JPH11325720A - Manufacture of ultra-high-purity nitrogen gas and device therefor - Google Patents

Manufacture of ultra-high-purity nitrogen gas and device therefor

Info

Publication number
JPH11325720A
JPH11325720A JP10132392A JP13239298A JPH11325720A JP H11325720 A JPH11325720 A JP H11325720A JP 10132392 A JP10132392 A JP 10132392A JP 13239298 A JP13239298 A JP 13239298A JP H11325720 A JPH11325720 A JP H11325720A
Authority
JP
Japan
Prior art keywords
ultra
purity
liquid nitrogen
nitrogen gas
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP10132392A
Other languages
Japanese (ja)
Inventor
Hiromi Kiyama
洋実 木山
Atsushi Miyamoto
篤 宮本
Nobunao Kikuchi
延尚 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Hoxan Inc
Original Assignee
Daido Hoxan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Hoxan Inc filed Critical Daido Hoxan Inc
Priority to JP10132392A priority Critical patent/JPH11325720A/en
Publication of JPH11325720A publication Critical patent/JPH11325720A/en
Abandoned legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/044Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04824Stopping of the process, e.g. defrosting or deriming; Back-up procedures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/72Refluxing the column with at least a part of the totally condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/42Nitrogen or special cases, e.g. multiple or low purity N2
    • F25J2215/44Ultra high purity nitrogen, i.e. generally less than 1 ppb impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/04Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams using a pressure accumulator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/42Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/90Processes or apparatus involving steps for recycling of process streams the recycled stream being boil-off gas from storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/42One fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing ultra-high-purity nitrogen gas that can be effectively utilized with inexpensive facilities. SOLUTION: In a method for filing compressing feed air, cooling it to a low temperature, and then introducing it to a rectifying column 7, performing its subcooling liquefaction separation for manufacturing an ultra-high-purity nitrogen gas, and for filling one portion of the amount of cold required for the subcooling liquefaction separation is supplied from the outside of the subcooling liquefaction separation system with the cold energy of the high-purity liquid nitrogen, one portion of a reflux liquid (ultra-high-purity liquid nitrogen) being generated by a condenser 9 at the upper portion of the rectifying tower 7 and is stored at an ultra-high-purity liquid nitrogen tank 25, and then ultra- high-purity liquid nitrogen being stored in the ultra-high-purity liquid nitrogen tank 25 is vaporized on backup.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、純度99.999
999%以上(超高純度)の製品窒素ガスを必要とする
半導体製造工程やその他の化学プロセス,分析プロセス
等に対して、上記超高純度の製品窒素ガスを安定良く,
かつ安価に製造,供給することのできる超高純度窒素ガ
ス製造方法およびそれに用いる装置に関するものであ
る。
TECHNICAL FIELD The present invention relates to a method for purifying 99.999 purity.
The ultra-high purity product nitrogen gas can be stably used in semiconductor manufacturing processes and other chemical processes and analysis processes that require 999% or more (ultra-high purity) product nitrogen gas.
The present invention relates to an ultrahigh-purity nitrogen gas production method which can be produced and supplied at low cost, and an apparatus used therefor.

【0002】[0002]

【従来の技術】従来から、不純物酸素濃度10ppb以
下の超高純度窒素ガスを供給する手段として、当該ガス
の消費サイト(例えば、半導体製造工場の敷地)に超高
純度窒素ガス製造装置を設置し、この装置で製造した超
高純度窒素ガスを直接に半導体製造工程等にパイピング
供給することが行われている。このような超高純度窒素
ガス製造装置として、図4に示す装置が用いられてい
る。図4において、1は外部より取り入れた原料空気を
圧縮して圧縮空気とする空気圧縮機である。2は圧縮空
気中のCO,水素,炭化水素を酸化してCO2 ,水分を
生成する触媒塔であり、触媒として白金系もしくはパラ
ジウム系触媒が用いられている。3はフロン冷却器であ
る。4は圧縮空気中のCO2 ,水分等を吸着除去する2
個一対の吸着塔であり、吸着剤として活性アルミナ,ゼ
オライト等が用いられている。5は吸着塔4を経た圧縮
空気を極低温にまで冷却する主熱交換器である。6は供
給パイプであり、主熱交換器5により極低温に冷却され
た圧縮空気を精留塔7の下部に送り込む作用をする。7
は精留塔であり、その内部では、液体空気が底部に溜ま
り、超高純度窒素ガスが頂部に滞留する。8は精留塔7
の上方に設けたリボイラーであり、内部に凝縮器9が配
設されている。上記リボイラー8には、精留塔7の底部
に溜まる液体空気が膨脹弁13a付き送給パイプ13を
経て送り込まれる。また、上記凝縮器9には、精留塔7
内から製品窒素ガス取出パイプ12に取り出された超高
純度窒素ガスの一部が第1還流パイプ10を介して送り
込まれて液化され、第2還流パイプ11を経て精留塔7
の頂部に戻される。一方,凝縮器9を通る超高純度窒素
ガスはリボイラー8に溜まる液体空気を加温して気化さ
せる働きをする。12は流量制御弁12a付き製品窒素
ガス取出パイプであり、精留塔7の頂部に滞留する超高
純度窒素ガスを取り出して主熱交換器5に送り、この主
熱交換器5を通過する圧縮空気を冷却するとともに、そ
れ自身を常温に昇温させ製品窒素ガスとして装置外に送
り出す作用をする。14は凝縮器9内で凝縮されない水
素,He等の非凝縮性ガスを還流液の気相から取り出し
て装置外へ放出する排ガスパイプである。15はリボイ
ラー8の上部に溜まる不純ガス分(窒素濃度の高い空
気)を取り出して主熱交換器5内に案内し、この主熱交
換器5を通過する圧縮空気を冷却したのち外部に放出す
る排ガスパイプである。18は装置外から供給された高
純度液体窒素(通常は、不純物酸素濃度10ppm以
下)を貯蔵する液体窒素貯槽であり、この液体窒素貯槽
18からの高純度液体窒素を液体窒素供給弁19a付き
導入パイプ19を介して精留塔7の上部に導入してい
る。20はバックアップパイプであり、蒸発器21と窒
素精製装置22と圧力制御弁23を備えている。
2. Description of the Related Art Conventionally, as a means for supplying ultra-high-purity nitrogen gas having an impurity oxygen concentration of 10 ppb or less, an ultra-high-purity nitrogen gas producing apparatus has been installed at a gas consuming site (for example, a site of a semiconductor manufacturing plant). An ultrahigh-purity nitrogen gas produced by this apparatus is directly supplied to a semiconductor production process by piping. The apparatus shown in FIG. 4 is used as such an ultrahigh-purity nitrogen gas producing apparatus. In FIG. 4, reference numeral 1 denotes an air compressor which compresses raw air taken in from outside to produce compressed air. Reference numeral 2 denotes a catalyst tower that oxidizes CO, hydrogen, and hydrocarbons in compressed air to generate CO 2 and moisture, and uses a platinum-based or palladium-based catalyst as a catalyst. 3 is a CFC cooler. No. 4 adsorbs and removes CO 2 , moisture and the like in the compressed air.
This is a pair of adsorption towers, and activated alumina, zeolite and the like are used as an adsorbent. Reference numeral 5 denotes a main heat exchanger that cools the compressed air that has passed through the adsorption tower 4 to an extremely low temperature. Reference numeral 6 denotes a supply pipe, which serves to feed compressed air cooled to a very low temperature by the main heat exchanger 5 to a lower portion of the rectification column 7. 7
Is a rectification column, in which liquid air accumulates at the bottom and ultra-high-purity nitrogen gas stays at the top. 8 is a rectification column 7
And a condenser 9 is provided inside the reboiler. Liquid air collected at the bottom of the rectification column 7 is fed into the reboiler 8 through a supply pipe 13 with an expansion valve 13a. The condenser 9 has a rectification column 7
A part of the ultra-high-purity nitrogen gas taken out from the inside into a product nitrogen gas take-out pipe 12 is sent through the first reflux pipe 10 to be liquefied, and then liquefied through the second reflux pipe 11.
Returned to the top. On the other hand, the ultra-high purity nitrogen gas passing through the condenser 9 functions to heat and vaporize the liquid air stored in the reboiler 8. Reference numeral 12 denotes a product nitrogen gas extraction pipe with a flow control valve 12a, which takes out ultrapure nitrogen gas remaining at the top of the rectification column 7, sends it to the main heat exchanger 5, and compresses the gas through the main heat exchanger 5. In addition to cooling the air, it acts to raise itself to room temperature and send it out of the apparatus as product nitrogen gas. Reference numeral 14 denotes an exhaust gas pipe for extracting non-condensable gas such as hydrogen and He that is not condensed in the condenser 9 from the gas phase of the reflux liquid and discharging the gas to the outside of the apparatus. Numeral 15 takes out the impurity gas (air having a high nitrogen concentration) accumulated in the upper part of the reboiler 8, guides it into the main heat exchanger 5, cools the compressed air passing through the main heat exchanger 5, and discharges the compressed air to the outside. It is an exhaust gas pipe. Reference numeral 18 denotes a liquid nitrogen storage tank for storing high-purity liquid nitrogen (generally, impurity oxygen concentration of 10 ppm or less) supplied from outside the apparatus. High-purity liquid nitrogen from the liquid nitrogen storage tank 18 is introduced with a liquid nitrogen supply valve 19a. It is introduced into the upper part of the rectification column 7 via a pipe 19. Reference numeral 20 denotes a backup pipe, which includes an evaporator 21, a nitrogen purifier 22, and a pressure control valve 23.

【0003】このような装置を用い、つぎのようにして
窒素ガスを製造することができる。すなわち、まず、原
料空気を空気圧縮機1に導入し、ここで所要圧力にまで
昇圧したのち、触媒塔2,フロン冷却器3,吸着塔4に
通してCOや炭化水素,CO 2 ,水分を除去し、主熱交
換器5に導入する。ここで極低温にまで冷却した空気を
精留塔7に導入し、精留塔7内部の上昇ガスと、凝縮器
9により作られ還流液として精留塔7内を下降する超高
純度液体窒素を気液接触させることにより、精留塔7頂
部に超高純度窒素ガスを濃縮し、精留塔7底部に30〜
40%の酸素に富んだ液体空気を貯留する。この酸素に
富んだ液体空気を膨張弁13aを通して減圧したのちリ
ボイラー8に導入し、ここで精留塔7頂部から製品窒素
ガス取出パイプ12,第1還流パイプ10を介して送り
込まれた超高純度窒素ガスの一部と熱交換を行い、超高
純度液体窒素を製造することにより、自らが気化し排ガ
スとなる。そののち、この排ガスを排ガスパイプ15を
介して主熱交換器5に導入し、原料空気との熱交換によ
り常温まで昇温する。また、超高純度窒素ガスを製品窒
素ガス取出パイプ12により精留塔7頂部から取り出し
て主熱交換器5に導入し、原料空気との熱交換により常
温まで昇温したのち製品窒素ガスとする。一方、主熱交
換器5での熱交換ロスや外部侵入熱による冷熱損失を補
うため、液体窒素貯槽18から液体窒素供給弁19aを
通して高純度液体窒素を精留塔7上部に供給する。
[0003] Using such a device,
Nitrogen gas can be produced. That is, first, Hara
Charge air is introduced into the air compressor 1 where it reaches the required pressure.
After the pressure is increased, the catalyst tower 2, the CFC cooler 3, and the adsorption tower 4
CO and hydrocarbons, CO Two, Removing water, main heat exchange
To the exchanger 5. Here, the air cooled to extremely low temperature
The gas is introduced into the rectification column 7, and the rising gas inside the rectification column 7 and the condenser
9 is a superfluous liquid flowing down the rectification column 7 as a reflux liquid.
By bringing pure liquid nitrogen into gas-liquid contact, the top of the rectification column 7
Part is concentrated with ultra-high purity nitrogen gas, and 30-
A liquid air rich in 40% oxygen is stored. To this oxygen
After reducing the rich liquid air through the expansion valve 13a,
The product is introduced into a boiler 8 where the product nitrogen
Feed through gas extraction pipe 12 and first reflux pipe 10
Heat exchange with part of the ultra-high purity nitrogen gas
By producing pure liquid nitrogen,
And After that, this exhaust gas is passed through the exhaust gas pipe 15
Through the main heat exchanger 5 and exchanges heat with the raw material air.
To room temperature. In addition, ultra-high purity nitrogen gas is
Take out from the top of the rectification column 7 by the raw gas extraction pipe 12
Into the main heat exchanger 5 and constantly exchange heat with the raw air.
After the temperature is raised to the temperature, it is used as product nitrogen gas. Meanwhile, the main heat exchange
To compensate for the heat exchange loss in the heat exchanger 5 and the cooling heat loss due to the heat entering outside.
For this purpose, the liquid nitrogen supply valve 19a is
To supply high-purity liquid nitrogen to the upper part of the rectification column 7.

【0004】このような装置が何らかの原因で停止した
場合、あるいは製品窒素ガスの消費量が装置の発生能力
を上回る場合には、液体窒素貯槽18からの高純度液体
窒素が蒸発器21で空気あるいは水またはその他の流体
との熱交換により常温まで昇温されたのち、窒素精製装
置22で超高純度にまで精製され、製品窒素ガスとして
バックアップ供給される。
[0004] When such an apparatus is stopped for some reason, or when the consumption of the product nitrogen gas exceeds the generating capacity of the apparatus, high-purity liquid nitrogen from the liquid nitrogen storage tank 18 is supplied to the evaporator 21 by air or air. After the temperature is raised to normal temperature by heat exchange with water or another fluid, the nitrogen is purified to ultra-high purity by the nitrogen purification device 22 and supplied as a backup as product nitrogen gas.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
超高純度窒素ガス製造装置では、万一の装置停止等の場
合に、バックアップ供給用として、液体窒素貯槽18に
貯蔵している高純度液体窒素を用いているため、製品窒
素ガスの酸素濃度が10ppm程度になり、超高純度液
体窒素ガスを製品窒素ガスとして取り出すことができな
い。したがって、万一の装置停止等の場合に、液体窒素
貯槽18に貯蔵している高純度液体窒素を超高純度にま
で精製するための窒素精製装置22を設ける必要があ
り、多大な費用を必要としている。
However, in the case of the above-mentioned ultra-high purity nitrogen gas producing apparatus, in the event that the apparatus is stopped or the like, the high-purity liquid nitrogen stored in the liquid nitrogen storage tank 18 as a backup supply is provided. Therefore, the oxygen concentration of the product nitrogen gas becomes about 10 ppm, so that ultra-high purity liquid nitrogen gas cannot be taken out as product nitrogen gas. Therefore, in the event that the apparatus is shut down, it is necessary to provide a nitrogen purifying apparatus 22 for purifying the high-purity liquid nitrogen stored in the liquid nitrogen storage tank 18 to ultra-high purity, which requires a great deal of cost. And

【0006】本発明は、このような事情に鑑みなされた
もので、安価な設備で、有効活用が可能な超高純度窒素
ガス製造方法およびそれに用いる装置の提供をその目的
とする。
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for producing ultra-high-purity nitrogen gas which can be effectively used with inexpensive equipment, and an apparatus used therefor.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は、原料空気を圧縮したのち低温に冷却して
精留手段に導入し、ここで深冷液化分離して超高純度窒
素ガスを製造し、上記深冷液化分離に要する寒冷量の一
部を、当該深冷液化分離系外から供給される高純度液体
窒素の寒冷エネルギーで充当する方法であって、上記深
冷液化分離に際し得られる超高純度液体窒素の一部を上
記精留手段から取り出して貯留し、バックアップ時に上
記貯留した超高純度液体窒素を気化して用いるようにし
た超高純度窒素ガス製造方法を第1の要旨とし、原料空
気を圧縮する空気圧縮手段と、上記空気圧縮手段を経た
圧縮空気を低温に冷却する主熱交換器と、上記主熱交換
器により低温に冷却された圧縮空気を導入して深冷液化
分離する精留手段と、上記精留手段から気体として超高
純度窒素を取り出す窒素ガス取出パイプと、装置外から
高純度液体窒素の供給を受けこれを貯蔵する貯蔵手段
と、上記貯蔵手段内の高純度液体窒素を寒冷エネルギー
として精留手段に導く導入路とを備えた装置であって、
上記深冷液化分離に際し得られた超高純度液体窒素の一
部を上記精留手段から取り出して貯留する超高純度液体
窒素貯蔵手段と、バックアップ時に上記超高純度液体窒
素貯蔵手段に貯留する超高純度液体窒素をガス化して取
り出し上記窒素ガス取出パイプに導入するバックアップ
パイプとを設けるようにした超高純度窒素ガス製造装置
を第2の要旨とする。
In order to achieve the above object, the present invention provides a method of compressing raw air, cooling the raw air to a low temperature, introducing the compressed air into a rectification means, where it is subjected to cryogenic liquefaction and separation to obtain ultra-high purity. A method of producing nitrogen gas and applying a part of the amount of refrigeration required for the cryogenic liquefaction separation with the cryogenic energy of high-purity liquid nitrogen supplied from outside the cryogenic liquefaction separation system, An ultra-high-purity nitrogen gas production method is described in which a part of the ultra-high-purity liquid nitrogen obtained in the separation is taken out from the rectification means and stored, and the stored ultra-high-purity liquid nitrogen is vaporized and used at the time of backup. According to a first aspect, air compression means for compressing raw air, a main heat exchanger for cooling the compressed air having passed through the air compression means to a low temperature, and compressed air cooled to a low temperature by the main heat exchanger are introduced. For cryogenic liquefaction and separation A nitrogen gas extraction pipe for extracting ultra-high-purity nitrogen as a gas from the rectification means, a storage means for receiving and storing high-purity liquid nitrogen from outside the apparatus, and cooling the high-purity liquid nitrogen in the storage means. An introduction path leading to the rectification means as energy,
An ultra-high-purity liquid nitrogen storage means for taking out and storing a part of the ultra-high-purity liquid nitrogen obtained during the cryogenic liquefaction separation from the rectification means, and an ultra-high-purity liquid nitrogen storage means for storing in the ultra-high purity liquid nitrogen storage means at the time of backup A second aspect of the present invention is to provide an ultra-high-purity nitrogen gas producing apparatus which is provided with a backup pipe for gasifying and extracting high-purity liquid nitrogen and introducing it to the nitrogen gas extraction pipe.

【0008】すなわち、本発明の超高純度窒素ガス製造
方法では、精留手段により深冷液化分離する際に得られ
る超高純度液体窒素の一部を上記精留手段から取り出し
て貯留しておき、バックアップ時に(何らかの原因で装
置停止した場合や製品窒素ガスの消費量が装置の発生能
力を上回る場合等に)、上記貯留した超高純度液体窒素
を気化して用いるようにしている。したがって、バック
アップ時に製品窒素ガスとして超高純度窒素ガスを取り
出すことができる。しかも、従来例のような、多大な費
用を必要とする窒素精製装置22を設ける必要がない。
一方、本発明の装置によれば、上記方法を容易に行うこ
とができる。なお、本発明において、「超高純度窒素ガ
ス」とは、深冷液化分離系外から供給される高純度液体
窒素よりも純度が高い窒素ガスを意味する。
That is, in the ultrahigh-purity nitrogen gas producing method of the present invention, a part of the ultrahigh-purity liquid nitrogen obtained at the time of cryogenic liquefaction separation by the rectification means is taken out from the rectification means and stored. At the time of backup (for example, when the apparatus is stopped for some reason or when the consumption of the product nitrogen gas exceeds the generating capacity of the apparatus), the stored ultra-high-purity liquid nitrogen is vaporized and used. Therefore, ultra-high purity nitrogen gas can be taken out as product nitrogen gas at the time of backup. In addition, there is no need to provide a nitrogen purification device 22 requiring a great deal of cost as in the conventional example.
On the other hand, according to the apparatus of the present invention, the above method can be easily performed. In the present invention, “ultra-high-purity nitrogen gas” means a nitrogen gas having higher purity than high-purity liquid nitrogen supplied from outside the cryogenic liquefaction / separation system.

【0009】[0009]

【発明の実施の形態】つぎに、本発明の実施の形態を図
面にもとづいて詳しく説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described in detail with reference to the drawings.

【0010】図1は本発明の超高純度窒素ガス製造装置
の一実施の形態を示している。この実施の形態では、図
4に示す超高純度窒素ガス製造装置において、超高純度
液体窒素タンク25を設け、この超高純度液体窒素タン
ク25と第2還流パイプ11の中間部とを抜き取り弁
(流量制御弁)26b付き第1抜き取りパイプ26a,
抜き取り用ポンプ27,第2抜き取りパイプ26cを介
して連結し、第2還流パイプ11を流下する還流液(超
高純度液体窒素)の一部を抜き取って超高純度液体窒素
タンク25に貯留するようにしている。また、超高純度
液体窒素タンク25の底部からのバックアップパイプ2
8(このバックアップパイプ28には、従来例と同様の
蒸発器21,圧力制御弁23が取り付けられている)は
製品窒素ガス取出パイプ12に合流している。また、超
高純度液体窒素タンク25への侵入熱によって発生した
ガスや超高純度液体窒素を超高純度液体窒素タンク25
へ供給したときに生じるフラッシュガスは圧力逃がしパ
イプ29を通り製品窒素ガス取出パイプ12に合流させ
ている。上記圧力逃がしパイプ29には圧力逃し弁29
aを設け、超高純度液体窒素タンク25の圧力上昇を防
いでいる。
FIG. 1 shows an embodiment of the ultrahigh-purity nitrogen gas producing apparatus according to the present invention. In the present embodiment, in the ultrahigh-purity nitrogen gas producing apparatus shown in FIG. 4, an ultrahigh-purity liquid nitrogen tank 25 is provided, and the ultrahigh-purity liquid nitrogen tank 25 and an intermediate portion of the second reflux pipe 11 are withdrawn. (Flow control valve) First extraction pipe 26a with 26b,
The extraction pump 27 is connected to the second extraction pipe 26c via the second extraction pipe 26c so that a part of the reflux liquid (ultra high purity liquid nitrogen) flowing down the second reflux pipe 11 is extracted and stored in the ultra high purity liquid nitrogen tank 25. I have to. Also, a backup pipe 2 from the bottom of the ultra-high purity liquid nitrogen tank 25
8 (the evaporator 21 and the pressure control valve 23 similar to the conventional example are attached to the backup pipe 28) are joined to the product nitrogen gas extraction pipe 12. Further, the gas or ultra-high-purity liquid nitrogen generated by heat entering the ultra-high-purity liquid nitrogen tank 25 is
The flash gas generated when the gas is supplied to the product is passed through the pressure release pipe 29 and merges with the product nitrogen gas extraction pipe 12. The pressure relief pipe 29 has a pressure relief valve 29
a is provided to prevent the pressure in the ultrahigh-purity liquid nitrogen tank 25 from rising.

【0011】このような装置を用い、つぎのようにして
超高純度窒素ガスを製造することができる。すなわち、
まず、原料空気を空気圧縮機1に導入し、ここで所要圧
力(3.0〜9.0kg/cm2 G)にまで昇圧し、つ
いで、触媒塔2に導入してCOや水素を除去し、つぎ
に、フロン冷却器3で所定温度に降温したのち、吸着塔
4に通してCO2 や水分を除去し、主熱交換器5に導入
する。ここで極低温にまで冷却した空気を、圧力が約
2.5〜8.8kg/cm2 Gで運転される精留塔7
(この精留塔7は、棚段を数十段重ねたものでも、規則
充填物を積層したものでもよい)に導入し、精留塔7内
部の上昇ガスと、凝縮器9により作られ還流液として精
留塔7内を下降する超高純度液体窒素とを気液接触させ
ることにより、精留塔7頂部に超高純度窒素ガスを濃縮
し、精留塔7底部に30〜40%の酸素に富んだ液体空
気を貯留する。この酸素に富んだ液体空気を膨張弁13
aを通して約0.2〜5.0kg/cm2 Gにまで減圧
したのちリボイラー8に導入し、ここで精留塔7頂部か
ら製品窒素ガス取出パイプ12,第1還流パイプ10を
介して送り込まれる超高純度窒素ガスの一部と熱交換を
行い、超高純度液体窒素を製造することにより、自らが
気化し排ガスとなる。そののち、この排ガスを排ガスパ
イプ15を介して主熱交換器5に導入し、原料空気との
熱交換により常温まで昇温する。そして、超高純度窒素
ガスを精留塔7頂部から取り出して主熱交換器5に導入
し、原料空気との熱交換により常温まで昇温したのち製
品窒素ガスとする。
Using such an apparatus, an ultrahigh-purity nitrogen gas can be produced as follows. That is,
First, raw material air is introduced into the air compressor 1, where the pressure is increased to a required pressure (3.0 to 9.0 kg / cm 2 G), and then introduced into the catalyst tower 2 to remove CO and hydrogen. Next, after the temperature is lowered to a predetermined temperature in the CFC cooler 3, the CO 2 and moisture are removed through the adsorption tower 4 and introduced into the main heat exchanger 5. Here, the air cooled to a very low temperature is fed to a rectification column 7 operated at a pressure of about 2.5 to 8.8 kg / cm 2 G.
(This rectification tower 7 may be a stack of several tens of trays or a stack of ordered packings). The rectification tower 7 is refluxed by the rising gas inside the rectification tower 7 and the condenser 9. The ultrahigh-purity nitrogen gas is concentrated at the top of the rectification column 7 by bringing the ultrahigh-purity liquid nitrogen descending in the rectification column 7 into gas-liquid contact, and 30 to 40% of the nitrogen gas is concentrated at the bottom of the rectification column 7. Stores oxygen-rich liquid air. The oxygen-rich liquid air is supplied to the expansion valve 13.
After reducing the pressure to about 0.2 to 5.0 kg / cm 2 G through a, the mixture is introduced into the reboiler 8, where it is sent from the top of the rectification column 7 through the product nitrogen gas removal pipe 12 and the first reflux pipe 10. By performing heat exchange with a part of the ultra-high-purity nitrogen gas to produce ultra-high-purity liquid nitrogen, it vaporizes itself and becomes exhaust gas. After that, the exhaust gas is introduced into the main heat exchanger 5 through the exhaust gas pipe 15, and the temperature is raised to room temperature by heat exchange with the raw material air. Then, the ultrahigh-purity nitrogen gas is taken out from the top of the rectification column 7 and introduced into the main heat exchanger 5, where the temperature is raised to room temperature by heat exchange with the raw material air, and then the product nitrogen gas is obtained.

【0012】一方、凝縮器9により作られた還流液の一
部を第2還流パイプ11から、必要に応じて連続的ある
いは間欠的にポンプ27により取り出して昇圧後、超高
純度液体窒素タンク25に導入し、貯蔵する(なお、ポ
ンプ27による超高純度液体窒素の昇圧は、一度超高純
度液体窒素を超高純度液体窒素タンク25に貯蔵したの
ちに行ってもよい)。この超高純度液体窒素タンク25
は、圧力逃し弁29aにより、内圧が一定に(約2.0
〜8.5kg/cm2 Gに)保たれている。
On the other hand, a part of the reflux liquid produced by the condenser 9 is taken out of the second reflux pipe 11 continuously or intermittently by the pump 27 as necessary, and the pressure is increased. (The pressurization of ultra-high-purity liquid nitrogen by the pump 27 may be performed after the ultra-high-purity liquid nitrogen is once stored in the ultra-high-purity liquid nitrogen tank 25). This ultra-high purity liquid nitrogen tank 25
The internal pressure is kept constant (approximately 2.0
88.5 kg / cm 2 G).

【0013】また、主熱交換器5での熱交換ロスや外部
侵入熱による冷熱損失、および超高純度液体窒素を超高
純度液体窒素タンク25に取り出すことによる冷熱損失
を補うため、液体窒素貯槽18から液体窒素供給弁19
aを通して圧力約4.0〜9.0kg/cm2 Gの高純
度液体窒素が精留塔7上部に供給される。このとき、精
留塔7において高純度液体窒素が供給される位置は、こ
の液体窒素の純度によって決まり、低純度であるほど精
留塔7上部から中間付近へ供給される。
A liquid nitrogen storage tank is provided to compensate for the heat exchange loss in the main heat exchanger 5, the cooling loss due to external intrusion heat, and the cooling loss caused by taking out ultra-high-purity liquid nitrogen into the ultra-high-purity liquid nitrogen tank 25. 18 to liquid nitrogen supply valve 19
a, high-purity liquid nitrogen having a pressure of about 4.0 to 9.0 kg / cm 2 G is supplied to the top of the rectification column 7. At this time, the position where the high-purity liquid nitrogen is supplied in the rectification column 7 is determined by the purity of the liquid nitrogen. The lower the purity, the more the liquid nitrogen is supplied from the upper portion of the rectification column 7 to the vicinity of the middle.

【0014】そして、装置が何らかの原因で停止した場
合や製品窒素ガスの消費量が装置の発生能力を上回る場
合は、超高純度液体窒素タンク25からの超高純度液体
窒素が蒸発器21で空気あるいは水またはその他の流体
との熱交換により常温まで昇温されたのち、製品窒素ガ
スとしてバックアップ供給される。また、超高純度液体
窒素タンク25への侵入熱によって発生したガスまたは
超高純度液体窒素を超高純度液体窒素タンク25へ供給
したときに発生するフラッシュガスは圧力逃し弁29a
を通して製品窒素ガスへ混合され、製品窒素ガスの一部
として有効利用される。
When the apparatus is stopped for some reason or when the consumption of the product nitrogen gas exceeds the capacity of the apparatus, the ultra-high-purity liquid nitrogen from the ultra-high-purity liquid nitrogen tank 25 is supplied to the evaporator 21 by air. Alternatively, the temperature is raised to normal temperature by heat exchange with water or other fluid, and then supplied as a backup as product nitrogen gas. Further, a gas generated by heat entering the ultrahigh-purity liquid nitrogen tank 25 or a flash gas generated when ultrahigh-purity liquid nitrogen is supplied to the ultrahigh-purity liquid nitrogen tank 25 is supplied to the pressure relief valve 29a.
Through to the product nitrogen gas, and is effectively used as a part of the product nitrogen gas.

【0015】このように、上記実施の形態では、凝縮器
9により生成される還流液(超高純度液体窒素)の一部
を取り出して超高純度液体窒素タンク25に貯留してい
るため、バックアップ時に、超高純度液体窒素タンク2
5に貯留した超高純度液体窒素を気化して用いることに
より、超高純度窒素ガスを製品窒素ガスとして取り出す
ことができるようになる。しかも、従来例では必要とさ
れた窒素精製装置22を省略することができ、安価にな
る。
As described above, in the above embodiment, a part of the reflux liquid (ultra high purity liquid nitrogen) generated by the condenser 9 is taken out and stored in the ultra high purity liquid nitrogen tank 25. Sometimes, ultra-high purity liquid nitrogen tank 2
By vaporizing and using the ultrahigh-purity liquid nitrogen stored in 5, the ultrahigh-purity nitrogen gas can be taken out as product nitrogen gas. Moreover, the nitrogen purifier 22 required in the conventional example can be omitted, and the cost is reduced.

【0016】図2は本発明の超高純度窒素ガス製造装置
の他の実施の形態を示している。この実施の形態では、
図1に示す超高純度窒素ガス製造装置において、超高純
度液体窒素タンク25を抜き取りパイプ26より下方に
位置させている。この場合には、還流液の一部を液体の
ヘッド圧力のみで超高純度液体窒素タンク25に供給す
ることができる。それ以外の部分は図1に示す実施の形
態と同様であり、同様の部分には同じ符号を付してい
る。この実施の形態でも、図1に示す実施の形態と同様
の作用・効果を奏するうえ、図1に示す実施の形態のポ
ンプ27等の昇圧昇温を省略することができ、構造が簡
単化し、設備が安価になるという利点がある。
FIG. 2 shows another embodiment of the ultrahigh-purity nitrogen gas producing apparatus according to the present invention. In this embodiment,
In the ultrahigh-purity nitrogen gas producing apparatus shown in FIG. 1, the ultrahigh-purity liquid nitrogen tank 25 is located below the extraction pipe 26. In this case, a part of the reflux liquid can be supplied to the ultrahigh-purity liquid nitrogen tank 25 only by the liquid head pressure. Other parts are the same as those of the embodiment shown in FIG. 1, and the same parts are denoted by the same reference numerals. Also in this embodiment, the same operation and effect as those of the embodiment shown in FIG. 1 are obtained, and the temperature rise of the pump 27 and the like in the embodiment shown in FIG. 1 can be omitted, and the structure is simplified. There is an advantage that the equipment is inexpensive.

【0017】図3は本発明の超高純度窒素ガス製造装置
のさらに他の実施の形態を示している。この実施の形態
では、図1に示す超高純度窒素ガス製造装置において、
バックアップ供給に昇圧手段を必要とする場合に、ポン
プ27等の回転機に代えて、2系列の加圧タンク31,
32を設けるようにしている。
FIG. 3 shows still another embodiment of the ultrapure nitrogen gas producing apparatus of the present invention. In this embodiment, in the ultrahigh-purity nitrogen gas producing apparatus shown in FIG.
When a booster is required for the backup supply, instead of a rotating machine such as a pump 27, two series of pressurized tanks 31,
32 are provided.

【0018】より詳しく説明すると、上記両加圧タンク
31,32はそれぞれ超高純度液体窒素タンク25より
も低圧か、もしくは下方に位置するように設定されてお
り、超高純度液体窒素タンク25の底部から延びる連結
パイプ33に切換弁34a,35a付き分岐パイプ3
4,35を介して連結している。また、両加圧タンク3
1,32には、それぞれ、その上部に放圧弁31a,3
2aを取り付けているとともに、その底部と上部を連通
する自己加圧用パイプ36,37を取り付けており、こ
れら両自己加圧用パイプ36,37に加圧蒸発器38,
39および圧力制御弁36a,37aを設けている。ま
た、両加圧タンク31,32は切換弁40a,41a付
きパイプ40,41によりバックアップパイプ28に連
結している。そして、装置が正常に稼働しているとき
に、超高純度液体窒素タンク25に貯蔵した超高純度液
体窒素を両加圧タンク31,32に両切換弁34a,3
5aおよび両放圧弁31a,32aを開弁し、圧力差を
利用して充填する。この充填が終了した時点で、両切換
弁34a,35aおよび両放圧弁31a,32aを全て
閉弁し、その状態で、充填された超高純度液体窒素を両
加圧タンク31,32の底部から取り出して加圧蒸発器
38,39を通し、ここで空気あるいは水等と熱交換さ
せて気化して両加圧タンク31,32の頂部に導入し、
両加圧タンク31,32自身を自己加圧しておく。それ
以外の部分は図1に示す実施の形態と同様であり、同様
の部分には同じ符号を付している。
More specifically, the two pressurized tanks 31 and 32 are set to be lower in pressure or lower than the ultrahigh-purity liquid nitrogen tank 25, respectively. Branch pipe 3 with switching valves 34a, 35a provided on connecting pipe 33 extending from the bottom
4, 35 are connected. In addition, both pressurized tanks 3
1, 32 have pressure relief valves 31a, 3
2a, and self-pressurizing pipes 36, 37 communicating the bottom and the top thereof are mounted.
39 and pressure control valves 36a, 37a. Both pressurized tanks 31, 32 are connected to the backup pipe 28 by pipes 40, 41 with switching valves 40a, 41a. When the apparatus is operating normally, the ultra-high-purity liquid nitrogen stored in the ultra-high-purity liquid nitrogen tank 25 is supplied to the two pressurizing tanks 31 and 32 by the two switching valves 34 a and 3.
5a and both the pressure relief valves 31a and 32a are opened, and filling is performed using a pressure difference. When this filling is completed, both the switching valves 34a and 35a and both the pressure release valves 31a and 32a are closed, and in this state, the charged ultra-high-purity liquid nitrogen is removed from the bottoms of the two pressurized tanks 31 and 32. It is taken out and passed through the pressurized evaporators 38 and 39, where it is exchanged with air or water and vaporized and introduced into the tops of both pressurized tanks 31 and 32.
The two pressurizing tanks 31 and 32 themselves are self-pressurized. Other parts are the same as those of the embodiment shown in FIG. 1, and the same parts are denoted by the same reference numerals.

【0019】そして、バックアップ供給の必要性が生じ
た場合には、両加圧タンク31,32のうちどちらか一
方の加圧タンク31(32)内の超高純度液体窒素を蒸
発器21に通したのち、製品窒素ガスとしてバックアッ
プ供給する。例えば、第1加圧タンク31からバックア
ップ供給を行い、この第1加圧タンク31の超高純度液
体窒素がすべて消費されたときには、第2加圧タンク3
2からの供給を開始する。と同時に、第1加圧タンク3
1の圧力制御弁36aを閉じ、第1放圧弁31aを開
く。これにより、第1加圧タンク31の内圧が低下し始
め、超高純度液体窒素タンク25の内圧よりも低くなる
と、切換弁34aを開け、再び第1加圧タンク31への
超高純度液体窒素の充填を開始する。これ以降は同様の
サイクルを繰り返す。この実施の形態でも、図1に示す
実施の形態と同様の作用・効果を奏するうえ、複数の加
圧タンク31,32を備えているため、安定良く超高純
度窒素ガスを製造,供給することができる。
When the need for backup supply arises, the ultrahigh-purity liquid nitrogen in one of the two pressurized tanks 31 and 32 is passed through the evaporator 21. After that, it is backed up and supplied as product nitrogen gas. For example, when the backup supply is performed from the first pressurized tank 31 and the ultrahigh-purity liquid nitrogen in the first pressurized tank 31 is completely consumed, the second pressurized tank 3
The supply from 2 is started. At the same time, the first pressurized tank 3
The first pressure control valve 36a is closed, and the first pressure relief valve 31a is opened. Thereby, when the internal pressure of the first pressurized tank 31 starts to decrease and becomes lower than the internal pressure of the ultrahigh-purity liquid nitrogen tank 25, the switching valve 34a is opened, and the ultrahigh-purity liquid nitrogen Start filling. Thereafter, the same cycle is repeated. Also in this embodiment, the same operation and effect as those of the embodiment shown in FIG. 1 are obtained, and since a plurality of pressurized tanks 31 and 32 are provided, it is possible to stably produce and supply ultra-high-purity nitrogen gas. Can be.

【0020】なお、図3に示す実施の形態では、2系列
の加圧タンク31,32を備えているが、これに限定す
るものではなく、3系列以上の加圧タンクを備えるよう
にしてもよい。
In the embodiment shown in FIG. 3, two series of pressurized tanks 31 and 32 are provided. However, the present invention is not limited to this, and three or more series of pressurized tanks may be provided. Good.

【0021】[0021]

【発明の効果】以上のように、本発明の空気分離装置に
よれば、精留手段により深冷液化分離する際に得られる
超高純度液体窒素の一部を上記精留手段から取り出して
貯留しておき、バックアップ時に(何らかの原因で装置
停止した場合や製品窒素ガスの消費量が装置の発生能力
を上回る場合等に)、上記貯留した超高純度液体窒素を
気化して用いるようにしている。したがって、バックア
ップ時に製品窒素ガスとして超高純度窒素ガスを取り出
すことができる。しかも、従来例のような、多大な費用
を必要とする窒素精製装置22を設ける必要がない。一
方、本発明の装置によれば、上記方法を容易に行うこと
ができる。
As described above, according to the air separation apparatus of the present invention, a part of the ultrahigh-purity liquid nitrogen obtained at the time of cryogenic liquefaction and separation by the rectification means is taken out from the rectification means and stored. In addition, at the time of backup (when the apparatus is stopped for some reason or when the consumption of the product nitrogen gas exceeds the generating capacity of the apparatus, etc.), the stored ultra-high-purity liquid nitrogen is vaporized and used. . Therefore, ultra-high purity nitrogen gas can be taken out as product nitrogen gas at the time of backup. In addition, there is no need to provide a nitrogen purification device 22 requiring a great deal of cost as in the conventional example. On the other hand, according to the apparatus of the present invention, the above method can be easily performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】本発明の他の実施の形態を示す構成図である。FIG. 2 is a configuration diagram showing another embodiment of the present invention.

【図3】本発明のさらに他の実施の形態を示す構成図で
ある。
FIG. 3 is a configuration diagram showing still another embodiment of the present invention.

【図4】従来例を示す超高純度窒素ガス製造装置の構成
図である。
FIG. 4 is a configuration diagram of an ultrahigh-purity nitrogen gas production apparatus showing a conventional example.

【符号の説明】[Explanation of symbols]

7 精留塔 9 凝縮器 25 超高純度液体窒素タンク 7 rectification tower 9 condenser 25 ultra-high purity liquid nitrogen tank

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 原料空気を圧縮したのち低温に冷却して
精留手段に導入し、ここで深冷液化分離して超高純度窒
素ガスを製造し、上記深冷液化分離に要する寒冷量の一
部を、当該深冷液化分離系外から供給される高純度液体
窒素の寒冷エネルギーで充当する方法であって、上記深
冷液化分離に際し得られる超高純度液体窒素の一部を上
記精留手段から取り出して貯留し、バックアップ時に上
記貯留した超高純度液体窒素を気化して用いるようにし
たことを特徴とする超高純度窒素ガス製造方法。
The raw material air is compressed, cooled to a low temperature and introduced into a rectification unit, where it is subjected to cryogenic liquefaction and separation to produce ultra-high purity nitrogen gas, and the amount of refrigeration required for the cryogenic liquefaction and separation is determined. A method in which a part of the ultra-high-purity liquid nitrogen obtained during the cryogenic liquefaction separation is fractionated by rectifying the cryogenic liquefaction separation system. A method for producing ultra-high-purity nitrogen gas, wherein the ultra-high-purity liquid nitrogen stored is vaporized and used at the time of backup during storage.
【請求項2】 上記精留手段が、精留塔と、この精留塔
内の還流液生成用の凝縮器を備え、この凝縮器で生成し
た還流液の一部を貯留するようにした請求項1記載の超
高純度窒素ガス製造方法。
2. The rectification means according to claim 1, wherein the rectification means includes a rectification column, and a condenser for generating a reflux liquid in the rectification column, and a part of the reflux liquid generated by the condenser is stored. Item 7. The method for producing ultrahigh-purity nitrogen gas according to Item 1.
【請求項3】 原料空気を圧縮する空気圧縮手段と、上
記空気圧縮手段を経た圧縮空気を低温に冷却する主熱交
換器と、上記主熱交換器により低温に冷却された圧縮空
気を導入して深冷液化分離する精留手段と、上記精留手
段から気体として超高純度窒素を取り出す窒素ガス取出
パイプと、装置外から高純度液体窒素の供給を受けこれ
を貯蔵する貯蔵手段と、上記貯蔵手段内の高純度液体窒
素を寒冷エネルギーとして精留手段に導く導入路とを備
えた装置であって、上記深冷液化分離に際し得られた超
高純度液体窒素の一部を上記精留手段から取り出して貯
留する超高純度液体窒素貯蔵手段と、バックアップ時に
上記超高純度液体窒素貯蔵手段に貯留する超高純度液体
窒素をガス化して取り出し上記窒素ガス取出パイプに導
入するバックアップパイプとを設けるようにしたことを
特徴とする超高純度窒素ガス製造装置。
3. An air compressor for compressing raw air, a main heat exchanger for cooling the compressed air passing through the air compressor to a low temperature, and compressed air cooled to a low temperature by the main heat exchanger. Rectification means for cryogenic liquefaction and separation, a nitrogen gas extraction pipe for taking out ultra-high-purity nitrogen as a gas from the rectification means, storage means for receiving and storing high-purity liquid nitrogen from outside the apparatus, An introduction path for guiding the high-purity liquid nitrogen in the storage means to the rectification means as cold energy, wherein a part of the ultra-high-purity liquid nitrogen obtained in the cryogenic liquefaction separation is used as the rectification means. A super-high-purity liquid nitrogen storage means for taking out and storing the ultra-high-purity liquid nitrogen stored in the ultra-high-purity liquid nitrogen storage means at the time of backup, and gasifying and taking out the ultra-high-purity liquid nitrogen for introduction into the nitrogen gas extraction pipe An ultra-high-purity nitrogen gas producing apparatus characterized by comprising a pipe.
JP10132392A 1998-05-14 1998-05-14 Manufacture of ultra-high-purity nitrogen gas and device therefor Abandoned JPH11325720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10132392A JPH11325720A (en) 1998-05-14 1998-05-14 Manufacture of ultra-high-purity nitrogen gas and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10132392A JPH11325720A (en) 1998-05-14 1998-05-14 Manufacture of ultra-high-purity nitrogen gas and device therefor

Publications (1)

Publication Number Publication Date
JPH11325720A true JPH11325720A (en) 1999-11-26

Family

ID=15080323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10132392A Abandoned JPH11325720A (en) 1998-05-14 1998-05-14 Manufacture of ultra-high-purity nitrogen gas and device therefor

Country Status (1)

Country Link
JP (1) JPH11325720A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006522307A (en) * 2003-04-02 2006-09-28 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method and apparatus for the supply of gas under pressure
JP2007003097A (en) * 2005-06-23 2007-01-11 Air Water Inc Nitrogen generating method and device using the same
JP2007205714A (en) * 2007-05-07 2007-08-16 Kobe Steel Ltd Air separation device
JP2011242122A (en) * 2010-04-22 2011-12-01 L'air Liquide-Sa Pour L'etude & L'exploitation Des Procedes Georges Claude Method and device for producing nitrogen by cryogenic distillation of air

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006522307A (en) * 2003-04-02 2006-09-28 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method and apparatus for the supply of gas under pressure
JP2007003097A (en) * 2005-06-23 2007-01-11 Air Water Inc Nitrogen generating method and device using the same
JP2007205714A (en) * 2007-05-07 2007-08-16 Kobe Steel Ltd Air separation device
JP2011242122A (en) * 2010-04-22 2011-12-01 L'air Liquide-Sa Pour L'etude & L'exploitation Des Procedes Georges Claude Method and device for producing nitrogen by cryogenic distillation of air

Similar Documents

Publication Publication Date Title
US5656557A (en) Process for producing various gases for semiconductor production factories
JPH0313505B2 (en)
JP6546504B2 (en) Oxygen production system and oxygen production method
JPS6148072B2 (en)
JPS6146747B2 (en)
JP2585955B2 (en) Air separation equipment
CN110803689A (en) Argon recovery method and device for removing carbon monoxide and integrating high-purity nitrogen by rectification method
US5058387A (en) Process to ultrapurify liquid nitrogen imported as back-up for nitrogen generating plants
JP3719832B2 (en) Ultra high purity nitrogen and oxygen production equipment
JPS6158747B2 (en)
JPH0789012B2 (en) Carbon monoxide separation and purification equipment
JPH09184681A (en) Method for manufacturing super high-purity oxygen and nitrogen
WO2006137331A1 (en) Nitrogen generating device and apparatus for use therefor
JPH11325720A (en) Manufacture of ultra-high-purity nitrogen gas and device therefor
JP3447437B2 (en) High-purity nitrogen gas production equipment
JP3364724B2 (en) Method and apparatus for separating high purity argon
JP3373013B2 (en) Nitrogen gas production equipment
JPH11221420A (en) Apparatus and method for producing and supplying nitrogen and/or oxygen and purified air
JP2001033155A (en) Air separator
JPH1137642A (en) Method and facility for separating air
JPH09217982A (en) Method for liquefying and separating air and apparatus therefor
JP2997939B2 (en) Recovery and utilization of evaporative gas in low-temperature storage tank
CN211198612U (en) Argon recovery device for removing carbon monoxide and integrating high-purity nitrogen by rectification method
JP3466437B2 (en) Air separation equipment
JP2574270B2 (en) Carbon monoxide separation and purification equipment

Legal Events

Date Code Title Description
A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20040311