JPH1163809A - Device and method for liquefying separation of air - Google Patents

Device and method for liquefying separation of air

Info

Publication number
JPH1163809A
JPH1163809A JP22349897A JP22349897A JPH1163809A JP H1163809 A JPH1163809 A JP H1163809A JP 22349897 A JP22349897 A JP 22349897A JP 22349897 A JP22349897 A JP 22349897A JP H1163809 A JPH1163809 A JP H1163809A
Authority
JP
Japan
Prior art keywords
liquid
oxygen
condenser
liquid level
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22349897A
Other languages
Japanese (ja)
Other versions
JP3065968B2 (en
Inventor
Kazuhiko Miyashita
和彦 宮下
Masatoshi Aida
雅敏 會田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON AIR RIKIIDE KK
Original Assignee
NIPPON AIR RIKIIDE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON AIR RIKIIDE KK filed Critical NIPPON AIR RIKIIDE KK
Priority to JP9223498A priority Critical patent/JP3065968B2/en
Priority to EP98402052A priority patent/EP0908689A3/en
Priority to CN98118613A priority patent/CN1073865C/en
Priority to US09/136,965 priority patent/US6155078A/en
Publication of JPH1163809A publication Critical patent/JPH1163809A/en
Application granted granted Critical
Publication of JP3065968B2 publication Critical patent/JP3065968B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device and a method for liquefying separation of air to improve the steadiness of rectification since control rapidly follows up the change of a liquid level of cold in a condenser, by regulating a feed amount of a liquefied product. SOLUTION: An air liquefying separation device comprises a main heat- exchanger 7 to cool compressed raw material air; a fractionating tower 9S having a fractionating part 13 to guide raw material air and separate it into an oxygen enriched component and a nitrogen enriched component, and a condenser 35S to partially condense the latter; and a liquid nitrogen storage tank 31S to feed liquid nitrogen through a feed valve V3. The air liquefying separation device comprises a transfer route 18 through which oxygen enriched liquid flowing from the fractionating part 13 to a bottom is transferred to the condenser 35S without storing the oxygen enriched liquid; a liquid level detecting means to detect the height of a liquid surface of the oxygen enriched liquid stored at the condenser 35S; and a control means LIC to control the opening of a feed valve V3 based on an outoute therefrom, such that the liquid surface of the oxygen enriched liquid stored in the condenser is kept approximately at a set liquid level.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、精留塔を利用して
原料空気を分離する空気液化分離装置および空気液化分
離方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air liquefaction separation apparatus and method for separating raw air using a rectification column.

【0002】[0002]

【従来の技術】従来、この種の空気液化分離装置として
は、圧縮、冷却、及び不純物除去された原料空気を液化
点付近まで冷却する主熱交換器と、その冷却された原料
空気を導いて酸素濃縮成分と窒素成分とに分離する精留
部及び分離された窒素成分を一部凝縮させて還流液とす
る凝縮器を有する精留塔と、その精留塔に液体窒素を供
給弁を介して還流液の一部および寒冷源として供給する
液体窒素貯槽と、前記主熱交換器に寒冷を供給するため
の寒冷供給経路とを具備する空気液化分離装置が知られ
ていた。
2. Description of the Related Art Conventionally, as this type of air liquefaction / separation apparatus, a main heat exchanger that cools compressed, cooled, and impurity-free raw material air to near a liquefaction point, and guides the cooled raw material air are used. A rectification unit having a rectification unit that separates the oxygen-enriched component and the nitrogen component and a condenser that partially condenses the separated nitrogen component to obtain a reflux liquid, and supplies liquid nitrogen to the rectification column via a supply valve. There has been known an air liquefaction / separation apparatus including a liquid nitrogen storage tank for supplying a part of the reflux liquid and a cold source, and a cold supply path for supplying cold to the main heat exchanger.

【0003】かかる装置においては、例えば、外部から
取り入れた空気を圧縮器で圧縮してから冷凍機で冷却
し、更に吸着装置等によって二酸化炭素及び水などの不
純物を除去し、その原料空気を主熱交換器にて廃ガス等
の寒冷を利用して液化点付近まで冷却し、その冷却され
た原料空気を精留塔に導いて、その精留塔内の精留部で
酸素濃縮成分と窒素成分とに分離しつつ、分離された窒
素成分を凝縮器で一部凝縮させて還流液とする一方、液
体窒素貯槽から供給弁を介して液体窒素を還流液の一部
および寒冷源として前記精留塔に供給することで、主に
窒素ガスを製造していた。
In such an apparatus, for example, air taken in from the outside is compressed by a compressor, cooled by a refrigerator, and impurities such as carbon dioxide and water are removed by an adsorber or the like. Using a heat exchanger to cool the waste gas, etc. to near the liquefaction point, guide the cooled raw material air to the rectification tower, where the oxygen-enriched components and nitrogen While being separated into components, the separated nitrogen component is partially condensed by a condenser to form a reflux liquid, while liquid nitrogen is supplied from a liquid nitrogen storage tank via a supply valve as a part of the reflux liquid and as a cold source. By supplying the gas to the distillation tower, nitrogen gas was mainly produced.

【0004】そして、上記の装置においては、精留塔の
底部に貯留する酸素濃縮液を凝縮器に寒冷として移送し
て、その凝縮器に貯留しているが、製品ガスの消費量な
どが変化しても精留部での精留の定常性を保つために、
その上方又は精留塔外部に設置される前記凝縮器の凝縮
能力(冷却能力)をほぼ一定にすべく、凝縮器に貯留さ
れる前記酸素濃縮液の液面の高さをほぼ一定にする必要
があった。
[0004] In the above apparatus, the oxygen concentrate stored at the bottom of the rectification column is transferred to a condenser as cold, and stored in the condenser. Even in order to keep the rectification stationary in the rectification section,
In order to make the condensation capacity (cooling capacity) of the condenser installed above or outside the rectification tower almost constant, it is necessary to make the level of the oxygen concentrated liquid stored in the condenser almost constant. was there.

【0005】このような凝縮器内の寒冷の液位を制御す
る方法としては、従来より次のものが知られていた。即
ち、 特公昭61−46747号公報には、精留塔の底部に
貯留した液化空気を凝縮器に導入する量は調節せずに、
凝縮器内の寒冷の液位を検出しながら、還流液の一部お
よび寒冷源として供給する液体窒素の供給量を調節する
方法が提案されていた。
[0005] As a method for controlling the level of the cold in the condenser, the following method has been conventionally known. That is, Japanese Patent Publication No. 61-46747 discloses that the amount of liquefied air stored at the bottom of a rectification column is introduced into a condenser without adjusting the amount.
There has been proposed a method of adjusting a supply amount of a part of the reflux liquid and a supply amount of liquid nitrogen supplied as a cold source while detecting a cold liquid level in the condenser.

【0006】なお、上記と類似の方法として、 特開昭64−54187号公報には、製品窒素ガスの
圧力を検出して、精留塔の底部に貯留した液化空気(酸
素濃縮成分)を凝縮器に導入する液化空気量および製品
窒素ガス量を調整する方法が提案されているが、かかる
方法は、凝縮器内の寒冷の液位を積極的に変動させるこ
とによって、製品窒素ガスの消費量の変動に対応する技
術であり、凝縮器内の寒冷の液位をほぼ一定に保って、
凝縮器の凝縮能力(冷却能力)をほぼ一定にすることは
できない。
As a method similar to the above, Japanese Patent Application Laid-Open No. 64-54187 discloses a method of detecting the pressure of product nitrogen gas and condensing liquefied air (oxygen-enriched component) stored at the bottom of a rectification column. A method of adjusting the amount of liquefied air introduced into the condenser and the amount of product nitrogen gas has been proposed. However, such a method is intended to positively fluctuate the cold liquid level in the condenser to reduce the amount of product nitrogen gas consumed. Technology that responds to fluctuations in the
The condenser capacity (cooling capacity) of the condenser cannot be made almost constant.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記
の方法では、精留塔の底部に液化空気を貯留しているた
め、還流液の一部および寒冷源として供給する液体窒素
の供給量を調節しても、精留塔の底部から凝縮器に導く
経路内の流量がほとんど変化せず、その結果、凝縮器内
の寒冷の液位の変化に制御が追従できなくなり、凝縮器
内の寒冷の液位をほぼ一定に保って精留の定常性を保つ
ことができなかった。即ち、液化空気を精留塔の底部か
ら凝縮器に導く経路内の流量は、精留塔の底部の圧力お
よび凝縮器内の圧力や、その間の経路に設けられた弁の
開度等によって決定されるため、上記の制御による
と、せっかく液体窒素の供給量を調節して、その調節に
より精留塔の底部へ流下する液体空気の量が変化して
も、精留塔の底部に貯留する液化空気の貯留量が変化す
るだけで、前記経路内の流量はほとんど変化せず、その
ため凝縮器内の寒冷の液位の変化を補うだけの寒冷が供
給されなくなる。その結果、制御が凝縮器内の寒冷の液
位の変化に追従できなくなるため、極端な場合には凝縮
器内の寒冷が空になったり、満杯になったりする場合が
生じる。
However, in the above-mentioned method, since the liquefied air is stored at the bottom of the rectification column, the supply amounts of a part of the reflux liquid and the liquid nitrogen supplied as the cold source are adjusted. However, the flow rate in the path leading from the bottom of the rectification column to the condenser hardly changes, and as a result, control cannot follow the change in the cold liquid level in the condenser, and the cold liquid in the condenser cannot be controlled. It was not possible to keep the rectification stationary by keeping the position almost constant. That is, the flow rate in the path for guiding the liquefied air from the bottom of the rectification tower to the condenser is determined by the pressure at the bottom of the rectification tower, the pressure in the condenser, the opening degree of a valve provided in the path therebetween, and the like. Therefore, according to the above control, the supply amount of liquid nitrogen is adjusted, and even if the amount of liquid air flowing down to the bottom of the rectification column changes due to the adjustment, the liquid air is stored at the bottom of the rectification column. Only the amount of stored liquefied air changes, and the flow rate in the path hardly changes, so that the refrigeration is not supplied enough to compensate for the change in the refrigeration level in the condenser. As a result, the control cannot follow the change in the liquid level of the cold inside the condenser, and in extreme cases, the cold inside the condenser may become empty or full.

【0008】一方、酸素ガスを製造する場合には、複式
精留塔を用いた装置、即ち、前記と同様の冷却された原
料空気を導いて酸素濃縮成分と窒素成分とに分離する中
圧精留部及び分離された窒素成分を凝縮させて還流液と
する凝縮器を有する中圧精留塔と、その中圧精留塔の還
流液の一部を膨張弁を介して導いて還流液としつつ前記
中圧精留塔の底部から酸素濃縮成分を導いて酸素成分と
窒素成分とに分離する低圧精留部、及びその低圧精留部
から前記酸素成分の流入を許容する前記凝縮器の寒冷貯
留部を有する低圧精留塔と、その寒冷貯留部に液体酸素
を供給弁を介して供給する液体酸素貯槽と、前記主熱交
換器に寒冷を供給するための寒冷供給経路とを具備する
空気液化分離装置が主に用いられるが、前記中圧精留塔
の凝縮器についても、前記と同様の問題が生じやすい。
On the other hand, in the case of producing oxygen gas, an apparatus using a double rectification column, that is, a medium pressure rectifier for conducting cooled raw material air similar to that described above to separate it into an oxygen-enriched component and a nitrogen component. Medium-pressure rectification column having a condenser and a condenser that condenses the separated nitrogen component to obtain a reflux liquid, and a part of the reflux liquid of the medium-pressure rectification tower is guided through an expansion valve to obtain a reflux liquid. A low-pressure rectification section that conducts an oxygen-enriched component from the bottom of the medium-pressure rectification column to separate it into an oxygen component and a nitrogen component while cooling the condenser that permits the inflow of the oxygen component from the low-pressure rectification portion An air having a low-pressure rectification column having a storage section, a liquid oxygen storage tank for supplying liquid oxygen to the cold storage section via a supply valve, and a cold supply path for supplying cold to the main heat exchanger. A liquefaction separation device is mainly used, but regarding the condenser of the medium pressure rectification column , Said the same problem is likely to occur.

【0009】従って、本発明の目的は、上記欠点に鑑
み、液化製品等の供給量を調節することで、凝縮器内の
寒冷の液位の変化に迅速に制御が追従できるため、精留
の定常性を高めることができる空気液化分離装置および
空気液化分離方法を提供することにある。
Accordingly, an object of the present invention is to control the supply of liquefied products and the like in view of the above-mentioned drawbacks, so that the control can quickly follow the change in the cold liquid level in the condenser. An object of the present invention is to provide an air liquefaction / separation apparatus and an air liquefaction / separation method that can enhance the stationarity.

【0010】[0010]

【課題を解決するための手段】この目的を達成するため
の本発明の第一の特徴構成は、圧縮、冷却、及び不純物
除去された原料空気を液化点付近まで冷却する主熱交換
器と、その冷却された原料空気を導いて酸素濃縮成分と
窒素成分とに分離する精留部及び分離された窒素成分を
一部凝縮させて還流液とする凝縮器を有する精留塔と、
その精留塔に液体窒素を供給弁を介して還流液の一部お
よび寒冷源として供給する液体窒素貯槽と、前記主熱交
換器に寒冷を供給するための寒冷供給経路とを具備する
空気液化分離装置において、前記精留部から前記精留塔
の底部へ流下する酸素濃縮液を前記精留塔底部に貯留す
ることなく、前記凝縮器に寒冷として移送する移送経路
と、前記凝縮器に貯留される前記酸素濃縮液の液面の高
さを検出する液位検出手段と、その液位検出手段からの
出力に基づいて、前記凝縮器に貯留される前記酸素濃縮
液の液面がほぼ設定液位に保たれるように、前記液体窒
素の供給弁の開度を制御する制御手段とを備える点に有
る。
A first feature of the present invention to achieve this object is to provide a main heat exchanger for cooling compressed, cooled, and impurity-free raw material air to near a liquefaction point, A rectification unit having a condenser that guides the cooled raw material air to separate it into an oxygen-enriched component and a nitrogen component and a condenser that partially condenses the separated nitrogen component to obtain a reflux liquid,
Air liquefaction comprising a liquid nitrogen storage tank for supplying liquid nitrogen to the rectification column via a supply valve as a part of the reflux liquid and a cold source, and a cold supply path for supplying cold to the main heat exchanger. In the separation device, the oxygen-concentrated liquid flowing down from the rectifying section to the bottom of the rectification tower is stored in the condenser without being stored in the bottom of the rectification tower, and is transferred to the condenser in a cold state. Liquid level detecting means for detecting the level of the liquid level of the oxygen-concentrated liquid, and the liquid level of the oxygen-concentrated liquid stored in the condenser is substantially set based on the output from the liquid level detecting means. Control means for controlling the opening of the liquid nitrogen supply valve so that the liquid level is maintained.

【0011】また、本発明の第二の特徴構成は、圧縮、
冷却、及び不純物除去された原料空気を主熱交換器で液
化点付近まで冷却し、その冷却された原料空気を精留塔
に導いて、その精留塔内の精留部で酸素濃縮成分と窒素
成分とに分離しつつ、分離された窒素成分を凝縮器で一
部凝縮させて還流液とする一方、液体窒素貯槽から供給
弁を介して液体窒素を還流液の一部および寒冷源として
前記精留塔に供給することで、製品窒素ガスを製造する
空気液化分離方法において、前記精留部から前記精留塔
の底部へ流下する酸素濃縮液を前記精留塔底部に貯留す
ることなく、前記凝縮器に寒冷として移送すると共に、
前記凝縮器に貯留される前記酸素濃縮液の液面の高さを
液位検出手段で検出しつつ、その液位検出手段からの出
力に基づいて、前記凝縮器に貯留される前記酸素濃縮液
の液面がほぼ設定液位に保たれるように、前記液体窒素
の供給弁の開度を制御する点に有る。
[0011] A second feature of the present invention is compression,
Cooling and cooling the raw material air from which impurities have been removed to near the liquefaction point in the main heat exchanger, guide the cooled raw material air to the rectification column, and oxygen concentration components in the rectification section in the rectification column. While being separated into a nitrogen component, the separated nitrogen component is partially condensed by a condenser to obtain a reflux liquid, while liquid nitrogen is supplied as a part of the reflux liquid and a cold source from a liquid nitrogen storage tank via a supply valve. By supplying to the rectification column, in the air liquefaction and separation method for producing product nitrogen gas, without storing the oxygen concentrate flowing down from the rectification section to the bottom of the rectification column at the bottom of the rectification column, While transferring to the condenser as cold,
While detecting the level of the liquid level of the oxygen concentrated liquid stored in the condenser with a liquid level detecting means, based on the output from the liquid level detecting means, the oxygen concentrated liquid stored in the condenser is detected. Is to control the opening of the liquid nitrogen supply valve so that the liquid level of the liquid nitrogen is kept substantially at the set liquid level.

【0012】本発明の第三の特徴構成は、圧縮、冷却、
及び不純物除去された原料空気を液化点付近まで冷却す
る主熱交換器と、その冷却された原料空気を導いて酸素
濃縮成分と窒素成分とに分離する中圧精留部及び分離さ
れた窒素成分を凝縮させて還流液とする凝縮器を有する
中圧精留塔と、その中圧精留塔の還流液の一部を膨張弁
を介して導いて還流液としつつ前記中圧精留塔の底部か
ら酸素濃縮成分を導いて酸素成分と窒素成分とに分離す
る低圧精留部、及びその低圧精留部から前記酸素成分の
流入を許容する前記凝縮器の寒冷貯留部を有する低圧精
留塔と、その寒冷貯留部に液体酸素を供給弁を介して供
給する液体酸素貯槽と、前記主熱交換器に寒冷を供給す
るための寒冷供給経路とを具備する空気液化分離装置に
おいて、前記中圧精留塔の底部から前記低圧精留塔へ酸
素濃縮成分を導く移送経路を、前記底部へ流下する酸素
濃縮液を前記底部に貯留することなく移送する移送経路
とし、前記寒冷貯留部に貯留される前記寒冷の液面の高
さを検出する液位検出手段と、その液位検出手段からの
出力に基づいて、前記寒冷貯留部に貯留される前記寒冷
の液面がほぼ設定液位に保たれるように、前記液体酸素
の供給弁の開度を制御する制御手段とを備える点に有
る。
The third feature of the present invention is that compression, cooling,
A main heat exchanger that cools the raw material air from which impurities have been removed to near the liquefaction point, a medium-pressure rectification section that guides the cooled raw material air to separate it into an oxygen-enriched component and a nitrogen component, and a separated nitrogen component And a medium-pressure rectification column having a condenser that is used as a reflux liquid by condensing the medium-pressure rectification tower. A low-pressure rectification column having a low-pressure rectification unit that guides an oxygen-enriched component from the bottom to separate it into an oxygen component and a nitrogen component, and a cold storage unit of the condenser that allows the inflow of the oxygen component from the low-pressure rectification unit A liquid oxygen storage tank for supplying liquid oxygen to the cold storage unit via a supply valve, and a cold supply path for supplying cold to the main heat exchanger. Guide oxygen-enriched components from the bottom of the rectification column to the low-pressure rectification column A feed path, a transfer path for transferring the oxygen-concentrated liquid flowing down to the bottom without being stored in the bottom, and a liquid level detecting means for detecting the height of the cold liquid level stored in the cold storage unit; Controlling the opening degree of the liquid oxygen supply valve based on the output from the liquid level detecting means so that the level of the cold liquid stored in the cold storage section is maintained substantially at the set liquid level. Control means.

【0013】本発明の第四の特徴構成は、圧縮、冷却、
及び不純物除去された原料空気を主熱交換器で液化点付
近まで冷却し、その冷却された原料空気を中圧精留塔に
導いて、その中圧精留塔内の中圧精留部で酸素濃縮成分
と窒素成分とに分離しつつ、分離された窒素成分を凝縮
器で凝縮させて還流液とする一方、その還流液の一部を
膨張弁を介して低圧精留部の還流液として導きつつ、前
記中圧精留塔の底部から酸素濃縮成分を導いて前記低圧
精留部にて酸素成分と窒素成分とに分離し、前記低圧精
留部から前記酸素成分を前記凝縮器の寒冷貯留部に流入
させつつ、液体酸素貯槽から液体酸素を供給弁を介して
寒冷貯留部に供給することで、製品酸素ガスを製造する
空気液化分離方法において、前記中圧精留部から前記中
圧精留塔の底部へ流下する酸素濃縮液を前記中圧精留塔
底部に貯留することなく、前記低圧精留部に移送して精
留後に前記凝縮器の寒冷貯留部に寒冷として導入すると
共に、前記寒冷貯留部に貯留される前記寒冷の液面の高
さを液位検出手段で検出しつつ、その液位検出手段から
の出力に基づいて、前記寒冷貯留部に貯留される前記寒
冷の液面がほぼ設定液位に保たれるように、前記液体酸
素の供給弁の開度を制御する点に有る。
A fourth feature of the present invention is that compression, cooling,
The raw material air from which impurities have been removed is cooled to near the liquefaction point in the main heat exchanger, and the cooled raw material air is guided to a medium-pressure rectification column, where it is passed through a medium-pressure rectification section. While separating the oxygen-enriched component and the nitrogen component, the separated nitrogen component is condensed in a condenser to obtain a reflux liquid, and a part of the reflux liquid is used as a reflux liquid in a low-pressure rectification section via an expansion valve. While conducting, the oxygen-enriched component is guided from the bottom of the medium-pressure rectification column and separated into an oxygen component and a nitrogen component in the low-pressure rectification unit. In the air liquefaction separation method for producing product oxygen gas by supplying liquid oxygen from a liquid oxygen storage tank to a cold storage unit via a supply valve while flowing into the storage unit, the intermediate pressure rectification unit The oxygen concentrate flowing down to the bottom of the rectification column is stored at the bottom of the medium-pressure rectification column. Instead, after being transferred to the low-pressure rectification section and rectified and introduced into the cold storage section of the condenser as cold, the height of the cold liquid level stored in the cold storage section is measured by liquid level detection means. While detecting, based on the output from the liquid level detecting means, the opening degree of the liquid oxygen supply valve is adjusted so that the cold liquid level stored in the cold storage section is maintained at substantially the set liquid level. The point is to control.

【0014】〔作用効果〕そして、本発明の第一の特徴
構成によると、前記精留部から前記精留塔の底部へ流下
する酸素濃縮液を前記精留塔底部に貯留することなく、
前記凝縮器に寒冷として移送する移送経路を設けてある
ため、前記凝縮器に貯留される前記酸素濃縮液の液面の
高さを検出する液位検出手段からの出力に基づいて、制
御手段により前記液体窒素の供給弁の開度を制御するこ
とで、その制御により精留塔の底部へ流下する酸素濃縮
成分の量が調節され、それが直ちに凝縮器に移送される
ため、凝縮器内の寒冷の液位を迅速に調節することがで
きる。その結果、液化製品等の供給量を調節すること
で、凝縮器内の寒冷の液位の変化に迅速に制御が追従で
きるため、精留の定常性を高めることができる空気液化
分離装置を提供することができた。
According to the first feature of the present invention, the oxygen concentrate flowing down from the rectification section to the bottom of the rectification tower is not stored at the bottom of the rectification tower.
Since the condenser is provided with a transfer path for transferring the liquid in a cold state, the control unit controls the liquid based on the output from the liquid level detection unit that detects the height of the liquid level of the oxygen concentrated liquid stored in the condenser. By controlling the opening degree of the liquid nitrogen supply valve, the amount of the oxygen-enriched component flowing down to the bottom of the rectification column is adjusted by the control, and it is immediately transferred to the condenser. The cold liquid level can be adjusted quickly. As a result, by adjusting the supply amount of liquefied products, etc., the control can quickly follow the change in the cold liquid level in the condenser, so that an air liquefaction separation device capable of improving the rectification steadiness is provided. We were able to.

【0015】また、本発明の第二の特徴構成によると、
前記精留部から前記精留塔の底部へ流下する酸素濃縮液
を前記精留塔底部に貯留することなく、前記凝縮器に寒
冷として移送すると共に、前記凝縮器に貯留される前記
酸素濃縮液の液面の高さを液位検出手段で検出しつつ、
その液位検出手段からの出力に基づいて、前記凝縮器に
貯留される前記酸素濃縮液の液面がほぼ設定液位に保た
れるように、前記液体窒素の供給弁の開度を制御するた
め、上記と同様の作用を得ることができる。その結果、
液化製品等の供給量を調節することで、凝縮器内の寒冷
の液位の変化に迅速に制御が追従できるため、精留の定
常性を高めることができる空気液化分離方法を提供する
ことができた。
According to a second feature of the present invention,
The oxygen concentrated liquid flowing down from the rectification section to the bottom of the rectification tower without being stored at the bottom of the rectification tower, is transferred to the condenser as cold, and the oxygen concentrated liquid stored in the condenser is stored. While detecting the liquid level height by the liquid level detection means,
The opening degree of the liquid nitrogen supply valve is controlled based on the output from the liquid level detecting means so that the liquid level of the oxygen concentrated liquid stored in the condenser is kept substantially at the set liquid level. Therefore, the same operation as described above can be obtained. as a result,
It is possible to provide an air liquefaction / separation method capable of improving the rectification steadiness because the control can quickly follow the change in the cold liquid level in the condenser by adjusting the supply amount of the liquefied product or the like. did it.

