JP2007205714A - Air separation device - Google Patents

Air separation device Download PDF

Info

Publication number
JP2007205714A
JP2007205714A JP2007122811A JP2007122811A JP2007205714A JP 2007205714 A JP2007205714 A JP 2007205714A JP 2007122811 A JP2007122811 A JP 2007122811A JP 2007122811 A JP2007122811 A JP 2007122811A JP 2007205714 A JP2007205714 A JP 2007205714A
Authority
JP
Japan
Prior art keywords
liquid
oxygen
air
storage tank
distillation column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007122811A
Other languages
Japanese (ja)
Other versions
JP4688843B2 (en
Inventor
Tamotsu Hashimoto
保 橋本
Takashi Oyama
隆司 大山
Yasushi Tomisaka
泰 富阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007122811A priority Critical patent/JP4688843B2/en
Publication of JP2007205714A publication Critical patent/JP2007205714A/en
Application granted granted Critical
Publication of JP4688843B2 publication Critical patent/JP4688843B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/04206Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/044Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04472Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
    • F25J3/04478Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for controlling purposes, e.g. start-up or back-up procedures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04472Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
    • F25J3/04496Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist
    • F25J3/04503Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems
    • F25J3/04509Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems within the cold part of the air fractionation, i.e. exchanging "cold" within the fractionation and/or main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/72Refluxing the column with at least a part of the totally condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/04Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams using a pressure accumulator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/40One fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/42One fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/50One fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2280/00Control of the process or apparatus
    • F25J2280/10Control for or during start-up and cooling down of the installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique capable of extracting a product gas until an air separation device comes into a normal operation after restarting the operation of the air separation device. <P>SOLUTION: This air separation device is provided with: a high-pressure distillation tower and a low-pressure distillation tower for separating material air into liquid oxygen and liquid nitrogen; a liquid storage tank for storing the separated liquid oxygen or liquid nitrogen; and a heat exchanger for evaporating and converting the liquid oxygen and/or the liquid nitrogen into a product gas by using compressed material air as a heat source. This air separation device is characterized in that a liquid extraction amount regulation valve is arranged in a line connecting the distillation tower to the liquid storage tank, and the device is provided with a pressing means for adjusting pressure in the liquid storage tank independently of the distillation tower when the liquid extraction amount regulation valve is closed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、原料空気から酸素や窒素を分離するための空気分離装置に関し、より詳細には、該空気分離装置の再稼動後、定常運転になるまでの間にも、製品酸素ガス(或いは製品窒素ガス)を速やかに取出せる様に工夫された技術に関する。   The present invention relates to an air separation device for separating oxygen and nitrogen from raw material air, and more specifically, product oxygen gas (or product) even after the air separation device is restarted and before steady operation is performed. (Nitrogen gas) It is related to the technology devised so that it can be taken out quickly.

発電設備や製鉄所の如く大量の酸素が消費される工場には、場内に酸素自給のための酸素製造設備を併設することが多く、該酸素製造設備として最も汎用されているのは、空気を原料として酸素を得ることができ、しかも副産物として大量の窒素を得ることのできる空気分離装置である。この空気分離装置は、その規模や付帯設備の性能などによって酸素生産能力は異なるが、該装置の生産能力が最も高められるのは、当該設備に固有の一定(最適)の条件で定常運転したときであり、その時に最大の生産効率が得られる。   Factories that consume a large amount of oxygen, such as power generation facilities and steelworks, often have an oxygen production facility for oxygen self-sufficiency on site, and the most widely used oxygen production facility is air. This is an air separation apparatus that can obtain oxygen as a raw material and can obtain a large amount of nitrogen as a by-product. This air separation device has different oxygen production capacities depending on its scale and the performance of incidental equipment, but the production capacity of the equipment is most enhanced when it is operated steadily under certain (optimal) conditions inherent to the equipment. At that time, the maximum production efficiency can be obtained.

ところが、空気分離装置の定常運転中はほぼ一定の濃度の製品酸素ガスが連続的に製造されるため、酸素需要量に変動を生じてもそれに併せて空気分離装置の操業を停止したり、変動させることは難しい。そこで、需要先での需要変動に対応して製品ガスを供給する技術が提案されている(例えば特許文献1)。   However, during the steady operation of the air separation device, product oxygen gas with an almost constant concentration is continuously produced. Therefore, even if the oxygen demand changes, the operation of the air separation device is stopped or changed accordingly. It is difficult to let Therefore, a technique for supplying product gas in response to demand fluctuation at a demand destination has been proposed (for example, Patent Document 1).

この技術は、空気から製品ガスを精製するため精留塔で得られた製品ガスを液状で貯蔵するタンクと、該精留塔に供給する空気を液状で貯蔵するタンクを設けて空気供給量と製品ガス需要量の変動に応じて供給できる様にしている。   In this technology, a tank for storing the product gas obtained in the rectifying column in a liquid state to purify the product gas from the air, and a tank for storing the liquid supplied to the rectifying column in a liquid state are provided. It can be supplied according to fluctuations in product gas demand.

この様な空気分離装置の操業に伴う電気使用量は大きいため、電気料金の安い深夜電力を利用した夜間に操業を行い、日中は操業を停止することがある。また週末休業に伴って酸素製造設備を停止することもある。この様に頻繁に操業、停止が繰返される操業条件下においては、稼動停止後短時間で再稼動できること、即ち再稼動後、所定純度の酸素が得られるまでの時間を短縮することが望まれている。   Since the amount of electricity used for the operation of such an air separation device is large, the operation may be performed at night using midnight power with low electricity charges, and the operation may be stopped during the day. Oxygen production facilities may be shut down due to weekends. Under such operating conditions where frequent operations and shutdowns are repeated, it is desirable to be able to restart in a short time after shutdown, that is, to shorten the time until oxygen of a predetermined purity is obtained after restarting. Yes.

ところが従来の空気分離装置は、頻繁に停止、再稼動を繰返すように設計されておらず、定常運転のみに適した構造となっている。従って一旦稼動し定常状態で運転されている空気分離装置は、既に系内の物質バランス及び熱バランスが確立された状態となっており、これを一旦停止して再稼動させるとなると、上記物質バランスおよび熱バランスが定常状態になるまでに長時間(通常は4時間以上)を必要する。しかも、その間に得られる製品窒素や製品酸素は純度が低いため、製品として取出すことができない。   However, the conventional air separation device is not designed to be repeatedly stopped and restarted, and has a structure suitable only for steady operation. Therefore, the air separation device that is once operated and operated in a steady state is already in a state where the material balance and heat balance in the system have been established. And it takes a long time (usually 4 hours or more) for the heat balance to reach a steady state. Moreover, since product nitrogen and product oxygen obtained during that time have low purity, they cannot be taken out as products.

この様な問題を解決する技術として、クイックスタート分離装置が提案されている(例えば特許文献2)。   As a technique for solving such a problem, a quick start separation device has been proposed (for example, Patent Document 2).

この技術は、操業停止に際して上塔(低圧蒸留塔)と液滞留容器とを結ぶラインの弁を閉止して、上塔と液滞留容器を縁切りし、空気分離装置の再稼動時に該液滞留容器内の液状酸素を上塔の中部へ戻すことによって、再稼動から定常運転に達するまでの時間を短縮する技術を提案するものである。   In this technology, when the operation is stopped, the valve of the line connecting the upper tower (low pressure distillation tower) and the liquid retention container is closed, the upper tower and the liquid retention container are cut off, and the liquid retention container is restarted when the air separation device is restarted. We propose a technology that shortens the time from restart to steady operation by returning the liquid oxygen inside to the middle of the upper tower.

しかしながら該技術によっても、定常運転に達するまでは製品ガスを提供することができない。
特開平2−293575号(請求項1等) 特許3056979号(請求項1等)
However, even with this technique, product gas cannot be provided until steady operation is reached.
JP-A-2-293575 (Claim 1 etc.) Japanese Patent No. 3056879 (Claim 1 etc.)

本発明は上記事情に鑑みてなされたものであって、その目的は空気分離装置の再稼動後、定常運転に達するまでの間にも所定純度の製品酸素ガス(或いは製品窒素ガス)を取出すことのできる技術を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to take out product oxygen gas (or product nitrogen gas) of a predetermined purity even after the air separator has been restarted until it reaches steady operation. It is to provide technology that can be used.

上記課題を達成し得た本発明とは、原料空気を酸素と窒素に分離する高圧蒸留塔と低圧蒸留塔と、分離された液状の酸素または液状の窒素を貯溜する液体貯槽、および、圧縮された原料空気を熱源とし、前記液状酸素および/または液状窒素を気化させて製品ガスとする熱交換器を備えた空気分離装置において、前記蒸留塔と前記液体貯槽を結ぶラインに液体抜出量調節弁が設けられると共に、該液体抜出量調節弁を閉止した際に該蒸留塔とは独立して該液体貯槽内の圧力を調整するための加圧手段を備えていることに要旨を有する空気分離装置である。   The present invention that has achieved the above objects includes a high-pressure distillation column and a low-pressure distillation column that separate raw air into oxygen and nitrogen, a liquid storage tank that stores separated liquid oxygen or liquid nitrogen, and a compressed tank. The amount of liquid discharged in a line connecting the distillation column and the liquid storage tank in an air separation apparatus equipped with a heat exchanger that uses the raw material air as a heat source and vaporizes the liquid oxygen and / or liquid nitrogen into a product gas An air having a gist of being provided with a pressurizing means for adjusting the pressure in the liquid storage tank independently of the distillation tower when the valve is provided and the liquid discharge amount adjusting valve is closed Separation device.

本発明の空気分離装置は、前記液体貯槽と加圧手段とを結ぶラインに圧力調節弁が設けられると共に、前記加圧手段から液体貯槽へ送給するのに必要な圧力を演算し制御する圧力演算・制御部を備えていることが望ましい。   In the air separation device according to the present invention, a pressure control valve is provided in a line connecting the liquid storage tank and the pressurizing means, and a pressure for calculating and controlling a pressure necessary for feeding from the pressurization means to the liquid storage tank. It is desirable to have a calculation / control unit.

更に本発明の空気分離装置は、前記熱交換器で熱源として利用した液体空気を貯溜する原料貯槽を備えていることが好ましい。   Furthermore, the air separation device of the present invention preferably includes a raw material storage tank for storing liquid air used as a heat source in the heat exchanger.

また本発明は、原料空気を酸素と窒素に分離する高圧蒸留塔と低圧蒸留塔と、分離された液状の酸素または液状の窒素を貯溜する液体貯槽、および、圧縮された原料空気を熱源とし、液状酸素および/または液状窒素を気化させて製品ガスとする蒸発器を備え、該蒸留塔と該液体貯槽を結ぶラインに液体抜出量調節弁が設けられると共に、該液体抜出量調節弁を閉止した際に該蒸留塔とは独立して該液体貯槽内の圧力を調整するための加圧手段を備えた空気分離装置の操業を停止後、再稼動するに当たり、前記液体抜出量調節弁を閉止したまま、前記加圧手段によって前記液体貯槽内の液体を前記熱交換器方向へ圧送し、圧縮された原料空気を熱源として該液体を気化させて製品ガスを取出すことに要旨を有する製品ガス製造方法である。   Further, the present invention uses a high-pressure distillation column and a low-pressure distillation column for separating raw air into oxygen and nitrogen, a liquid storage tank for storing separated liquid oxygen or liquid nitrogen, and a compressed raw material air as a heat source, An evaporator that vaporizes liquid oxygen and / or liquid nitrogen to produce product gas, a liquid discharge amount control valve is provided in a line connecting the distillation column and the liquid storage tank, and the liquid discharge amount control valve is provided When the operation of the air separation device having a pressurizing means for adjusting the pressure in the liquid storage tank is stopped independently of the distillation tower when the operation is closed, the liquid extraction amount adjusting valve is used when the operation is restarted. The product having the gist is that the liquid in the liquid storage tank is pumped in the direction of the heat exchanger by the pressurizing means while the pressure is closed, and the liquid is vaporized using the compressed raw material air as a heat source. This is a gas production method.

上記本発明の方法を実施するに当たり、前記液体貯槽内の液体は、前記空気分離装置の操業を停止するまでに、前記蒸留塔から前記液体貯槽へ送給しておくことが望ましい。   In carrying out the method of the present invention, the liquid in the liquid storage tank is preferably supplied from the distillation column to the liquid storage tank before the operation of the air separation device is stopped.

更に本発明の方法では、前記再稼動後、前記蒸留塔内の液体純度が所定の値に達するまでの間は、前記液体抜出量調節弁を閉止したまま、前記液体貯槽内の液体を前記蒸発器方向へ圧送して製品ガスを取出すことが好ましい。   Furthermore, in the method of the present invention, after the re-operation, the liquid in the liquid storage tank is removed while the liquid extraction amount adjustment valve is closed until the liquid purity in the distillation column reaches a predetermined value. It is preferable to take out product gas by pumping in the direction of the evaporator.

また前記液体貯槽から前記熱交換器方向へ送られる液体の圧力が所定値となる様に、前記加圧手段から前記液体貯槽へ送給するのに必要な圧力を制御することも好ましい実施態様である。   It is also a preferred embodiment to control the pressure required for feeding from the pressurizing means to the liquid storage tank so that the pressure of the liquid sent from the liquid storage tank toward the heat exchanger becomes a predetermined value. is there.

上記本発明によれば、空気分離装置の再稼動後、定常運転に達すまでの間にも所定純度の製品酸素ガス(或いは製品窒素ガス)を取出すことができる。   According to the present invention, product oxygen gas (or product nitrogen gas) having a predetermined purity can be taken out until the steady operation is reached after the air separator is restarted.

即ち、液体貯槽に貯留されている液体は、ガス状の製品と同等の純度を有しているので、再稼動後、該液体貯槽内の液体を熱交換器に供給し、圧縮空気と熱交換するだけで、極短時間のうちに所定純度のガス状製品を得ることができる。しかも本発明によれば、蒸留塔の純度調整が完了した後も引き続き所定純度の製品ガスをそのまま継続して取出すことができる。   That is, since the liquid stored in the liquid storage tank has the same purity as that of the gaseous product, the liquid in the liquid storage tank is supplied to the heat exchanger after restarting, and exchanged heat with the compressed air. By doing this, a gaseous product with a predetermined purity can be obtained in an extremely short time. Moreover, according to the present invention, the product gas having a predetermined purity can be continuously taken out as it is even after the purity adjustment of the distillation column is completed.

したがって、従来では再稼動後、定常運転に達するまで(例えば4時間以上)は、製品ガスを取出すことができなかったが、本発明によれば、極短時間(例えば1時間以内)で製品ガスの取出しが可能となり、稼動時間当たりの製品ガス取出量を向上することができる。特に頻繁に空気分離装置を停止、再稼動するような操業条件であっても、極めて効率的な操業が可能となる。   Therefore, conventionally, product gas could not be taken out after re-operation until steady operation was reached (for example, 4 hours or more). However, according to the present invention, product gas can be obtained in a very short time (for example, within 1 hour). Can be taken out, and the amount of product gas taken out per operating time can be improved. Even if the operating conditions are such that the air separation device is frequently stopped and restarted, extremely efficient operation is possible.

本発明者らは前記した解決課題の改善を期し鋭意研究を重ねた結果、蒸留塔と液体貯槽を結ぶラインに液体抜出量調節弁を設けると共に、該液体抜出量調節弁を閉止した際に該蒸留塔とは独立して該液体貯槽内の圧力を調整するための加圧手段を付設すれば、空気分離装置が定常運転になるまでの間であっても、定常純度のガス状製品を安定して取出すことができることを見出し、本発明に至った。   As a result of intensive studies aimed at improving the above-mentioned problem, the present inventors have provided a liquid extraction amount control valve in the line connecting the distillation column and the liquid storage tank, and closed the liquid extraction amount adjustment valve. If a pressurizing means for adjusting the pressure in the liquid storage tank is provided independently of the distillation column, a gaseous product with a steady purity even during the period until the air separation device is in a steady operation. Has been found to be able to be taken out stably, leading to the present invention.

具体的には、前記液体抜出量調節弁を閉止したまま、前記加圧手段によって前記液体貯槽内の液体を前記熱交換器方向へ圧送し、圧縮された原料空気を熱源として該液体を気化させれば、空気分離装置の再起後、定常運転になるまでの間にも所定純度の製品酸素ガス(或いは製品窒素ガス)を取出すことができる。   Specifically, the liquid in the liquid storage tank is pumped toward the heat exchanger by the pressurizing means while the liquid extraction amount adjusting valve is closed, and the liquid is vaporized using the compressed source air as a heat source. By doing so, it is possible to take out product oxygen gas (or product nitrogen gas) of a predetermined purity after the air separation device is restarted and before the steady operation is performed.

以下、実施例図面を参照しつつ本発明を具体的に説明するが、本発明はもとより図示例に制限されるわけではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be specifically described with reference to the drawings of the embodiments. However, the present invention is not limited to the illustrated examples, and appropriate modifications are made within a range that can be adapted to the purpose described above and below. It is also possible to carry out and they are all included in the technical scope of the present invention.

図1に例示する本発明に係る装置に基づいて空気分離装置の定常運転を説明する。原料空気は原料空気圧縮機1によって例えば3〜16kPa程度にまで圧縮され、続く吸着精製装置2を通過することにより水分や炭酸ガスが除去された後、2方向に分岐されて熱交換器3(以下、主熱交換器3という)及びタービン駆動昇圧器4方向へ夫々所定量送られる。   The steady operation of the air separation apparatus will be described based on the apparatus according to the present invention illustrated in FIG. The raw material air is compressed to about 3 to 16 kPa, for example, by the raw material air compressor 1, and after passing through the adsorption purification device 2, moisture and carbon dioxide gas are removed, and then branched into two directions to be heat exchanger 3 ( Hereinafter, they are sent by a predetermined amount in the direction of the main heat exchanger 3) and the turbine drive booster 4, respectively.

主熱交換器3へ送られた圧縮空気は低圧蒸留塔7から送出されるガスにより液化温度付近まで冷された後、高圧蒸留塔6の底部へ供給される。   The compressed air sent to the main heat exchanger 3 is cooled to the vicinity of the liquefaction temperature by the gas sent from the low pressure distillation column 7 and then supplied to the bottom of the high pressure distillation column 6.

他方、タービン駆動昇圧器4方向へ導かれた圧縮空気は、該昇圧器4で昇圧された後、主熱交換器3で冷却されて当該主熱交換器3の中間部から抜出された後、今度は膨張タービン5に入り、断熱膨張により減圧されると共に更に冷却されてから、低圧蒸留塔7の中間部に供給される。該減圧空気は低圧蒸留装置を低温に維持すると共に、液化分離に必要な冷熱を供給する。   On the other hand, the compressed air guided in the direction of the turbine-driven booster 4 is boosted by the booster 4, cooled by the main heat exchanger 3, and extracted from the intermediate portion of the main heat exchanger 3. This time, the gas enters the expansion turbine 5, is depressurized by adiabatic expansion and is further cooled, and then is supplied to the intermediate portion of the low pressure distillation column 7. The reduced-pressure air keeps the low-pressure distillation apparatus at a low temperature and supplies cold heat necessary for liquefaction separation.

また熱交換器13へ導かれる圧縮空気は、液体貯槽(液状酸素タンク12)から送給されてくる液状酸素を加熱蒸発させて製品酸素(気体)とする一方、圧縮空気は液状空気となって高圧蒸留塔6の底部へ供給される。尚、熱交換器13へ導かれる圧縮空気は、例えば図2に示す様に途中でブースターコンプレッサー19等で更に高圧に圧縮してもよい。   The compressed air introduced to the heat exchanger 13 is heated and evaporated from the liquid oxygen supplied from the liquid storage tank (liquid oxygen tank 12) to produce product oxygen (gas), while the compressed air becomes liquid air. It is supplied to the bottom of the high pressure distillation column 6. The compressed air guided to the heat exchanger 13 may be compressed to a higher pressure by a booster compressor 19 or the like on the way as shown in FIG.

この際、図3に示す様に蒸発器13で液化した空気を原料貯槽(液状空気タンク18)で貯溜することによって、製品酸素の需要量変動に伴う原料空気量の変動を吸収する構成を採用してもよい。すなわち製品酸素需要量の変動にもかかわらず、液状酸素タンク12と液状空気タンク18が緩衝帯となって、製品酸素の濃度低下を招くことなく、空気分離装置全体としては常に効率の高い状態を維持しつつ需要量の変動を吸収することが可能となる。   At this time, as shown in FIG. 3, the air liquefied by the evaporator 13 is stored in the raw material storage tank (liquid air tank 18), thereby adopting a configuration that absorbs the fluctuation of the raw material air amount due to the fluctuation in the demand amount of product oxygen. May be. In other words, the liquid oxygen tank 12 and the liquid air tank 18 serve as buffer zones in spite of fluctuations in the product oxygen demand, and the air separation device as a whole is always in a highly efficient state without causing a decrease in the product oxygen concentration. It is possible to absorb fluctuations in demand while maintaining it.

高圧蒸留塔6の底部へ供給された圧縮空気は、高圧蒸留塔6内を上昇していく過程で高沸点成分である酸素は凝縮し還流液となって流下し、残りの気体は窒素濃度が高められつつ塔頂へと上昇していく。他方、塔内を流下する液状空気中に含まれる低沸点成分の窒素は、窒素濃度の高い上昇ガスに捕捉されつつ高圧蒸留塔6内を上昇するので、高圧蒸留塔6の底部には酸素濃度の高められた液状空気が貯留することになる。   The compressed air supplied to the bottom of the high-pressure distillation column 6 condenses oxygen as a high-boiling component in the process of rising in the high-pressure distillation column 6 and flows down as a reflux liquid, and the remaining gas has a nitrogen concentration. Ascending to the top of the tower. On the other hand, the low-boiling component nitrogen contained in the liquid air flowing down in the column rises in the high-pressure distillation column 6 while being trapped by the rising gas having a high nitrogen concentration, so that there is an oxygen concentration at the bottom of the high-pressure distillation column 6. The increased liquid air will be stored.

こうして高圧蒸留塔6の上部には窒素濃度の高い窒素リッチガスが滞留する。この窒素リッチガスは管路21により低圧蒸留塔7の底部に配置された主凝縮器8へ導かれ、低圧蒸留塔7の底部に溜まっている液状酸素を加熱しつつ冷却されて液化し、管路22を降下して高圧蒸留塔6の上部23へ戻る。   Thus, a nitrogen-rich gas with a high nitrogen concentration stays in the upper part of the high-pressure distillation column 6. This nitrogen-rich gas is led to the main condenser 8 disposed at the bottom of the low-pressure distillation column 7 by the pipe line 21 and is cooled and liquefied while heating the liquid oxygen accumulated at the bottom of the low-pressure distillation tower 7. 22 is lowered and returned to the upper part 23 of the high-pressure distillation column 6.

そして上記窒素リッチ液の一部は窒素リッチ液供給路24から過冷却器9へ導かれて冷却された後、減圧弁10で減圧されてから低圧蒸留塔7の上部へ導かれ、残りは還流液として高圧蒸留塔6内を流下する。一方、高圧蒸留塔6の底部に溜まった酸素リッチ液は、酸素リッチ液供給路25から過冷却器9へ導かれて冷却された後、減圧弁11で減圧されてから低圧蒸留塔7の中間部へ供給される。   A part of the nitrogen-rich liquid is led from the nitrogen-rich liquid supply path 24 to the supercooler 9 and cooled, and then depressurized by the pressure reducing valve 10 and then led to the upper part of the low-pressure distillation column 7, and the rest is refluxed The liquid flows down in the high-pressure distillation column 6 as a liquid. On the other hand, the oxygen-rich liquid accumulated at the bottom of the high-pressure distillation column 6 is led from the oxygen-rich liquid supply path 25 to the supercooler 9 and cooled, and then the pressure is reduced by the pressure reducing valve 11 and then the middle of the low-pressure distillation column 7. Supplied to the department.

次に低圧蒸留塔7では、上部から供給される窒素リッチ液が塔内を流下していく過程で、低沸点成分の窒素は気化して塔頂部方向へ上昇し、高沸点成分の酸素は液状のままで流下する。一方、低圧蒸留塔7の中間部に供給される酸素リッチ液も同様にして成分分離が行なわれ、窒素は塔頂部方向へ、酸素は塔底部方向へ移動する。かくして、低圧蒸留塔7の塔頂部には高濃度の気体窒素が溜まり、塔底部には高濃度の液状酸素が溜まる。   Next, in the low-pressure distillation column 7, in the process in which the nitrogen-rich liquid supplied from above flows down in the column, the low-boiling component nitrogen is vaporized and rises toward the top of the column, and the high-boiling component oxygen is liquid. It flows down as it is. On the other hand, the oxygen-rich liquid supplied to the intermediate portion of the low-pressure distillation column 7 is similarly subjected to component separation, and nitrogen moves toward the top of the column and oxygen moves toward the bottom of the column. Thus, high concentration gaseous nitrogen accumulates at the top of the low pressure distillation column 7 and high concentration liquid oxygen accumulates at the bottom of the column.

低圧蒸留塔7の底部に溜まった液状酸素は、液状酸素供給路15を通して液状酸素タンク12へ導かれ、ここから酸素需要量に応じて管路26に設けられた加圧手段17によって加圧され、該液状酸素タンク12の底部から熱交換器13方向へ送られ、ここで液状酸素は圧縮空気との熱交換により加熱されて気体となり、製品酸素供給路100から製品酸素ガスとして送出される。この際、図2に示す様に必要に応じて管路15に送出ポンプ16を設けて液状酸素を昇圧してもよい。また送出ポンプ16は管路99に設けてもよい。   The liquid oxygen accumulated at the bottom of the low pressure distillation column 7 is led to the liquid oxygen tank 12 through the liquid oxygen supply path 15 and is pressurized by the pressurizing means 17 provided in the pipe line 26 according to the oxygen demand. The liquid oxygen is sent from the bottom of the liquid oxygen tank 12 toward the heat exchanger 13, where the liquid oxygen is heated to gas by heat exchange with the compressed air, and is sent from the product oxygen supply path 100 as product oxygen gas. At this time, as shown in FIG. 2, if necessary, a delivery pump 16 may be provided in the pipe line 15 to increase the pressure of the liquid oxygen. The delivery pump 16 may be provided in the pipe line 99.

図中、100aは低圧蒸留塔の底部の酸素ガスの一部を抜出し、主熱交換器3で圧縮空気との熱交換により加熱してから製品酸素ガスとして直接取出すためのラインであり、製品酸素ガス需要量に応じて図示しない弁の開度を調節し、管路100aから抜出す製品酸素ガス量を調整することもできる。   In the figure, 100a is a line for extracting a part of the oxygen gas at the bottom of the low-pressure distillation column, heating it by heat exchange with the compressed air in the main heat exchanger 3, and then taking it out directly as product oxygen gas. It is also possible to adjust the amount of product oxygen gas extracted from the pipe line 100a by adjusting the opening of a valve (not shown) according to the gas demand.

他方、低圧蒸留塔7の塔頂部の気体窒素は、気体窒素供給路27を通して過冷却器9から、主熱交換器3へ導かれ、熱交換により圧縮空気を冷却しつつ加熱され製品窒素ガスとして送出される。また低圧蒸留塔7内の残部ガス(窒素,酸素が混在するガス)の一部は塔内の圧力調整など必要に応じて図示しない弁の開度調節によって管路28から抜出され、過冷却器9、熱交換器13で圧縮空気を冷却しつつ加熱されて大気に放出される。尚、該残部ガスの一部は必要に応じて管路29から吸着精製装置2へ送り、吸着材の再生ガスとして利用することもできる。   On the other hand, the gaseous nitrogen at the top of the low-pressure distillation column 7 is led from the supercooler 9 to the main heat exchanger 3 through the gaseous nitrogen supply path 27 and is heated while cooling the compressed air by heat exchange as product nitrogen gas. Sent out. A part of the remaining gas (gas containing nitrogen and oxygen) in the low-pressure distillation column 7 is withdrawn from the conduit 28 by adjusting the opening of a valve (not shown) as necessary, such as pressure adjustment in the column, and is supercooled. The compressed air is cooled by the vessel 9 and the heat exchanger 13 and is released to the atmosphere. A part of the remaining gas can be sent from the pipe 29 to the adsorption purification apparatus 2 as necessary, and used as a regeneration gas for the adsorbent.

勿論、この空気分離装置は酸素、窒素のいずれか一方のみを原料空気から濃縮分離して製品ガスとして取出す様に構成してもよい。   Of course, this air separation device may be configured such that only one of oxygen and nitrogen is concentrated and separated from the raw air and taken out as product gas.

こうした空気分離装置の操業を停止させた後、再稼動する場合に、当該装置が定常運転になるまでの間に製品酸素ガスを取出す方法について図1、図7を参照しつつ説明する。図1は本発明の空気分離装置の代表例を示す概略図である。また図7は該装置の停止後、再稼動から定常運転に達するまでの状態を示すグラフであり、製品酸素送出量は管路100から取出される製品酸素ガス量、液状酸素蒸発量は熱交換器13における液状酸素の気化量を示す。   A method for taking out product oxygen gas before the operation of the air separation device is stopped and then restarted will be described with reference to FIGS. 1 and 7. FIG. 1 is a schematic view showing a typical example of the air separation device of the present invention. FIG. 7 is a graph showing the state from the restart of the apparatus until the steady operation is reached. The product oxygen delivery amount is the product oxygen gas amount taken out from the pipe 100, and the liquid oxygen evaporation amount is the heat exchange. The vaporization amount of liquid oxygen in the vessel 13 is shown.

本発明では、再稼動後、蒸留塔の純度調整運転を行なっている間、液体貯槽12内の液体を順次送り出すことによって、製品ガスを取出す。したがって本発明を実施するに当たっては、空気分離装置の操業停止中に液状酸素タンク12内の液状酸素量を増加させてもよい。また空気分離装置を定常運転している間に、製品酸素ガスの送出量を一定に保ちつつ、液状酸素タンク12内の液状酸素量を増加させるには、低圧蒸留塔7の底部から管路15を通して抜出す液状酸素量を増加させればよい。好ましくは空気分離装置の操業停止前に低圧蒸留塔7の底部に滞留した液状酸素を順次抜出し、それにより低圧蒸留塔7から液状酸素タンク12への液状酸素の抜出量を増加させて、液状酸素タンク12内の液状酸素量を増加させればよい。   In the present invention, after re-operation, the product gas is taken out by sequentially feeding the liquid in the liquid storage tank 12 during the purity adjustment operation of the distillation column. Therefore, in carrying out the present invention, the amount of liquid oxygen in the liquid oxygen tank 12 may be increased while the operation of the air separation device is stopped. In order to increase the amount of liquid oxygen in the liquid oxygen tank 12 while keeping the product oxygen gas delivery amount constant while the air separation device is in steady operation, the line 15 from the bottom of the low-pressure distillation column 7 is used. What is necessary is just to increase the amount of liquid oxygen withdrawn through. Preferably, liquid oxygen staying at the bottom of the low-pressure distillation column 7 is sequentially extracted before the operation of the air separation device is stopped, thereby increasing the amount of liquid oxygen extracted from the low-pressure distillation column 7 to the liquid oxygen tank 12 to be liquid. The amount of liquid oxygen in the oxygen tank 12 may be increased.

これによって低圧蒸留塔7の底部に滞留した液状酸素量は減少するが、低圧蒸留塔7内の液状酸素の液面が一定以上であれば、主凝縮器8の凝縮能力を維持できるため、主凝縮器8による窒素リッチガスの凝縮に必要な最小限の液状酸素量は残存させるべきである。   As a result, the amount of liquid oxygen staying at the bottom of the low-pressure distillation column 7 is reduced. However, if the liquid oxygen level in the low-pressure distillation column 7 is equal to or greater than a certain level, the condensation capacity of the main condenser 8 can be maintained. The minimum amount of liquid oxygen required for condensation of the nitrogen rich gas by the condenser 8 should remain.

ところで、低圧蒸留塔7の底部に滞留した液状酸素量は上記の如く順次抜出されるため、操業停止時には液面がかなり低下しているが、空気分離装置の操業を停止すると、低圧蒸留塔7内に設置されている蒸留トレーに溜まっている液状酸素が流下してくるため、図7に示す如く低圧蒸留塔7の底部に滞留した液状酸素量はすみやかに上昇する。   By the way, the liquid oxygen amount staying at the bottom of the low-pressure distillation column 7 is sequentially extracted as described above, so that the liquid level is considerably lowered when the operation is stopped, but when the operation of the air separation device is stopped, the low-pressure distillation column 7 Since the liquid oxygen accumulated in the distillation tray installed inside flows down, the amount of liquid oxygen staying at the bottom of the low pressure distillation column 7 rises quickly as shown in FIG.

低圧蒸留塔7の底部に滞留した液状酸素抜出し開始時期は特に限定されず、液状酸素タンク12への液状酸素排出量及び低圧蒸留塔7の底部に滞留した液状酸素貯溜量等を計算して、操業停止時に所望量の液状酸素が液状酸素タンク12に保持される様に適宜決定すればよい。   The timing for starting the extraction of liquid oxygen retained at the bottom of the low-pressure distillation column 7 is not particularly limited, and the amount of liquid oxygen discharged to the liquid oxygen tank 12 and the amount of liquid oxygen stored in the bottom of the low-pressure distillation column 7 are calculated. What is necessary is just to determine suitably so that a desired amount of liquid oxygen may be hold | maintained at the liquid oxygen tank 12 at the time of a stop of operation.

空気分離装置の操業を停止する際には、空気圧縮機1を停止して原料空気の供給を停止すると共に、製品ガスの取出しを停止し、低圧蒸留塔7と液状酸素貯槽12を結ぶ管路15に設けた液体抜出量調節弁40を閉止し、低圧蒸留塔7と液状酸素貯槽12を縁切りする。そのため図7に示す如く空気分離装置停止後は低圧蒸留塔7内、及び液状酸素タンク12内の液状酸素量は再稼動時までそのまま独立に保たれる。   When the operation of the air separation device is stopped, the air compressor 1 is stopped to stop the supply of raw material air, the product gas is stopped to be taken out, and the pipe line connecting the low pressure distillation column 7 and the liquid oxygen storage tank 12 15 is closed, and the low pressure distillation column 7 and the liquid oxygen storage tank 12 are cut off. Therefore, as shown in FIG. 7, after the air separator is stopped, the amount of liquid oxygen in the low-pressure distillation column 7 and in the liquid oxygen tank 12 is maintained as it is until restarting.

空気分離装置を再稼動するにあたっては、空気圧縮機1や吸着精製装置2を作動させて原料空気の供給を開始し、圧縮空気は分岐して主熱交換器3、タービン駆動昇圧器4、熱交換器13方向へ夫々所定量送給し、上記の如く高圧蒸留塔6、低圧蒸留塔7で蒸留操作を行い、系内が定常状態に達するまで(液状窒素や液状酸素は純度が所定値になるまで)純度調整運転が行なわれる。   In restarting the air separation device, the air compressor 1 and the adsorption purification device 2 are operated to start supplying the raw material air, and the compressed air is branched to the main heat exchanger 3, the turbine drive booster 4, the heat A predetermined amount is sent in the direction of the exchanger 13 and the distillation operation is performed in the high-pressure distillation column 6 and the low-pressure distillation column 7 as described above, until the system reaches a steady state (the purity of liquid nitrogen and liquid oxygen reaches a predetermined value). Purity adjustment operation is performed.

尚、本発明では再稼動後は液状酸素タンク12から液状酸素が熱交換器13へ送給されるため、熱交換器13へ導かれる圧縮空気は、再稼動の当初から液状酸素によって冷却することができ、液状空気として高圧蒸留塔6の底部に供給できる。したがって本発明によれば、従来よりも短時間で極低温の液状空気を高圧蒸留塔6の底部へ供給できる。   In the present invention, since liquid oxygen is supplied from the liquid oxygen tank 12 to the heat exchanger 13 after restarting, the compressed air led to the heat exchanger 13 is cooled by liquid oxygen from the beginning of the restart. Can be supplied to the bottom of the high-pressure distillation column 6 as liquid air. Therefore, according to the present invention, cryogenic liquid air can be supplied to the bottom of the high-pressure distillation column 6 in a shorter time than before.

従来、この再稼動後の純度調整運転中、即ち、定常化運転に至るまでの間は定常運転時の製品ガスと同等の純度を有する製品ガスを取出すことができなかった。しかしながら、上記の如く操業停止時に液状酸素タンク12内の液状酸素量を増加させておき、再稼動時も液体抜出調節弁40を閉止したまま、低圧蒸留塔7とは独立して液状酸素タンク12内の圧力を調整できる加圧手段17によって該液状酸素タンク12内の液体を熱交換器13方向へ圧送し、圧縮された原料空気を熱源として該液体を気化させれば、図6に示す如く純度調整運転中であっても、再稼動後、極短時間で所定純度の製品酸素ガスを管路100から取出すことができる。一方、液化された空気は高圧蒸留塔6の底部へ液体原料空気として供給されるため、精留塔(低圧蒸留塔7と高圧蒸留塔6を併せて精留塔という)の定常化運転が促進される。   Conventionally, during the purity adjustment operation after the re-operation, that is, until the steady operation, the product gas having the same purity as the product gas during the steady operation cannot be taken out. However, as described above, when the operation is stopped, the amount of liquid oxygen in the liquid oxygen tank 12 is increased, and the liquid extraction tank 40 is closed even during re-operation, and the liquid oxygen tank is independent of the low-pressure distillation column 7. When the liquid in the liquid oxygen tank 12 is pumped in the direction of the heat exchanger 13 by the pressurizing means 17 capable of adjusting the pressure in the gas 12, and the liquid is vaporized by using the compressed raw material air as a heat source, it is shown in FIG. As described above, even during the purity adjustment operation, the product oxygen gas having a predetermined purity can be taken out from the pipe line 100 in a very short time after re-operation. On the other hand, since the liquefied air is supplied to the bottom of the high-pressure distillation column 6 as liquid source air, steady operation of the rectification column (the low-pressure distillation column 7 and the high-pressure distillation column 6 are collectively referred to as a rectification column) is promoted. Is done.

この際、純度調整運転中の低圧蒸留塔7の底部に滞留している液状酸素純度が所定の値となるまでの間は、液体抜出調節弁40を閉止したまま、液状酸素タンク12内の液状酸素を熱交換器13方向へ圧送して製品ガスを取出すことが望ましい。   At this time, until the liquid oxygen purity staying at the bottom of the low-pressure distillation column 7 during the purity adjustment operation reaches a predetermined value, the liquid extraction control valve 40 is kept closed and the liquid oxygen tank 12 is closed. It is desirable to take out the product gas by pumping liquid oxygen toward the heat exchanger 13.

尚、液状酸素タンク12内の液状酸素は上記の如く操業停止までに低圧蒸留塔7から送給されたものであることが望ましいが、これとは別の供給源から供給されたものであってもよい。   The liquid oxygen in the liquid oxygen tank 12 is preferably supplied from the low-pressure distillation column 7 until the operation is stopped as described above, but is supplied from a different supply source. Also good.

加圧手段17は、液体抜出量調節弁40を閉止した際に低圧蒸留塔7とは独立して液状酸素タンク12内の圧力を調整する手段である。液状酸素タンク12内の液状酸素を熱交換器13方向へ送出すると、該液状酸素タンク12内の圧力は低下するので、液状酸素抜出量に応じて該液状酸素タンク12内の圧力を調整し、液状酸素を熱交換器13方向へ安定して送給できる様に加圧手段を稼動させることが必要である。したがって該加圧手段17は、該液状酸素タンク12内の液状酸素の一部を加圧し、該加圧された液状酸素を該液状酸素タンク12へ循環させる構成が望ましい。この際、液状酸素タンク12から熱交換器13方向へ送られる液体の圧力が所定値となる様に、加圧手段17から該液状酸素タンク12へ送給するのに必要な圧力を制御することが望ましい。図示例では、加圧手段17から液状酸素タンク12へ送給するのに必要な圧力を演算し制御する圧力演算・制御部PICを設け、液状酸素タンク12から熱交換器13方向へ送出される液状酸素の圧力を測定し、圧力調節弁41の開度を調節することによって液状酸素タンク12への加圧量を制御している。   The pressurizing means 17 is a means for adjusting the pressure in the liquid oxygen tank 12 independently of the low-pressure distillation column 7 when the liquid extraction amount adjusting valve 40 is closed. When the liquid oxygen in the liquid oxygen tank 12 is sent in the direction of the heat exchanger 13, the pressure in the liquid oxygen tank 12 decreases, so the pressure in the liquid oxygen tank 12 is adjusted according to the amount of liquid oxygen extracted. It is necessary to operate the pressurizing means so that liquid oxygen can be stably fed toward the heat exchanger 13. Therefore, it is desirable that the pressurizing unit 17 pressurizes a part of the liquid oxygen in the liquid oxygen tank 12 and circulates the pressurized liquid oxygen to the liquid oxygen tank 12. At this time, the pressure necessary to supply the liquid oxygen tank 12 from the pressurizing means 17 is controlled so that the pressure of the liquid sent from the liquid oxygen tank 12 toward the heat exchanger 13 becomes a predetermined value. Is desirable. In the illustrated example, a pressure calculation / control unit PIC for calculating and controlling the pressure required for feeding from the pressurizing means 17 to the liquid oxygen tank 12 is provided and sent from the liquid oxygen tank 12 toward the heat exchanger 13. The pressure of the liquid oxygen tank 12 is controlled by measuring the pressure of the liquid oxygen and adjusting the opening of the pressure control valve 41.

そして上記純度調整運転によって低圧蒸留塔7の底部に蓄積された液状酸素の純度が所定値に達した後は、液体抜出量調節弁40を開放して液状酸素を液状酸素タンク12へ供給すれば、容易に定常運転に切替えることができ、引き続き所定純度の酸素ガスをライン100から抜出すことができる。   After the purity of the liquid oxygen accumulated at the bottom of the low-pressure distillation column 7 reaches a predetermined value by the purity adjustment operation, the liquid discharge amount adjusting valve 40 is opened to supply the liquid oxygen to the liquid oxygen tank 12. Thus, the operation can be easily switched to the steady operation, and the oxygen gas having a predetermined purity can be continuously extracted from the line 100.

図4は本発明の他の実施例を示すもので、基本的には前記図1に示した例と同じであるが、定常運転時の低圧蒸留塔7からの液状酸素の抜出しに変更を加えている。即ち前掲の空気分離装置では、液状酸素は管路15を通して低圧蒸留器7から液状酸素タンク12へ送給しているのに対し、本例の空気分離装置では、定常運転時は低圧蒸留塔7内の液状酸素は主に液状酸素タンク12を通さずに直接主熱交換器3方向へ送給する構成を採用している。   FIG. 4 shows another embodiment of the present invention, which is basically the same as the example shown in FIG. 1 except that the extraction of liquid oxygen from the low-pressure distillation column 7 during steady operation is modified. ing. That is, in the air separation apparatus described above, liquid oxygen is fed from the low pressure distiller 7 to the liquid oxygen tank 12 through the pipe 15, whereas in the air separation apparatus of this example, the low pressure distillation column 7 is in a steady operation. The liquid oxygen inside is mainly fed directly to the main heat exchanger 3 without passing through the liquid oxygen tank 12.

以下、図4に基づいて、先に挙げた空気分離装置とは異なる部分について説明する。尚、前記図1と同じ機器、設備には図1と同じ番号を付している。   Hereinafter, a different part from the air separation apparatus mentioned above is demonstrated based on FIG. The same equipment and equipment as in FIG. 1 are assigned the same numbers as in FIG.

この例では、主熱交換器3へ送られた圧縮空気は、低圧蒸留塔7の塔頂から送出される製品窒素、低圧蒸留塔7の上部から送出される残部ガス、及び低圧蒸留塔7の底部から送出される酸素との熱交換により液化温度付近まで冷却された後、高圧蒸留塔6の底部へ供給される。   In this example, the compressed air sent to the main heat exchanger 3 is the product nitrogen sent from the top of the low pressure distillation column 7, the remaining gas sent from the top of the low pressure distillation column 7, and the low pressure distillation column 7. After being cooled to near the liquefaction temperature by heat exchange with oxygen delivered from the bottom, it is supplied to the bottom of the high-pressure distillation column 6.

一方、熱交換器13へ導かれる液状酸素は、圧縮空気により加熱されて製品酸素(気体)となり管路100から取出される。   On the other hand, the liquid oxygen guided to the heat exchanger 13 is heated by the compressed air to become product oxygen (gas) and is taken out from the conduit 100.

この様な空気分離装置の定常運転において、低圧蒸留塔7で精製されることにより得られる液状酸素量は一定であるため、製品酸素の送出要求量が変化した場合、例えば送出要求量が減少した場合には、蒸留によって得られる液状酸素が余剰となる。そこで該余剰の液状酸素を液状酸素タンク12に滞留させて吸収することにより、製品酸素需要量の変動に対応する。反対に製品酸素の送出要求量が増加した場合には、液状酸素タンク12に貯えた液状酸素を供給することにより対応すればよい。したがって、液状酸素は送出要求量に応じて管路15から抜出すと共に、送出要求量の変動に応じて液体抜出量調節弁40を開閉調節することにより管路15を通して余剰液状酸素を液状酸素タンク12へ送給する。また液状酸素タンク12に滞留している液状酸素は、弁43を開く方向に調節すると共に、加圧手段14を作動させることによって、低圧蒸留塔7から該液状酸素タンク12へ液状酸素が供給されない場合であっても、液状酸素タンク12から液状酸素を圧送することができる。   In such a steady operation of the air separation device, the amount of liquid oxygen obtained by purification in the low pressure distillation column 7 is constant, so when the required amount of product oxygen is changed, for example, the required amount of delivery is reduced. In some cases, liquid oxygen obtained by distillation becomes surplus. Therefore, the excess liquid oxygen is retained in the liquid oxygen tank 12 and absorbed to cope with fluctuations in the product oxygen demand. On the other hand, when the required amount of product oxygen is increased, liquid oxygen stored in the liquid oxygen tank 12 may be supplied. Accordingly, liquid oxygen is extracted from the pipe line 15 in accordance with the delivery request amount, and excess liquid oxygen is removed from the liquid oxygen through the pipe line 15 by opening and closing the liquid withdrawal amount adjustment valve 40 in accordance with fluctuations in the delivery request quantity. Feed to tank 12. Further, the liquid oxygen staying in the liquid oxygen tank 12 is adjusted so that the valve 43 is opened, and the pressurizing means 14 is operated so that the liquid oxygen is not supplied from the low-pressure distillation column 7 to the liquid oxygen tank 12. Even in this case, liquid oxygen can be pumped from the liquid oxygen tank 12.

こうした空気分離装置の操業を停止させた後、再稼動する場合に、当該装置が定常運転になるまでの製品酸素ガスの取出し方法についても、基本的には前記図1の場合と同じである。また好ましくは低圧蒸留塔7の底部の液状酸素量を最小値(凝縮器8における必要最低量)以上残存させつつ、空気分離装置の操業中に液状酸素タンク12内に留保する液状酸素量を増加させればよい。   When the operation of such an air separation device is stopped and then restarted, the method for taking out product oxygen gas until the device is in a steady operation is basically the same as in FIG. Preferably, the amount of liquid oxygen retained in the liquid oxygen tank 12 during operation of the air separation device is increased while the amount of liquid oxygen at the bottom of the low-pressure distillation column 7 remains more than the minimum value (required minimum amount in the condenser 8). You can do it.

空気分離装置の操業を停止するにあたっては、液体抜出量調節弁40を閉止して低圧蒸留塔7と液状酸素タンク12を縁切りすると共に、弁42を閉止することにより低圧蒸留塔7からの液状酸素の取出しを停止する。そのため空気分離装置停止後は、低圧蒸留塔7内、及び液状酸素タンク12内の液状酸素量は再稼動時までそのまま保持される。   In stopping the operation of the air separation device, the liquid extraction amount adjusting valve 40 is closed to cut off the low-pressure distillation column 7 and the liquid oxygen tank 12, and the valve 42 is closed to close the liquid from the low-pressure distillation column 7. Stop oxygen removal. Therefore, after the air separation device is stopped, the amount of liquid oxygen in the low-pressure distillation column 7 and the liquid oxygen tank 12 is maintained as it is until it is restarted.

空気分離装置を再稼動するにあたっては、上記の如く系内が定常状態になるまで純度調整運転を行なう必要がある。図示例の場合、液状酸素は液状酸素タンク12から熱交換器13及び主熱交換器3方向へ送られるため、再稼動の当初から主熱交換器3及び熱交換器13へ導かれる圧縮空気を熱交換(冷却)して液状空気とし、高圧蒸留塔6の底部へ供給できる。   When the air separation device is restarted, it is necessary to perform a purity adjustment operation until the inside of the system reaches a steady state as described above. In the case of the illustrated example, liquid oxygen is sent from the liquid oxygen tank 12 toward the heat exchanger 13 and the main heat exchanger 3, so that compressed air introduced to the main heat exchanger 3 and the heat exchanger 13 from the beginning of re-operation is used. Heat exchange (cooling) can be performed to form liquid air, which can be supplied to the bottom of the high-pressure distillation column 6.

また低圧蒸留塔7の下部に滞留している液状酸素の純度が所定の値に達するまでの間は、液体抜出調節弁40と弁42を閉止したまま、液状酸素タンク12内の液状酸素を熱交換器13及び主熱交換器3方向へ圧送すればよい。   Further, until the purity of the liquid oxygen staying in the lower part of the low-pressure distillation column 7 reaches a predetermined value, the liquid oxygen in the liquid oxygen tank 12 is removed while the liquid extraction control valve 40 and the valve 42 are closed. What is necessary is just to pressure-feed to the heat exchanger 13 and the main heat exchanger 3 direction.

低圧蒸留塔7の底部に蓄積された液状酸素の純度が所定値に達した後は、製品酸素の送出要求量と蓄積された上記液状酸素量に応じて弁42を開放方向に調節すると共に、弁43を閉止方向に調節し、低圧蒸留塔7からの酸素抜出し量を増加させ、最終的には上記の如く定常運転に切替える。また加圧手段14からの圧力も上記の如く液状酸素タンク12からの液状酸素送出量に応じて調整すればよい。   After the purity of the liquid oxygen accumulated at the bottom of the low pressure distillation column 7 reaches a predetermined value, the valve 42 is adjusted in the opening direction according to the required amount of product oxygen delivered and the amount of accumulated liquid oxygen, and The valve 43 is adjusted in the closing direction to increase the amount of oxygen extracted from the low-pressure distillation column 7, and finally the operation is switched to the steady operation as described above. The pressure from the pressurizing means 14 may be adjusted according to the amount of liquid oxygen delivered from the liquid oxygen tank 12 as described above.

図5,図6は製品窒素の製造方法を示す実施態様であり、基本的には前記図1〜4に示した例と同じである。尚、前記図1と同じ機器、設備には図1と同じ番号を付している。   FIGS. 5 and 6 show an embodiment of a method for producing product nitrogen, which is basically the same as the example shown in FIGS. The same equipment and equipment as in FIG. 1 are assigned the same numbers as in FIG.

図5では熱交換器13方向へ送られた圧縮空気は、主凝縮器8で凝縮された液状窒素を貯溜する液状窒素タンク12aから送出される液状窒素により冷やされ、液状空気となって高圧蒸留塔6の底部へ供給される。一方、熱交換器13へ導かれる液状窒素は圧縮空気によって蒸発されて製品窒素(気体)となって管路100から取出される。主熱交換器3へ送給された圧縮空気は高圧蒸留塔6の頂部から送出される製品窒素、残部ガスによって液化温度付近まで冷却され、その後、高圧蒸留塔6の底部に供給される。   In FIG. 5, the compressed air sent in the direction of the heat exchanger 13 is cooled by the liquid nitrogen sent from the liquid nitrogen tank 12a that stores the liquid nitrogen condensed in the main condenser 8, and becomes high-pressure distillation as liquid air. Feed to the bottom of column 6. On the other hand, the liquid nitrogen led to the heat exchanger 13 is evaporated by compressed air to become product nitrogen (gas) and taken out from the pipe line 100. The compressed air fed to the main heat exchanger 3 is cooled to near the liquefaction temperature by the product nitrogen sent from the top of the high-pressure distillation column 6 and the remaining gas, and then supplied to the bottom of the high-pressure distillation column 6.

液状窒素は送出要求量に応じて管路15aから抜出されると共に、送出要求量の変動に応じて液体抜出量調節弁40を開閉調節することによって、管路15を通して余剰液状窒素を液状窒素タンク12aへ送給し、送出要求量の調整を図る。   Liquid nitrogen is extracted from the pipe line 15a in accordance with the requested delivery amount, and the liquid extraction amount adjusting valve 40 is opened and closed in accordance with fluctuations in the requested delivery quantity, whereby excess liquid nitrogen is converted into liquid nitrogen through the pipeline 15. The feed is sent to the tank 12a and the delivery request amount is adjusted.

こうした空気分離装置の操業を停止させた後、再稼動する場合に、当該装置が定常運転になるまでの製品窒素ガスの取出し方法についても、基本的には上記図1の場合と同じである。即ち、液状窒素タンク12a内の液状窒素量を増加させればよい。   When the operation of the air separation device is stopped and then restarted, the method for taking out product nitrogen gas until the device is in a steady operation is basically the same as in the case of FIG. That is, the amount of liquid nitrogen in the liquid nitrogen tank 12a may be increased.

空気分離装置の操業を停止するにあたっては、液体抜出量調節弁40を閉止して高圧蒸留塔6と液状窒素タンク12aを縁切りすると共に、弁42を閉止して高圧蒸留塔6内の窒素ガスの取出しを停止する。そのため空気分離装置停止後は高圧蒸留塔6内、及び液状窒素タンク12a内の液状窒素量は再稼動時までそのまま保持される。   In stopping the operation of the air separation device, the liquid extraction amount adjusting valve 40 is closed to cut off the high pressure distillation column 6 and the liquid nitrogen tank 12a, and the valve 42 is closed to close the nitrogen gas in the high pressure distillation column 6. Stop taking out. Therefore, after the air separation device is stopped, the amount of liquid nitrogen in the high-pressure distillation column 6 and in the liquid nitrogen tank 12a is maintained as it is until it is restarted.

空気分離装置を再稼動するにあたっては、高圧蒸留塔6で生成する窒素純度が低いため系内が定常状態になるまで純度調整運転を行なう必要がある。   When the air separation device is restarted, the purity adjustment operation needs to be performed until the inside of the system is in a steady state because the purity of nitrogen produced in the high-pressure distillation column 6 is low.

高圧蒸留塔6の液状窒素純度が所定の値となるまでの間は、液体抜出調節弁40、弁44を閉止したまま、液状窒素タンク12a内の液状窒素を蒸発器13方向へ圧送して製品ガスを取出す。   Until the liquid nitrogen purity in the high-pressure distillation column 6 reaches a predetermined value, the liquid nitrogen in the liquid nitrogen tank 12a is pumped toward the evaporator 13 while the liquid extraction control valve 40 and the valve 44 are closed. Remove product gas.

尚、図示例の場合、液状窒素は液状窒素タンク12aから熱交換器13方向へ送給されるため、再稼動当初から熱交換器13へ導かれる圧縮空気を熱交換(冷却)して液状空気とし、高圧蒸留塔6の底部へ供給できる。したがって図示例の場合、従来よりも速やかに、且つ効率良く極低温の液状空気を高圧蒸留塔6の底部へ供給できる。   In the case of the illustrated example, liquid nitrogen is fed from the liquid nitrogen tank 12a toward the heat exchanger 13, so that the compressed air guided to the heat exchanger 13 from the beginning of the restart is heat-exchanged (cooled) to obtain liquid air. And can be supplied to the bottom of the high-pressure distillation column 6. Therefore, in the case of the illustrated example, liquid air at a very low temperature can be supplied to the bottom of the high-pressure distillation column 6 more quickly and efficiently than in the past.

高圧蒸留塔6の窒素ガスの純度が所定値に達した後、製品窒素の送出要求量及び該蓄積された液状酸素量に応じて液体抜出量調節弁40や弁42の開度を調節し、最終的には上記の如く定常運転に切替えて引き続き製品窒素をライン100から抜出せばよい。また加圧手段17からの圧力も、上記の如く液状窒素タンク12aからの液状窒素送出量に応じて調整すればよい。   After the purity of the nitrogen gas in the high-pressure distillation column 6 reaches a predetermined value, the opening degree of the liquid discharge amount adjusting valve 40 and the valve 42 is adjusted in accordance with the requested amount of product nitrogen and the amount of accumulated liquid oxygen. Finally, it is sufficient to switch to the steady operation as described above and continuously extract the product nitrogen from the line 100. The pressure from the pressurizing means 17 may be adjusted according to the amount of liquid nitrogen delivered from the liquid nitrogen tank 12a as described above.

図6は本発明の他の実施例を示すもので、基本的には前記図5に示した例と同じであるが、熱交換器13では液状窒素の蒸発のみが行なわれ、常温までの昇温は主熱交換器3で行なわれている。   FIG. 6 shows another embodiment of the present invention, which is basically the same as the example shown in FIG. 5 except that only the liquid nitrogen is evaporated in the heat exchanger 13 and the temperature rises to room temperature. Temperature is performed in the main heat exchanger 3.

以下、図6に基づいて、先に挙げた空気分離装置とは異なる部分について説明する。尚、前記図5と同じ機器、設備には図5と同じ番号を付している。   Hereinafter, based on FIG. 6, a different part from the air separation apparatus mentioned above is demonstrated. The same equipment and equipment as in FIG. 5 are assigned the same numbers as in FIG.

この例では、主熱交換器3へ送られた圧縮空気は、高圧蒸留塔6の頂部から送出される製品窒素、及び残部ガスにより液化温度付近まで冷やされて高圧蒸留塔6の底部へ供給される。   In this example, the compressed air sent to the main heat exchanger 3 is cooled to near the liquefaction temperature by the product nitrogen sent from the top of the high pressure distillation column 6 and the remaining gas, and is supplied to the bottom of the high pressure distillation column 6. The

こうした空気分離装置の操業を停止させた後、再稼動する場合に、当該装置が定常運転になるまでの製品窒素ガスの取出し方法についも基本的には上記図5の場合と同じである。即ち、液状窒素タンク12a内の液状窒素量を増加させればよい。   When the operation of such an air separation device is stopped and then restarted, the method of taking out product nitrogen gas until the device becomes a steady operation is basically the same as in the case of FIG. That is, the amount of liquid nitrogen in the liquid nitrogen tank 12a may be increased.

空気分離装置の操業を停止するにあたっては、液体抜出量調節弁40を閉止して高圧蒸留塔7と液状窒素タンク12aを縁切りすると共に、弁42を閉止して高圧蒸留塔6内の液状窒素の取出しを停止する。そのため空気分離装置停止後は、高圧蒸留塔7内、及び液状窒素タンク12a内の液状酸素量は再稼動時までそのまま保持される。   In stopping the operation of the air separation device, the liquid extraction amount adjusting valve 40 is closed to cut off the high pressure distillation column 7 and the liquid nitrogen tank 12a, and the valve 42 is closed to liquid nitrogen in the high pressure distillation column 6. Stop taking out. Therefore, after the air separation device is stopped, the amount of liquid oxygen in the high-pressure distillation column 7 and the liquid nitrogen tank 12a is maintained as it is until it is restarted.

空気分離装置を再稼動するにあたっては、上記の如く系内が定常状態になるまで純度調整運転を行なう。図示例の場合、液状窒素タンク12a内の液状窒素は熱交換器13方向へ送給された後、更に主熱交換器3方向へ送給されるため、再稼動の当初から主熱交換器3及び熱交換器13へ導かれる圧縮空気を熱交換により冷却し、液状空気として高圧蒸留塔6の底部へ供給できる。   When the air separation device is restarted, the purity adjustment operation is performed until the inside of the system reaches a steady state as described above. In the case of the illustrated example, since the liquid nitrogen in the liquid nitrogen tank 12a is fed in the direction of the heat exchanger 13 and then further fed in the direction of the main heat exchanger 3, the main heat exchanger 3 from the beginning of the restart. And the compressed air led to the heat exchanger 13 can be cooled by heat exchange and supplied to the bottom of the high-pressure distillation column 6 as liquid air.

また高圧蒸留塔6の上部に滞留している液状窒素純度が所定の値に達するまでの間は、液体抜出調節弁40及び弁42を閉止したまま、液状窒素タンク12a内の液状窒素を凝縮器13方向へ圧送すればよい。   The liquid nitrogen in the liquid nitrogen tank 12a is condensed while the liquid extraction control valve 40 and the valve 42 are closed until the purity of the liquid nitrogen staying in the upper portion of the high-pressure distillation column 6 reaches a predetermined value. What is necessary is just to pump in the direction of the vessel 13.

高圧蒸留塔6の頂部の窒素純度が所定値に達した後は、製品窒素の送出要求量に応じて弁42を開放方向に調節すると共に、弁43を閉止方向に調節し、最終的には上記の如く定常運転に切替えて引き続き高純度窒素をライン100から抜出すことができる。また加圧手段17からの圧力も液状窒素タンク12aからの液状窒素送出量に応じて調整すればよい。   After the nitrogen purity at the top of the high-pressure distillation column 6 reaches a predetermined value, the valve 42 is adjusted in the opening direction and the valve 43 is adjusted in the closing direction according to the required amount of product nitrogen, and finally the valve 43 is adjusted in the closing direction. The high purity nitrogen can be continuously extracted from the line 100 by switching to the steady operation as described above. The pressure from the pressurizing means 17 may be adjusted according to the amount of liquid nitrogen delivered from the liquid nitrogen tank 12a.

本発明に係る空気分離装置を例示する概略説明図である。It is a schematic explanatory drawing which illustrates the air separation device concerning the present invention. 本発明の他の空気分離装置を例示する概略説明図である。It is a schematic explanatory drawing which illustrates the other air separation apparatus of this invention. 本発明の他の空気分離装置を例示する概略説明図である。It is a schematic explanatory drawing which illustrates the other air separation apparatus of this invention. 本発明の他の空気分離装置を例示する概略説明図である。It is a schematic explanatory drawing which illustrates the other air separation apparatus of this invention. 本発明の他の空気分離装置を例示する概略説明図である。It is a schematic explanatory drawing which illustrates the other air separation apparatus of this invention. 本発明の他の空気分離装置を例示する概略説明図である。It is a schematic explanatory drawing which illustrates the other air separation apparatus of this invention. 図1に示す空気分離装置の停止、再稼動から定常運転に達するまでの状態を示すグラフである。It is a graph which shows the state from the stop of the air separation apparatus shown in FIG.

符号の説明Explanation of symbols

1.原料空気圧縮機
2.吸着精製装置
3.13.熱交換器
4.タービン駆動昇圧器
5.膨張タービン
6.高圧蒸留塔
7.低圧蒸留塔
8.主凝縮器
9.過冷却器
10.11.減圧弁
12.液状酸素タンク
12a.液状窒素タンク
14.加圧手段
15.液状酸素供給路
16.送出ポンプ
17.加圧手段
18.液状空気タンク
19.ブースターコンプレッサー
21.22.26.99.管路
23.高圧蒸留塔6の上部
24.窒素リッチ液供給路
25.酸素リッチ液供給路
27.気体窒素供給路
40.液体抜出量調節弁
41.圧力調節弁41
42.43.44.弁
100.製品酸素供給路
1. 1. Raw material air compressor Adsorption purification apparatus 3.13. Heat exchanger 4. 4. Turbine drive booster Expansion turbine 6. 6. High pressure distillation column Low pressure distillation column8. Main condenser 9. Subcooler 10.11. Pressure reducing valve 12. Liquid oxygen tank 12a. Liquid nitrogen tank 14. Pressurizing means 15. Liquid oxygen supply path 16. Delivery pump 17. Pressurizing means 18. Liquid air tank 19. Booster compressor 21.22.26.99. Pipe line 23. Upper part of high-pressure distillation column 6 24. Nitrogen rich liquid supply path 25. Oxygen rich liquid supply path 27. Gas nitrogen supply path 40. Liquid withdrawal amount adjustment valve 41. Pressure control valve 41
42.43.44. Valve 100. Product oxygen supply channel

Claims (4)

原料空気を酸素と窒素に分離する高圧蒸留塔と低圧蒸留塔と、分離された液状の酸素または液状の窒素の一部を蒸留の操業中に貯溜する液体貯槽、および、圧縮された原料空気を熱源とし、前記液状酸素および/または液状窒素を気化させて製品ガスとする熱交換器を備えた空気分離装置において、
前記蒸留塔と前記液体貯槽を結ぶラインに液体抜出量調節弁が設けられており、該空気分離装置の再稼動に際して純度調整運転を行っている間は該液体抜出量調節弁を閉止することにより該蒸留塔と該液体貯槽を縁切りし、両者を独立させた状態とされ、該液体貯槽内の圧力を調整するための加圧手段を備えられ、該液体貯槽内の前記液状酸素および/または液状窒素を該液体貯槽へ循環送給させると共に、該液体貯槽内の前記液状酸素および/または液状窒素を、圧縮された原料空気を熱源とする熱交換器によって気化させて純度調整運転中の製品ガスとするものであることを特徴とする空気分離装置。
A high-pressure distillation column and a low-pressure distillation column for separating the raw air into oxygen and nitrogen, a liquid storage tank for storing a part of the separated liquid oxygen or liquid nitrogen during the distillation operation, and a compressed raw material air In an air separation apparatus comprising a heat exchanger as a heat source and vaporizing the liquid oxygen and / or liquid nitrogen into a product gas,
A liquid extraction amount adjustment valve is provided in a line connecting the distillation column and the liquid storage tank, and the liquid extraction amount adjustment valve is closed while the purity adjustment operation is performed when the air separation device is restarted. Accordingly, the distillation column and the liquid storage tank are separated from each other, and both are made independent, and a pressurizing means for adjusting the pressure in the liquid storage tank is provided, and the liquid oxygen in the liquid storage tank and / or Alternatively, liquid nitrogen is circulated and fed to the liquid storage tank, and the liquid oxygen and / or liquid nitrogen in the liquid storage tank is vaporized by a heat exchanger that uses compressed raw material air as a heat source to perform purity adjustment operation. An air separation device characterized by being a product gas.
前記液体貯槽と加圧手段とを結ぶラインに圧力調節弁が設けられると共に、前記加圧手段から液体貯槽へ送給するのに必要な圧力を演算し制御する圧力演算・制御部を備えている請求項1に記載の空気分離装置。   A pressure control valve is provided in a line connecting the liquid storage tank and the pressurizing means, and a pressure calculation / control unit that calculates and controls the pressure required to supply the liquid storage tank from the pressurization means. The air separation device according to claim 1. 前記熱交換器で熱源として利用した液状空気を貯溜する原料貯槽を備えている請求項1または2に記載の空気分離装置。   The air separation device according to claim 1, further comprising a raw material storage tank for storing liquid air used as a heat source in the heat exchanger. 前記熱交換器として、定常運転中に圧縮空気を熱源とする熱交換器のほかに、少なくとも再稼動時に液体貯槽から送給される前記液状酸素および/または液状窒素を、圧縮された原料空気を熱源として気化させる熱交換器を独立して備えたものである請求項1〜3のいずれかに記載の空気分離装置。   As the heat exchanger, in addition to a heat exchanger using compressed air as a heat source during steady operation, at least the liquid oxygen and / or liquid nitrogen supplied from the liquid storage tank at the time of re-operation, and compressed raw material air The air separation device according to any one of claims 1 to 3, further comprising a heat exchanger that vaporizes as a heat source.
JP2007122811A 2007-05-07 2007-05-07 Air separation device Expired - Lifetime JP4688843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007122811A JP4688843B2 (en) 2007-05-07 2007-05-07 Air separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007122811A JP4688843B2 (en) 2007-05-07 2007-05-07 Air separation device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002364342A Division JP3976188B2 (en) 2002-12-16 2002-12-16 Product gas production method using air separation device

Publications (2)

Publication Number Publication Date
JP2007205714A true JP2007205714A (en) 2007-08-16
JP4688843B2 JP4688843B2 (en) 2011-05-25

Family

ID=38485329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007122811A Expired - Lifetime JP4688843B2 (en) 2007-05-07 2007-05-07 Air separation device

Country Status (1)

Country Link
JP (1) JP4688843B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115507620A (en) * 2022-08-17 2022-12-23 中盐安徽红四方股份有限公司 Air separation device precooling system using hydraulic turbine drive pump and control system thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3060864B1 (en) * 2013-10-23 2020-10-07 Praxair Technology, Inc. Oxygen backup method and system
JP2022544643A (en) * 2019-08-23 2022-10-20 リンデ ゲゼルシャフト ミット ベシュレンクテル ハフツング Methods of operating heat exchangers, arrangements comprising heat exchangers and systems comprising corresponding arrangements

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347163A (en) * 1993-06-07 1994-12-20 L'air Liquide Method and equipment for supplying facility comsuming one component of air with gas under pressure
JPH08210770A (en) * 1995-02-02 1996-08-20 Daido Hoxan Inc High purity nitrogen gas preparation and apparatus used therefor
JPH09217192A (en) * 1996-02-09 1997-08-19 Nippon Parkerizing Co Ltd High-speed high-hardness iron-containing metal plating method of metallic material
JPH10259990A (en) * 1996-12-12 1998-09-29 L'air Liquide Method and plant for supplying gas of variable flow rate from air
JPH1163809A (en) * 1997-08-20 1999-03-05 Nippon Air Rikiide Kk Device and method for liquefying separation of air
JPH11325720A (en) * 1998-05-14 1999-11-26 Daido Hoxan Inc Manufacture of ultra-high-purity nitrogen gas and device therefor
JP2002340478A (en) * 2001-05-15 2002-11-27 Kobe Steel Ltd Air separator and method for controlling operation thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347163A (en) * 1993-06-07 1994-12-20 L'air Liquide Method and equipment for supplying facility comsuming one component of air with gas under pressure
JPH08210770A (en) * 1995-02-02 1996-08-20 Daido Hoxan Inc High purity nitrogen gas preparation and apparatus used therefor
JPH09217192A (en) * 1996-02-09 1997-08-19 Nippon Parkerizing Co Ltd High-speed high-hardness iron-containing metal plating method of metallic material
JPH10259990A (en) * 1996-12-12 1998-09-29 L'air Liquide Method and plant for supplying gas of variable flow rate from air
JPH1163809A (en) * 1997-08-20 1999-03-05 Nippon Air Rikiide Kk Device and method for liquefying separation of air
JPH11325720A (en) * 1998-05-14 1999-11-26 Daido Hoxan Inc Manufacture of ultra-high-purity nitrogen gas and device therefor
JP2002340478A (en) * 2001-05-15 2002-11-27 Kobe Steel Ltd Air separator and method for controlling operation thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115507620A (en) * 2022-08-17 2022-12-23 中盐安徽红四方股份有限公司 Air separation device precooling system using hydraulic turbine drive pump and control system thereof
CN115507620B (en) * 2022-08-17 2023-07-28 中盐安徽红四方股份有限公司 Air separation device precooling system applying hydraulic turbine driving pump and control system thereof

Also Published As

Publication number Publication date
JP4688843B2 (en) 2011-05-25

Similar Documents

Publication Publication Date Title
US5941098A (en) Method and plant for supplying a variable flow rate of a gas from air
US11346603B2 (en) Gas production system
EP2634517B1 (en) Process and apparatus for the separation of air by cryogenic distillation
JP4688843B2 (en) Air separation device
AU743283B2 (en) Method and installation for air distillation with production of argon
KR20160030400A (en) Method and device for oxygen production by low-temperature separation of air at variable energy consumption
JP3976188B2 (en) Product gas production method using air separation device
JPH0842962A (en) Method and equipment for separating air at low temperature
JP5005894B2 (en) Nitrogen generation method and apparatus used therefor
US9581386B2 (en) Apparatus and process for separating air by cryogenic distillation
JP4287771B2 (en) Air liquefaction separation apparatus and operation method thereof
JP3667875B2 (en) Air liquefaction separation method
JP4408211B2 (en) Pressure adjusting device for liquefied natural gas tank and pressure adjusting method thereof
JP2008057804A (en) Manufacturing method of refined argon
KR100694376B1 (en) Sub-zero air separation apparatus and an operating method of the same
JP3479277B2 (en) Variable oxygen flow delivery method and low temperature air separation device using the same
JP2003021456A (en) Internal pressurization type cold air separation equipment
JP2014112022A (en) Air separation device
JP3181482B2 (en) High-purity nitrogen gas production method and apparatus used therefor
KR102151725B1 (en) Crude argon liquid transfer device and cryogenic air separation facility having the same
JP4790979B2 (en) Air separation device with multiple condensers
JP5244491B2 (en) Air separation device
JP3999865B2 (en) Liquid oxygen purification method and apparatus used therefor
JPH1054656A (en) Air liquefying and separating device and method thereof
JP2003021457A (en) Internal pressurization type low-temperature air separation equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4688843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term