JPH0882476A - Apparatus for producing high-purity nitrogen gas - Google Patents

Apparatus for producing high-purity nitrogen gas

Info

Publication number
JPH0882476A
JPH0882476A JP24611995A JP24611995A JPH0882476A JP H0882476 A JPH0882476 A JP H0882476A JP 24611995 A JP24611995 A JP 24611995A JP 24611995 A JP24611995 A JP 24611995A JP H0882476 A JPH0882476 A JP H0882476A
Authority
JP
Japan
Prior art keywords
liquid
nitrogen
air
nitrogen gas
liquid nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24611995A
Other languages
Japanese (ja)
Inventor
Akira Yoshino
明 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Hoxan Inc
Original Assignee
Daido Hoxan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Hoxan Inc filed Critical Daido Hoxan Inc
Priority to JP24611995A priority Critical patent/JPH0882476A/en
Publication of JPH0882476A publication Critical patent/JPH0882476A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Abstract

PURPOSE: To compensate the inadequacy of the performance of an expansion turbine in following up the fluctuations of the demand with injection of liquid nitrogen relating to an apparatus for producing nitrogen gas of superhigh purity by low-temperature liquefaction-separation of air. CONSTITUTION: To a rectifying column 15a with a dephlegmator 15 an expansion turbine and also a liquid-nitrogen storage tank are connected. The air supplied as raw material is cooled constantly by means of cold evolved by the expansion turbine, and, for a deficiency of the cold, liquid nitrogen is supplied from the liquid-nitrogen storage tank to the rectifying column 15a under the control of a liquid-level instrument 23.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、高純度窒素ガス
製造装置に関するものである。
TECHNICAL FIELD The present invention relates to a high-purity nitrogen gas producing apparatus.

【0002】[0002]

【従来の技術】一般に、窒素ガスは深冷液化分離装置に
より製造されている。この種の窒素ガス製造装置は、例
えば、特公昭52−41232号公報に示されるよう
に、圧縮機で圧縮された圧縮空気を熱交換するための熱
交換器の冷媒冷却用に、膨脹タービンを用い、これを精
留塔内に溜る液体空気(深冷液化分離により低沸点の窒
素はガスとして取り出され、残部が酸素リッチな液体空
気となって溜る)から蒸発したガスの圧力で駆動するよ
うになっている。
2. Description of the Related Art Generally, nitrogen gas is produced by a cryogenic liquefaction separator. This type of nitrogen gas production apparatus has an expansion turbine for cooling a refrigerant of a heat exchanger for exchanging heat with compressed air compressed by a compressor, as disclosed in Japanese Patent Publication No. 52-41232. Use it by driving it with the pressure of the gas evaporated from the liquid air that accumulates in the rectification column (nitrogen with a low boiling point is taken out as a gas by cryogenic liquefaction separation, and the rest is stored as oxygen-rich liquid air). It has become.

【0003】[0003]

【発明が解決しようとする課題】ところが、膨脹タービ
ンは回転速度が極めて大(数万回/分)であり、負荷変
動に対する追従運転が困難であるため、製品窒素ガスの
需要量の変動に速やかに対応することができないという
欠点を備えている。
However, since the expansion turbine has an extremely high rotation speed (tens of thousands of revolutions / minute) and it is difficult to follow the load variation, it is possible to quickly respond to variations in the demand amount of product nitrogen gas. It has the drawback of not being able to deal with.

【0004】また、この種の窒素ガス製造装置では、精
留塔の精留棚の数の増加により、かなり高純度の窒素ガ
スを製造することができるが、最近における超高純度窒
素ガスの要求に応えることができない。すなわち、上記
の窒素ガス製造装置によって得られた製品窒素ガス中に
は、酸素が不純分として混在するため、これをそのまま
使用することは、その需要分野、特に超高純度窒素ガス
を必要とする電子工業分野においては不都合なことが多
い。
Further, in this type of nitrogen gas producing apparatus, a considerably high purity nitrogen gas can be produced by increasing the number of rectifying shelves in the rectifying tower. Can not respond to. That is, in the product nitrogen gas obtained by the above-mentioned nitrogen gas manufacturing apparatus, oxygen is mixed as an impurity, so that it is necessary to use the oxygen gas as it is, the ultra high purity nitrogen gas is required. It is often inconvenient in the electronics industry.

【0005】不純酸素の除去方法としては、(1)Pt
触媒を使用し、窒素ガス中に微量の水素を添加して不純
酸素と200℃程度の温度雰囲気中で反応させ水として
除去する方法、および(2)Ni触媒を使用し、窒素ガ
ス中の不純酸素を200℃程度の温度雰囲気においてN
i触媒と接触させ、下記に示す反応を起こさせて除去す
る方法がある。
As a method for removing impure oxygen, (1) Pt
A method of using a catalyst to add a trace amount of hydrogen to nitrogen gas and reacting it with impure oxygen in an atmosphere at a temperature of about 200 ° C. to remove it as water, and (2) using a Ni catalyst to obtain impurities in nitrogen gas Oxygen in the atmosphere of about 200 ℃ N
There is a method of contacting with an i-catalyst to cause the following reaction and removal.

【0006】[0006]

【化1】Ni+1/2O2 →NiO[Chemical formula 1] Ni + 1 / 2O 2 → NiO

【0007】しかしながら、これらの方法は、いずれも
窒素ガスを高温にして触媒と接触させなければならない
ため、その装置を、超低温系である窒素ガス製造装置中
には組み込めない。したがって、窒素ガス製造装置とは
別個に精製装置を設置しなければならず、全体が大形に
なるという欠点がある。そのうえ、前記(1)の方法で
は、水素の添加量の調整に高精度が要求され、不純酸素
量と丁度反応するだけの量の水素を添加しないと、酸素
が残存したり、また、添加した水素が残存して不純分と
なってしまうため、操作に熟練を要するという問題があ
る。また、前記(2)の方法では、不純酸素との反応で
生じたNiOの再生(下記に示す反応)をする必要が生
じ、再生用H2 ガス設備が必要となって精製費の上昇を
招いていた。
However, in any of these methods, the temperature of nitrogen gas must be raised to bring it into contact with the catalyst, so that the apparatus cannot be incorporated into a nitrogen gas production apparatus which is an ultra-low temperature system. Therefore, the refining device must be installed separately from the nitrogen gas production device, which has the drawback of increasing the overall size. In addition, the method (1) requires high precision in adjusting the amount of hydrogen added, and if hydrogen is not added in an amount just to react with the amount of impure oxygen, oxygen remains or is added. Since hydrogen remains and becomes an impurity, there is a problem that skill is required for the operation. Further, in the above method (2), it is necessary to regenerate NiO generated by the reaction with impure oxygen (reaction shown below), which requires an H 2 gas facility for regeneration, resulting in an increase in purification cost. Was there.

