JPH0418223B2 - - Google Patents
Info
- Publication number
- JPH0418223B2 JPH0418223B2 JP10830788A JP10830788A JPH0418223B2 JP H0418223 B2 JPH0418223 B2 JP H0418223B2 JP 10830788 A JP10830788 A JP 10830788A JP 10830788 A JP10830788 A JP 10830788A JP H0418223 B2 JPH0418223 B2 JP H0418223B2
- Authority
- JP
- Japan
- Prior art keywords
- nitrogen
- liquid
- rectification column
- air
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 229
- 239000007788 liquid Substances 0.000 claims description 113
- 229910052757 nitrogen Inorganic materials 0.000 claims description 85
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 59
- 229910052760 oxygen Inorganic materials 0.000 claims description 41
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 37
- 239000001301 oxygen Substances 0.000 claims description 37
- 238000010992 reflux Methods 0.000 claims description 17
- 238000001179 sorption measurement Methods 0.000 claims description 17
- 238000004519 manufacturing process Methods 0.000 claims description 12
- 238000009835 boiling Methods 0.000 claims description 11
- 238000000605 extraction Methods 0.000 claims description 10
- 239000007789 gas Substances 0.000 claims description 10
- 238000001816 cooling Methods 0.000 claims description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 8
- 229930195733 hydrocarbon Natural products 0.000 claims description 8
- 150000002430 hydrocarbons Chemical class 0.000 claims description 8
- 230000006835 compression Effects 0.000 claims description 5
- 238000007906 compression Methods 0.000 claims description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 4
- 239000001569 carbon dioxide Substances 0.000 claims description 3
- 239000000284 extract Substances 0.000 claims 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 26
- 229910001882 dioxygen Inorganic materials 0.000 description 15
- 238000000746 purification Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 206010067482 No adverse event Diseases 0.000 description 1
- 241000555745 Sciuridae Species 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/044—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04218—Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04242—Cold end purification of the feed air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04254—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/0443—A main column system not otherwise provided, e.g. a modified double column flowsheet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04812—Different modes, i.e. "runs" of operation
- F25J3/04824—Stopping of the process, e.g. defrosting or deriming; Back-up procedures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/42—Nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/52—Separating high boiling, i.e. less volatile components from oxygen, e.g. Kr, Xe, Hydrocarbons, Nitrous oxides, O3
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/62—Details of storing a fluid in a tank
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Separation By Low-Temperature Treatments (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、高純度窒素ガス製造装置に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a high-purity nitrogen gas production apparatus.
電子工業では極めて多量の窒素ガスが使用され
ているが、部品精度維持向上の観点から窒素ガス
の純度について厳しい要望をだしてきている。す
なわち、窒素ガスは、一般に、空気を原料とし、
これを圧縮機で圧縮したのち、吸着筒に入れて炭
酸ガスおよび水分を除去し、さらに熱交換機を通
して冷媒と熱交換させて冷却し、ついで精留塔で
深冷液化分離して製品窒素ガスを製造し、これを
前記の熱交換器を通して常温近傍に昇温させると
いう工程を経て製造されるている。このような、
従来の窒素ガスの製造装置は、圧縮機で圧縮され
た圧縮空気を冷却するための熱交換器の冷媒冷却
用に、膨脹タービンを用い、これを精留塔内に溜
る液体空気(深冷液化分離により低沸点の窒素は
ガスとして取り出され、残部が酸素リツチな液体
空気となつて溜る)から蒸発したガスの圧力で駆
動するようになつている。ところが、膨脹タービ
ンは回転速度が極めて大(数万回/分)であつて
負荷変動に対する追従運転が困難であり、特別に
養成した運転員が必要である。また、このものは
高速回転するため機構構造上高精度が要求され、
かつ高価であり、機械が複雑なため特別に養成し
た要員が必要という難点を有している。すなわ
ち、膨脹タービンは高速回転部を有するため、上
記のような諸問題を生じるのであり、うこのよう
な高速回転部を有する膨脹タービンの除去に対し
て強い要望があつた。
Extremely large amounts of nitrogen gas are used in the electronics industry, but strict requirements have been placed on the purity of nitrogen gas from the perspective of maintaining and improving component precision. In other words, nitrogen gas generally uses air as a raw material,
After compressing this in a compressor, it is placed in an adsorption column to remove carbon dioxide gas and moisture, and then cooled by exchanging heat with a refrigerant through a heat exchanger, and then cryogenically liquefied and separated in a rectification tower to produce nitrogen gas. It is manufactured through the process of producing the product and raising the temperature to around room temperature through the heat exchanger described above. like this,
Conventional nitrogen gas production equipment uses an expansion turbine to cool the refrigerant in the heat exchanger that cools the compressed air compressed by the compressor. The low-boiling point nitrogen is extracted as a gas through the separation, and the remainder remains as oxygen-rich liquid air.It is driven by the pressure of the evaporated gas. However, expansion turbines have extremely high rotational speeds (tens of thousands of rotations per minute), making it difficult to follow load fluctuations and requiring specially trained operators. In addition, since this product rotates at high speed, high precision is required due to the mechanical structure.
Moreover, it is expensive, and has the disadvantage that specially trained personnel are required because the machine is complex. That is, since the expansion turbine has a high-speed rotating section, the above-mentioned problems arise, and there has been a strong desire to eliminate the expansion turbine having a high-speed rotating section such as a squirrel.
この発明者は、このような要望に応えるため、
膨脹タービンを除去し、それに代えて外部から液
体窒素を寒冷として精留塔内に供給する窒素ガス
製造装置を開発し、すでに特許出願(特願昭58−
38050)している。この装置は、極めて高い純度
の窒素ガスを製造しうるため、これまでのような
精製装置が全く不要になる。また、膨脹タービン
を除去しているため、それにもとづく弊害も全く
生じない。したがつて、電子工業向に最適であ
る。しかしながら、電子工業では、窒素ガス以外
に、酸素ガスも使用しており、1台の装置で窒素
ガスのみならず酸素ガスも製造しうるような装置
の提供が望まれてきている。
In order to meet such demands, this inventor
We have developed a nitrogen gas production device that removes the expansion turbine and instead supplies chilled liquid nitrogen from outside into the rectification column, and has already applied for a patent (patent application 1983-
38050). This device can produce nitrogen gas of extremely high purity, making conventional purification equipment completely unnecessary. Furthermore, since the expansion turbine is removed, there are no adverse effects caused by it. Therefore, it is most suitable for the electronic industry. However, in the electronics industry, oxygen gas is also used in addition to nitrogen gas, and it has been desired to provide a device that can produce not only nitrogen gas but also oxygen gas with one device.
この発明は、このような事情に鑑みなされたも
ので、膨脹タービンや精製装置を用いることなく
高純度の窒素ガスを製造でき、かつ同時に酸素ガ
スも製造しうる高純度窒素ガス製造装置の提供を
その目的とする。 The present invention was made in view of the above circumstances, and an object of the present invention is to provide a high-purity nitrogen gas production device that can produce high-purity nitrogen gas without using an expansion turbine or a purification device, and can also produce oxygen gas at the same time. That purpose.
上記の目的を達成するため、この発明の高純度
窒素ガス製造装置は、外部から取り入れた空気を
圧縮する空気圧縮手段と、この空気圧縮手段によ
つて圧縮された圧縮空気中の炭酸ガスと水分とを
除去する除去手段と、この除去手段を経た圧縮空
気を超低温に冷却する熱交換手段と、この熱交換
手段により超低温に冷却された圧縮空気の一部を
液化して底部に溜め窒素のみを気体として上部側
から窒素ガス取出路を通して取り出す窒素精留塔
を備えた窒素ガス製造装置において、窒素精留塔
の上部に設けられた凝縮器内蔵型の分縮器と、窒
素精留塔の底部の貯蔵液体空気を上記凝縮器冷却
用の寒冷として上記分縮器中に導く液体空気導入
パイプと、窒素精留塔内で生成した窒素ガスの一
部を上記凝縮器内に案内する第1の還流液パイプ
と、上記凝縮器内で生じた液化窒素を還流液とし
て窒素精留塔内に戻す第2の還流液パイプと、装
置外から液体窒素の供給を受けこれを貯蔵する液
体窒素貯蔵手段と、この液体窒素貯蔵手段内の液
体窒素を冷熱発生用膨脹器からの発生冷熱に代え
圧縮空気液化用の寒冷として連続的に上記窒素精
留塔内に導く導入路と、上記窒素精留塔に対する
上記液体窒素貯蔵手段からの液体窒素の供給量を
制御することにより上記分縮器内の液体空気の液
面を一定に制御する制御手段と、液体空気を対象
として窒素と酸素の沸点の差を利用して両者を分
離する酸素精留塔と、上記窒素精留塔または分縮
器の貯溜液体空気を上記酸素精留塔内に供給する
液体空気供給路と、上記酸素精留塔内において分
離された酸素を取り出す酸素取出路と、上記酸素
取出路の所定の個所に設けられ酸素中の不純炭化
水素を吸着除去する吸着塔を備えるという構成を
とる。
In order to achieve the above object, the high purity nitrogen gas production device of the present invention includes an air compression means for compressing air taken in from the outside, and carbon dioxide and moisture in the compressed air compressed by the air compression means. a heat exchange means for cooling the compressed air that has passed through the removal means to an ultra-low temperature, and a part of the compressed air cooled to an ultra-low temperature by the heat exchange means to be liquefied and stored at the bottom to produce only nitrogen. In a nitrogen gas production device equipped with a nitrogen rectification column that takes out the nitrogen gas from the upper side through a nitrogen gas extraction passage as a gas, a decentralizer with a built-in condenser installed at the top of the nitrogen rectification column and a bottom part of the nitrogen rectification column are used. a liquid air introduction pipe that guides the stored liquid air into the demultiplexer as cold air for cooling the condenser; and a first pipe that guides a portion of the nitrogen gas produced in the nitrogen rectification column into the condenser. a reflux liquid pipe, a second reflux liquid pipe that returns the liquefied nitrogen generated in the condenser to the nitrogen rectification column as a reflux liquid, and a liquid nitrogen storage means for receiving and storing liquid nitrogen from outside the apparatus. and an introduction path for continuously introducing the liquid nitrogen in the liquid nitrogen storage means into the nitrogen rectification column as cold air for liquefying compressed air instead of the cold heat generated from the cold heat generation expander, and the nitrogen rectification column. control means for controlling the liquid level of liquid air in the dephlegmator to a constant level by controlling the amount of liquid nitrogen supplied from the liquid nitrogen storage means; an oxygen rectification column that separates the two by utilizing The apparatus is configured to include an oxygen take-off passage for taking out the separated oxygen, and an adsorption tower provided at a predetermined location of the oxygen take-off passage for adsorbing and removing impure hydrocarbons in the oxygen.
つぎに、この発明を実施例にもとづいて詳しく
説明する。 Next, the present invention will be explained in detail based on examples.
第1図はこの発明の一実施例を示している。図
において、9は空気圧縮機、10はドレン分離
器、11はフロン冷却器、12は2個1組の吸着
筒である。吸着筒12は内部にモレキユラーシー
ブが充填されていて空気圧縮機9により圧縮され
た空気中のH2OおよびCO2を吸着除去する作用を
する。13は第1の熱交換器であり、吸着筒12
によりH2OおよびCO2が吸着除去された圧縮空気
が、圧縮空気供給パイプ8を経て送り込まれる。
ここに送り込まれた圧縮空気は、熱交換器13の
熱交換作用により超低温に冷却される。14は第
2の熱交換器であり、圧縮空気供給パイプ8から
分岐した分岐パイプ9′により、H2OおよびCO2
の吸着除去された圧縮空気が送り込まれる。この
第2の熱交換器14に送り込まれた圧縮空気もそ
の熱交換作用により超低温に冷却される。15は
塔頂に、凝縮器21a内蔵の分縮器部21を備え
た窒素精留塔であり、第1の熱交換器13により
超低温に冷却されパイプ17を経て送り込まれる
圧縮空気をさらに冷却し、その一部を液化し液体
空気18として底部に溜め、窒素のみを気体状態
で上部天井部に溜めるようになつている。23は
装置外から液体窒素の供給を受けこれを貯蔵する
液体窒素貯槽である。上記精留塔15についてよ
り詳しく説明すると、上記精留塔15は、天井板
20の上側に分縮器21を備えており、かつそれ
自身の上部側の部分には、上記液体窒素貯槽23
から液体窒素が導入路パイプ24aを回して送入
されるとともに、上記分縮器21内の凝縮器21
aで生成した液体窒素が第2の導入路パイプ21
cを通つて供給される。これらの液体窒素は、液
体窒素溜め21d内に流下し、溢流分が精留塔1
5内を下方に流下し、精留塔15の底部から上昇
する圧縮空気と向流的に接触し冷却してその一部
を液化するようになつている。この過程で圧縮空
気中の高沸点成分は液化されて精留塔15の底部
に溜り、低沸点成分の窒素ガスが精留塔15の上
部に溜る。また、上記分縮器21内には、上記の
ように凝縮器21aが配設れており、精留塔15
の上部に溜る窒素ガスの一部が第1の還流液パイ
プ21bを介して送入される。この分縮器21内
は、精留塔15内よりも減圧状態になつており、
精留塔15の底部の貯留液体空気(N250〜70%、
O230〜50%)18が膨脹弁19a付きパイプ1
9を経て送り込まれ、気化して内部温度を液体窒
素の沸点以下の温度に冷却するようになつてい
る。この冷却により、凝縮器21a内に送入され
た窒素ガスが液化し還流液となつて精留塔15内
の液体窒素溜め21d内に流下するのである。2
5は液面計であり、分縮器21内の液体空気の液
面が一定レベルを保つようその液面に応じてバル
ブ26を制御し液体窒素貯槽23からの液体窒素
の供給量を制御する。27は精留塔15の上部に
溜つた窒素ガスを取り出す取出パイプで、超低温
の窒素ガスを第1の熱交換器13内に案内し、そ
こに送り込まれる圧縮空気と熱交換させて常温に
しメインパイプ28に送り込む作用をする。この
場合、精留塔15の最上部には、窒素ガスととも
に、沸点の低いHe(−269℃)、H2(−253℃)が
溜りやすいため、取出パイプ27は、精留塔15
の最上部よりかなり下側に開口しており、He、
H2の混在しない純窒素ガスのみを取り出すよう
になつている。29は分縮器21内の気化液体空
気を第1の熱交換器13に送り込み熱交換させた
のち矢印Aのように逃気するパイプであり、29
aはその保圧弁である。40は酸素精留塔で、液
体空気供給パイプ41によつて窒素精留塔15の
分縮器21の底部と連通しており、分縮器21内
に送り込まれた液体空気を、ヘツド差を利用して
取り込み、沸点の差によりそのなかの窒素分を気
化除去し酸素を液体の状態で底部に溜める作用を
する。42は上記気化状態の不用液体窒素を、気
化液体空気放出用のパイプ29内に送り込み、気
化液体空気に混合して放出する放出パイプであ
る。43は酸素精留塔40の底部に溜つた液体酸
素を取り出す取出パイプで、シリカゲルやアルミ
ナゲル等の炭化水素吸着剤が充填された吸着筒4
3aおよび第2の熱交換器14を備えている。す
なわち、酸素精留塔40の底部に溜まつた液体酸
素中には、炭化水素が混入しているため、これ
を、吸着筒43aにおいて液相吸着除去して液体
酸素を高純度化したのち、第2の熱交換器14に
送入し、分岐パイプ9′から送り込まれた圧縮空
気と熱交換させ昇温ガス化して製品酸素ガス取出
パイプ44内に送り込むようになつている。45
は第2の熱交換器14からパイプ17まで延びる
圧縮空気移送用パイプであり、その中間部が酸素
精留塔40内に位置して底部に溜つた液体酸素を
加熱してその一部を気化させ、パイプ41から塔
40内に流下する液体空気と向流的に接触させて
精留効率を向上させるようになつている。なお、
30はバツクアツプ系ラインであり、空気圧縮系
ラインが故障したときに液体窒素貯槽23内の液
体窒素を蒸発器31により蒸発させてメインパイ
プ28に送り込み、窒素ガスの供給がとだえるこ
とのないようにする。32は不純物分析計であ
り、メインパイプ28に送り出される製品窒素ガ
スの純度を分析し、純度の低いときは、弁34,
34aを作動させて製品窒素ガスを矢印Bのよう
に外部に逃気する作用をする。
FIG. 1 shows an embodiment of the invention. In the figure, 9 is an air compressor, 10 is a drain separator, 11 is a fluorocarbon cooler, and 12 is a set of two adsorption cylinders. The adsorption column 12 is filled with a molecular sieve and functions to adsorb and remove H 2 O and CO 2 from the air compressed by the air compressor 9. 13 is the first heat exchanger, and the adsorption cylinder 12
The compressed air from which H 2 O and CO 2 have been adsorbed and removed is sent through the compressed air supply pipe 8 .
The compressed air sent here is cooled to an extremely low temperature by the heat exchange action of the heat exchanger 13. 14 is a second heat exchanger, in which H 2 O and CO 2 are
The compressed air that has been adsorbed and removed is sent in. The compressed air sent into this second heat exchanger 14 is also cooled to an extremely low temperature by its heat exchange action. Reference numeral 15 denotes a nitrogen rectification column equipped with a decentralizer section 21 with a built-in condenser 21a at the top of the column, which further cools the compressed air cooled to an ultra-low temperature by the first heat exchanger 13 and sent through the pipe 17. A part of it is liquefied and stored as liquid air 18 at the bottom, and only nitrogen is stored in a gaseous state at the upper ceiling. 23 is a liquid nitrogen storage tank that receives liquid nitrogen from outside the apparatus and stores it. To explain the rectification column 15 in more detail, the rectification column 15 is equipped with a dephlegmator 21 above a ceiling plate 20, and has a liquid nitrogen storage tank 23 in its upper part.
Liquid nitrogen is introduced from the inlet pipe 24a through the condenser 21 in the demultiplexer 21.
The liquid nitrogen generated in step a is transferred to the second introduction pipe 21.
It is supplied through c. These liquid nitrogens flow down into the liquid nitrogen reservoir 21d, and the overflow is transferred to the rectification column 1.
The air flows downward in the rectification column 15, contacts the compressed air rising from the bottom of the rectification column 15 in a countercurrent manner, cools it, and partially liquefies it. In this process, the high boiling point components in the compressed air are liquefied and accumulate at the bottom of the rectification column 15, and the low boiling point components, nitrogen gas, accumulate at the top of the rectification column 15. Further, the condenser 21a is disposed in the demultiplexer 21 as described above, and the rectification column 15
A part of the nitrogen gas accumulated in the upper part of the reflux liquid pipe 21b is sent through the first reflux liquid pipe 21b. The inside of this dephlegmator 21 is in a lower pressure state than the inside of the rectification column 15,
The liquid air stored at the bottom of the rectification column 15 (N 2 50-70%,
O 2 30-50%) 18 is pipe 1 with expansion valve 19a
9 and is vaporized to cool the internal temperature to a temperature below the boiling point of liquid nitrogen. Due to this cooling, the nitrogen gas fed into the condenser 21a is liquefied, becomes a reflux liquid, and flows down into the liquid nitrogen reservoir 21d in the rectification column 15. 2
Reference numeral 5 denotes a liquid level gauge, which controls the amount of liquid nitrogen supplied from the liquid nitrogen storage tank 23 by controlling the valve 26 according to the liquid level so that the liquid level of the liquid air in the decentralizer 21 is maintained at a constant level. . 27 is an extraction pipe for taking out the nitrogen gas accumulated in the upper part of the rectification column 15, which guides the ultra-low temperature nitrogen gas into the first heat exchanger 13, exchanges heat with the compressed air sent there, and brings it to room temperature. It acts to feed the water into the pipe 28. In this case, since He (-269°C) and H 2 (-253°C), which have low boiling points, tend to accumulate at the top of the rectifying column 15 along with nitrogen gas, the extraction pipe 27 is connected to the top of the rectifying column 15.
It opens considerably below the top of He,
It is designed to extract only pure nitrogen gas that does not contain H2 . 29 is a pipe that sends the vaporized liquid air in the dephlegmator 21 to the first heat exchanger 13 for heat exchange, and then releases the air as shown by arrow A;
a is its pressure holding valve. Reference numeral 40 denotes an oxygen rectification column, which communicates with the bottom of the partial condenser 21 of the nitrogen rectification column 15 through a liquid air supply pipe 41, and converts the liquid air sent into the partial condenser 21 into a head difference. The nitrogen content is removed by vaporization due to the difference in boiling point, and the oxygen is stored in a liquid state at the bottom. Reference numeral 42 denotes a discharge pipe that sends the vaporized waste liquid nitrogen into the vaporized liquid air discharge pipe 29, mixes it with the vaporized liquid air, and discharges it. 43 is an extraction pipe for taking out the liquid oxygen accumulated at the bottom of the oxygen rectification column 40, and an adsorption column 4 filled with a hydrocarbon adsorbent such as silica gel or alumina gel.
3a and a second heat exchanger 14. That is, since hydrocarbons are mixed in the liquid oxygen accumulated at the bottom of the oxygen rectification column 40, this is removed by liquid phase adsorption in the adsorption column 43a, and the liquid oxygen is highly purified. The air is fed into the second heat exchanger 14, where it exchanges heat with the compressed air sent in from the branch pipe 9' to be heated into a gas and fed into the product oxygen gas extraction pipe 44. 45
is a compressed air transfer pipe extending from the second heat exchanger 14 to the pipe 17, and the middle part thereof is located in the oxygen rectification column 40 to heat the liquid oxygen accumulated at the bottom and vaporize a part of it. The liquid air is brought into contact with the liquid air flowing down from the pipe 41 into the column 40 in a countercurrent manner, thereby improving the rectification efficiency. In addition,
Reference numeral 30 denotes a backup system line, which, when the air compression system line breaks down, liquid nitrogen in the liquid nitrogen storage tank 23 is evaporated by the evaporator 31 and sent to the main pipe 28, so that the supply of nitrogen gas is not interrupted. Do it like this. 32 is an impurity analyzer that analyzes the purity of the product nitrogen gas sent to the main pipe 28, and when the purity is low, valves 34,
34a is activated to release the product nitrogen gas to the outside as indicated by arrow B.
この装置は、つぎのようにして製品窒素ガスお
よび酸素ガスを製造する。すなわち、空気圧縮機
9により空気を圧縮し、ドレン分離器10により
圧縮された空気中の水分を除去してフロン冷却器
11により冷却し、その状態で吸着筒12に送り
込み、空気中のH2OおよびCO2を吸着除去する。
ついで、H2O、CO2が吸着除去された圧縮空気の
一部を第2の熱交換器14内に送り込んで低温に
冷却するとともに、残部を第1の熱交換器13に
送り込んで超低温に冷却し、その状態で精留塔1
5の下部内に投入する。ついで、この投入圧縮空
気を、液体窒素貯槽23から精留塔15内に送り
込まれた液体窒素および凝縮器21aで生成し流
下した液体窒素と接触させて冷却し、その一部を
液化して精留塔15の底部に液体空気18として
溜める。この過程において、窒素と酸素の沸点の
差(酸素の沸点−183℃、窒素の沸点−196℃)に
より、圧縮空気中の高沸点成分である酸素が液化
し、窒素が気体のまま残る。ついで、この気体の
まま残つた窒素を取出パイプ27から取り出して
第1の熱交換器13に送り込み常温近くまで昇温
させメインパイプ28から製品窒素ガスとして送
り出す。この場合、液体窒素貯槽23からの液体
窒素は、圧縮空気液化用の寒冷源として作用し、
それ自身は気化して取出パイプ27から製品窒素
ガスの一部として取り出される。他方、精留塔1
5の底部に溜つた液体空気18は、分縮器21内
に送り込まれて凝縮器21を冷却したのち、パイ
プ41を経て酸素精留塔40に送り込まれ、窒素
を気化除去され液体酸素となつて塔40内に残
る。この残つた液体酸素は、液体のまま吸着筒4
3aに送り込まれてそのなかの不純炭化水素を吸
着除去され、つづいて第2の熱交換器14内に送
り込まれて昇温気化され、炭化水素の混在してい
ない酸素ガスとして製品酸素ガス取出パイプ44
から取り出される。このようにして、高純度の窒
素ガスと炭化水素の混在していない酸素ガスとが
1台の装置により同時に得られるようになる。こ
の場合、得られる製品窒素ガスと製品酸素ガスの
比率(体積比)は、ほぼ10:1となる。
This device produces product nitrogen gas and oxygen gas as follows. That is, air is compressed by the air compressor 9, water in the compressed air is removed by the drain separator 10, and cooled by the fluorocarbon cooler 11. In this state, the air is sent to the adsorption column 12, and the H 2 in the air is removed. Adsorbs and removes O and CO2 .
Next, a part of the compressed air from which H 2 O and CO 2 have been adsorbed and removed is sent into the second heat exchanger 14 to be cooled to a low temperature, and the remaining part is sent to the first heat exchanger 13 to be cooled to an ultra-low temperature. After cooling, the rectification column 1 is added in that state.
Pour into the bottom of No.5. Next, this input compressed air is cooled by contacting with the liquid nitrogen sent into the rectification column 15 from the liquid nitrogen storage tank 23 and the liquid nitrogen generated in the condenser 21a and flowing down, and a part of it is liquefied and purified. It is stored as liquid air 18 at the bottom of the distillation column 15. In this process, due to the difference in the boiling points of nitrogen and oxygen (boiling point of oxygen -183°C, boiling point of nitrogen -196°C), oxygen, which is a high boiling point component in compressed air, liquefies, leaving nitrogen as a gas. Next, the remaining gaseous nitrogen is taken out from the extraction pipe 27 and sent to the first heat exchanger 13 where it is heated to near room temperature and sent out from the main pipe 28 as a product nitrogen gas. In this case, liquid nitrogen from liquid nitrogen storage tank 23 acts as a cold source for compressed air liquefaction;
The nitrogen gas itself is vaporized and taken out from the take-out pipe 27 as part of the product nitrogen gas. On the other hand, rectification column 1
The liquid air 18 accumulated at the bottom of the air filter 5 is sent into the demultiplexer 21 to cool the condenser 21, and then sent through the pipe 41 to the oxygen rectification column 40, where nitrogen is vaporized and removed and it becomes liquid oxygen. remains inside the tower 40. This remaining liquid oxygen is transferred to the adsorption tube 4 as a liquid.
3a, impure hydrocarbons therein are adsorbed and removed, and then fed into the second heat exchanger 14 where the temperature is raised and vaporized, and the product oxygen gas is removed as oxygen gas without hydrocarbons. 44
taken from. In this way, high-purity nitrogen gas and oxygen gas free of hydrocarbons can be obtained simultaneously using one device. In this case, the ratio (volume ratio) of the product nitrogen gas to the product oxygen gas obtained is approximately 10:1.
この高純度窒素ガス製造装置は、上記のように
膨脹タービンを用いず、高純度の製品窒素ガスと
酸素ガスとを製造しうるものであり、膨脹タービ
ンに起因する前記弊害を全く生じず、しかも精製
装置を不要化しうる。特に、この高純度窒素ガス
製造装置は、精留塔15の上部に凝縮器21a内
蔵型の分縮器21を設け、上記凝縮器21a内へ
精留塔15内で生成する窒素ガスの一部を常時案
内して液化するため、凝縮器21a内へ液化窒素
が所定量溜まつたのちはそれ以降生成する液化窒
素が還流液として常時精留塔15内へ戻るように
なる。したがつて、凝縮器21aからの還流液の
流下供給の断続に起因する製品純度のばらつき
(還流液の流下の中断により上部精留棚では液が
なくなりガスの吹抜け現象を招いて製品純度が下
がり、流下の再開時には一定純度に戻る)を生じ
ず、常時安定した純度の製品窒素ガスを供給する
ことができる。しかもこの装置では、製品窒素ガ
スの需要量に変動が生じても液面計25のような
制御手段がバルブ26の開度等を制御し精留塔1
5に対する液体窒素の供給量を制御することによ
り分縮器21内の液体空気の液面を一定に制御す
るため、需要量の変動に迅速に対応でき、かつこ
のときにも先に述べた理由により純度ばらつきを
生じない。すなわち、製品窒素ガスの需要量が多
くなると、従来の膨脹タービン式装置と同様原料
空気の取入量を増大させ、これを精留塔15内に
供給する。その結果、それを冷却するため分縮器
21内の液体空気が気化し、液面が低下する。こ
の液面の低下により液面計25が作動し液体窒素
の供給がなされ、こを液体窒素の供給量の増加に
より精留塔底部の貯溜液体空気量が増大しそれに
伴つて分縮器21内の液面が回復すると、液面計
25によつて精留塔に対する液体窒素の供給量が
適正に減少制御される。他方、製品窒素ガスの需
要量が少なくなると、上記とは逆に、分縮器21
内の液面が上昇するため、液面計25が作動して
精留塔15に対する液体窒素の供給量を減少させ
液体窒素の過剰供給にもとづく不合理を排除す
る。このように、この装置は、純度のばらつきを
生じることなく迅速かつ合理的に需要量の変動に
対応できるのである。そのうえ、この装置によれ
ば、上記窒素ガスと同時に純度の高い酸素ガスを
製造できるのであり、1台の装置で2種類の高純
度ガスの製造を可能にしうるのである。 As mentioned above, this high-purity nitrogen gas production apparatus can produce high-purity product nitrogen gas and oxygen gas without using an expansion turbine, and does not cause any of the above-mentioned disadvantages caused by expansion turbines. Purification equipment can be eliminated. In particular, this high-purity nitrogen gas production apparatus is provided with a dephlegmator 21 having a built-in condenser 21a in the upper part of the rectification column 15, and a part of the nitrogen gas generated in the rectification column 15 is transferred into the condenser 21a. Since the liquefied nitrogen is constantly guided and liquefied, after a predetermined amount of liquefied nitrogen has accumulated in the condenser 21a, the liquefied nitrogen generated thereafter always returns to the rectification column 15 as a reflux liquid. Therefore, variations in product purity due to intermittent supply of reflux liquid from the condenser 21a (interruption of flow of reflux liquid causes liquid to run out in the upper rectifying shelf, causing gas blow-by phenomenon and reducing product purity). , the purity returns to a constant level when the flow resumes), and product nitrogen gas of stable purity can be supplied at all times. Moreover, in this device, even if the demand for product nitrogen gas fluctuates, the control means such as the liquid level gauge 25 controls the opening degree of the valve 26, etc.
By controlling the supply amount of liquid nitrogen to 5, the liquid level of liquid air in the demultiplexer 21 is controlled to a constant level, so it is possible to quickly respond to fluctuations in the demand amount, and also at this time, for the reason mentioned above. Therefore, there is no variation in purity. That is, when the demand for product nitrogen gas increases, the intake amount of raw material air is increased and this is supplied into the rectification column 15, similar to the conventional expansion turbine type device. As a result, the liquid air in the decentralizer 21 is vaporized to cool it, and the liquid level is lowered. This drop in the liquid level causes the liquid level gauge 25 to operate and supply liquid nitrogen, and as the amount of liquid nitrogen supplied increases, the amount of liquid air stored at the bottom of the rectification column increases, which causes the inside of the dephlegmator 21 to When the liquid level recovers, the liquid level gauge 25 appropriately reduces the amount of liquid nitrogen supplied to the rectification column. On the other hand, when the demand for product nitrogen gas decreases, contrary to the above, the decentralizer 21
As the liquid level in the column rises, the liquid level gauge 25 operates to reduce the amount of liquid nitrogen supplied to the rectification column 15 to eliminate unreasonableness due to excessive supply of liquid nitrogen. In this way, this device can quickly and rationally respond to changes in demand without causing variations in purity. Moreover, this device can produce highly pure oxygen gas at the same time as the nitrogen gas, making it possible to produce two types of high-purity gases with one device.
なお、第2図に示すように、分岐パイプ9′と
は別に、第2の分岐パイプ9aを設け、この第2
の分岐パイプ9aを、熱交換器14を経由させる
ことなく特設酸素精留塔40内に入れ、熱交換器
14で冷やされていない温度の高い圧縮空気で酸
素精留塔40の底部に溜る高純度の液体酸素を加
熱するようにしてもよい。このように比較的温度
の高い圧縮空気で液体酸素を加熱することによ
り、液体酸素を素早く昇温させうるようになり、
取出量の変化に素早く応答させうるようになる。 Note that, as shown in FIG. 2, a second branch pipe 9a is provided separately from the branch pipe 9', and this second
The branch pipe 9a is put into the special oxygen rectification column 40 without passing through the heat exchanger 14, and the high temperature that accumulates at the bottom of the oxygen rectification column 40 is removed using high-temperature compressed air that has not been cooled by the heat exchanger 14. Pure liquid oxygen may also be heated. By heating liquid oxygen with relatively high-temperature compressed air in this way, it is possible to quickly raise the temperature of liquid oxygen.
It becomes possible to quickly respond to changes in the amount taken out.
第3図は他の実施例を示している。 FIG. 3 shows another embodiment.
この装置は、窒素精留塔15の分縮器21から
ではなく、精留塔15の底部から液体空気供給パ
イプ41を酸素精留塔40まで延ばし、精留塔1
5の底部に溜る液体空気18を酸素精留塔40に
送入している。それ以外の部分は第1図の装置と
同じであり、作用効果も同じである。 In this device, a liquid air supply pipe 41 is extended from the bottom of the rectification column 15 to the oxygen rectification column 40 instead of from the partial condenser 21 of the nitrogen rectification column 15.
Liquid air 18 accumulated at the bottom of the tank 5 is fed into an oxygen rectification column 40. The other parts are the same as the apparatus shown in FIG. 1, and the effects are also the same.
なお、以上の実施例は、いずれも酸素精留塔4
0の底部に溜つた液体酸素を吸着筒43aに送つ
ているが、第4図に示すように、気化した状態の
酸素を取り出し、これを、順次、吸着筒43a、
第2熱交換器14を通すようにしてもよい。そし
て、図示の一点鎖線で示す真空保冷函中に、図示
のように、精留塔15,40および熱交換器1
3,14を収容して外部からの熱侵入を断ち、精
製効率を一層向上させるようにしてもよい。ま
た、吸着筒43aは、炭素水素の吸着用に限定す
るものではなく、予め混入が予想されうる成分の
除去に適したものを用いることができるのであ
る。 In addition, in all the above embodiments, the oxygen rectification column 4
The liquid oxygen accumulated at the bottom of the tube 43a is sent to the adsorption column 43a, and as shown in FIG.
It may be made to pass through the second heat exchanger 14. Then, as shown in the figure, a rectification column 15, 40 and a heat exchanger 1 are placed in a vacuum cooling box indicated by a dashed line in the figure.
3 and 14 may be housed to cut off heat intrusion from the outside and further improve purification efficiency. Further, the adsorption cylinder 43a is not limited to adsorption of carbon and hydrogen, but may be one suitable for removing components that may be mixed in in advance.
さらに、第1図ないし第3図の装置ならびに第
4図の装置は、放出パイプ42を、窒素精留塔1
5の気化液体空気放出パイプ29に接続し、窒素
精留塔15の分縮器21と酸素精留塔40とを連
通状態にしているが、第5図に示すように、放出
パイプ42を気化液体空気放出パイプ29に接続
せずに独立させてもよい。このようにすることに
より、酸素精留塔40と窒素精留塔15とが相互
に独立した状態になるため、窒素精留塔15の窒
素ガス製造量に殆ど影響されることなく酸素ガス
の製造量の増減を図ることができるようになる。
また、酸素精留塔40内へは、分縮器21および
窒素精留塔15の双方から貯溜液体空気を供給す
るようにしてもよい。さらに、酸素精留塔40か
ら取り出された液体酸素をそのまま製品酸素とし
てもよい。 Furthermore, the apparatus of FIGS. 1 to 3 as well as the apparatus of FIG.
As shown in FIG. It may be made independent without being connected to the liquid air discharge pipe 29. By doing so, the oxygen rectification column 40 and the nitrogen rectification column 15 become independent from each other, so that oxygen gas can be produced almost unaffected by the amount of nitrogen gas produced by the nitrogen rectification column 15. You will be able to increase or decrease the amount.
Further, the stored liquid air may be supplied into the oxygen rectification column 40 from both the dephlegmator 21 and the nitrogen rectification column 15. Furthermore, the liquid oxygen taken out from the oxygen rectification column 40 may be directly used as product oxygen.
この発明の高純度窒素ガス製造装置は、膨脹タ
ービンを用いず、それに代えて何ら回転部をもた
ない液体窒素貯槽のような液体窒素貯蔵手段を用
いるため、装置全体として回転部がなくなり故障
を全く生じない。しかも膨脹タービンは高価であ
るのに対して液体窒素貯槽は安価であり、また特
別な要員も不要になる。そのうえ、膨脹タービン
(窒素精留塔内に溜る液体空気から蒸発したガス
の圧力で駆動する)は、回転速度が極めて大(数
万回/分)であるため、負荷変動(製品窒素ガス
の取出量の変化)に対するきめ細かな追従運動が
困難である。したがつて、製品窒素ガスの取出量
の変化に応じて膨脹タービンに対する液体空気の
供給量を正確に変化させ、窒素ガス製造原料であ
る圧縮空気を常時一定温度に冷却することが困難
であり、その結果、得られる製品窒素ガスの純度
がばらつき、頻繁に低純度のものがつくりだされ
全体的に製品窒素ガスの純度が低くなつていた。
この発明の装置は、それに代えて液体窒素貯槽を
用い、供給量のきめ細かい調節が可能な液体窒素
を寒冷源として用いるため、負荷変動に対するき
め細かな追従が可能となり、純度が安定していて
極めて高い窒素ガスを製造しうるようになる。し
たがつて、従来の精製装置が不要となる。特に、
この発明の装置は、窒素精留塔の上部に凝縮器内
蔵型の分縮器を設け、この分縮器内の凝縮器へ精
留塔内で生成する窒素ガスの一部を常時導入して
液化還流液化し、還流液が常時精留塔内へ戻るよ
うにすると同時に、制御手段によつて上記精留塔
に対する液体窒素貯蔵手段からの液体窒素の供給
量を制御して分縮器の液面を一定に保つようにす
るため、負荷変動に対して極めて迅速に対応で
き、その際、製品窒素ガスを純度ばらつきを生じ
ない。そのうえ、この装置は、酸素精留塔を備え
ており、窒素ガス採取後の酸素リツチな液体空気
を窒素精留塔から酸素精留塔に供給して酸素を製
造しこれを吸着塔を通して製品化するため、不純
炭化水素を含まない高純度の酸素ガスの高効率製
造が可能になる。このように、この発明の装置に
よれば、1台の装置で高純度の窒素ガスと高純度
の酸素ガスの効率よい製造が可能であるため、電
子工業向けに最適である。
The high-purity nitrogen gas production device of the present invention does not use an expansion turbine, but instead uses a liquid nitrogen storage means such as a liquid nitrogen storage tank that does not have any rotating parts, so the entire device has no rotating parts and is prone to failure. It doesn't happen at all. Furthermore, while expansion turbines are expensive, liquid nitrogen storage tanks are inexpensive and do not require special personnel. Furthermore, the expansion turbine (which is driven by the pressure of the gas evaporated from the liquid air accumulated in the nitrogen rectification column) has an extremely high rotational speed (tens of thousands of rotations/minute), so load fluctuations (removal of product nitrogen gas) It is difficult to make fine-grained follow-up movements for changes in quantity. Therefore, it is difficult to accurately change the amount of liquid air supplied to the expansion turbine in accordance with changes in the amount of product nitrogen gas taken out, and to constantly cool compressed air, which is the raw material for producing nitrogen gas, to a constant temperature. As a result, the purity of the product nitrogen gas obtained varies, and low-purity products are frequently produced, resulting in an overall low purity product nitrogen gas.
The device of this invention uses a liquid nitrogen storage tank instead, and the supply amount can be finely adjusted as a cooling source. Therefore, it is possible to closely follow load fluctuations, and the purity is stable and extremely high. It becomes possible to produce nitrogen gas. Therefore, conventional purification equipment is not required. especially,
The apparatus of this invention is provided with a demultiplexer with a built-in condenser in the upper part of the nitrogen rectification column, and a part of the nitrogen gas generated in the rectification column is constantly introduced into the condenser in the demultiplexer. Liquefaction Reflux The reflux liquid is liquefied, and the reflux liquid is constantly returned to the rectification column, and at the same time, the amount of liquid nitrogen supplied from the liquid nitrogen storage means to the rectification column is controlled by the control means, so that the liquid in the fractionator is Since the surface is kept constant, it is possible to respond extremely quickly to load fluctuations, and in this case, there is no variation in the purity of the product nitrogen gas. Furthermore, this equipment is equipped with an oxygen rectification column, and after nitrogen gas has been extracted, the oxygen-rich liquid air is supplied from the nitrogen rectification column to the oxygen rectification column to produce oxygen, which is then passed through an adsorption column and turned into a product. Therefore, it becomes possible to efficiently produce high-purity oxygen gas that does not contain impure hydrocarbons. As described above, the apparatus of the present invention allows efficient production of high-purity nitrogen gas and high-purity oxygen gas with a single apparatus, and is therefore optimal for use in the electronics industry.
第1図はこの発明の一実施例の構成図、第2図
はその変形例の構成図、第3図は他の実施例の構
成図、第4図および第5図はさらに他の実施例の
構成図である。
9……空気圧縮機、12……吸着筒、13,1
4……熱交換器、15……窒素精留塔、17……
パイプ、18……液体空気、21……分縮器、2
1a……凝縮器、21d……液体窒素溜め、23
……液体窒素貯槽、24a……導入路パイプ、2
7……取出パイプ、28……メインパイプ、40
……酸素精留塔、41……液体空気供給パイプ、
42……放出パイプ、43……取出パイプ、43
a……吸着筒、44……製品酸素ガス取出パイ
プ、45……パイプ。
Fig. 1 is a block diagram of one embodiment of the present invention, Fig. 2 is a block diagram of a modification thereof, Fig. 3 is a block diagram of another embodiment, and Figs. 4 and 5 are still other embodiments. FIG. 9...Air compressor, 12...Adsorption cylinder, 13,1
4...Heat exchanger, 15...Nitrogen rectification column, 17...
Pipe, 18...Liquid air, 21...Demultiplexer, 2
1a... Condenser, 21d... Liquid nitrogen reservoir, 23
...Liquid nitrogen storage tank, 24a...Introduction pipe, 2
7...Takeout pipe, 28...Main pipe, 40
...Oxygen rectification column, 41...Liquid air supply pipe,
42...Discharge pipe, 43...Take-out pipe, 43
a... Adsorption cylinder, 44... Product oxygen gas extraction pipe, 45... Pipe.
Claims (1)
手段と、この空気圧縮手段によつて圧縮された圧
縮空気中の炭酸ガスと水分とを除去する除去手段
と、この除去手段を経た圧縮空気を超低温に冷却
する熱交換手段と、この熱交換手段により超低温
に冷却された圧縮空気の一部を液化して底部に溜
め窒素のみを気体として上部側から窒素ガス取出
路を通して取り出す窒素精留塔を備えた窒素ガス
製造装置において、窒素精留塔の上部に設けられ
た凝縮器内蔵型の分縮器と、窒素精留塔の底部の
貯溜液体空気を上記凝縮器冷却用の寒冷として上
記分縮器中に導く液体空気導入パイプと、窒素精
留塔内で生成した窒素ガスの一部を上記凝縮器内
に案内する第1の還流液パイプと、上記凝縮器内
で生じた液化窒素を還流液として窒素精留塔内に
戻す第2の還流液パイプと、装置外から液体窒素
の供給を受けこれを貯蔵する液体窒素貯蔵手段
と、この液体窒素貯蔵手段内の液体窒素を冷熱発
生用膨脹器からの発生冷熱に代え圧縮空気液化用
の寒冷として連続的に上記窒素精留塔内に導く導
入路と、上記窒素精留塔に対する上記液体窒素貯
蔵手段からの液体窒素の供給量を制御することに
より上記分縮器内の液体空気の液面を一定に制御
する制御手段と、液体空気を対象とし窒素と酸素
の沸点の差を利用して両者を分離する酸素精留塔
と、上記窒素精留塔または分縮器の貯溜液体空気
を上記酸素精留塔内に供給する液体空気供給路
と、上記酸素精留塔内において分離された酸素を
取り出す酸素取出路と、上記酸素取出路の所定の
個所に設けられ酸素中の不純炭化水素を吸着除去
する吸着塔を備えたことを特徴とする高純度窒素
ガス製造装置。1. Air compression means for compressing air taken in from the outside, removal means for removing carbon dioxide and moisture from the compressed air compressed by this air compression means, and cooling the compressed air that has passed through this removal means to an ultra-low temperature. It is equipped with a heat exchange means for cooling, and a nitrogen rectification column that liquefies a part of the compressed air cooled to an ultra-low temperature by the heat exchange means, stores it at the bottom, and extracts only nitrogen as a gas from the upper side through the nitrogen gas extraction passage. In a nitrogen gas production device, a demultiplexer with a built-in condenser is installed at the top of a nitrogen rectification column, and liquid air stored at the bottom of the nitrogen rectification column is used as cold air for cooling the condenser in the demultiplexer. a first reflux liquid pipe that guides a portion of the nitrogen gas generated in the nitrogen rectification column into the condenser, and a first reflux liquid pipe that guides a portion of the nitrogen gas generated in the nitrogen rectification column into the condenser, and a first reflux liquid pipe that guides the liquefied nitrogen generated in the condenser to the reflux liquid. A second reflux liquid pipe that returns the liquid to the nitrogen rectification column; a liquid nitrogen storage means for receiving and storing liquid nitrogen from outside the apparatus; By controlling an introduction path that continuously leads the compressed air into the nitrogen rectification column as cold air for liquefaction in place of the generated cold heat, and the supply amount of liquid nitrogen from the liquid nitrogen storage means to the nitrogen rectification column. A control means for controlling the liquid level of the liquid air in the dephlegmator to a constant level, an oxygen rectification column for separating the liquid air using the difference in boiling point between nitrogen and oxygen, and the nitrogen rectification for the liquid air. A liquid air supply path for supplying the liquid air stored in the column or dephlegmator into the oxygen rectification column, an oxygen extraction path for taking out the oxygen separated in the oxygen rectification column, and a predetermined line of the oxygen extraction path. A high-purity nitrogen gas production device characterized by being equipped with adsorption towers installed at locations to adsorb and remove impure hydrocarbons from oxygen.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10830788A JPH01239375A (en) | 1988-04-30 | 1988-04-30 | Device for manufacturing highly pure nitrogen gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10830788A JPH01239375A (en) | 1988-04-30 | 1988-04-30 | Device for manufacturing highly pure nitrogen gas |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13674784A Division JPS6115066A (en) | 1984-07-02 | 1984-07-02 | Production unit for high-purity nitrogen gas |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01239375A JPH01239375A (en) | 1989-09-25 |
JPH0418223B2 true JPH0418223B2 (en) | 1992-03-27 |
Family
ID=14481386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10830788A Granted JPH01239375A (en) | 1988-04-30 | 1988-04-30 | Device for manufacturing highly pure nitrogen gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01239375A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105423702A (en) * | 2015-12-16 | 2016-03-23 | 新疆天辰气体有限公司 | External cooling type low pure oxygen air separation system and method |
CN105423703B (en) * | 2015-12-16 | 2017-08-25 | 新疆天辰气体有限公司 | External-cooling type single-stage rectifying space division system |
-
1988
- 1988-04-30 JP JP10830788A patent/JPH01239375A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH01239375A (en) | 1989-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0313505B2 (en) | ||
US5546766A (en) | Air separation | |
US5572874A (en) | Air separation | |
JPS6146747B2 (en) | ||
JPH0861844A (en) | Method and equipment for restarting sub-column for separating argon and oxygen by distilation | |
JPS6148072B2 (en) | ||
US5778698A (en) | Ultra high purity nitrogen and oxygen generator unit | |
JPS6158747B2 (en) | ||
US5058387A (en) | Process to ultrapurify liquid nitrogen imported as back-up for nitrogen generating plants | |
JPH0418223B2 (en) | ||
JP4242507B2 (en) | Method and apparatus for producing ultra high purity gas | |
JPS6148071B2 (en) | ||
JPS62116887A (en) | Production unit for high-impurity nitrogen gas | |
JPS6152390B2 (en) | ||
JPH0882476A (en) | Apparatus for producing high-purity nitrogen gas | |
JPH0719725A (en) | High purity nitrogen gas preparing apparatus | |
JP2540243B2 (en) | High-purity nitrogen gas production equipment | |
JPH0318108B2 (en) | ||
JPS6149594B2 (en) | ||
JPS6244190B2 (en) | ||
JPS6152388B2 (en) | ||
JPS62158975A (en) | Production unit for high-purity nitrogen gas | |
JPS62422B2 (en) | ||
JPS628710B2 (en) | ||
JPH0512638B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |