔11の上塔11aの頂部から、過冷却器12を介して図示しない窒素需要先に製品窒素ガスGNを供給する製品窒素ライン7が主熱交換器2を介して連通している。さらに、複式精留塔11の上塔11aの上部付近から、過冷却器12を介して、前記吸着塔ユニット1b等に廃窒素ライン8が連通している。
この廃窒素ライン8は、主として吸着剤を再生するために吸着塔ユニット1bに廃窒素ガスWNを供給する働きをするものである。なお、吸着剤を再生した廃窒素ガスWNは、図示しないサイレンサーを介して大気中に放出される。
The air separation unit 10 includes a double rectification column 11 comprising an upper column 11a, a condenser 11b disposed inside the bottom of the upper column 11a, and a lower column 11c below the upper column 11a. And the supercooler 12 is provided. The first raw material air line 3 communicates with the vicinity of the bottom of the lower tower 11c of the double rectifying column 11, and the second raw material air line 4 communicates with the middle of the upper tower 11a in the vertical direction. The base end of the second product oxygen line 6 is connected to the bottom of the upper column 11a of the double rectification column 11. Further, a product nitrogen line 7 for supplying product nitrogen gas GN to a nitrogen demand destination (not shown) via a supercooler 12 communicates with the main heat exchanger 2 from the top of the upper column 11a of the double rectification column 11. is doing. Further, a waste nitrogen line 8 communicates with the adsorption tower unit 1b and the like from the vicinity of the upper part of the upper tower 11a of the double rectifying tower 11 via the supercooler 12.
The waste nitrogen line 8 mainly serves to supply the waste nitrogen gas WN to the adsorption tower unit 1b in order to regenerate the adsorbent. Note that the waste nitrogen gas WN regenerated from the adsorbent is released into the atmosphere via a silencer (not shown).

そして、下塔11cの底部より第1ライン13が過冷却器12を介して上塔11aに連通しており、下塔11cの底部の酸素リッチな液体空気を過冷却して上塔11aに導入するように構成されている。また、下塔11cの前記第1ライン13の連通部の上側から過冷却器12を介して上塔11aの前記第1ライン13の連通部の上側に第2ライン14が連通しており、下塔11cの中位位置の窒素リッチな液体空気を過冷却して上塔11aに導入するように構成されている。さらに、下塔11cの頂部から過冷却器12を介して、第3ライン15が上塔11aの頂部付近に連通しており、下塔11cの上位位置の高純度窒素を過冷却して上塔11aに導入するように構成されている。   The first line 13 communicates with the upper tower 11a from the bottom of the lower tower 11c via the supercooler 12, and the oxygen-rich liquid air at the bottom of the lower tower 11c is supercooled and introduced into the upper tower 11a. Is configured to do. The second line 14 communicates from the upper side of the communicating part of the first line 13 of the lower tower 11c to the upper side of the communicating part of the first line 13 of the upper tower 11a via the supercooler 12. The nitrogen-rich liquid air at the middle position of the tower 11c is supercooled and introduced into the upper tower 11a. Further, the third line 15 communicates with the vicinity of the top of the upper tower 11a from the top of the lower tower 11c via the supercooler 12, and supercools the high-purity nitrogen at the upper position of the lower tower 11c. 11a is introduced.

前記第1原料空気ライン3を介して下塔11cの底部に導入された冷却された原料空気GAは、塔内を上昇する間に次第に窒素リッチになり、下塔11cの頂部では高純度窒素となる。また、上部塔11aに導入された酸素リッチな液体空気は、塔内を流下しながら次第に酸素が凝縮され、底部において高純度液体酸素となり、この上塔11aの底部に溜まるものである。なお、一点鎖線で示され、主熱交換器2、膨張タービン4c、液体酸素ポンプ6a、および空気分離部10を囲んでなるものはコールドボックス9である。   The cooled raw air GA introduced into the bottom of the lower tower 11c via the first raw air line 3 gradually becomes nitrogen-rich while ascending the inside of the tower, and high purity nitrogen and Become. Further, the oxygen-rich liquid air introduced into the upper tower 11a is gradually condensed with oxygen flowing down through the tower, becomes high-purity liquid oxygen at the bottom, and accumulates at the bottom of the upper tower 11a. In addition, what is shown with a dashed-dotted line and surrounds the main heat exchanger 2, the expansion turbine 4c, the liquid oxygen pump 6a, and the air separation part 10 is a cold box 9.

以下、本発明の形態1に係る深冷空気分離装置の作用態様を、図1を参照しながら説明する。即ち、原料空気圧縮機1aで圧縮されると共に、吸着塔ユニット1bで不純物が除去された原料空気の一部は,第1原料空気ライン3に流入し、主熱交換器2で略沸点温度まで冷却されて空気分離部10の下塔11cの底部に導入される。原料空気の残りの部分は、第2原料空気ライン4に流入し、ブロワ4aで昇圧され、クーラ4bで冷却された後に主熱交換器2で冷却されて上塔11aの上下方向の中程に導入される。空気分離部10の複式精留塔11に導入された原料空気は精留され、上塔11aの底部から第2製品酸素ライン6を介して液体酸素LOが、上塔11aの下部から第1製品酸素ライン5を介して酸素ガスGOが導出される。そして、上塔11aの頂部から製品窒素ライン7を介して製品窒素ガスGNが導出される。   Hereinafter, the operation mode of the cryogenic air separation device according to the first embodiment of the present invention will be described with reference to FIG. That is, a part of the raw material air compressed by the raw material air compressor 1a and from which impurities are removed by the adsorption tower unit 1b flows into the first raw material air line 3, and reaches the substantially boiling point temperature by the main heat exchanger 2. It is cooled and introduced into the bottom of the lower tower 11 c of the air separation unit 10. The remaining portion of the raw material air flows into the second raw material air line 4, is pressurized by the blower 4 a, cooled by the cooler 4 b, then cooled by the main heat exchanger 2, and in the middle of the upper tower 11 a in the vertical direction. be introduced. The raw air introduced into the double rectification column 11 of the air separation unit 10 is rectified, and the liquid oxygen LO is supplied from the bottom of the upper column 11a via the second product oxygen line 6, and the first product is output from the lower part of the upper column 11a. An oxygen gas GO is led out through the oxygen line 5. And product nitrogen gas GN is derived | led-out via the product nitrogen line 7 from the top part of the upper tower 11a.

本発明の形態1に係る深冷空気分離装置によれば、酸素ガス圧縮機5aで圧縮した酸素ガスに、液体酸素ポンプ6aで圧縮した液体酸素LOを、主熱交換器2により原料空気と熱交換させて蒸発させ、蒸発させた酸素ガスを合流させて、第1製品酸素ライン5を介して需要先に製品酸素ガスを供給することができる。ところで、第2製品酸素ライン6から液体酸素LOとして取出される量は、製品酸素ガスの圧力をPMPaGとした場合に、全製品酸素量の16.4×P-0.8%以下である。より詳しくは、液体酸素LOの量は、原料空気の全量により完全に蒸発させ得る量になるように設定されているため、主熱交換器2の温度バランスを保持しながら、取り出された液体酸素LOの全量を完全に蒸発させることができる。従って、本形態1に係る深冷空気分離装置によれば、製品酸素ガスの圧力が0.02〜0.08MPaGに限定されている従来例に係る深冷空気分離装置と異なり、遥かに高圧、しかも任意の圧力の製品酸素ガスを需要先に供給することができる。 According to the cryogenic air separation device according to the first embodiment of the present invention, the liquid oxygen LO compressed by the liquid oxygen pump 6a is converted into the oxygen gas compressed by the oxygen gas compressor 5a and the raw air and heat by the main heat exchanger 2. The product oxygen gas can be supplied to the customer through the first product oxygen line 5 by combining the evaporated and evaporated oxygen gas. By the way, the amount taken out as liquid oxygen LO from the second product oxygen line 6 is 16.4 × P −0.8 % or less of the total product oxygen amount when the pressure of the product oxygen gas is PMPaG. More specifically, since the amount of the liquid oxygen LO is set to an amount that can be completely evaporated by the total amount of the raw air, the extracted liquid oxygen is maintained while maintaining the temperature balance of the main heat exchanger 2. The entire amount of LO can be completely evaporated. Therefore, according to the cryogenic air separator according to the first embodiment, unlike the cryogenic air separator according to the conventional example in which the pressure of the product oxygen gas is limited to 0.02 to 0.08 MPaG, In addition, product oxygen gas at an arbitrary pressure can be supplied to the customer.

また、本形態1に係る深冷空気分離装置によれば、上記のとおり、酸素ガス圧縮機5aと液体酸素ポンプ6bとを駆動して需要先に製品酸素ガスを供給するが、液体酸素ポンプ6aの駆動力は酸素ガス圧縮機5aの駆動力よりも遥かに小動力でよいので、需要先に供給する製品酸素ガスの全量を酸素ガス圧縮機で圧縮して供給する必要がある従来例に比較して、所要動力を削減することができる。   Further, according to the cryogenic air separation device according to the first embodiment, as described above, the oxygen gas compressor 5a and the liquid oxygen pump 6b are driven to supply the product oxygen gas to the customer, but the liquid oxygen pump 6a Compared with the conventional example in which the entire amount of product oxygen gas supplied to the customer needs to be compressed and supplied by the oxygen gas compressor. Thus, the required power can be reduced.

以下、本形態1に係る深冷空気分離装置の所要動力について、より具体的に説明する。
例えば、製品酸素ガスの所要流量と圧力とがそれぞれ10,000Nm3/h、2.5MPaGである場合、従来例に係る深冷空気分離装置では、10,000Nm3/hの酸素ガスを酸素ガス圧縮機で所要圧力2.5MPaGまで圧縮し、製品酸素ガスとして需要先に供給していた。酸素ガス圧縮機の所要動力は、酸素ガス1Nm3/h当たり、およそ0.15kWであるから、この場合には1,500kWの動力が必要である。
Hereinafter, the required power of the cryogenic air separation device according to the first embodiment will be described more specifically.
For example, if a required flow rate and pressure of the product oxygen gas is respectively 10,000Nm 3 /h,2.5MPaG, in cryogenic air separation unit according to the conventional example, oxygen gas and oxygen gas of 10,000 nM 3 / h The compressor was compressed to a required pressure of 2.5 MPaG and supplied to the customer as product oxygen gas. The required power of the oxygen gas compressor is approximately 0.15 kW per 1 Nm 3 / h of oxygen gas, and in this case, 1,500 kW of power is required.

一方、本発明の形態1に係る深冷空気分離装置の場合には、上記のとおり、全製品酸素量の16.4×P-0.8%以下=7.9%以下、例えば5%である500Nm3/hの酸素ガスを得ることができる量の液体酸素(以下、表現を簡略化するために500Nm3/hの液体酸素といい、液体酸素量の如何に拘らず同様の表現を用いることとする。)LOを上塔11aから取出し、残りの9,500Nm3/hの酸素ガスGOを上塔11aから取出す。この9,500Nm3/hの酸素ガスは、従来例と同様に酸素ガス圧縮機5aで2.5MPaGまで圧縮される。そして、500Nm3/hの液体酸素LOは液体酸素ポンプ6aにより、2.5MPaGまで圧縮されて第2製品酸素ライン6を流れ、第1製品酸素ライン5の酸素ガス圧縮機5aの下流側に流入して、酸素ガス圧縮機5aで圧縮された酸素ガスと合流して需要先に供給される。 On the other hand, in the case of the cryogenic air separation device according to Embodiment 1 of the present invention, as described above, 16.4 × P −0.8 % or less of the total product oxygen amount = 7.9% or less, for example, 5%, 500 Nm Liquid oxygen in an amount capable of obtaining 3 / h oxygen gas (hereinafter referred to as 500 Nm 3 / h liquid oxygen in order to simplify the expression, and the same expression is used regardless of the amount of liquid oxygen. LO) is taken out from the upper tower 11a, and the remaining 9,500 Nm 3 / h oxygen gas GO is taken out from the upper tower 11a. The oxygen gas of 9,500 Nm 3 / h is compressed to 2.5 MPaG by the oxygen gas compressor 5a as in the conventional example. The liquid oxygen LO of 500 Nm 3 / h is compressed to 2.5 MPaG by the liquid oxygen pump 6 a and flows through the second product oxygen line 6 and flows into the first product oxygen line 5 downstream of the oxygen gas compressor 5 a. Then, the oxygen gas compressed by the oxygen gas compressor 5a is merged and supplied to the customer.

この場合、酸素ガス圧縮機5aにより圧縮する酸素ガスの量は9,500Nm3/hであるから、酸素ガス圧縮機5aの所要動力は1,425kWである。また、500Nm3/hの液体酸素を加圧する液体酸素ポンプ6aの動力が必要になるが、液体は気体に比較して密度が非常に大きく体積が小さいため、液体酸素を2.5MPaGまで加圧するに必要な動力は液体酸素1Nm3/h当たり約0.002kWでしかないから、液体酸素ポンプ6aの所要動力は1kWである。従って、酸素の圧縮に要する動力は、1,426kWになる。このように、本発明によれば、酸素ガス圧縮機に比較して低コストの液体酸素ポンプ6aおよびその回りの配管を追加設置するだけで、任意の圧力の製品酸素ガスを安価に提供することができる。因みに。製品酸素ガスの所要流量と圧力とがそれぞれ10,000Nm3/h、2.5MPaGである場合、約74kW低減されるから、電気代が仮に10円/kWhであるとすれば、年間約640万円もの電気代を低減することができる。 In this case, since the amount of oxygen gas compressed by the oxygen gas compressor 5a is 9,500 Nm 3 / h, the required power of the oxygen gas compressor 5a is 1,425 kW. Further, the power of the liquid oxygen pump 6a for pressurizing 500 Nm 3 / h liquid oxygen is required. However, since the liquid has a very large density and a small volume compared to the gas, the liquid oxygen is pressurized to 2.5 MPaG. The power required for this is only about 0.002 kW per 1 Nm 3 / h of liquid oxygen, so the required power of the liquid oxygen pump 6 a is 1 kW. Therefore, the power required for oxygen compression is 1,426 kW. Thus, according to the present invention, it is possible to provide product oxygen gas at an arbitrary pressure at a low cost only by additionally installing a low-cost liquid oxygen pump 6a and a pipe around the low-cost liquid oxygen pump 6a as compared with an oxygen gas compressor. Can do. By the way. When the required flow rate and pressure of the product oxygen gas are 10,000 Nm 3 / h and 2.5 MPaG, respectively, it is reduced by about 74 kW. Therefore, if the electricity bill is 10 yen / kWh, it is about 6.4 million per year. The electricity cost of a circle can be reduced.

次に、本発明の形態2に係る深冷空気分離装置を、その模式的系統図の図2を参照しながら説明する。なお、本発明の形態2に係る深冷空気分離装置が、上記形態1に係る深冷空気分離装置と相違するところは、圧力が相違する製品酸素ガスの需要先が2件あるところにあり、主要構成は全く同じである。従って、同一のもの並びに同一機能を有するものに同一符号を付し、かつ同一名称を以て、その相違する点について説明する。   Next, a cryogenic air separation device according to Embodiment 2 of the present invention will be described with reference to FIG. 2 of a schematic system diagram thereof. In addition, the place where the cryogenic air separation device according to the second embodiment of the present invention is different from the cryogenic air separation device according to the first embodiment is that there are two demand destinations for product oxygen gas having different pressures. The main configuration is exactly the same. Therefore, the same components and components having the same functions are denoted by the same reference numerals, and different points are described with the same names.

本発明の形態2に係る深冷空気分離装置は、図2と、形態1に係る深冷空気分離装置の模式的系統図の図1との比較において良く理解されるように、第2製品酸素ライン6が第1製品酸素ライン5の酸素ガス圧縮機5aの下流側で合流しておらず、第1製品酸素ライン5を介して図示しない需要先2に、第2製品酸素ライン6を介して図示しない需要先1に、圧力が相違する製品酸素ガスを供給し得るように構成されている。   The cryogenic air separation device according to the second embodiment of the present invention has a second product oxygen as well understood in a comparison between FIG. 2 and FIG. 1 of the schematic system diagram of the cryogenic air separation device according to the first embodiment. The line 6 is not joined downstream of the oxygen gas compressor 5 a of the first product oxygen line 5, and is connected to a customer 2 (not shown) via the first product oxygen line 5 via the second product oxygen line 6. It is comprised so that the product oxygen gas from which a pressure differs can be supplied to the customer 1 which is not shown in figure.

本発明の形態2に係る深冷空気分離装置によれば、例えば、製品酸素ガスの所要流量と圧力が2種類存在し、需要先1に1,000Nm3/h、1.5MPaGの製品酸素ガスを、需要先2に9,000Nm3/h、2.5MPaGの製品酸素ガスを供給する場合に優れた効果を発揮することができる。 According to the cryogenic air separation device according to the second embodiment of the present invention, for example, there are two types of required flow rate and pressure of product oxygen gas, and the product oxygen gas of 1,000 Nm 3 / h, 1.5 MPaG at the customer 1 In the case where the product oxygen gas of 9,000 Nm 3 / h, 2.5 MPaG is supplied to the customer 2, an excellent effect can be exhibited.

例えば、従来例の場合には、2種類の酸素ガス圧縮機を設置し、第1酸素ガス圧縮機で10,000Nm3/hの酸素ガスを1.5MPaGまで圧縮し、そのうちの1,000Nm3/hを製品酸素ガスとして需要先1に供給する。そして、残りの9,000Nm3/hを第2酸素ガス圧縮機で2.5MPaGまで圧縮して製品酸素ガスとして需要先2に供給するというように運転される。この場合、2種類の酸素ガス圧縮機が必要であるから、設備コストに関して不利になることは明白である。また、1種類の酸素ガス圧縮機で10,000Nm3/hの酸素ガスを2.5MPaGまで圧縮し、そのうちの9,000Nm3/hを製品酸素ガスとして需要先2に供給し、残りの1,000Nm3/hを1.5MPaGまで減圧して製品酸素ガスとして需要先1に供給するという運転方法も考えられる。しかしながら、1.5MPaGでよい需要先2に、2.5MPaGまで圧縮した酸素ガスを減圧して供給するのであるから、消費動力に関して不利になることは明白である。 For example, in the case of the conventional example, two types of oxygen gas compressors are installed, and the first oxygen gas compressor compresses 10,000 Nm 3 / h of oxygen gas to 1.5 MPaG, of which 1,000 Nm 3 / H is supplied to the customer 1 as product oxygen gas. The remaining 9,000 Nm 3 / h is compressed to 2.5 MPaG by the second oxygen gas compressor and supplied to the customer 2 as product oxygen gas. In this case, since two kinds of oxygen gas compressors are necessary, it is obvious that the equipment cost is disadvantageous. Further, 1 the type of 10,000 nM 3 / h of oxygen gas in the oxygen gas compressor and compressed to 2.5 MPaG, supplies 9,000Nm 3 / h of which the oxygen product gas to the demand end 2, the remaining 1 An operation method is also conceivable in which 1,000 Nm 3 / h is depressurized to 1.5 MPaG and supplied to the customer 1 as product oxygen gas. However, since the oxygen gas compressed to 2.5 MPaG is supplied to the customer 2, which may be 1.5 MPaG, under reduced pressure, it is obvious that the power consumption is disadvantageous.

このような従来例に対して、本発明の形態2に係る深冷空気分離装置によれば、1,000Nm3/hの液体酸素が第2製品酸素ライン6から取出され、9,000Nm3/hの酸素ガスが第1製品酸素ライン5から取出される。この9,000Nm3/hの酸素ガスは、従来例の場合と同様に、酸素ガス圧縮機5aで所要の2.5MPaGまで圧縮され、製品酸素ガスとして第1製品酸素ライン5を介して需要先2に供給されることとなる。
一方、1,000Nm3/hの液体酸素が液体酸素ポンプ6aで所要の1.5MPaGまで圧縮され、主熱交換器2で蒸発、加温されて、製品酸素ガスとして第2製品酸素ライン6を介して需要先1に供給される。このように、本発明の形態2に係る深冷空気分離装置によれば、製品酸素ガスの所要流量と圧力が2種類存在する場合において、設備コスト増、消費動力増をきたすことなく、需要先の要求に応えることができるという優れた効果を奏することができる。
For such prior art, according to the cryogenic air separation unit according to Embodiment 2 of the present invention, liquid oxygen 1,000 Nm 3 / h is withdrawn from the second oxygen product line 6, 9,000Nm 3 / h oxygen gas is withdrawn from the first product oxygen line 5. This oxygen gas of 9,000 Nm 3 / h is compressed to the required 2.5 MPaG by the oxygen gas compressor 5a as in the case of the conventional example, and is supplied as a product oxygen gas through the first product oxygen line 5 to the customer. 2 will be supplied.
On the other hand, the liquid oxygen of 1,000 Nm 3 / h is compressed to the required 1.5 MPaG by the liquid oxygen pump 6a, evaporated and heated by the main heat exchanger 2, and passed through the second product oxygen line 6 as product oxygen gas. And supplied to the customer 1. As described above, according to the cryogenic air separation device according to the second embodiment of the present invention, when there are two types of required flow rate and pressure of product oxygen gas, there is no need to increase the equipment cost and the power consumption. The outstanding effect that it can respond to the request | requirement of this can be show | played.

上記実施の形態1,2においては、需要先に製品酸素ガスと製品窒素ガスとを供給することができる構成の深冷空気分離装置を例として説明した。しかしながら、本発明の技術的思想を、製品窒素ガスを製品として製造しない装置に対しても適用することができるので、上記実施の形態1,2に係る深冷空気分離装置の用途に限定されるものではない。   In the first and second embodiments, the chilled air separation device having a configuration capable of supplying the product oxygen gas and the product nitrogen gas to the customer has been described as an example. However, since the technical idea of the present invention can be applied to an apparatus that does not produce product nitrogen gas as a product, it is limited to the use of the cryogenic air separation apparatus according to the first and second embodiments. It is not a thing.

本発明の形態1に係る深冷空気分離装置の模式的系統図である。It is a typical systematic diagram of the cryogenic air separation apparatus which concerns on form 1 of this invention. 本発明の形態2に係る深冷空気分離装置の模式的系統図である。It is a typical systematic diagram of the cryogenic air separation apparatus which concerns on Embodiment 2 of this invention. 従来例に係り、タービン一体式のガスブロワを備えた深冷空気分離装置の回路構成を示す図である。It is a figure which shows the circuit structure of the cryogenic air separation apparatus which concerns on the prior art example and was equipped with the turbine integrated gas blower.

符号の説明Explanation of symbols

1…原料空気供給ライン,1a…原料空気圧縮機,1b…吸着塔ユニット
2…主熱交換器
3…第1原料空気ライン
4…第2原料空気ライン,4a…ブロワ,4b…クーラ,4c…膨張タービン
5…第1製品酸素ライン,5a…酸素ガス圧縮機
6…第2製品酸素ライン,6a…液体酸素ポンプ
7…製品窒素ライン
8…廃窒素ライン
9…コールドボックス
10…空気分離部
11…複式精留塔,11a…上塔,11b…凝縮器,11c…下塔
12…過冷却器
13…第1ライン
14…第2ライン
15…第3ライン
DESCRIPTION OF SYMBOLS 1 ... Raw material air supply line, 1a ... Raw material air compressor, 1b ... Adsorption tower unit 2 ... Main heat exchanger 3 ... First raw material air line 4 ... Second raw material air line, 4a ... Blower, 4b ... Cooler, 4c ... Expansion turbine 5 ... 1st product oxygen line, 5a ... Oxygen gas compressor 6 ... 2nd product oxygen line, 6a ... Liquid oxygen pump 7 ... Product nitrogen line 8 ... Waste nitrogen line 9 ... Cold box 10 ... Air separation part 11 ... Duplex rectification tower, 11a ... upper tower, 11b ... condenser, 11c ... lower tower 12 ... subcooler 13 ... first line 14 ... second line 15 ... third line

Claims (2)

原料空気を圧縮する原料空気圧縮機を備え、この原料空気圧縮機で圧縮された圧縮空気中の不純物を除去する吸着塔ユニットを備え、不純物除去後の圧縮空気を冷却する主熱交換器を備えると共に、上塔と下塔とからなり、前記主熱交換器で冷却されて導入された空気を酸素と窒素とに分離する複式精留塔を有する空気分離部を備えた深冷空気分離装置において、前記主熱交換器を経て下塔に連通し、吸着塔ユニットを経た原料空気の一部を下塔に導入する第1原料空気ラインと、この第1原料空気ラインから分岐して上塔に連通し、前記主熱交換器の上流側にブロワが介装されると共に、主熱交換器の下流側に膨張タービンが介装され、吸着塔ユニットを経た原料空気の残りを上塔に導入する第2原料空気ラインと、上塔から主熱交換器を介して製品酸素ガスを需要先に供給し、主熱交換器の下流側に酸素ガス圧縮機が介装されてなる第1製品酸素ラインと、上塔の底部から主熱交換器を介して製品酸素ガスを需要先に供給し、主熱交換器と上塔との間に液体酸素ポンプが介装され、前記第1製品酸素ラインの前記酸素ガス圧縮機の下流側に連通する第2製品酸素ラインとを備えてなり、
前記複式精留塔から取出される全製品酸素量の一部を、前記第2製品酸素ラインを介して液体酸素として取出し、取出した液体酸素を液体酸素ポンプで所要圧力に加圧した後に主熱交換器で蒸発させると共に加温して製品酸素ガスとし、残りの製品酸素量を、第1製品酸素ラインを介して酸素ガスとして取出し、取出した酸素ガスを主熱交換器で加温した後に酸素ガス圧縮機で所要圧力に圧縮して製品酸素ガスとするとともに、
前記第2製品酸素ラインを介して、圧力がP(MPaG)の製品酸素ガスを需要先に供給するに際して、全製品酸素量の16.4×P-0.8%以下の酸素ガスが得られる量の液体酸素を取出して前記液体酸素ポンプにより圧縮することを特徴とする深冷空気分離装置の運転方法。
A raw material air compressor for compressing raw material air, an adsorption tower unit for removing impurities in the compressed air compressed by the raw material air compressor, and a main heat exchanger for cooling the compressed air after removing impurities are provided. And a chilled air separation apparatus comprising an air separation section having a double rectification tower for separating the air introduced after being cooled by the main heat exchanger into oxygen and nitrogen. A first raw material air line that communicates with the lower tower via the main heat exchanger and introduces a part of the raw air that has passed through the adsorption tower unit into the lower tower, and branches from the first raw air line to the upper tower. In communication, a blower is interposed upstream of the main heat exchanger, and an expansion turbine is interposed downstream of the main heat exchanger, and the remainder of the raw air passed through the adsorption tower unit is introduced into the upper tower. Main heat exchanger from the second raw material air line and the upper tower The product oxygen gas is supplied to the customer, and the first product oxygen line in which the oxygen gas compressor is interposed downstream of the main heat exchanger, and the product from the bottom of the upper tower through the main heat exchanger. A second product oxygen that supplies oxygen gas to a customer, a liquid oxygen pump is interposed between the main heat exchanger and the upper tower, and communicates with the downstream side of the oxygen gas compressor in the first product oxygen line. With a line,
A part of the total product oxygen amount taken out from the double rectification column is taken out as liquid oxygen through the second product oxygen line, and the main heat is applied after the taken out liquid oxygen is pressurized to a required pressure by a liquid oxygen pump. The product oxygen gas is evaporated and heated in the exchanger, and the remaining product oxygen amount is taken out as oxygen gas through the first product oxygen line, and the oxygen gas is heated in the main heat exchanger and then oxygenated. Compressed to the required pressure with a gas compressor to produce product oxygen gas,
When supplying product oxygen gas having a pressure of P (MPaG) to the customer through the second product oxygen line, an amount of oxygen gas that is 16.4 × P −0.8 % or less of the total product oxygen amount is obtained. how the operation of the cryogenic air separation apparatus characterized by compressing the pre-Symbol LOX pump extracts the liquid oxygen.
原料空気を圧縮する原料空気圧縮機を備え、この原料空気圧縮機で圧縮された圧縮空気中の不純物を除去する吸着塔ユニットを備え、不純物除去後の圧縮空気を冷却する主熱交換器を備えると共に、上塔と下塔とからなり、前記主熱交換器で冷却されて導入された空気を酸素と窒素とに分離する複式精留塔を有する空気分離部を備えた深冷空気分離装置において、前記主熱交換器を経て下塔に連通し、吸着塔ユニットを経た原料空気の一部を下塔に導入する第1原料空気ラインと、この第1原料空気ラインから分岐して上塔に連通し、前記主熱交換器の上流側にブロワが介装されると共に、主熱交換器の下流側に膨張タービンが介装され、吸着塔ユニットを経た原料空気の残りを上塔に導入する第2原料空気ラインと、上塔から主熱交換器を介して製品酸素ガスを第1の需要先に供給し、主熱交換器の下流側に酸素ガス圧縮機が介装されてなる第1製品酸素ラインと、上塔の底部から主熱交換器を介して製品酸素ガスを第2の需要先に供給し、主熱交換器と上塔との間に液体酸素ポンプが介装されてなる第2製品酸素ラインとを備えてなり、
前記複式精留塔から取出される全製品酸素量の一部を、前記第2製品酸素ラインを介して液体酸素として取出し、取出した液体酸素を液体酸素ポンプで所要圧力に加圧した後に主熱交換器で蒸発させると共に加温して製品酸素ガスとし、残りの製品酸素量を、第1製品酸素ラインを介して酸素ガスとして取出し、取出した酸素ガスを主熱交換器で加温した後に酸素ガス圧縮機で所要圧力に圧縮して製品酸素ガスとするとともに、
前記第2製品酸素ラインを介して、圧力がP(MPaG)の製品酸素ガスを需要先に供給するに際して、全製品酸素量の16.4×P-0.8%以下の酸素ガスが得られる量の液体酸素を取出して前記液体酸素ポンプにより圧縮することを特徴とする深冷空気分離装置の運転方法。
A raw material air compressor for compressing raw material air, an adsorption tower unit for removing impurities in the compressed air compressed by the raw material air compressor, and a main heat exchanger for cooling the compressed air after removing impurities are provided. And a chilled air separation apparatus comprising an air separation section having a double rectification tower for separating the air introduced after being cooled by the main heat exchanger into oxygen and nitrogen. A first raw material air line that communicates with the lower tower via the main heat exchanger and introduces a part of the raw air that has passed through the adsorption tower unit into the lower tower, and branches from the first raw air line to the upper tower. In communication, a blower is interposed upstream of the main heat exchanger, and an expansion turbine is interposed downstream of the main heat exchanger, and the remainder of the raw air passed through the adsorption tower unit is introduced into the upper tower. Main heat exchanger from the second raw material air line and the upper tower The product oxygen gas is supplied to the first customer, and the first product oxygen line in which the oxygen gas compressor is interposed downstream of the main heat exchanger, and the main heat exchanger from the bottom of the upper tower Product oxygen gas is supplied to a second customer through a second product oxygen line in which a liquid oxygen pump is interposed between the main heat exchanger and the upper tower,
A part of the total product oxygen amount taken out from the double rectification column is taken out as liquid oxygen through the second product oxygen line, and the main heat is applied after the taken out liquid oxygen is pressurized to a required pressure by a liquid oxygen pump. The product oxygen gas is evaporated and heated in the exchanger, and the remaining product oxygen amount is taken out as oxygen gas through the first product oxygen line, and the oxygen gas is heated in the main heat exchanger and then oxygenated. Compressed to the required pressure with a gas compressor to produce product oxygen gas,
When supplying product oxygen gas having a pressure of P (MPaG) to the customer through the second product oxygen line, an amount of oxygen gas that is 16.4 × P −0.8 % or less of the total product oxygen amount is obtained. how the operation of the cryogenic air separation apparatus characterized by compressing the pre-Symbol LOX pump extracts the liquid oxygen.
JP2004085308A 2004-03-23 2004-03-23 Cryogenic air separator operation method Expired - Lifetime JP4908740B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004085308A JP4908740B2 (en) 2004-03-23 2004-03-23 Cryogenic air separator operation method
TW94107912A TWI276765B (en) 2004-03-23 2005-03-15 Low-temperature air separating apparatus and method operating the same
KR1020050023615A KR100694376B1 (en) 2004-03-23 2005-03-22 Sub-zero air separation apparatus and an operating method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004085308A JP4908740B2 (en) 2004-03-23 2004-03-23 Cryogenic air separator operation method

Publications (2)

Publication Number Publication Date
JP2005273959A JP2005273959A (en) 2005-10-06
JP4908740B2 true JP4908740B2 (en) 2012-04-04

Family

ID=35173832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004085308A Expired - Lifetime JP4908740B2 (en) 2004-03-23 2004-03-23 Cryogenic air separator operation method

Country Status (3)

Country Link
JP (1) JP4908740B2 (en)
KR (1) KR100694376B1 (en)
TW (1) TWI276765B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105758121A (en) * 2014-12-19 2016-07-13 常熟市永安工业气体制造有限公司 Pure nitrogen preparation device
JP7313608B2 (en) * 2019-04-08 2023-07-25 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード High purity oxygen and nitrogen production system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2060184B1 (en) * 1969-09-10 1973-11-16 Air Liquide
JPS5538406A (en) * 1978-09-08 1980-03-17 Hitachi Ltd Air separator
JP2873469B2 (en) * 1989-09-29 1999-03-24 株式会社大分サンソセンター A device that liquefies and separates and supplies air in response to fluctuations in demand
JPH0455682A (en) * 1990-06-22 1992-02-24 Kobe Steel Ltd Air separating device
US5341646A (en) * 1993-07-15 1994-08-30 Air Products And Chemicals, Inc. Triple column distillation system for oxygen and pressurized nitrogen production
JPH07270064A (en) * 1994-03-31 1995-10-20 Nippon Sanso Kk Air liquefying and separating method
JP3420671B2 (en) * 1996-10-15 2003-06-30 株式会社神戸製鋼所 Operating method of air separation unit
US5956973A (en) * 1997-02-11 1999-09-28 Air Products And Chemicals, Inc. Air separation with intermediate pressure vaporization and expansion
US5765396A (en) * 1997-03-19 1998-06-16 Praxair Technology, Inc. Cryogenic rectification system for producing high pressure nitrogen and high pressure oxygen
JPH11132653A (en) * 1997-10-29 1999-05-21 Kobe Steel Ltd Air separating method and device therefor
JP3457949B2 (en) * 1998-02-04 2003-10-20 テキサコ デベロプメント コーポレーション Oxygen generation method and apparatus for cryogenic air separation unit combined with centralized gasifier
US6202441B1 (en) * 1999-05-25 2001-03-20 Air Liquide Process And Construction, Inc. Cryogenic distillation system for air separation
JP2003166783A (en) * 2001-12-03 2003-06-13 Hitachi Ltd Low-temperature air processing equipment

Also Published As

Publication number Publication date
KR20060044553A (en) 2006-05-16
TWI276765B (en) 2007-03-21
JP2005273959A (en) 2005-10-06
TW200535390A (en) 2005-11-01
KR100694376B1 (en) 2007-03-12

Similar Documents

Publication Publication Date Title
US6962062B2 (en) Process and apparatus for the separation of air by cryogenic distillation
US6196021B1 (en) Industrial gas pipeline letdown liquefaction system
US7272954B2 (en) Low temperature air separation process for producing pressurized gaseous product
JPH06347163A (en) Method and equipment for supplying facility comsuming one component of air with gas under pressure
US9360250B2 (en) Process and apparatus for the separation of air by cryogenic distillation
US11879685B2 (en) High-purity oxygen production system
US20200355429A1 (en) Cryogenic distillation method and apparatus for producing pressurized air by means of expander booster in linkage with nitrogen expander for braking
JP2009509120A (en) Method and apparatus for separating air by cryogenic distillation.
JP2006525487A (en) Method and system for producing pressurized air gas by cryogenic distillation of air
US20200132367A1 (en) Method and apparatus for air separation by cryogenic distillation
JP6092804B2 (en) Air liquefaction separation method and apparatus
JP4206083B2 (en) Argon production method using cryogenic air separator
EP0932001A2 (en) An air separation process using warm and cold expanders
JP4287771B2 (en) Air liquefaction separation apparatus and operation method thereof
CN105765329A (en) Process and apparatus for separating air by cryogenic distillation
US20220074656A1 (en) Apparatus and method for separating air by cryogenic distillation
WO2018057300A1 (en) System for cryogenic purification of a feed stream comprising hydrogen, methane, nitrogen and argon
JP4908740B2 (en) Cryogenic air separator operation method
CN105378411A (en) Method for producing at least one air product, air separation system, method and device for producing electrical energy
JPH1163810A (en) Method and device for manufacturing low purity oxygen
JP5584711B2 (en) Air separation device
JP5642923B2 (en) Air separation method
JP4202971B2 (en) Nitrogen production method and apparatus
US10082332B2 (en) System and method for argon recovery from the tail gas of an ammonia production plant
JP6159242B2 (en) Air separation method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100217

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100217

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100224

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100319

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110330

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4908740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250