【0008】[0008]

【化2】NiO+H2 →Ni+H2 [Chemical formula 2] NiO + H 2 → Ni + H 2 O

【0009】したがって、需要量の変動に対応でき、し
かも全体が小形で操作に熟練を要さず、かつ製品窒素ガ
スを安価に製造しうる窒素ガス製造装置の提供が望まれ
ている。
Therefore, it is desired to provide a nitrogen gas production apparatus which can cope with fluctuations in demand, is small in size as a whole, does not require skill in operation, and can produce product nitrogen gas at low cost.

【0010】この発明は、このような事情に鑑みなされ
たもので、上記のような性能を備えた高純度窒素ガス製
造装置の提供をその目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a high-purity nitrogen gas producing apparatus having the above-described performance.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成するた
め、この発明の高純度窒素ガス製造装置は、外部より取
り入れた空気を圧縮する空気圧縮手段と、この空気圧縮
手段によって圧縮された圧縮空気中の炭酸ガスと水分と
を除去する除去手段と、この除去手段を経た圧縮空気を
超低温に冷却する熱交換手段と、この熱交換手段により
超低温に冷却された圧縮空気の一部を液化して底部に溜
め窒素のみを気体として上部側から取り出す精留塔を備
えた窒素ガス製造装置において、精留塔の上部に設けら
れた凝縮器内蔵型の分縮器と、精留塔の底部の貯溜液体
空気を上記凝縮器冷却用の寒冷として上記分縮器中に導
く液体空気導入パイプと、上記分縮器中で生じた気化液
体空気を外部に放出する放出パイプと、上記放出パイプ
の気化液体空気を利用して冷熱を発生し生成冷熱を上記
熱交換手段に送り冷却する膨脹器と、装置外から液体窒
素の供給を受けこれを貯蔵する液体窒素貯蔵手段と、こ
の液体窒素貯蔵手段内の液体窒素を圧縮空気液化用の寒
冷として上記精留塔内に導く導入路と、上記精留塔から
気体として取り出される窒素および上記精留塔内におい
て寒冷源としての作用を終え気化した上記液体窒素を上
記熱交換手段を経由させその内部を通る圧縮空気と熱交
換させることにより温度上昇させ製品窒素ガスとする窒
素ガス取出路とを備えるという構成をとる。
In order to achieve the above object, the high-purity nitrogen gas producing apparatus of the present invention has an air compression means for compressing the air taken in from the outside, and a compression compressed by the air compression means. Removing means for removing carbon dioxide gas and moisture in the air, heat exchanging means for cooling the compressed air that has passed through this removing means to an ultra low temperature, and liquefying part of the compressed air cooled to an ultra low temperature by this heat exchanging means. In a nitrogen gas production apparatus equipped with a rectification column that takes out only nitrogen stored in the bottom part as a gas from the upper side, a condenser built-in partial condenser provided in the upper part of the rectification column and a bottom part of the rectification column Liquid air introduction pipe for guiding the stored liquid air into the condenser as cold for cooling the condenser, a discharge pipe for discharging vaporized liquid air generated in the condenser to the outside, and vaporization of the discharge pipe Liquid air Expander for generating cold heat and sending the generated cold heat to the heat exchange means for cooling, liquid nitrogen storage means for receiving and storing liquid nitrogen from outside the device, and liquid nitrogen in the liquid nitrogen storage means. Is introduced into the rectification column as cold for liquefaction of compressed air, nitrogen taken out as a gas from the rectification column and the liquid nitrogen vaporized after finishing the action as a cold source in the rectification column. A nitrogen gas take-out path for raising the temperature of the product by passing it through the heat exchange means and exchanging heat with the compressed air passing through the inside to obtain product nitrogen gas is provided.

【0012】[0012]

【発明の実施の形態】すなわち、この発明の高純度窒素
ガス製造装置は、膨脹タービンの発生寒冷のみでなく、
液体窒素貯槽の液体窒素をも寒冷として用いるため、製
品窒素ガスの需要量の変動、特に大幅な重要量の変動に
迅速に対応できるようになる。すなわち、膨脹タービン
を定常運転させて所定量の製品窒素ガスを常時一定量製
造するようにし、さらに需要変動分を液体窒素貯槽から
の液体窒素で補うようにすることにより、膨脹タービン
の回転速度等を変えることなく、迅速に需要量の変動に
対応できるようになる。より詳しく述べると、膨脹ター
ビンは高速回転器であり、製品窒素ガスの取出量の変化
に応じて膨脹タービンに対する廃ガスの供給量を迅速に
変化させることが困難であり、必ず時間遅れを生じる。
この発明は、このような時間遅れを生じる膨脹タービン
と、液体窒素貯槽からの液体窒素の供給とを併用し、膨
脹タービンを一定速度で回転させることにより一定量の
寒冷を生成させ、寒冷の残部(変動分も含む)を液体窒
素でまかなうことにより需要量の変動に迅速に対応しう
ることができる。この場合、液体窒素貯槽からの液体窒
素は液体であり、その供給量の調節は迅速かつ精密に行
うことができ、かつ液体窒素は直接精留塔に供給される
ため、その供給量の調節の効果は迅速に現れる。この発
明の装置は、昼間と夜間の製品窒素ガスの需要量の変動
が大幅に異なる(昼間が多い)ような場合に特に有効で
ある。すなわち、膨脹タービンによって夜間の寒冷の全
部をまかなう(深夜電力は安価である)ようにし、昼間
における寒冷の不足分は液体窒素貯槽からの液体窒素で
補うようにすることにより、昼間と夜間の需要量の著し
い変動に対応でき、しかも製品窒素ガスの需要変動にも
対応できるようになる。
BEST MODE FOR CARRYING OUT THE INVENTION That is, the high-purity nitrogen gas production apparatus of the present invention is not limited to the cold generated by the expansion turbine,
Since liquid nitrogen in the liquid nitrogen storage tank is also used as cold, it becomes possible to quickly respond to fluctuations in the demand amount of the product nitrogen gas, particularly large fluctuations in the important amount. That is, the expansion turbine is operated in a steady state so that a predetermined amount of product nitrogen gas is constantly produced, and the fluctuation of demand is compensated by the liquid nitrogen from the liquid nitrogen storage tank. It will be possible to quickly respond to fluctuations in demand without changing. More specifically, the expansion turbine is a high-speed rotator, and it is difficult to quickly change the amount of waste gas supplied to the expansion turbine in accordance with the change in the amount of product nitrogen gas taken out, and a time delay is always caused.
The present invention uses the expansion turbine that causes such a time delay and the supply of liquid nitrogen from the liquid nitrogen storage tank together to rotate the expansion turbine at a constant speed to generate a certain amount of refrigeration, and the remainder of the refrigeration. By supplying liquid nitrogen (including fluctuations) with liquid nitrogen, it is possible to quickly respond to fluctuations in demand. In this case, since the liquid nitrogen from the liquid nitrogen storage tank is liquid, the supply amount can be adjusted quickly and precisely, and since the liquid nitrogen is directly supplied to the rectification column, the supply amount can be adjusted. The effect will appear quickly. The device of the present invention is particularly effective in the case where the fluctuations in the demand amount of the product nitrogen gas between the daytime and the nighttime are significantly different (there are many daytime periods). In other words, the expansion turbine is used to cover all of the cold at night (late-night power is inexpensive), and the lack of cold during the day is supplemented with liquid nitrogen from the liquid nitrogen storage tank, so that the demand for day and night is increased. It will be possible to cope with significant fluctuations in the quantity, and also to cope with fluctuations in the demand for product nitrogen gas.

【0013】つぎに、この発明の実施の形態を図面にも
とづいて説明する。
Next, an embodiment of the present invention will be described with reference to the drawings.

【0014】図1はこの発明の一実施の形態を示す構成
図である。図において、1は空気圧縮機、2はドレン分
離器、3はフロン冷却器、4は2個1組の吸着筒であ
る。吸着筒4は内部にモレキュラーシーブが充填されて
いて空気圧縮機1により圧縮された空気中のH2 Oおよ
びCO2 を吸着除去する作用をする。13はH2 O,C
2 が吸着除去された圧縮空気を送る圧縮空気供給パイ
プである。38は熱交換器であり、吸着筒4によりH2
OおよびCO2 が吸着除去された圧縮空気が送り込まれ
る。10は精留塔であり、図2に示すように、塔頂に凝
縮器15a内蔵の分縮器15を備えており、熱交換器3
8(図1)により超低温に冷却され、パイプ16を経て
送り込まれる圧縮空気をさらに冷却し、その一部を液化
し液体空気36として底部に溜め、窒素のみを気体状態
で上部天井部に溜めるようになっている。図1におい
て、7は装置外から液体窒素の供給を受けこれを貯蔵す
る液体窒素貯槽であり、内部の液体窒素(高純度品)
を、導入路パイプ40を経由させ精留塔10の上部側に
送入し、精留塔10内に供給される圧縮空気の寒冷源に
する。ここで上記精留塔10についてより詳しく説明す
ると、上記精留塔10は、図2に示すように、天井板2
0の上側に分縮器15を備えており、この分縮器15内
の凝縮器15aには、精留塔10の上部に溜る窒素ガス
の一部が第1の還流液パイプ15bを介して送入され
る。この分縮器15内は、精留塔10内よりも減圧状態
になっており、精留塔10の底部の貯留液体空気
(N2 ;50〜70%,O2 ;30〜50%)36が膨
脹弁18a付きパイプ37を経て送り込まれ、気化して
内部温度を液体窒素の沸点以下の温度に冷却するように
なっている。この冷却により、精留塔10から第1の還
流液パイプ15bを介して凝縮器15a内に送入された
窒素ガスが液化する。23は液面計であり、分縮器15
内の液体空気の液面が一定レベルを保つようその液面に
応じてバルブ24を制御し液体窒素貯槽7からの液体窒
素の供給量を制御する。精留塔10の上部側の部分に
は、上記分縮器15内の凝縮器15aで生成した液体窒
素が第2の還流液パイプ15cを通って流下供給される
とともに、液体窒素貯槽7から液体窒素が導入路パイプ
40を経て供給され、これらが液体窒素溜め39を経て
精留塔10内を下方に流下し、精留塔10の底部から上
昇する圧縮空気と向流的に接触し冷却してその一部を液
化するようになっている。この過程で圧縮空気中の高沸
点成分(酸素)は液化されて精留塔10の底部に溜り、
低沸点成分の窒素ガスが精留塔10の上部に溜る。41
は精留塔10の上部天井部に溜った窒素ガスを製品窒素
ガスとして取り出す取出パイプで、超低温の窒素ガスを
熱交換器38内に案内し、そこに送り込まれる圧縮空気
と熱交換させて常温にしメインパイプ9に送り込む作用
をする。11は3Å,4Åもしくは5Åの細孔径をもつ
合成ゼオライト3A,4Aもしくは5A(モレキュラー
シーブ3A,4A,5A、ユニオンカーバイト社製)を
充填した酸素等の不純分を吸着する吸着筒であり、上記
取出パイプ41の途中に設けられ上記超低温の窒素ガス
中の酸素および一酸化炭素を選択吸着除去する。また、
上記の合成ゼオライト3A,4A,5Aに代えて上記U
C社製の合成ゼオライト13Xを用いることも行われ
る。このように、−150℃程度の温度域において酸素
および一酸化炭素のみが選択吸着除去されるため、超低
温窒素ガスが高純度のものになる。この場合、吸着筒1
1内へ導入される超低温窒素ガス中の不純酸素および一
酸化炭素量が精留塔10を経ることによりすでに低レベ
ルになっているため、吸着される酸素および一酸化炭素
量は微量である。したがって、吸着筒11も1基のみで
足り、ゼオライトの再生も年1回で充分なのである。な
お、上記精留塔10内における最上部には、窒素ガスと
ともに、沸点の低いHe(−269℃),H2 (−25
3℃)が溜りやすいため、取出パイプ41は、精留塔1
0の最上部よりかなり下側に開口しており、He,H2
の混在しない純窒素ガスのみを製品窒素ガスとして取り
出すようになっている。35は分縮器15内の気化液体
空気を膨脹タービン34の駆動部に送り込む放出パイプ
であり、気化液体空気の圧力により膨脹タービン34
(図1参照)を駆動し、冷媒を矢印Bの経路で送り、熱
交換器38内へ送り込まれる圧縮空気を超低温に冷却し
て精留塔10へ送り込むようになっている。
FIG. 1 is a block diagram showing an embodiment of the present invention. In the figure, 1 is an air compressor, 2 is a drain separator, 3 is a Freon cooler, and 4 is a set of two adsorption tubes. The adsorption cylinder 4 is filled with a molecular sieve and has a function of adsorbing and removing H 2 O and CO 2 in the air compressed by the air compressor 1. 13 is H 2 O, C
A compressed air supply pipe for sending compressed air in which O 2 is adsorbed and removed. 38 is a heat exchanger, and the adsorption cylinder 4 causes H 2
Compressed air from which O and CO 2 have been adsorbed and removed is fed. Reference numeral 10 is a rectification column, and as shown in FIG. 2, the column top is equipped with a condenser 15a having a built-in condenser 15a.
8 (FIG. 1), the compressed air that has been cooled to an ultra-low temperature and sent through the pipe 16 is further cooled, and a part of it is liquefied and stored as liquid air 36 in the bottom portion, and only nitrogen in a gas state is stored in the upper ceiling portion. It has become. In FIG. 1, 7 is a liquid nitrogen storage tank that receives liquid nitrogen supplied from outside the device and stores it, and liquid nitrogen inside (high purity product)
Is sent to the upper side of the rectification tower 10 via the introduction path pipe 40, and is used as a cold source of the compressed air supplied into the rectification tower 10. The rectification tower 10 will now be described in more detail. As shown in FIG.
0 is equipped with a partial condenser 15 and a condenser 15a in the partial condenser 15 has a part of nitrogen gas accumulated in the upper portion of the rectification column 10 through a first reflux liquid pipe 15b. Sent in. The inside of the partial condenser 15 is in a reduced pressure state as compared with the inside of the rectification tower 10, and the stored liquid air (N 2 ; 50 to 70%, O 2 ; 30 to 50%) 36 at the bottom of the rectification tower 10 is provided. Is sent through a pipe 37 with an expansion valve 18a, vaporizes and cools the internal temperature to a temperature below the boiling point of liquid nitrogen. Due to this cooling, the nitrogen gas fed into the condenser 15a from the rectification column 10 through the first reflux liquid pipe 15b is liquefied. Reference numeral 23 is a liquid level gauge, and a dephlegmator 15
The valve 24 is controlled according to the liquid level of the liquid air in the liquid nitrogen storage tank 7 so that the liquid surface of the liquid nitrogen maintains a constant level, and the supply amount of the liquid nitrogen from the liquid nitrogen storage tank 7 is controlled. The liquid nitrogen produced in the condenser 15a in the dephlegmator 15 is supplied to the upper part of the rectification column 10 through the second reflux liquid pipe 15c and is supplied from the liquid nitrogen storage tank 7 to the liquid nitrogen storage tank 7. Nitrogen is supplied through an inlet pipe 40, and these flow down through the liquid nitrogen reservoir 39 in the rectification column 10 and come into countercurrent contact with the compressed air rising from the bottom of the rectification column 10 to cool it. It is designed to liquefy a part of it. In this process, the high boiling point component (oxygen) in the compressed air is liquefied and accumulated at the bottom of the rectification column 10,
Nitrogen gas having a low boiling point is accumulated in the upper part of the rectification column 10. 41
Is an extraction pipe for taking out the nitrogen gas accumulated in the upper ceiling part of the rectification tower 10 as product nitrogen gas, guiding the ultra-low temperature nitrogen gas into the heat exchanger 38, and exchanging heat with the compressed air fed thereinto at room temperature. It feeds into the main pipe 9. Reference numeral 11 denotes an adsorption column for adsorbing impurities such as oxygen filled with synthetic zeolite 3A, 4A or 5A (Molecular Sieves 3A, 4A, 5A, manufactured by Union Carbide) having a pore size of 3Å, 4Å or 5Å, Oxygen and carbon monoxide in the ultra-low temperature nitrogen gas provided in the middle of the extraction pipe 41 are selectively adsorbed and removed. Also,
In place of the above synthetic zeolites 3A, 4A and 5A, the above U
It is also possible to use synthetic zeolite 13X manufactured by Company C. In this way, since only oxygen and carbon monoxide are selectively adsorbed and removed in the temperature range of about −150 ° C., the ultra low temperature nitrogen gas has high purity. In this case, the adsorption cylinder 1
Since the amounts of impure oxygen and carbon monoxide in the ultra-low temperature nitrogen gas introduced into 1 are already at low levels after passing through the rectification column 10, the amounts of oxygen and carbon monoxide to be adsorbed are very small. Therefore, only one adsorption cylinder 11 is sufficient, and the zeolite can be regenerated once a year. In addition, at the uppermost part in the rectification tower 10, together with nitrogen gas, He (-269 ° C.) and H 2 (-25
(3 ° C) is likely to accumulate, so the extraction pipe 41 is
0, the opening is much lower than the top, and He, H 2
Only pure nitrogen gas that does not exist is taken out as product nitrogen gas. Reference numeral 35 is a discharge pipe for sending the vaporized liquid air in the dephlegmator 15 to the drive unit of the expansion turbine 34, and the expansion turbine 34 is driven by the pressure of the vaporized liquid air.
(Refer to FIG. 1), the refrigerant is sent through the path indicated by arrow B, and the compressed air sent into the heat exchanger 38 is cooled to an ultralow temperature and sent to the rectification column 10.

【0015】この装置は、つぎのようにして製品窒素ガ
スを製造する。すなわち、空気圧縮機1により空気を圧
縮し、ドレン分離器2により圧縮された空気中の水分を
除去してフロン冷却器3により冷却し、その状態で吸着
筒4に送り込み、空気中のH 2 OおよびCO2 を吸着除
去する。ついで、H2 O,CO2 が吸着除去された圧縮
空気を、精留塔10からパイプ35を経て送り込まれる
製品窒素ガスおよび膨脹タービン34から矢印Bの経路
で送り込まれる冷媒によって冷やされている熱交換器3
8に送り込んで超低温に冷却し、その状態で精留塔10
の下部内に投入する。ついで、この投入圧縮空気を、液
体窒素貯槽7から導入路パイプ40を経由して精留塔1
0内に送り込まれた液体窒素および液体窒素溜め39か
らの溢流液体窒素と接触させて冷却し、一部を液化して
精留塔10の底部に液体空気36として溜める。この過
程において、窒素と酸素の沸点の差(酸素の沸点−18
3℃,窒素の沸点−196℃)により、圧縮空気中の高
沸点成分である酸素が液化し、窒素が気体のまま残る。
ついで、この気体のまま残った窒素を取出パイプ41か
ら取り出して熱交換器38に送り込み、常温近くまで昇
温させメインパイプ9から製品窒素ガスとして送り出
す。他方、精留塔10の下部に溜った液体空気36につ
いては、これを分縮器15内に送り込み凝縮器15aを
冷却させる。この冷却により、精留塔10の上部から凝
縮器15aに送入された窒素ガスが液化して精留塔10
用の還流液となり、第2の還流液パイプ15cを経て精
留塔10に戻る。そして、凝縮器15aを冷却し終えた
液体空気36は、気化し放出パイプ35により熱交換器
38に送られその熱交換器38を冷やしたのち、空気中
に放出される。なお、液体窒素貯槽7から導入路パイプ
40を経由して精留塔10内に送り込まれた液体窒素
は、圧縮空気液化用の寒冷源として作用し、それ自身は
気化して取出パイプ41から製品窒素ガスの一部として
取り出される。
This apparatus uses the product nitrogen gas in the following manner.
Manufacture That is, air is compressed by the air compressor 1.
Water in the air compressed by the drain separator 2
Removed and cooled by CFC cooler 3 and adsorbed in that state
It is sent to the cylinder 4 and H in the air 2O and CO2Adsorption removal
Leave. Then, H2O, CO2Compressed by adsorption
Air is sent from the rectification tower 10 through a pipe 35.
Product nitrogen gas and path from expansion turbine 34 to arrow B
Heat exchanger 3 cooled by the refrigerant sent in
It is sent to 8 and cooled to ultra low temperature, and in that state, the rectification tower 10
Put in the lower part of. Then, this input compressed air is
Fractionation tower 1 from body nitrogen storage tank 7 through introduction pipe 40
Liquid nitrogen and liquid nitrogen reservoir 39 sent into 0
Contact with overflowing liquid nitrogen to cool and liquefy a part of it
It is stored as liquid air 36 at the bottom of the rectification column 10. This
The difference between the boiling points of nitrogen and oxygen (boiling point of oxygen-18
3 ℃, boiling point of nitrogen-196 ℃)
Oxygen, which is the boiling point component, is liquefied and nitrogen remains as a gas.
Then, take out the nitrogen remaining in this gas as pipe 41.
And send it to the heat exchanger 38, and raise it to near room temperature.
It is heated and sent out as product nitrogen gas from the main pipe 9.
You On the other hand, the liquid air 36 accumulated at the bottom of the rectification tower 10
Then, this is sent into the dephlegmator 15 and the condenser 15a is
Allow to cool. This cooling causes condensation from the upper part of the rectification tower 10.
The nitrogen gas sent to the compressor 15a is liquefied and the rectification tower 10
It becomes the recirculating liquid for use, and is refined through the second recirculating liquid pipe 15c.
Return to distillation tower 10. Then, cooling of the condenser 15a is completed.
The liquid air 36 is vaporized and released by the discharge pipe 35.
In the air after it is sent to the 38 and cools the heat exchanger 38.
Is released to. In addition, from the liquid nitrogen storage tank 7 to the introduction pipe
Liquid nitrogen sent into the rectification column 10 via 40
Acts as a cold source for the liquefaction of compressed air, which itself
As a part of the product nitrogen gas that is vaporized and taken out from the pipe 41
Taken out.

【0016】この高純度窒素ガス製造装置は、膨脹ター
ビン34の発生寒冷のみでなく、液体窒素貯槽7の液体
窒素をも寒冷として用いるため、製品窒素ガスの需要量
の変動、特に大幅な重要量の変動に迅速に対応できるよ
うになる。すなわち、膨脹タービン34を定常運転させ
て所定量の製品窒素ガスを製造するようにし、さらに需
要変動分を液体窒素貯槽7からの液体窒素で補うように
することにより、膨脹タービン34の回転速度等を変え
ることなく、迅速に需要量の変動に対応できるようにな
る。より詳しく述べると、膨脹タービン34の回転数の
変動には長時間かかるところ、液体窒素貯槽7からの液
体窒素の供給量の変動は迅速に行うことができるため、
需要量の変動に迅速に対応できるようになる。しかも、
昼間と夜間の製品窒素ガスの需要量の変動が大幅に異な
るような場合には、膨脹タービン34によって夜間の寒
冷をまかなうようにし、昼間における寒冷の不足分を液
体窒素貯槽7からの液体窒素で補うようにすることによ
り、昼間と夜間の需要量の著しい変動にも迅速にかつ正
確に対応できるようになる。さらに、この装置によれば
高純度の製品窒素ガスが得られるため、従来例のような
精製装置が不必要になり、装置全体の大形化や操作に熟
練を要するというような不都合も生じず、また、製品窒
素ガスのコストアップを招くということもない。特に、
この高純度窒素ガス製造装置は、精留塔10の上部に凝
縮器15a内蔵型の分縮器15を設け、上記凝縮器15
a内へ精留塔10内の窒素ガスの一部を常時案内して液
化するため、凝縮器15a内へ液化窒素が所定量溜まっ
たのちは、それ以降生成する液化窒素が還流液として常
時精留塔10内に戻るようになる。したがって、凝縮器
15aからの還流液の流下供給の断続に起因する製品純
度のばらつき(還流液の流下の中断により上部精留棚で
は液がなくなりガスの吹抜け現象を招いて製品純度が下
がり、流下の再開時には一定純度に戻る)を生じず、常
時安定した純度の製品窒素ガスを供給することができ
る。そのうえ、この装置では、製品窒素ガスの需要量に
変動が生じても液面計23のような制御手段がバルブ2
4の開度等を制御し精留塔10に対する液体窒素の供給
量を制御することにより分縮器15内の液体空気の液面
を一定に制御するため、需要量の変動に迅速に対応で
き、かつこのときにも先に述べた理由により純度のばら
つきを生じない。すなわち、製品窒素ガスの需要量が多
くなると、生成窒素ガスの殆どが取出パイプ41から取
り出され、凝縮器15aに送られる窒素ガスの量が少な
くなって凝縮器15aで生成される還流液量が少なくな
り、その結果、精留塔底部の貯溜液体空気36の量が減
少し、そこから送られる液体空気の量が減少するため分
縮器15における液体空気の液面が下がる。これにより
液面計23が作動し精留塔10に対する液体窒素の供給
量を増加させ、その気化により迅速に製品窒素ガスを製
造し需要量の増大に素早く対応する。そして、この液体
窒素の供給量の増加により精留塔底部の貯溜液体空気量
が増大しそれに伴って分縮器15内の液面が回復する
と、液面計23によって精留塔10に対する液体窒素の
供給量が適正に減少制御される。製品窒素ガスの需要量
が少なくなると、上記とは逆に、分縮器15内の液面が
上昇するため、液面計23が作動して精留塔10に対す
る液体窒素の供給量を減少させ液体窒素の過剰供給にも
とづく不合理を排除する。このように、この装置は、純
度のばらつきを生じることなく迅速かつ合理的に製品窒
素ガスの需要量の変動に対応できるのである。そのう
え、吸着筒11の作用により、酸素および一酸化炭素等
の不純分が除去されるため、製品窒素ガスの一層の高純
度化を実現できるようになり、また空気圧縮機1から取
り込む原料空気として、工業地帯等において不純分が多
く含まれているものでも使用可能であり、それを用いて
も好結果を得ることができるようになる。
Since this high-purity nitrogen gas producing apparatus uses not only the cold generated by the expansion turbine 34 but also the liquid nitrogen in the liquid nitrogen storage tank 7 as the cold, fluctuations in the demand amount of the product nitrogen gas, particularly a significantly important amount. It will be possible to quickly respond to changes in. That is, the expansion turbine 34 is steadily operated to produce a predetermined amount of product nitrogen gas, and the fluctuation of demand is supplemented by the liquid nitrogen from the liquid nitrogen storage tank 7, whereby the rotation speed of the expansion turbine 34, etc. It will be possible to quickly respond to fluctuations in demand without changing. More specifically, since it takes a long time to change the rotation speed of the expansion turbine 34, the supply amount of the liquid nitrogen from the liquid nitrogen storage tank 7 can be changed quickly.
It will be possible to quickly respond to fluctuations in demand. Moreover,
When the fluctuations in the demand amount of the product nitrogen gas between the daytime and the nighttime are significantly different, the expansion turbine 34 is used to cover the nighttime cold, and the shortage of the daytime cold is compensated by the liquid nitrogen from the liquid nitrogen storage tank 7. By supplementing it, it becomes possible to quickly and accurately respond to a drastic change in demand during the day and at night. Furthermore, since this apparatus can obtain high-purity product nitrogen gas, the refining apparatus as in the conventional example becomes unnecessary, and there is no inconvenience that the size of the entire apparatus is increased and skill is required for operation. In addition, the cost of product nitrogen gas is not increased. In particular,
This high-purity nitrogen gas producing apparatus is provided with a condenser 15a built-in type partial condenser 15 in the upper part of the rectification column 10, and the condenser 15
Since a part of the nitrogen gas in the rectification column 10 is always guided into the inside of a to be liquefied, after a predetermined amount of the liquefied nitrogen is accumulated in the condenser 15a, the liquefied nitrogen generated thereafter is always rectified as a reflux liquid. It comes to return to the distillation column 10. Therefore, variations in product purity due to the intermittent supply of the reflux liquid from the condenser 15a are interrupted (the interruption of the flow of the reflux liquid causes the liquid to disappear in the upper rectification shelf, leading to a gas blow-through phenomenon, which lowers the product purity. The product nitrogen gas having a stable purity can always be supplied without causing (returning to a certain purity) when restarted. Moreover, in this device, even if the demand amount of the product nitrogen gas fluctuates, the control means such as the liquid level gauge 23 is used for the valve 2
Since the liquid level of the liquid air in the dephlegmator 15 is controlled to be constant by controlling the opening degree of 4 and the supply amount of liquid nitrogen to the rectification column 10, it is possible to quickly respond to the fluctuation of the demand amount. At this time, the purity does not fluctuate due to the reason described above. That is, when the demand amount of the product nitrogen gas increases, most of the generated nitrogen gas is taken out from the extraction pipe 41, the amount of nitrogen gas sent to the condenser 15a is reduced, and the amount of the reflux liquid generated in the condenser 15a is reduced. As a result, the amount of the stored liquid air 36 at the bottom of the rectification column is reduced, and the amount of the liquid air sent therefrom is reduced, so that the liquid level of the liquid air in the partial condenser 15 is lowered. As a result, the liquid level gauge 23 is activated to increase the supply amount of liquid nitrogen to the rectification column 10, and by vaporizing the liquid nitrogen gas, the product nitrogen gas is rapidly produced and the demand amount is quickly increased. When the amount of liquid nitrogen stored increases at the bottom of the rectification column due to the increase in the supply amount of liquid nitrogen, and the liquid level in the partial condenser 15 recovers accordingly, the liquid level gauge 23 supplies liquid nitrogen to the rectification column 10. Is appropriately controlled to be reduced. Contrary to the above, when the demand amount of the product nitrogen gas decreases, the liquid level in the partial condenser 15 rises, so that the liquid level gauge 23 operates to reduce the supply amount of liquid nitrogen to the rectification column 10. Eliminate irrationalities due to excess supply of liquid nitrogen. In this way, this device can quickly and rationally respond to fluctuations in the demand amount of product nitrogen gas without causing variations in purity. In addition, since the adsorption column 11 removes impurities such as oxygen and carbon monoxide, the product nitrogen gas can be further purified, and the raw material air taken from the air compressor 1 can be obtained. It is also possible to use a material containing a large amount of impurities in an industrial area or the like, and it becomes possible to obtain a good result.

【0017】図3は他の実施の形態の構成図である。す
なわち、この実施の形態は、液体窒素貯槽7からメイン
パイプ9に延びるバックアップ系ライン12を設け、空
気圧縮系ラインが故障したときに、液体窒素貯槽7内の
液体窒素を蒸発器14により蒸発させて、メインパイプ
9に送り込み窒素ガスの供給が途絶えることのないよう
にする。また、メインパイプ9に不純物分析計27、弁
28,29を設け、メインパイプ9に送り出される製品
窒素ガスの純度を分析し、純度の低いときは弁29,2
8を作動させて、製品窒素ガスを矢印Aのように、外部
に逃気させるようにしている。それ以外の部分は、実質
的に図1の装置と同じであるから、同一部分に同一符号
を付している。
FIG. 3 is a block diagram of another embodiment. That is, in this embodiment, a backup system line 12 extending from the liquid nitrogen storage tank 7 to the main pipe 9 is provided, and when the air compression system line fails, the liquid nitrogen in the liquid nitrogen storage tank 7 is evaporated by the evaporator 14. The nitrogen gas is supplied to the main pipe 9 so that the supply of nitrogen gas is not interrupted. Further, the main pipe 9 is provided with an impurity analyzer 27 and valves 28, 29 to analyze the purity of the product nitrogen gas sent to the main pipe 9, and when the purity is low, the valves 29, 2 are used.
8 is operated to let the product nitrogen gas escape to the outside as shown by arrow A. Since the other parts are substantially the same as those of the apparatus of FIG. 1, the same parts are designated by the same reference numerals.

【0018】この装置も、図1の装置と同様の効果を奏
する外、空気圧縮系ラインが故障したときにも、製品窒
素ガスの供給に支障をきたさないという効果を奏する。
This device has the same effect as that of the device shown in FIG. 1, and also has an effect that it does not hinder the supply of the product nitrogen gas even if the air compression system line fails.

【0019】[0019]

【発明の効果】以上のように、この発明の高純度窒素ガ
ス製造装置は、膨脹タービンの発生寒冷のみでなく、液
体窒素貯槽の液体窒素をも寒冷として用いるため、製品
窒素ガスの需要量の変動、特に大幅な重要量の変動に迅
速に対応できるようになる。すなわち、膨脹タービンを
定常運転させて所定量の製品窒素ガスを常時一定量製造
するようにし、さらに需要変動分を液体窒素貯槽からの
液体窒素で補うようにすることにより、膨脹タービンの
回転速度等を変えることなく、迅速に需要量の変動に対
応できるようになる。より詳しく述べると、膨脹タービ
ンは高速回転器であり、製品窒素ガスの取出量の変化に
応じて膨脹タービンに対する廃ガスの供給量を迅速に変
化させることが困難であり、必ず時間遅れを生じる。こ
の発明は、このような時間遅れを生じる膨脹タービン
と、液体窒素貯槽からの液体窒素の供給とを併用し、膨
脹タービンを一定速度で回転させることにより一定量の
寒冷を生成させ、寒冷の残部(変動分も含む)を液体窒
素でまかなうことにより需要量の変動に迅速に対応しう
ることができる。この場合、液体窒素貯槽からの液体窒
素は液体であり、その供給量の調節は迅速かつ精密に行
うことができ、かつ液体窒素は直接精留塔に供給される
ため、その供給量の調節の効果は迅速に現れる。この発
明は、昼間と夜間の製品窒素ガスの需要量の変動が大幅
に異なる(昼間が多い)ような場合に特に有効である。
すなわち、膨脹タービンによって夜間の寒冷の全部をま
かなう(深夜電力は安価である)ようにし、昼間におけ
る寒冷の不足分は液体窒素貯槽からの液体窒素で補うよ
うにすることにより、昼間と夜間の需要量の著しい変動
に対応でき、しかも製品窒素ガスの需要変動にも対応で
きるようになる。
As described above, since the high-purity nitrogen gas producing apparatus of the present invention uses not only the cold generated by the expansion turbine but also the liquid nitrogen in the liquid nitrogen storage tank as the cold, the demand amount of the product nitrogen gas can be reduced. You will be able to respond quickly to changes, especially to significant changes in significant amounts. That is, the expansion turbine is operated in a steady state so that a predetermined amount of product nitrogen gas is constantly produced, and the fluctuation of demand is compensated by the liquid nitrogen from the liquid nitrogen storage tank. It will be possible to quickly respond to fluctuations in demand without changing. More specifically, the expansion turbine is a high-speed rotator, and it is difficult to quickly change the amount of waste gas supplied to the expansion turbine in accordance with the change in the amount of product nitrogen gas taken out, and a time delay is always caused. The present invention uses the expansion turbine that causes such a time delay and the supply of liquid nitrogen from the liquid nitrogen storage tank together to rotate the expansion turbine at a constant speed to generate a certain amount of refrigeration, and the remainder of the refrigeration. By supplying liquid nitrogen (including fluctuations) with liquid nitrogen, it is possible to quickly respond to fluctuations in demand. In this case, since the liquid nitrogen from the liquid nitrogen storage tank is liquid, the supply amount can be adjusted quickly and precisely, and since the liquid nitrogen is directly supplied to the rectification column, the supply amount can be adjusted. The effect will appear quickly. The present invention is particularly effective in the case where the fluctuations in the demand amount of the product nitrogen gas between the daytime and the nighttime are significantly different (there are many daytime periods).
In other words, the expansion turbine is used to cover all of the cold at night (late-night power is inexpensive), and the lack of cold during the day is supplemented with liquid nitrogen from the liquid nitrogen storage tank, so that the demand for day and night is increased. It will be possible to cope with significant fluctuations in the quantity, and also to cope with fluctuations in the demand for product nitrogen gas.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施の形態の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】上記実施の形態の要部の詳細図である。FIG. 2 is a detailed view of a main part of the above embodiment.

【図3】この発明の他の実施の形態の構成図である。FIG. 3 is a configuration diagram of another embodiment of the present invention.

【符合の説明】[Description of sign]

4 吸着筒 7 液体窒素貯槽 9 メインパイプ 10 精留塔 11 酸素吸着筒 15 分縮器 15a 凝縮器 15b 第1の還流液パイプ 15c 第2の還流液パイプ 34 膨脹タービン 38 熱交換器 40 導入路パイプ 41 取出パイプ 4 Adsorption Column 7 Liquid Nitrogen Storage Tank 9 Main Pipe 10 Fractionation Column 11 Oxygen Adsorption Column 15 Decompressor 15a Condenser 15b First Reflux Liquid Pipe 15c Second Reflux Liquid Pipe 34 Expansion Turbine 38 Heat Exchanger 40 Inlet Pipe 41 Extraction pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 外部より取り入れた空気を圧縮する空気
圧縮手段と、この空気圧縮手段によって圧縮された圧縮
空気中の炭酸ガスと水分とを除去する除去手段と、この
除去手段を経た圧縮空気を超低温に冷却する熱交換手段
と、この熱交換手段により超低温に冷却された圧縮空気
の一部を液化して底部に溜め窒素のみを気体として上部
側から取り出す精留塔を備えた窒素ガス製造装置におい
て、精留塔の上部に設けられた凝縮器内蔵型の分縮器
と、精留塔の底部の貯溜液体空気を上記凝縮器冷却用の
寒冷として上記分縮器中に導く液体空気導入パイプと、
上記分縮器中で生じた気化液体空気を外部に放出する放
出パイプと、上記放出パイプの気化液体空気を利用して
冷熱を発生し生成冷熱を上記熱交換手段に送り冷却する
膨脹器と、装置外から液体窒素の供給を受けこれを貯蔵
する液体窒素貯蔵手段と、この液体窒素貯蔵手段内の液
体窒素を圧縮空気液化用の寒冷として上記精留塔内に導
く導入路と、上記精留塔から気体として取り出される窒
素および上記精留塔内において寒冷源としての作用を終
え気化した上記液体窒素を上記熱交換手段を経由させそ
の内部を通る圧縮空気と熱交換させることにより温度上
昇させ製品窒素ガスとする窒素ガス取出路とを備えたこ
とを特徴とする高純度窒素ガス製造装置。
1. An air compression means for compressing air taken in from the outside, a removal means for removing carbon dioxide gas and moisture in the compressed air compressed by the air compression means, and compressed air passed through this removal means. Nitrogen gas production equipment equipped with heat exchange means for cooling to ultra-low temperature and a rectification column for liquefying a part of the compressed air cooled to ultra-low temperature by this heat-exchange means and collecting it in the bottom part to take out only nitrogen from the upper side as gas In, a condenser built-in type condenser provided in the upper part of the rectification tower, and a liquid air introduction pipe for guiding the stored liquid air at the bottom of the rectification tower into the condenser as cold for cooling the condenser. When,
A discharge pipe for discharging the vaporized liquid air generated in the dephlegmator to the outside, and an expander for generating cold heat by using the vaporized liquid air of the discharge pipe and sending the generated cold heat to the heat exchange means for cooling. Liquid nitrogen storage means for receiving and storing liquid nitrogen supplied from outside the apparatus, an introduction path for guiding the liquid nitrogen in the liquid nitrogen storage means into the rectification column as refrigeration for liquefying compressed air, and the rectification Nitrogen taken out as a gas from the tower and the liquid nitrogen vaporized after finishing the action as a cold source in the rectification tower are heat-exchanged with the compressed air passing through the heat exchange means to raise the temperature. A high-purity nitrogen gas production apparatus, comprising: a nitrogen gas extraction path for supplying nitrogen gas.
JP24611995A 1995-09-25 1995-09-25 Apparatus for producing high-purity nitrogen gas Pending JPH0882476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24611995A JPH0882476A (en) 1995-09-25 1995-09-25 Apparatus for producing high-purity nitrogen gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24611995A JPH0882476A (en) 1995-09-25 1995-09-25 Apparatus for producing high-purity nitrogen gas

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP41788790A Division JP2540243B2 (en) 1990-12-28 1990-12-28 High-purity nitrogen gas production equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP9113928A Division JP3021389B2 (en) 1997-05-01 1997-05-01 High-purity nitrogen gas production equipment

Publications (1)

Publication Number Publication Date
JPH0882476A true JPH0882476A (en) 1996-03-26

Family

ID=17143774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24611995A Pending JPH0882476A (en) 1995-09-25 1995-09-25 Apparatus for producing high-purity nitrogen gas

Country Status (1)

Country Link
JP (1) JPH0882476A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103148674A (en) * 2013-01-27 2013-06-12 南京瑞柯徕姆环保科技有限公司 Natural gas isobaric liquefaction device
CN103148676A (en) * 2013-01-27 2013-06-12 南京瑞柯徕姆环保科技有限公司 Air separation device for preparing oxygen and nitrogen through isobaric separation
CN103148673A (en) * 2013-01-27 2013-06-12 南京瑞柯徕姆环保科技有限公司 Natural gas isobaric liquefaction device
CN113623943A (en) * 2021-08-22 2021-11-09 张家港市东南气体灌装有限公司 Nitrogen manufacturing system and method for manufacturing nitrogen with different purities

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60147086A (en) * 1984-01-11 1985-08-02 大同酸素株式会社 Method and device for manufacturing high-purity nitrogen gas
JPS62116887A (en) * 1986-08-12 1987-05-28 大同ほくさん株式会社 Production unit for high-impurity nitrogen gas
JPH04297780A (en) * 1990-12-28 1992-10-21 Daido Sanso Kk High purity nitrogen gas manufacturing equipment
JPH06337192A (en) * 1993-08-10 1994-12-06 Daido Hoxan Inc High-purity nitrogen gas manufacturing device
JPH0719724A (en) * 1993-12-13 1995-01-20 Daido Hoxan Inc High purity nitrogen gas preparing apparatus
JPH0719725A (en) * 1993-12-13 1995-01-20 Daido Hoxan Inc High purity nitrogen gas preparing apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60147086A (en) * 1984-01-11 1985-08-02 大同酸素株式会社 Method and device for manufacturing high-purity nitrogen gas
JPS62116887A (en) * 1986-08-12 1987-05-28 大同ほくさん株式会社 Production unit for high-impurity nitrogen gas
JPH0611255A (en) * 1986-08-12 1994-01-21 Daido Hoxan Inc High purity nitrogen gas preparing device
JPH04297780A (en) * 1990-12-28 1992-10-21 Daido Sanso Kk High purity nitrogen gas manufacturing equipment
JPH06337192A (en) * 1993-08-10 1994-12-06 Daido Hoxan Inc High-purity nitrogen gas manufacturing device
JPH0719724A (en) * 1993-12-13 1995-01-20 Daido Hoxan Inc High purity nitrogen gas preparing apparatus
JPH0719725A (en) * 1993-12-13 1995-01-20 Daido Hoxan Inc High purity nitrogen gas preparing apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103148674A (en) * 2013-01-27 2013-06-12 南京瑞柯徕姆环保科技有限公司 Natural gas isobaric liquefaction device
CN103148676A (en) * 2013-01-27 2013-06-12 南京瑞柯徕姆环保科技有限公司 Air separation device for preparing oxygen and nitrogen through isobaric separation
CN103148673A (en) * 2013-01-27 2013-06-12 南京瑞柯徕姆环保科技有限公司 Natural gas isobaric liquefaction device
WO2014114138A1 (en) * 2013-01-27 2014-07-31 南京瑞柯徕姆环保科技有限公司 Air separation apparatus for isobaric separation and production of oxygen and nitrogen
CN103148673B (en) * 2013-01-27 2015-01-07 南京瑞柯徕姆环保科技有限公司 Natural gas isobaric liquefaction device
CN103148674B (en) * 2013-01-27 2015-03-18 南京瑞柯徕姆环保科技有限公司 Natural gas isobaric liquefaction device
CN103148676B (en) * 2013-01-27 2016-03-30 南京瑞柯徕姆环保科技有限公司 A kind of equipressure is separated the air separation unit producing oxygen nitrogen
CN113623943A (en) * 2021-08-22 2021-11-09 张家港市东南气体灌装有限公司 Nitrogen manufacturing system and method for manufacturing nitrogen with different purities

Similar Documents

Publication Publication Date Title
EP0211957B1 (en) Apparatus for producing high-purity nitrogen and oxygen gases
KR900005985B1 (en) High- purity nitrogen gas production equipment
JPS6148072B2 (en)
WO1985004466A1 (en) Apparatus for producing high-purity nitrogen gas
JPS6158747B2 (en)
JPH0882476A (en) Apparatus for producing high-purity nitrogen gas
KR100427138B1 (en) Air separation method and apparatus therefor
JP2672250B2 (en) High-purity nitrogen gas production equipment
JP2540243B2 (en) High-purity nitrogen gas production equipment
JPH0719725A (en) High purity nitrogen gas preparing apparatus
JP3021389B2 (en) High-purity nitrogen gas production equipment
JPH0611255A (en) High purity nitrogen gas preparing device
JPH0719724A (en) High purity nitrogen gas preparing apparatus
JPS6152388B2 (en)
JP2533262B2 (en) High-purity nitrogen and oxygen gas production equipment
JP2540244B2 (en) Nitrogen gas production equipment
JPS6148071B2 (en)
KR900005986B1 (en) High-purity nitrogen gas production equipment
JPS6152390B2 (en)
JPS6244190B2 (en)
JPH0587447A (en) Producing apparatus for nitrogen gas
JPS6149594B2 (en)
JPH01239375A (en) Device for manufacturing highly pure nitrogen gas
JPS6152389B2 (en)
JPH0665947B2 (en) High-purity nitrogen gas production equipment

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970401