【0016】また、本発明の第三の特徴構成によると、
前記中圧精留塔の底部から前記低圧精留塔へ酸素濃縮成
分を導く移送経路を、前記底部へ流下する酸素濃縮液を
前記底部に貯留することなく移送する移送経路としてあ
るため、上記と同様に底部へ流下する酸素濃縮液を直ち
に低圧精留塔に導くことができるので、制御手段により
前記液体酸素の供給弁の開度を制御することにより、複
式精留塔内への寒冷供給量の変化に対応して、精留の定
常性をより高めることができる。その結果、液体酸素の
供給量を調節することで、凝縮器内の寒冷の液位の変化
に迅速に制御が追従できるため、精留の定常性を高める
ことができる空気液化分離装置を提供することができ
た。
According to a third feature of the present invention,
Since the transfer path for guiding the oxygen-enriched component from the bottom of the medium-pressure rectification tower to the low-pressure rectification tower is a transfer path for transferring the oxygen-concentrated liquid flowing down to the bottom without storing it in the bottom, Similarly, since the oxygen concentrate flowing down to the bottom can be immediately led to the low-pressure rectification column, the amount of the cold supply into the double rectification column can be controlled by controlling the opening of the liquid oxygen supply valve by the control means. Rectification, the rectification can be made more consistent. As a result, by adjusting the supply amount of liquid oxygen, control can quickly follow a change in the liquid level of the cold in the condenser, and therefore, an air liquefaction / separation apparatus capable of improving the rectification steadiness is provided. I was able to.

【0017】また、本発明の第四の特徴構成によると、
前記中圧精留部から前記中圧精留塔の底部へ流下する酸
素濃縮液を前記中圧精留塔底部に貯留することなく、前
記低圧精留部に移送して精留後に前記凝縮器の寒冷貯留
部に寒冷として導入すると共に、前記寒冷貯留部に貯留
される前記寒冷の液面の高さを液位検出手段で検出しつ
つ、その液位検出手段からの出力に基づいて、前記寒冷
貯留部に貯留される前記寒冷の液面がほぼ設定液位に保
たれるように、前記液体酸素の供給弁の開度を制御する
ため、上記と同様の作用を得ることができる。その結
果、液体酸素の供給量を調節することで、凝縮器内の寒
冷の液位の変化に迅速に制御が追従できるため、精留の
定常性を高めることができる空気液化分離方法を提供す
ることができた。
According to a fourth feature of the present invention,
The oxygen-concentrated liquid flowing down from the intermediate-pressure rectification section to the bottom of the medium-pressure rectification tower is not stored in the bottom of the medium-pressure rectification tower, but is transferred to the low-pressure rectification section and the rectifier after the rectification. While being introduced into the cold storage section as cold, while detecting the height of the cold liquid level stored in the cold storage section with liquid level detection means, based on the output from the liquid level detection means, Since the opening of the liquid oxygen supply valve is controlled so that the level of the cold liquid stored in the cold storage unit is maintained substantially at the set liquid level, the same effect as described above can be obtained. As a result, by adjusting the supply amount of liquid oxygen, the control can quickly follow the change in the liquid level of the cold inside the condenser, and therefore, an air liquefaction separation method capable of improving the rectification steadiness is provided. I was able to.

【0018】[0018]

【発明の実施の形態】以下に本発明の実施の形態を図面
に基づいて説明する。なお、本発明は前述の如く第一の
特徴構成〜第四の特徴構成が存在するため、第一の特徴
構成と第二の特徴構成とに対応する第1実施形態と、第
三の特徴構成と第四の特徴構成とに対応する第2実施形
態とに分けて説明する。
Embodiments of the present invention will be described below with reference to the drawings. Since the present invention has the first to fourth feature configurations as described above, the first embodiment corresponding to the first and second feature configurations, and the third feature configuration And the second embodiment corresponding to the fourth characteristic configuration will be described separately.

【0019】〔第1実施形態〕図1に示すように、図示
しないフィルタを通して大気中の空気が圧縮機1に取り
入れられ、圧縮機1により9kg/cm2Gに圧縮され
た後、配管2を通って冷凍機(フレオン冷凍機)3に導
入され、この冷凍機3で約5℃に予備冷却された後、配
管4を通って予備精製器5の一方の吸着筒5aに導入さ
れ、この一方の吸着筒5aにおいて、圧縮された原料空
気中の二酸化炭素及び水等が除去され(装置によっては
炭化水素の除去も可能である)、配管6を通って主熱交
換器7に導入される。このとき、予備精製器の他方の吸
着筒5bの再生は、後述するように配管27を通って導
入される廃ガスによってなされるが、両吸着筒5a,5
bの切り換えは、切り換え弁VCによって行われる。
[First Embodiment] As shown in FIG. 1, air in the atmosphere is taken into a compressor 1 through a filter (not shown) and compressed by a compressor 1 to 9 kg / cm 2 G. After passing through a refrigerator (Freon refrigerator) 3 and preliminarily cooled to about 5 ° C. by the refrigerator 3, it is introduced into one adsorption column 5 a of a pre-purifier 5 through a pipe 4. In the adsorption cylinder 5a, carbon dioxide, water, and the like in the compressed raw material air are removed (depending on the apparatus, hydrocarbons can be removed), and introduced into the main heat exchanger 7 through the pipe 6. At this time, regeneration of the other adsorption column 5b of the pre-purifier is performed by waste gas introduced through the pipe 27 as described later.
The switching of b is performed by the switching valve VC.

【0020】主熱交換器7に導入された原料空気は、後
述する窒素ガス及び廃ガスと熱交換され、液化点近くま
で冷却される。そして、冷却された原料空気は、配管8
を経て、精留塔9Sの下部空間11Sに導入され上昇す
る。
The raw air introduced into the main heat exchanger 7 exchanges heat with nitrogen gas and waste gas, which will be described later, and is cooled to near the liquefaction point. Then, the cooled raw material air is supplied to the pipe 8
, Is introduced into the lower space 11S of the rectification tower 9S and rises.

【0021】一方、精留塔9Sの精留部13の上方に
は、後述のようにして液体窒素が導入され、前記精留塔
9Sを上昇した気体は凝縮器35Sで液化され、還流液
となって精留部13に流下され、上昇する気体と気液接
触されて精留され、前記精留塔9Sの下部に酸素濃縮液
化空気(酸素濃縮成分)を生出流下させ、頂部に窒素ガ
ス(窒素成分)を精留分離する。
On the other hand, above the rectification section 13 of the rectification tower 9S, liquid nitrogen is introduced as described later, and the gas which has risen in the rectification tower 9S is liquefied in a condenser 35S, and is condensed with a reflux liquid. The rectification unit 13 flows down to the rectification unit 13 and is rectified in gas-liquid contact with the ascending gas. Fractionation of nitrogen component).

【0022】前記精留塔9Sの底部へ生出流下する酸素
濃縮液化空気は前記精留塔底部に貯留させることなく、
わずかな量の空気と共に(すなわち、酸素濃縮液化空気
の体積の2倍より少ない量、好ましくは10%より少な
い量の空気と共に)配管18に吸い込まれ、オリフィス
V2によって約1.9kg/cm2Gに膨張された後、
凝縮器35Sの寒冷貯留部に導入される。つまり、精留
部13から前記精留塔9Sの底部へ流下する酸素濃縮液
を前記精留塔底部に貯留することなく、前記凝縮器35
Sに寒冷として移送する移送経路を、配管18とオリフ
ィスV2により構成しているが、十分に開いたバルブ
や、配管18自体の圧損調整により前記移送経路を構成
してもよい。
The oxygen-enriched liquefied air that flows down to the bottom of the rectification column 9S is not stored at the bottom of the rectification column.
With a small amount of air (i.e., with less than twice the volume of oxygen-enriched liquefied air, preferably less than 10%), it is drawn into line 18 and about 1.9 kg / cm 2 G by orifice V2. After being inflated to
It is introduced into the cold storage part of the condenser 35S. That is, without storing the oxygen concentrated liquid flowing down from the rectifying section 13 to the bottom of the rectification tower 9S at the bottom of the rectification tower, the condenser 35
Although the transfer path for transferring the cold to S is constituted by the pipe 18 and the orifice V2, the transfer path may be constituted by a valve which is sufficiently opened or by adjusting the pressure loss of the pipe 18 itself.

【0023】そして、精留塔9Sの頂部の窒素ガスが配
管29を通して主熱交換器7に導入されると共に、凝縮
器35Sに貯留された酸素濃縮液のうち精留塔9Sの窒
素ガスにより気化された酸素濃縮空気(廃ガス)が配管
24を通って主熱交換器7に導入される。これらの窒素
ガス及び廃ガスは、それぞれ主熱交換器7で圧縮原料空
気と熱交換される。そして、窒素ガスは、配管30を通
って約8.7kg/cm2Gの圧力で常温の製品窒素ガ
ス(GN2)として取り出され、廃ガスは、配管27を
通って約1.7kg/cm2Gの圧力で常温となって予
備精製器5の再生すべき吸着筒5bに送られ、前述した
ようにその吸着筒5bの再生ガスとして二酸化炭素及び
水等を取り出すことに使用される。
Then, the nitrogen gas at the top of the rectification tower 9S is introduced into the main heat exchanger 7 through the pipe 29, and is vaporized by the nitrogen gas of the rectification tower 9S in the oxygen concentrated liquid stored in the condenser 35S. The oxygen-enriched air (waste gas) thus collected is introduced into the main heat exchanger 7 through the pipe 24. The nitrogen gas and the waste gas are heat-exchanged with the compressed raw air in the main heat exchanger 7, respectively. Then, the nitrogen gas is taken out as a product nitrogen gas (GN 2 ) at room temperature at a pressure of about 8.7 kg / cm 2 G through the pipe 30, and the waste gas is passed through the pipe 27 at about 1.7 kg / cm 2 At a normal temperature at a pressure of 2 G, the temperature is sent to the adsorption column 5b of the pre-purifier 5 to be regenerated, and as described above, it is used for extracting carbon dioxide, water, etc. as the regeneration gas of the adsorption column 5b.

【0024】また、この精留塔を含む保冷函36内に必
要な全冷熱は、液体窒素貯槽31S内に外部から導入さ
れ、貯留された液体窒素(LN2)によって賄われ、こ
の液体窒素は、配管32を通して取り出され、前記精留
塔9Sの凝縮器35Sの液面を設定液位に保つように、
制御手段である液位表示制御装置LICにより弁V3の
開度が調節されながら、前記精留塔9Sの精留部13の
上方に導入される。つまり、凝縮器35Sに貯留される
前記酸素濃縮液の液面の高さを検出する液位検出手段
(図示せず)を設けてあり、その液位検出手段からの出
力に基づいて、前記凝縮器35Sに貯留される前記酸素
濃縮液の液面がほぼ設定液位に保たれるように、前記液
体窒素の供給弁V3の開度を制御している。
Further, the total cooling heat required in the cool box 36 including the rectification tower is introduced from the outside into the liquid nitrogen storage tank 31S and is supplied by the stored liquid nitrogen (LN 2 ). , Is taken out through the pipe 32, and the liquid level of the condenser 35S of the rectification column 9S is maintained at a set liquid level.
The liquid is introduced above the rectification section 13 of the rectification tower 9S while the opening of the valve V3 is adjusted by the liquid level display control device LIC as a control means. That is, a liquid level detecting means (not shown) for detecting the level of the liquid level of the oxygen concentrated liquid stored in the condenser 35S is provided, and the condensation is performed based on the output from the liquid level detecting means. The opening degree of the liquid nitrogen supply valve V3 is controlled so that the liquid level of the oxygen concentrated liquid stored in the vessel 35S is kept substantially at the set liquid level.

【0025】更に、窒素需要量が精留塔9Sにおける製
造能力を超える場合には、液体窒素貯槽31S内の下部
から延びる配管34を通って液体窒素が導出され、蒸発
器33aで気化された後、弁V4により約8.5kg/
cm2Gの圧力に調節され配管30に導入される。
Further, when the nitrogen demand exceeds the production capacity of the rectification column 9S, the liquid nitrogen is led out through the pipe 34 extending from the lower part in the liquid nitrogen storage tank 31S, and is vaporized by the evaporator 33a. 8.5kg / with valve V4
The pressure is adjusted to cm 2 G and introduced into the pipe 30.

【0026】なお、配管34より分岐した配管37は蒸
発器33bと圧力調節弁V5を挿入されており、液体窒
素貯槽31Sの頂部に戻されており、液体窒素貯槽31
Sの圧力を所定の圧力に維持する。
A pipe 37 branched from the pipe 34 has an evaporator 33b and a pressure control valve V5 inserted therein, and is returned to the top of the liquid nitrogen storage tank 31S.
The pressure of S is maintained at a predetermined pressure.

【0027】配管40と弁V6とは、必要により凝縮器
35S内の酸素濃縮液を排出するために設けられてお
り、装置の運転継続によりその酸素濃縮液に炭化水素類
が濃縮された際に、そのような酸素濃縮液の一部又は全
部を排出することができる。なお、点線で示される保冷
函36は低温機器を構成する主熱交換器7、精留塔9
S、液体窒素貯槽31S等を収納するコールドボックス
(断熱容器)である。
The pipe 40 and the valve V6 are provided for discharging the oxygen concentrate in the condenser 35S if necessary, and when hydrocarbons are concentrated in the oxygen concentrate by continuing operation of the apparatus. Part or all of such oxygen concentrate can be drained. In addition, the cool box 36 shown by the dotted line is the main heat exchanger 7 and the rectification tower 9 constituting the low-temperature equipment.
S, a cold box (insulated container) for storing the liquid nitrogen storage tank 31S and the like.

【0028】〔第2実施形態〕図2に示すように、図示
しないフィルタを通して大気中の空気が圧縮機1に取り
入れられ、圧縮機1により9kg/cm2Gに圧縮され
た後、配管2を通って冷凍機(フレオン冷凍機)3に導
入され、この冷凍機3で約5℃に予備冷却された後、配
管4を通って予備精製器5の一方の吸着筒5aに導入さ
れ、この一方の吸着筒5aにおいて、圧縮された原料空
気中の二酸化炭素及び水等が除去され(装置によっては
炭化水素の除去も可能である)、配管6を通って主熱交
換器7に導入される。このとき、予備精製器の他方の吸
着筒5bの再生は、後述するように配管27を通って導
入される廃ガスによってなされる。
[Second Embodiment] As shown in FIG. 2, air in the atmosphere is introduced into a compressor 1 through a filter (not shown) and compressed by the compressor 1 to 9 kg / cm 2 G. After passing through a refrigerator (Freon refrigerator) 3 and preliminarily cooled to about 5 ° C. by the refrigerator 3, it is introduced into one adsorption column 5 a of a pre-purifier 5 through a pipe 4. In the adsorption cylinder 5a, carbon dioxide, water, and the like in the compressed raw material air are removed (depending on the apparatus, hydrocarbons can be removed), and introduced into the main heat exchanger 7 through the pipe 6. At this time, regeneration of the other adsorption column 5b of the pre-purifier is performed by waste gas introduced through the pipe 27 as described later.

【0029】主熱交換器7に導入された原料空気は、後
述する酸素ガス、窒素ガス及び廃ガスと熱交換され、液
化点近くまで冷却される。そして、冷却された原料空気
は、配管8を経て、複式精留塔9の中圧精留塔11の下
部空間10に導入され上昇する。
The raw material air introduced into the main heat exchanger 7 exchanges heat with oxygen gas, nitrogen gas and waste gas, which will be described later, and is cooled to near the liquefaction point. Then, the cooled raw material air is introduced into the lower space 10 of the intermediate pressure rectification tower 11 of the double rectification tower 9 via the pipe 8 and rises.

【0030】一方、複式精留塔9の低圧精留塔12の底
部へは液体酸素貯槽31から配管32及び減圧弁V3を
通して液体酸素が導入され、前記中圧精留塔11を上昇
した気体(窒素成分)は主凝縮器35で液化され、還流
液となって精留部13に流下され、上昇する気体と気液
接触されて精留され、前記中圧精留塔11の下部に酸素
濃縮液化空気(酸素濃縮成分)を生出流下させ、頂部に
窒素ガスを精留分離する。
On the other hand, liquid oxygen is introduced from the liquid oxygen storage tank 31 to the bottom of the low-pressure rectification tower 12 of the double rectification tower 9 through the pipe 32 and the pressure reducing valve V3, and the gas (the gas) ascending the medium-pressure rectification tower 11 The nitrogen component) is liquefied in the main condenser 35, flows down to the rectification section 13 as a reflux liquid, is rectified by gas-liquid contact with the ascending gas, and is oxygen-enriched in the lower part of the medium pressure rectification column 11. Liquefied air (oxygen-enriched component) is caused to flow down, and nitrogen gas is rectified and separated at the top.

【0031】前記中圧精留塔11の底部へ生出流下する
酸素濃縮液化空気(酸素濃縮成分)は前記中圧精留塔底
部に貯留させることなく、わずかな量の空気と共に(す
なわち、酸素濃縮液体空気の体積の2倍より少ない量、
好ましくは10%より少ない量の空気と共に)配管18
に吸い込まれ、オリフィスV2によって約1.9kg/
cm2Gに膨張された後、低圧精留塔12の第1上部精
留部14Aと第2上部精留部14Bとの間の空間23に
導入される。つまり、前記中圧精留塔11の底部から前
記低圧精留塔12へ酸素濃縮成分を導く移送経路を、配
管18とオリフィスV2によって、前記底部へ流下する
酸素濃縮液を前記底部に貯留することなく移送する移送
経路としてある。但し、第1実施形態と同様に十分に開
いたバルブや、配管18自体の圧損調整により前記移送
経路を構成してもよい。
The oxygen-enriched liquefied air (oxygen-enriched component) that flows down to the bottom of the intermediate-pressure rectification column 11 is not stored at the bottom of the medium-pressure rectification column, but with a small amount of air (ie, oxygen-enriched component). Less than twice the volume of liquid air,
Line 18 (preferably with less than 10% air)
And about 1.9 kg / by the orifice V2
After being expanded to cm 2 G, it is introduced into the space 23 between the first upper rectification section 14A and the second upper rectification section 14B of the low-pressure rectification column 12. That is, the oxygen-concentrated liquid flowing down to the bottom is stored in the bottom through the pipe 18 and the orifice V2 through the transfer path for guiding the oxygen-enriched component from the bottom of the medium-pressure rectification column 11 to the low-pressure rectification column 12. It is a transfer route to transfer without. However, similarly to the first embodiment, the transfer path may be configured by a valve that is sufficiently opened or by adjusting the pressure loss of the pipe 18 itself.

【0032】また、中圧精留塔11の頂部には中圧精留
塔11の精留部13を通って精留され上昇する窒素ガス
が貯留される。この頂部では窒素ガスの一部が主凝縮器
35で液化され、その一部が還流液として中圧精留塔1
3を流下し、この還流液は、この中圧精留部13で上昇
してくる空気と気液接触して精留する。一方、液体窒素
の残部は、中圧精留塔11の液体窒素貯留部20に貯留
され、配管21を通って膨張弁V1で約1.8kg/c
2Gに膨張された後、低圧精留塔12の第1上部精留
部14Aの上部の空間22に導かれる。
At the top of the intermediate pressure rectification column 11, nitrogen gas which is rectified through the rectification section 13 of the medium pressure rectification column 11 and rises is stored. At the top, a part of the nitrogen gas is liquefied in the main condenser 35 and a part thereof is used as a reflux liquid in the medium pressure rectification column 1.
3, the reflux liquid is rectified by gas-liquid contact with the air rising in the medium pressure rectification section 13. On the other hand, the remainder of the liquid nitrogen is stored in the liquid nitrogen storage unit 20 of the medium pressure rectification column 11, passes through the pipe 21, and is supplied to the expansion valve V1 at about 1.8 kg / c.
After being expanded to m 2 G, it is led to the space 22 above the first upper rectification section 14A of the low-pressure rectification tower 12.

【0033】そして、低圧精留塔12の頂部の廃ガス
(窒素成分)が配管24を通して主熱交換器7に導入さ
れると共に、低圧精留塔12の底部の主凝縮器35に貯
留された液体酸素(寒冷)のうち中圧精留塔11の窒素
ガスにより気化された酸素ガスが配管25を通って主熱
交換器7に導入される。これらの酸素ガス及び廃ガス
は、それぞれ主熱交換器7で圧縮原料空気と熱交換され
る。そして、酸素ガスは、配管26を通って約2kg/
cm2Gの圧力で常温の製品酸素ガス(GO2)として取
り出され、廃ガスは、配管27を通って約1.8kg/
cm2Gの圧力で常温となって予備精製器5の再生すべ
き吸着筒5bに送られ、前述したようにその吸着筒5b
の再生ガスとして二酸化炭素及び水等を取り出すことに
使用される。
The waste gas (nitrogen component) at the top of the low-pressure rectification tower 12 was introduced into the main heat exchanger 7 through the pipe 24 and stored in the main condenser 35 at the bottom of the low-pressure rectification tower 12. Among the liquid oxygen (cold), the oxygen gas vaporized by the nitrogen gas in the medium pressure rectification column 11 is introduced into the main heat exchanger 7 through the pipe 25. The oxygen gas and the waste gas are heat-exchanged with the compressed raw material air in the main heat exchanger 7, respectively. Then, the oxygen gas passes through the pipe 26 to about 2 kg /
At a pressure of 2 cm 2 G, it is taken out as product oxygen gas (GO 2 ) at room temperature, and the waste gas passes through a pipe 27 to about 1.8 kg /
The temperature becomes room temperature at a pressure of 2 cm 2 G and is sent to the adsorption column 5b of the pre-purifier 5 to be regenerated, as described above.
It is used to take out carbon dioxide, water, etc. as a regenerated gas.

【0034】また、同時に窒素ガスが必要な場合は、窒
素ガスは中圧精留塔11の精留部13の上部から配管2
9を通して約8.7kg/cm2Gの圧力で取り出さ
れ、主熱交換器7で原料空気との熱交換に供された後、
常温の製品窒素ガス(GN2)として配管30を通って
取り出される。
When nitrogen gas is required at the same time, nitrogen gas is supplied from the upper part of the rectification section 13 of the medium pressure rectification column 11 to the pipe 2.
9, after being taken out at a pressure of about 8.7 kg / cm 2 G and subjected to heat exchange with the raw air in the main heat exchanger 7,
The product is extracted through a pipe 30 as a product nitrogen gas (GN 2 ) at room temperature.

【0035】更に、この複式精留塔9を含む保冷函36
内に必要な全冷熱は、液体酸素貯槽31内に外部から導
入され、貯留された液体酸素(LO2)によって賄わ
れ、この液体酸素は、配管32を通して取り出され、前
記低圧精留塔12の底部の液面を設定液位に保つよう
に、制御手段である液位表示制御装置LICにより弁V
3の開度が調節されながら、前記低圧精留塔12の底部
に導入される。つまり、寒冷貯留部に貯留される寒冷の
液面の高さを検出する液位検出手段(図示せず)を設け
てあり、その液位検出手段からの出力に基づいて、前記
寒冷貯留部に貯留される前記寒冷の液面がほぼ設定液位
に保たれるように、前記液体酸素の供給弁V3の開度を
制御している。
Further, a cool box 36 containing the double rectification column 9
The total cooling energy required inside is introduced into the liquid oxygen storage tank 31 from the outside, and is covered by the stored liquid oxygen (LO 2 ). The liquid oxygen is taken out through a pipe 32 and is supplied to the low-pressure rectification column 12. In order to keep the liquid level at the bottom at the set liquid level, the valve V is controlled by a liquid level display control device LIC which is a control means.
3 is introduced into the bottom of the low-pressure rectification column 12 while the opening degree is adjusted. That is, a liquid level detecting means (not shown) for detecting the level of the cold liquid stored in the cold storing section is provided, and the cold storing section is provided with the output from the liquid level detecting means. The opening of the liquid oxygen supply valve V3 is controlled so that the level of the stored cold liquid is substantially maintained at the set liquid level.

【0036】更に、酸素需要量が複式精留塔9における
製造能力を超える場合には、液体酸素貯槽31内の下部
から延びる配管34を通って液体酸素が導出され蒸発器
33aで気化された後、弁V4により2kg/cm2
の圧力に調節され配管26に導入される。なお、配管3
4より分岐した配管37は蒸発器33bと圧力調節弁V
5を挿入されており、液体酸素貯槽31の頂部に戻され
ており、液体酸素貯槽31の圧力を所定の圧力に維持す
る。
Further, when the oxygen demand exceeds the production capacity of the double rectification column 9, the liquid oxygen is led out through the pipe 34 extending from the lower part in the liquid oxygen storage tank 31 and is vaporized by the evaporator 33a. 2kg / cm 2 G by valve V4
, And introduced into the pipe 26. In addition, piping 3
The pipe 37 branched from 4 is connected to the evaporator 33b and the pressure control valve V
5 is inserted and returned to the top of the liquid oxygen storage tank 31 to maintain the pressure of the liquid oxygen storage tank 31 at a predetermined pressure.

【0037】〔別実施形態〕以下に別実施形態を説明す
る。 (1)先の実施形態では、凝縮器を塔内に配置する例を
示したが、凝縮器を塔外に配置するものであってもよ
い。
[Another Embodiment] Another embodiment will be described below. (1) In the above embodiment, the example in which the condenser is arranged inside the tower is shown, but the condenser may be arranged outside the tower.

【0038】(2)先の実施形態では、液位検出手段と
一体化したLICにより制御手段を構成する例を示した
が、制御手段としては、液位検出手段と別体で構成され
たものであってもよい。
(2) In the above embodiment, an example is shown in which the control means is constituted by an LIC integrated with the liquid level detection means. However, the control means is constituted separately from the liquid level detection means. It may be.

【0039】(3)前記の説明において示した、温度、
圧力等は、本発明を実施する場合の一例であり、各種装
置部分の設計や運転条件により異なるため、上記の数値
に限定されるものではない。
(3) The temperature and the temperature shown in the above description
The pressure and the like are examples in the case of carrying out the present invention, and are not limited to the above numerical values because they vary depending on the design and operating conditions of various device parts.

【0040】(4)先の実施形態では、液化製品貯槽を
精留塔を配置した保冷函内に配置する例を示したが、液
化製品貯槽を精留塔を配置した保冷函の外部に配置して
もよく、その場合、別の保冷函内に配置等される。
(4) In the above embodiment, an example was shown in which the liquefied product storage tank was arranged in a cool box in which the rectification tower was arranged. However, the liquefied product storage tank was arranged outside the cool box in which the rectification tower was arranged. In that case, it is arranged in another cool box.

【0041】(5)先の実施形態では、精留塔の底部を
流下する酸素濃縮液が配管に向けて流動し易いように、
底部を逆円錐型に構成したが、更に酸素濃縮液の流動性
を高めるために、流路を形成し得る案内溝を設けるなど
してもよい。
(5) In the above embodiment, the oxygen concentrate flowing down the bottom of the rectification column is easily flowed toward the pipe.
Although the bottom is formed in an inverted conical shape, a guide groove capable of forming a flow path may be provided in order to further enhance the fluidity of the oxygen concentrated liquid.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施形態の空気液化分離装置の一例を示す
概略構成図
FIG. 1 is a schematic configuration diagram illustrating an example of an air liquefaction separation device according to a first embodiment.

【図2】第2実施形態の空気液化分離装置の一例を示す
概略構成図
FIG. 2 is a schematic configuration diagram illustrating an example of an air liquefaction separation device according to a second embodiment.

【符号の説明】[Explanation of symbols]

7 主熱交換器 9 複式精留塔 9S 精留塔 11 中圧精留塔 12 低圧精留塔 13 精留部 18 配管(移送経路) 31 液体酸素貯槽 31S 液体窒素貯槽 35 主凝縮器 35S 凝縮器 V1 膨張弁 V2 オリフィス(移送経路) V3 供給弁 LIC 液位表示制御装置(制御手段) 7 Main heat exchanger 9 Double rectification tower 9S rectification tower 11 Medium pressure rectification tower 12 Low pressure rectification tower 13 Rectification section 18 Piping (transfer route) 31 Liquid oxygen storage tank 31S Liquid nitrogen storage tank 35 Main condenser 35S Condenser V1 Expansion valve V2 Orifice (transfer path) V3 Supply valve LIC Liquid level display control device (control means)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧縮、冷却、及び不純物除去された原料
空気を液化点付近まで冷却する主熱交換器と、その冷却
された原料空気を導いて酸素濃縮成分と窒素成分とに分
離する精留部及び分離された窒素成分を一部凝縮させて
還流液とする凝縮器を有する精留塔と、その精留塔に液
体窒素を供給弁を介して還流液の一部および寒冷源とし
て供給する液体窒素貯槽と、前記主熱交換器に寒冷を供
給するための寒冷供給経路とを具備する空気液化分離装
置であって、 前記精留部から前記精留塔の底部へ流下する酸素濃縮液
を前記精留塔底部に貯留することなく、前記凝縮器に寒
冷として移送する移送経路と、 前記凝縮器に貯留される前記酸素濃縮液の液面の高さを
検出する液位検出手段と、 その液位検出手段からの出力に基づいて、前記凝縮器に
貯留される前記酸素濃縮液の液面がほぼ設定液位に保た
れるように、前記液体窒素の供給弁の開度を制御する制
御手段とを備える空気液化分離装置。
1. A main heat exchanger for cooling compressed, cooled, and impurity-free raw material air to near a liquefaction point, and a rectifier for guiding the cooled raw material air to separate it into an oxygen-enriched component and a nitrogen component. Column and a condenser having a condenser that partially condenses the separated nitrogen component to obtain a reflux liquid, and supplies liquid nitrogen to the rectification tower as a part of the reflux liquid and a cold source via a supply valve A liquid nitrogen storage tank, and an air liquefaction / separation device including a cold supply path for supplying cold to the main heat exchanger, wherein the oxygen-concentrated liquid flowing down from the rectifying section to the bottom of the rectifying tower is provided. A transfer path for transferring to the condenser as cold without storing at the bottom of the rectification column, and a liquid level detecting means for detecting a liquid level of the oxygen concentrated liquid stored in the condenser, Based on the output from the liquid level detecting means, it is stored in the condenser. An air liquefaction / separation apparatus comprising: control means for controlling an opening degree of the liquid nitrogen supply valve so that the liquid level of the oxygen concentrated liquid to be retained is substantially maintained at a set liquid level.
【請求項2】 圧縮、冷却、及び不純物除去された原料
空気を主熱交換器で液化点付近まで冷却し、その冷却さ
れた原料空気を精留塔に導いて、その精留塔内の精留部
で酸素濃縮成分と窒素成分とに分離しつつ、分離された
窒素成分を凝縮器で一部凝縮させて還流液とする一方、
液体窒素貯槽から供給弁を介して液体窒素を還流液の一
部および寒冷源として前記精留塔に供給することで、製
品窒素ガスを製造する空気液化分離方法であって、 前記精留部から前記精留塔の底部へ流下する酸素濃縮液
を前記精留塔底部に貯留することなく、前記凝縮器に寒
冷として移送すると共に、 前記凝縮器に貯留される前記酸素濃縮液の液面の高さを
液位検出手段で検出しつつ、その液位検出手段からの出
力に基づいて、前記凝縮器に貯留される前記酸素濃縮液
の液面がほぼ設定液位に保たれるように、前記液体窒素
の供給弁の開度を制御する空気液化分離方法。
2. The raw material air from which compression, cooling, and impurities have been removed is cooled by a main heat exchanger to near a liquefaction point, and the cooled raw material air is guided to a rectification column, and the rectification in the rectification column is performed. While separating the oxygen-enriched component and the nitrogen component in the distillation section, the separated nitrogen component is partially condensed by a condenser to obtain a reflux liquid,
An air liquefaction separation method for producing product nitrogen gas by supplying liquid nitrogen to the rectification tower as a part of the reflux liquid and a cold source from a liquid nitrogen storage tank via a supply valve, and comprising: The oxygen concentrated liquid flowing down to the bottom of the rectification tower is transferred to the condenser as cold without storing in the bottom of the rectification tower, and the level of the liquid level of the oxygen concentrated liquid stored in the condenser is increased. While detecting the liquid level by the liquid level detecting means, based on the output from the liquid level detecting means, so that the liquid level of the oxygen concentrated liquid stored in the condenser is kept substantially at the set liquid level. An air liquefaction separation method for controlling the opening of a liquid nitrogen supply valve.
【請求項3】 圧縮、冷却、及び不純物除去された原料
空気を液化点付近まで冷却する主熱交換器と、その冷却
された原料空気を導いて酸素濃縮成分と窒素成分とに分
離する中圧精留部及び分離された窒素成分を凝縮させて
還流液とする凝縮器を有する中圧精留塔と、その中圧精
留塔の還流液の一部を膨張弁を介して導いて還流液とし
つつ前記中圧精留塔の底部から酸素濃縮成分を導いて酸
素成分と窒素成分とに分離する低圧精留部、及びその低
圧精留部から前記酸素成分の流入を許容する前記凝縮器
の寒冷貯留部を有する低圧精留塔と、その寒冷貯留部に
液体酸素を供給弁を介して供給する液体酸素貯槽と、前
記主熱交換器に寒冷を供給するための寒冷供給経路とを
具備する空気液化分離装置であって、 前記中圧精留塔の底部から前記低圧精留塔へ酸素濃縮成
分を導く移送経路を、前記底部へ流下する酸素濃縮液を
前記底部に貯留することなく移送する移送経路とし、 前記寒冷貯留部に貯留される前記寒冷の液面の高さを検
出する液位検出手段と、 その液位検出手段からの出力に基づいて、前記寒冷貯留
部に貯留される前記寒冷の液面がほぼ設定液位に保たれ
るように、前記液体酸素の供給弁の開度を制御する制御
手段とを備える空気液化分離装置。
3. A main heat exchanger for cooling the compressed, cooled, and impurity-removed raw material air to near a liquefaction point, and a medium pressure for guiding the cooled raw material air to separate it into an oxygen-enriched component and a nitrogen component. A medium-pressure rectification column having a rectifying section and a condenser for condensing the separated nitrogen component to obtain a reflux liquid, and a part of the reflux liquid of the medium-pressure rectification tower being led through an expansion valve to obtain a reflux liquid A low-pressure rectification section that guides an oxygen-enriched component from the bottom of the medium-pressure rectification column to separate it into an oxygen component and a nitrogen component, and the condenser that allows the inflow of the oxygen component from the low-pressure rectification portion. A low-pressure rectification column having a cold storage unit, a liquid oxygen storage tank that supplies liquid oxygen to the cold storage unit via a supply valve, and a cold supply path for supplying cold to the main heat exchanger are provided. An air liquefaction / separation apparatus, wherein the low pressure is applied from the bottom of the medium pressure rectification column. A transfer path that guides the oxygen-enriched component to the distillation tower, a transfer path that transfers the oxygen-concentrated liquid flowing down to the bottom without storing it in the bottom, and the height of the cold liquid level stored in the cold storage unit. Liquid level detection means for detecting the liquid level of the liquid oxygen based on an output from the liquid level detection means so that the cold liquid level stored in the cold storage section is maintained at a substantially set liquid level. Control means for controlling the opening of the supply valve.
【請求項4】 圧縮、冷却、及び不純物除去された原料
空気を主熱交換器で液化点付近まで冷却し、その冷却さ
れた原料空気を中圧精留塔に導いて、その中圧精留塔内
の中圧精留部で酸素濃縮成分と窒素成分とに分離しつ
つ、分離された窒素成分を凝縮器で凝縮させて還流液と
する一方、その還流液の一部を膨張弁を介して低圧精留
部の還流液として導きつつ、前記中圧精留塔の底部から
酸素濃縮成分を導いて前記低圧精留部にて酸素成分と窒
素成分とに分離し、前記低圧精留部から前記酸素成分を
前記凝縮器の寒冷貯留部に流入させつつ、液体酸素貯槽
から液体酸素を供給弁を介して寒冷貯留部に供給するこ
とで、製品酸素ガスを製造する空気液化分離方法であっ
て、 前記中圧精留部から前記中圧精留塔の底部へ流下する酸
素濃縮液を前記中圧精留塔底部に貯留することなく、前
記低圧精留部に移送して精留後に前記凝縮器の寒冷貯留
部に寒冷として導入すると共に、 前記寒冷貯留部に貯留される前記寒冷の液面の高さを液
位検出手段で検出しつつ、その液位検出手段からの出力
に基づいて、前記寒冷貯留部に貯留される前記寒冷の液
面がほぼ設定液位に保たれるように、前記液体酸素の供
給弁の開度を制御する空気液化分離方法。
4. The raw material air from which compression, cooling and impurities have been removed is cooled by a main heat exchanger to near a liquefaction point, and the cooled raw material air is guided to a medium-pressure rectification column, where the medium-pressure rectification is performed. While separating the oxygen-enriched component and the nitrogen component in the medium-pressure rectification section in the column, the separated nitrogen component is condensed by a condenser to obtain a reflux liquid, and a part of the reflux liquid is passed through an expansion valve. While conducting as a reflux of the low-pressure rectification section, the oxygen-enriched component is guided from the bottom of the medium-pressure rectification column to separate the oxygen component and the nitrogen component in the low-pressure rectification section, and from the low-pressure rectification section An air liquefaction separation method for producing product oxygen gas by supplying liquid oxygen from a liquid oxygen storage tank to a cold storage unit via a supply valve while flowing the oxygen component into the cold storage unit of the condenser. The oxygen concentrate flowing down from the medium pressure rectification section to the bottom of the medium pressure rectification column is Without being stored at the bottom of the pressure rectification tower, it is transferred to the low-pressure rectification section, and after rectification, introduced into the cold storage section of the condenser as cold, and the cold liquid level stored in the cold storage section While detecting the height of the liquid level detection means, based on the output from the liquid level detection means, so that the cold liquid level stored in the cold storage unit is maintained at substantially the set liquid level, An air liquefaction separation method for controlling an opening of a supply valve of the liquid oxygen.
JP9223498A 1997-08-20 1997-08-20 Air liquefaction separation device and air liquefaction separation method Expired - Fee Related JP3065968B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9223498A JP3065968B2 (en) 1997-08-20 1997-08-20 Air liquefaction separation device and air liquefaction separation method
EP98402052A EP0908689A3 (en) 1997-08-20 1998-08-13 Method and apparatus for air distillation
CN98118613A CN1073865C (en) 1997-08-20 1998-08-19 Air distillation apparatus and air distillation method
US09/136,965 US6155078A (en) 1997-08-20 1998-08-20 Air distillation apparatus and air distillation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9223498A JP3065968B2 (en) 1997-08-20 1997-08-20 Air liquefaction separation device and air liquefaction separation method

Publications (2)

Publication Number Publication Date
JPH1163809A true JPH1163809A (en) 1999-03-05
JP3065968B2 JP3065968B2 (en) 2000-07-17

Family

ID=16799092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9223498A Expired - Fee Related JP3065968B2 (en) 1997-08-20 1997-08-20 Air liquefaction separation device and air liquefaction separation method

Country Status (1)

Country Link
JP (1) JP3065968B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205714A (en) * 2007-05-07 2007-08-16 Kobe Steel Ltd Air separation device
KR20200121577A (en) * 2019-04-16 2020-10-26 주식회사 포스코 Air seperation apparatus
CN113686099A (en) * 2021-08-09 2021-11-23 北京科技大学 Material recovery method based on internal compression air separation energy storage device
CN114777415A (en) * 2022-04-22 2022-07-22 杭州特盈能源技术发展有限公司 Low-energy-consumption double-tower double-supercooling positive flow expansion nitrogen production process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205714A (en) * 2007-05-07 2007-08-16 Kobe Steel Ltd Air separation device
KR20200121577A (en) * 2019-04-16 2020-10-26 주식회사 포스코 Air seperation apparatus
CN113686099A (en) * 2021-08-09 2021-11-23 北京科技大学 Material recovery method based on internal compression air separation energy storage device
CN114777415A (en) * 2022-04-22 2022-07-22 杭州特盈能源技术发展有限公司 Low-energy-consumption double-tower double-supercooling positive flow expansion nitrogen production process
CN114777415B (en) * 2022-04-22 2023-08-15 杭州特盈能源技术发展有限公司 Low-energy-consumption double-tower double-supercooling forward expansion nitrogen production process

Also Published As

Publication number Publication date
JP3065968B2 (en) 2000-07-17

Similar Documents

Publication Publication Date Title
US6155078A (en) Air distillation apparatus and air distillation method
WO1986004979A1 (en) Apparatus for producing high-purity nitrogen and oxygen gases
JPS6146747B2 (en)
EP0798524B1 (en) Ultra high purity nitrogen and oxygen generator unit
JPS6148072B2 (en)
JP6354516B2 (en) Cryogenic air separation device and cryogenic air separation method
US5743112A (en) Ultra high purity nitrogen and oxygen generator unit
US6050106A (en) Ultra high purity nitrogen and oxygen generator unit
JP3065968B2 (en) Air liquefaction separation device and air liquefaction separation method
JPS6158747B2 (en)
JP3644918B2 (en) Air separation device and air separation method
JPH10132458A (en) Method and equipment for producing oxygen gas
JPH0217795B2 (en)
JP3065976B2 (en) Nitrogen production equipment
JP3181482B2 (en) High-purity nitrogen gas production method and apparatus used therefor
JPH0418222B2 (en)
JPS6044587B2 (en) Totally low pressure air separation method and device
JP2007192466A (en) Cryogenic air separation plant and its control method
JPH0882476A (en) Apparatus for producing high-purity nitrogen gas
JPH10206012A (en) Method of producing nitrogen gas
JPH0418223B2 (en)
JP2967427B2 (en) Air separation method and apparatus suitable for demand fluctuation
JPH051882A (en) Super high-purity nitrogen manufacturing device
JPH0437353B2 (en)
JPH0318108B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080512

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080512

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees