JPH0719724A - High purity nitrogen gas preparing apparatus - Google Patents
High purity nitrogen gas preparing apparatusInfo
- Publication number
- JPH0719724A JPH0719724A JP31217193A JP31217193A JPH0719724A JP H0719724 A JPH0719724 A JP H0719724A JP 31217193 A JP31217193 A JP 31217193A JP 31217193 A JP31217193 A JP 31217193A JP H0719724 A JPH0719724 A JP H0719724A
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- nitrogen gas
- nitrogen
- air
- condenser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/044—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04157—Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04254—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04624—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using integrated mass and heat exchange, so-called non-adiabatic rectification, e.g. dephlegmator, reflux exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04812—Different modes, i.e. "runs" of operation
- F25J3/04836—Variable air feed, i.e. "load" or product demand during specified periods, e.g. during periods with high respectively low power costs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/74—Refluxing the column with at least a part of the partially condensed overhead gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/60—Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/42—Nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/90—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、高純度窒素ガス製造
装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high purity nitrogen gas producing apparatus.
【0002】[0002]
【従来の技術】一般に、窒素ガスは深冷液化分離装置に
より製造されている。この種の窒素ガス製造装置は、圧
縮機で圧縮された圧縮空気を熱交換するための熱交換器
の冷媒冷却用に、膨脹タービンを用い、これを精留塔内
に溜る液体空気(深冷液化分離により低沸点の窒素はガ
スとして取り出され、残部が酸素リッチな液体空気とな
って溜る)から蒸発したガスの圧力で駆動するようにな
っている。2. Description of the Related Art Generally, nitrogen gas is produced by a cryogenic liquefaction separator. This type of nitrogen gas production apparatus uses an expansion turbine for cooling the refrigerant of a heat exchanger for exchanging heat with the compressed air compressed by a compressor. The low-boiling-point nitrogen is taken out as a gas by the liquefaction separation, and the balance is driven by the pressure of the gas evaporated from the oxygen-rich liquid air).
【0003】[0003]
【発明が解決しようとする課題】ところが、膨脹タービ
ンは回転速度が極めて大(数万回/分)であり、負荷変
動に対する追従運転が困難であるため、製品窒素ガスの
需要量の変動に速やかに対応することができないという
欠点を備えている。However, since the expansion turbine has an extremely high rotation speed (tens of thousands of revolutions / minute) and it is difficult to follow the load variation, it is possible to quickly respond to variations in the demand amount of product nitrogen gas. It has the drawback of not being able to deal with.
【0004】また、この種の窒素ガス製造装置では、精
留塔の精留棚の数の増加により、かなり高純度の窒素ガ
スを製造することができるが、最近における超高純度窒
素ガスの要求に応えることができない。すなわち、上記
の窒素ガス製造装置によって得られた製品窒素ガス中に
は、酸素が不純分として混在するため、これをそのまま
使用することは、その需要分野、特に超高純度窒素ガス
を必要とする電子工業分野においては不都合なことが多
い。Further, in this type of nitrogen gas producing apparatus, a considerably high purity nitrogen gas can be produced by increasing the number of rectifying shelves in the rectifying tower. Can not respond to. That is, in the product nitrogen gas obtained by the above-mentioned nitrogen gas manufacturing apparatus, oxygen is mixed as an impurity, so that it is necessary to use the oxygen gas as it is, the ultra high purity nitrogen gas is required. It is often inconvenient in the electronics industry.
【0005】不純酸素の除去方法としては、Pt触媒
を使用し窒素ガス中に微量の水素を添加して不純酸素と
200℃程度の温度雰囲気中で反応させ水として除去す
る方法およびNi触媒を使用し、窒素ガス中の不純酸
素を200℃程度の温度雰囲気においてNi触媒と接触
させ、下記に示す反応を起こさせて除去する方法があ
る。As a method of removing impure oxygen, a method of using a Pt catalyst to add a trace amount of hydrogen to nitrogen gas and reacting with impure oxygen in a temperature atmosphere of about 200 ° C. to remove it as water and a Ni catalyst are used. However, there is a method of removing impure oxygen in nitrogen gas by bringing it into contact with a Ni catalyst in an atmosphere of a temperature of about 200 ° C. to cause the following reaction.
【0006】[0006]
【化1】 [Chemical 1]
【0007】しかしながら、これらの方法は、いずれも
窒素ガスを高温にして触媒と接触させなければならない
ため、その装置を、超低温系である窒素ガス製造装置中
には組み込めない。したがって、窒素ガス製造装置とは
別個に精製装置を設置しなければならず、全体が大形に
なるという欠点がある。そのうえ、前記の方法では、
水素の添加量の調整に高精度が要求され、不純酸素量と
丁度反応するだけの量の水素を添加しないと、酸素が残
存したり、また添加した水素が残存して不純分となって
しまうため、操作に熟練を要するという問題がある。ま
た、前記の方法では、不純酸素との反応で生じたNi
Oを下記に示す反応によって再生する必要が生じ、再生
用H2 ガス設備が必要となって精製費の上昇を招いてい
た。However, in any of these methods, the temperature of nitrogen gas must be raised to bring it into contact with the catalyst, so that the apparatus cannot be incorporated into a nitrogen gas production apparatus which is an ultra-low temperature system. Therefore, the refining device must be installed separately from the nitrogen gas production device, which has the drawback of increasing the overall size. Moreover, in the above method,
High precision is required for adjusting the amount of hydrogen added, and unless the amount of hydrogen that just reacts with the amount of impure oxygen is added, oxygen will remain or the added hydrogen will remain and become impurities. Therefore, there is a problem that the operation requires skill. Further, in the above method, Ni generated by the reaction with impure oxygen
It was necessary to regenerate O by the reaction shown below, and H 2 gas equipment for regeneration was required, resulting in an increase in refining costs.
【0008】[0008]
【化2】 [Chemical 2]
【0009】したがって、需要量の変動に対応でき、し
かも全体が小形で操作に熟練を要さず、かつ製品窒素ガ
スを安価に製造しうる窒素ガス製造装置の提供が望まれ
ている。Therefore, it is desired to provide a nitrogen gas production apparatus which can cope with fluctuations in demand, is small in size as a whole, does not require skill in operation, and can produce product nitrogen gas at low cost.
【0010】この発明は、このような事情に鑑みなされ
たもので、上記のような性能を備えた高純度窒素ガス製
造装置の提供をその目的とする。The present invention has been made in view of the above circumstances, and an object thereof is to provide a high-purity nitrogen gas producing apparatus having the above-described performance.
【0011】[0011]
【課題を解決するための手段】上記の目的を達成するた
め、この発明の高純度窒素ガス製造装置は、外部より取
り入れた空気を圧縮する空気圧縮手段と、この空気圧縮
手段によって圧縮された圧縮空気中の炭酸ガスと水分と
を除去する除去手段と、この除去手段を経た圧縮空気を
超低温に冷却する熱交換手段と、この熱交換手段により
超低温に冷却された圧縮空気の一部を液化して底部に溜
め窒素のみを気体として上部側から取り出す精留塔を備
えた窒素ガス製造装置において、精留塔の上部に設けら
れた凝縮器内蔵型の分縮器と、精留塔の底部の貯溜液体
空気を上記凝縮器冷却用の寒冷として上記分縮器中に導
く液体空気導入パイプと、上記分縮器中で生じた気化液
体空気を外部に放出する放出パイプと、上記放出パイプ
の気化液体空気を利用して冷熱を発生し生成冷熱を上記
熱交換手段に送り冷却する膨脹器と、精留塔内で生成し
た窒素ガスの一部を上記凝縮器内に案内する第1の還流
液パイプと、上記凝縮器内で生じた液化窒素を還流液と
して精留塔内に戻す第2の還流液パイプと、装置外から
液体窒素の供給を受けこれを貯蔵する液体窒素貯蔵手段
と、この液体窒素貯蔵手段内の液体窒素を圧縮空気液化
用の寒冷として連続的に上記精留塔内に導く導入路を備
えるという構成をとる。In order to achieve the above object, the high-purity nitrogen gas producing apparatus of the present invention has an air compression means for compressing the air taken in from the outside, and a compression compressed by the air compression means. Removing means for removing carbon dioxide gas and moisture in the air, heat exchanging means for cooling the compressed air that has passed through this removing means to an ultra low temperature, and liquefying part of the compressed air cooled to an ultra low temperature by this heat exchanging means. In a nitrogen gas production apparatus equipped with a rectification column that takes out only nitrogen stored in the bottom part as a gas from the upper side, a condenser built-in partial condenser provided in the upper part of the rectification column and a bottom part of the rectification column Liquid air introduction pipe for guiding the stored liquid air into the condenser as cold for cooling the condenser, a discharge pipe for discharging vaporized liquid air generated in the condenser to the outside, and vaporization of the discharge pipe Liquid air An expander for generating cold heat by using it to send the generated cold heat to the heat exchange means for cooling, and a first reflux liquid pipe for guiding a part of the nitrogen gas generated in the rectification column into the condenser. A second reflux liquid pipe for returning the liquefied nitrogen produced in the condenser as a reflux liquid into the rectification column, a liquid nitrogen storage means for receiving liquid nitrogen supplied from the outside of the apparatus and storing it, and the liquid nitrogen storage The liquid nitrogen in the means is provided with an introduction path for continuously introducing into the rectification column as cold for liquefying compressed air.
【0012】[0012]
【作用】すなわち、この高純度窒素ガス製造装置は、膨
脹タービンの発生寒冷のみでなく、液体窒素貯槽の液体
窒素を寒冷として用いるため、製品窒素ガスの需要量の
変動、特に大幅な重要量の変動に迅速に対応できるよう
になる。より詳しく述べると、膨脹タービンの回転数の
変動には長時間かかるところ、液体窒素貯槽からの液体
窒素の供給量の変動は迅速に行うことができるため、需
要量の変動に迅速に対応できるようになる。しかも、昼
間と夜間の製品窒素ガスの需要量の変動が大幅に異なる
ような場合には、膨脹タービンによって夜間の寒冷をま
かなうようにし、昼間における寒冷の不足分を液体窒素
貯槽からの液体窒素で補うようにすることにより、昼間
と夜間の需要量の著しい変動にも迅速にかつ正確に対応
できるようになる。さらに、この装置によれば高純度の
製品窒素ガスが得られるため、従来例のような精製装置
が不必要になり、装置全体の大形化や操作に熟練を要す
るというような不都合も生じず、また、製品窒素ガスの
コストアップを招くということもない。In other words, this high-purity nitrogen gas producing apparatus uses not only the cold generated by the expansion turbine but also the liquid nitrogen in the liquid nitrogen storage tank as the cold, so that the fluctuation of the demand amount of the product nitrogen gas, especially a significantly important amount of You will be able to respond quickly to changes. More specifically, since it takes a long time to change the rotation speed of the expansion turbine, it is possible to quickly change the supply amount of liquid nitrogen from the liquid nitrogen storage tank, so that it is possible to quickly respond to the change in the demand amount. become. Moreover, if the fluctuations in demand for product nitrogen gas during the daytime and nighttime are significantly different, an expansion turbine is used to cover the nighttime cold, and the lack of the daytime cold is covered by the liquid nitrogen from the liquid nitrogen storage tank. By supplementing it, it becomes possible to quickly and accurately respond to a drastic change in demand during the day and at night. Furthermore, since this apparatus can obtain high-purity product nitrogen gas, the refining apparatus as in the conventional example becomes unnecessary, and there is no inconvenience that the size of the entire apparatus is increased and skill is required for operation. In addition, the cost of product nitrogen gas is not increased.
【0013】つぎに、この発明を実施例にもとづいて詳
しく説明する。Next, the present invention will be described in detail based on embodiments.
【0014】[0014]
【実施例】図1はこの発明の一実施例の構成図である。
図において、1は空気圧縮機、2はドレン分離器、3は
フロン冷却器、4は2個1組の吸着筒である。吸着筒4
は内部にモレキュラーシーブが充填されていて空気圧縮
機1により圧縮された空気中のH2 OおよびCO2 を吸
着除去する作用をする。13はH2 O,CO2 が吸着除
去された圧縮空気を送る圧縮空気供給パイプである。3
8は熱交換器であり、吸着筒4によりH2 OおよびCO
2 が吸着除去された圧縮空気が送り込まれる。10は精
留塔であり、図2に示すように、塔頂に凝縮器15a内
蔵の分縮器15を備えており、熱交換器38(図1)に
より超低温に冷却され、パイプ16を経て送り込まれる
圧縮空気をさらに冷却し、その一部を液化し液体空気3
6として底部に溜め、窒素のみを気体状態で上部天井部
に溜めるようになっている。図1において、7は装置外
から液体窒素の供給を受けこれを貯蔵する液体窒素貯槽
であり、内部の液体窒素(高純度品)を、導入路パイプ
40を経由させ精留塔10の上部側に送入し、精留塔1
0内に供給される圧縮空気の寒冷源にする。ここで上記
精留塔10についてより詳しく説明すると、上記精留塔
10は、図2に示すように、天井板20の上側に分縮器
15を備えており、上記分縮器15内の凝縮器15aに
は、精留塔10の上部に溜る窒素ガスの一部が第1の還
流液パイプ15bを介して送入される。この分縮器15
内は、精留塔10内よりも減圧状態になっており、精留
塔10の底部の貯留液体空気(N2 ;50〜70%,O
2 ;30〜50%)36が膨脹弁18a付きパイプ37
を経て送り込まれ、気化して内部温度を液体窒素の沸点
以下の温度に冷却するようになっている。この冷却によ
り、精留塔10から第1の還流液パイプ15bを介して
凝縮器15a内に送入された窒素ガスが液化する。23
は液面計であり、分縮器15内の液体空気の液面が一定
レベルを保つようその液面に応じてバルブ24を制御し
液体窒素貯槽7からの液体窒素の供給量を制御する。精
留塔10の上部側の部分には、上記分縮器15内の凝縮
器15aで生成した液体窒素が第2の還流液パイプ15
cを通って流下供給されるとともに、液体窒素貯槽7か
ら液体窒素が導入路パイプ40を経て供給され、これら
が液体窒素溜め39を経て精留塔10内を下方に流下
し、精留塔10の底部から上昇する圧縮空気と向流的に
接触し冷却してその一部を液化するようになっている。
この過程で圧縮空気中の高沸点成分(酸素)は液化され
て精留塔10の底部に溜り、低沸点成分の窒素ガスが精
留塔10の上部に溜る。41は精留塔10の上部天井部
に溜った窒素ガスを製品窒素ガスとして取り出す取出パ
イプで、超低温の窒素ガスを熱交換器38内に案内し、
そこに送り込まれる圧縮空気と熱交換させて常温にしメ
インパイプ9に送り込む作用をする。11は3Å,4Å
もしくは5Åの細孔径をもつ合成ゼオライト3A,4A
もしくは5A(モレキュラーシーブ3A,4A,5A、
ユニオンカーバイト社製)を充填した酸素等の不純分を
吸着する吸着筒であり、上記取出パイプ41の途中に設
けられ上記超低温の窒素ガス中の酸素および一酸化炭素
を選択吸着除去する。また、上記の合成ゼオライト3
A,4A,5Aに代えて上記ユニオンカーバイト社製の
合成ゼオライト13Xを用いることも行われる。このよ
うに、−150℃程度の温度域において酸素および一酸
化炭素のみが選択吸着除去されるため、超低温窒素ガス
が高純度のものになる。この場合、酸素吸着筒11内へ
導入される超低温窒素ガス中の不純酸素および一酸化炭
素量が精留塔10を経ることによりすでに低レベルにな
っているため、吸着される酸素および一酸化炭素量は微
量である。したがって、吸着筒11も1基のみで足り、
ゼオライトの再生も年1回で充分なのである。なお、上
記精留塔10内における最上部には、窒素ガスととも
に、沸点の低いHe(−269℃),H2 (−253
℃)が溜りやすいため、取出パイプ41は、精留塔10
の最上部よりかなり下側に開口しており、He,H2 の
混在しない純窒素ガスのみを製品窒素ガスとして取り出
すようになっている。35は分縮器15内の気化液体空
気を膨脹タービン34の駆動部に送り込む放出パイプで
あり、気化液体空気の圧力により膨脹タービン34(図
1参照)を駆動し、冷媒を矢印Bの経路で送り、熱交換
器38内へ送り込まれる圧縮空気を超低温に冷却して精
留塔10へ送り込むようになっている。1 is a block diagram of an embodiment of the present invention.
In the figure, 1 is an air compressor, 2 is a drain separator, 3 is a Freon cooler, and 4 is a set of two adsorption tubes. Adsorption cylinder 4
Has an action of adsorbing and removing H 2 O and CO 2 in the air compressed by the air compressor 1, which is filled with a molecular sieve. Reference numeral 13 is a compressed air supply pipe for sending compressed air from which H 2 O and CO 2 have been adsorbed and removed. Three
Reference numeral 8 is a heat exchanger, and H 2 O and CO are absorbed by the adsorption cylinder 4.
Compressed air from which 2 has been adsorbed and removed is fed. As shown in FIG. 2, a rectification column 10 has a condenser 15a with a built-in condenser 15a at the top of the column, is cooled to an ultralow temperature by a heat exchanger 38 (FIG. 1), and is passed through a pipe 16. Compressed compressed air is further cooled and part of it is liquefied and liquid air 3
6 is stored in the bottom part, and only nitrogen is stored in the upper ceiling part in a gas state. In FIG. 1, 7 is a liquid nitrogen storage tank which receives liquid nitrogen supplied from the outside of the device and stores the liquid nitrogen. The liquid nitrogen inside (high purity product) is passed through an introduction passage pipe 40 to the upper side of the rectification column 10. To the rectification tower 1
It is used as a cold source for the compressed air supplied to the inside. Here, the rectification column 10 will be described in more detail. The rectification column 10 is provided with a partial condenser 15 on the upper side of the ceiling plate 20 as shown in FIG. Part of the nitrogen gas accumulated in the upper part of the rectification column 10 is fed into the vessel 15a through the first reflux liquid pipe 15b. This divider 15
The inside is in a reduced pressure state as compared with the inside of the rectification tower 10, and the stored liquid air at the bottom of the rectification tower 10 (N 2 ; 50 to 70%, O
2 ; 30-50%) 36 is a pipe 37 with an expansion valve 18a
It is sent via a vaporizer and is vaporized to cool the internal temperature to a temperature below the boiling point of liquid nitrogen. Due to this cooling, the nitrogen gas fed into the condenser 15a from the rectification column 10 through the first reflux liquid pipe 15b is liquefied. 23
Is a liquid level gauge, and controls the valve 24 according to the liquid level of the liquid air in the dephlegmator 15 according to the liquid level to control the supply amount of the liquid nitrogen from the liquid nitrogen storage tank 7. In the upper part of the rectification column 10, the liquid nitrogen produced in the condenser 15a in the partial condenser 15 is connected to the second reflux liquid pipe 15
Liquid nitrogen is supplied from the liquid nitrogen storage tank 7 through the introduction path pipe 40, and these flow down through the liquid nitrogen reservoir 39 to the inside of the rectification tower 10. It comes into contact with the compressed air rising from the bottom of the tank in a countercurrent manner and cools it to liquefy a part thereof.
In this process, the high boiling point component (oxygen) in the compressed air is liquefied and stored at the bottom of the rectification column 10, and the low boiling point component nitrogen gas is stored at the top of the rectification column 10. Reference numeral 41 is an extraction pipe for taking out the nitrogen gas accumulated in the upper ceiling portion of the rectification tower 10 as product nitrogen gas, and guiding ultra-low temperature nitrogen gas into the heat exchanger 38,
It exchanges heat with the compressed air sent therein to bring it to room temperature and sends it into the main pipe 9. 11 is 3Å, 4Å
Or synthetic zeolite 3A, 4A with pore size of 5Å
Or 5A (Molecular sieves 3A, 4A, 5A,
This is an adsorption column for adsorbing impurities such as oxygen filled with Union Carbide Co., Ltd., and is provided in the middle of the extraction pipe 41 to selectively adsorb and remove oxygen and carbon monoxide in the ultra-low temperature nitrogen gas. In addition, the above synthetic zeolite 3
It is also possible to use the synthetic zeolite 13X manufactured by Union Carbide Co. in place of A, 4A and 5A. In this way, since only oxygen and carbon monoxide are selectively adsorbed and removed in the temperature range of about −150 ° C., the ultra low temperature nitrogen gas has high purity. In this case, since the amounts of impure oxygen and carbon monoxide in the ultra-low temperature nitrogen gas introduced into the oxygen adsorption column 11 have already become low due to passing through the rectification column 10, the oxygen and carbon monoxide to be adsorbed. The amount is very small. Therefore, only one suction cylinder 11 is required,
It is enough to regenerate the zeolite once a year. In addition, at the uppermost part in the rectification tower 10, together with nitrogen gas, He (−269 ° C.) and H 2 (−253) having a low boiling point were used.
(° C) tends to accumulate, so the take-out pipe 41 is
Of the pure nitrogen gas in which He and H 2 are not mixed is taken out as the product nitrogen gas. Reference numeral 35 denotes a discharge pipe that sends the vaporized liquid air in the dephlegmator 15 to the drive unit of the expansion turbine 34, which drives the expansion turbine 34 (see FIG. 1) by the pressure of the vaporized liquid air and causes the refrigerant to flow through the path of arrow B. The compressed air sent to the heat exchanger 38 is cooled to an ultralow temperature and sent to the rectification tower 10.
【0015】この装置は、つぎのようにして製品窒素ガ
スを製造する。すなわち、空気圧縮機1により空気を圧
縮し、ドレン分離器2により圧縮された空気中の水分を
除去してフロン冷却器3により冷却し、その状態で吸着
筒4に送り込み、空気中のH 2 OおよびCO2 を吸着除
去する。ついで、H2 O,CO2 が吸着除去された圧縮
空気を、精留塔10からパイプ35を経て送り込まれる
製品窒素ガスおよび膨脹タービンから矢印Bの経路で送
り込まれる冷媒によって冷やされている熱交換器38に
送り込んで超低温に冷却し、その状態で精留塔10の下
部内に投入する。ついで、この投入圧縮空気を、液体窒
素貯槽7から導入路パイプ40を経由して精留塔10内
に送り込まれた液体窒素および液体窒素溜め39からの
溢流液体窒素と接触させて冷却し、一部を液化して精留
塔10の底部に液体空気36として溜める。この過程に
おいて、窒素と酸素の沸点の差(酸素の沸点−183
℃,窒素の沸点−196℃)により、圧縮空気中の高沸
点成分である酸素が液化し、窒素が気体のまま残る。つ
いで、この気体のまま残った窒素を取出パイプ41から
取り出して熱交換器38に送り込み、常温近くまで昇温
させメインパイプ9から製品窒素ガスとして送り出す。
他方、精留塔10の下部に溜った液体空気36について
は、これを分縮器15内に送り込み凝縮器15aを冷却
させる。この冷却により、精留塔10の上部から凝縮器
15aに送入された窒素ガスが液化して精留塔10用の
還流液となり、第2の還流液パイプ15cを経て精留塔
10に戻る。そして、凝縮器15aを冷却し終えた液体
空気36は、気化し放出パイプ35により熱交換器38
に送られその熱交換器38を冷やしたのち、空気中に放
出される。なお、液体窒素貯槽7から導入路パイプ40
を経由して精留塔10内に送り込まれた液体窒素は、圧
縮空気液化用の寒冷源として作用し、それ自身は気化し
て取出パイプ41から製品窒素ガスの一部として取り出
される。This apparatus uses the product nitrogen gas in the following manner.
Manufacture That is, air is compressed by the air compressor 1.
Water in the air compressed by the drain separator 2
Removed and cooled by CFC cooler 3 and adsorbed in that state
It is sent to the cylinder 4 and H in the air 2O and CO2Adsorption removal
Leave. Then, H2O, CO2Compressed by adsorption
Air is sent from the rectification tower 10 through a pipe 35.
From the product nitrogen gas and expansion turbine, send it by the route of arrow B.
To the heat exchanger 38 that is cooled by the introduced refrigerant.
It is sent and cooled to an ultra-low temperature, and under that state, under the rectification tower 10.
Put in the department. Then, this input compressed air is mixed with liquid nitrogen.
Inside the rectification tower 10 from the elementary storage tank 7 via the introduction pipe 40
From the liquid nitrogen and liquid nitrogen reservoir 39 fed to
Cooling by contacting with overflowing liquid nitrogen, liquefying a part and rectifying
It is stored as liquid air 36 at the bottom of the tower 10. In the process
, The difference between the boiling points of nitrogen and oxygen (boiling point of oxygen-183
℃, boiling point of nitrogen -196 ℃), high boiling point in compressed air
Oxygen, which is a point component, liquefies, and nitrogen remains as a gas. One
Then, take out the nitrogen remaining as this gas from the pipe 41.
Take it out and send it to the heat exchanger 38 to raise the temperature to near room temperature
Then, it is sent out from the main pipe 9 as product nitrogen gas.
On the other hand, regarding the liquid air 36 accumulated in the lower part of the rectification tower 10
Sends it into the condenser 15 to cool the condenser 15a.
Let By this cooling, the condenser from the upper part of the rectification tower 10
Nitrogen gas sent to 15a is liquefied and
It becomes the reflux liquid and passes through the second reflux liquid pipe 15c to the rectification column.
Return to 10. Then, the liquid that has finished cooling the condenser 15a
The air 36 is vaporized and released by the discharge pipe 35 into a heat exchanger 38.
To heat the heat exchanger 38, and then release it into the air.
Will be issued. In addition, from the liquid nitrogen storage tank 7 to the introduction path pipe 40
The liquid nitrogen sent into the rectification column 10 via the
Acts as a cold source for condensed air liquefaction, vaporizing itself
Take out from the take-out pipe 41 as a part of product nitrogen gas
To be done.
【0016】この高純度窒素ガス製造装置は、膨脹ター
ビン34の発生寒冷のみでなく、液体窒素貯槽7の液体
窒素を寒冷として用いるため、製品窒素ガスの需要量の
変動、特に大幅な重要量の変動に迅速に対応できるよう
になる。すなわち、膨脹タービンを定常運転させて所定
量の製品窒素ガスを製造するようにし、さらに需要変動
分を液体窒素貯槽7からの液体窒素で補うようにするこ
とにより、膨脹タービンの回転速度等を変えることな
く、迅速に需要量の変動に対応できるようになる。より
詳しく述べると、膨脹タービン34の回転数の変動には
長時間かかるところ、液体窒素貯槽7からの液体窒素の
供給量の変動は迅速に行うことができるため、需要量の
変動に迅速に対応できるようになる。しかも、昼間と夜
間の製品窒素ガスの需要量の変動が大幅に異なるような
場合には、膨脹タービン34によって夜間の寒冷をまか
なうようにし、昼間における寒冷の不足分を液体窒素貯
槽7からの液体窒素で補うようにすることにより、昼間
と夜間の需要量の著しい変動にも迅速にかつ正確に対応
できるようになる。さらに、この装置によれば高純度の
製品窒素ガスが得られるため、従来例のような精製装置
が不必要になり、装置全体の大形化や操作に熟練を要す
るというような不都合も生じず、また、製品窒素ガスの
コストアップを招くということもない。特に、この高純
度窒素ガス製造装置は、精留塔10の上部に凝縮器15
a内蔵型の分縮器15を設け、上記凝縮器15a内へ精
留塔10内の窒素ガスの一部を常時案内して液化するた
め、凝縮器15a内へ液化窒素が所定量溜まったのち
は、それ以降生成する液化窒素が還流液として常時精留
塔10内に戻るようになる。したがって、凝縮器15a
からの還流液の流下供給の断続に起因する製品純度のば
らつき(還流液の流下の中断により上部精留棚では液が
なくなりガスの吹抜け現象を招いて製品純度が下がり、
流下の再開時には一定純度に戻る)を生じず、常時安定
した純度の製品窒素ガスを供給することができる。その
うえ、この装置では、製品窒素ガスの需要量に変動が生
じても液面計23のような制御手段がバルブ24の開度
等を制御し精留塔10に対する液体窒素の供給量を制御
することにより分縮器15内の液体空気の液面を一定に
制御するため、需要量の変動に迅速に対応でき、かつこ
のときにも先に述べた理由により純度ばらつきを生じな
い。すなわち、製品窒素ガスの需要量が多くなると、生
成窒素ガスの殆どが取出パイプ41から取り出され、凝
縮器15aに送られる窒素ガスの量が少なくなって凝縮
器15aで生成される還流液量が少なくなり、その結
果、精留塔底部の貯溜液体空気36の量が減少し、そこ
から送られる液体空気の量が減少するため分縮器15に
おける液体空気の液面が下がる。これにより液面計23
が作動し精留塔10に対する液体窒素の供給量を増加さ
せ、その気化により迅速に製品窒素ガスを製造し需要量
の増大に素早く対応する。そして、この液体窒素の供給
量の増加により精留塔10底部の貯溜液体空気量が増大
しそれに伴って分縮器15内の液面が回復すると、液面
計23によって精留塔10に対する液体窒素の供給量が
適正に減少制御される。製品窒素ガスの需要量が少なく
なると、上記とは逆に、分縮器15内の液面が上昇する
ため、液面計23が作動して精留塔10に対する液体窒
素の供給量を減少させ液体窒素の過剰供給にもとづく不
合理を排除する。このように、この装置は、純度のばら
つきを生じることなく迅速かつ合理的に製品窒素ガスの
需要量の変動に対応できるのである。そのうえ、吸着筒
11の作用により、酸素および一酸化炭素等の不純分が
除去されるため、製品窒素ガスの一層の高純度化を実現
できるようになり、また空気圧縮機1から取り込む原料
空気として、工業地帯等において不純分が多く含まれて
いるものでも使用可能であり、それを用いても好結果を
得ることができるようになる。Since this high-purity nitrogen gas producing apparatus uses not only the cold generated by the expansion turbine 34 but also the liquid nitrogen in the liquid nitrogen storage tank 7 as cold, fluctuations in the demand amount of the product nitrogen gas, particularly a significantly important amount, You will be able to respond quickly to changes. That is, the expansion turbine is steadily operated to produce a predetermined amount of product nitrogen gas, and the demand fluctuation is supplemented by the liquid nitrogen from the liquid nitrogen storage tank 7, thereby changing the rotation speed of the expansion turbine. Without this, it will be possible to quickly respond to fluctuations in demand. More specifically, since it takes a long time to change the rotation speed of the expansion turbine 34, the supply amount of liquid nitrogen from the liquid nitrogen storage tank 7 can be changed quickly, so that the demand amount can be quickly changed. become able to. Moreover, when the fluctuations in the demand amount of the product nitrogen gas between the daytime and the nighttime are significantly different, the expansion turbine 34 is used to cover the nighttime cold, and the shortage of the daytime cold is supplied from the liquid nitrogen storage tank 7. By supplementing with nitrogen, it will be possible to respond quickly and accurately to significant fluctuations in demand during the day and at night. Furthermore, since this apparatus can obtain high-purity product nitrogen gas, the refining apparatus as in the conventional example becomes unnecessary, and there is no inconvenience that the size of the entire apparatus is increased and skill is required for operation. In addition, the cost of product nitrogen gas is not increased. In particular, this high-purity nitrogen gas production apparatus has a condenser 15 at the top of the rectification tower 10.
Since a partial condenser 15 with a built-in a is provided and a part of the nitrogen gas in the rectification column 10 is constantly guided into the condenser 15a to be liquefied, a predetermined amount of liquefied nitrogen is accumulated in the condenser 15a. Liquefied nitrogen produced thereafter always returns to the rectification column 10 as a reflux liquid. Therefore, the condenser 15a
Fluctuations in product purity due to intermittent supply of reflux liquid from the (from suspension of the flow of the reflux liquid, liquid disappears in the upper rectification shelf, leading to gas blow-through phenomenon, resulting in a decrease in product purity,
When the flow is resumed, the purity of the product does not return to a certain level), and the product nitrogen gas having a stable purity can always be supplied. Moreover, in this apparatus, even if the demand amount of the product nitrogen gas fluctuates, the control means such as the liquid level gauge 23 controls the opening degree of the valve 24 and the like to control the supply amount of the liquid nitrogen to the rectification column 10. As a result, the liquid level of the liquid air in the dephlegmator 15 is controlled to be constant, so that it is possible to quickly respond to the fluctuation of the demand amount, and at this time also, the purity variation does not occur for the reason described above. That is, when the demand amount of the product nitrogen gas increases, most of the generated nitrogen gas is taken out from the extraction pipe 41, the amount of nitrogen gas sent to the condenser 15a is reduced, and the amount of the reflux liquid generated in the condenser 15a is reduced. As a result, the amount of the stored liquid air 36 at the bottom of the rectification column is reduced, and the amount of the liquid air sent therefrom is reduced, so that the liquid level of the liquid air in the partial condenser 15 is lowered. As a result, the level gauge 23
Operates to increase the supply amount of liquid nitrogen to the rectification column 10, and by vaporizing the product nitrogen gas, the product nitrogen gas is rapidly produced to quickly respond to the increase in the demand amount. When the amount of liquid nitrogen stored in the bottom of the rectification column 10 increases due to the increase in the supply amount of liquid nitrogen, and the liquid level in the partial condenser 15 recovers accordingly, the liquid level gauge 23 supplies the liquid to the rectification column 10. The supply amount of nitrogen is properly controlled to be reduced. Contrary to the above, when the demand amount of the product nitrogen gas decreases, the liquid level in the partial condenser 15 rises, so that the liquid level gauge 23 operates to reduce the supply amount of liquid nitrogen to the rectification column 10. Eliminate irrationalities due to excess supply of liquid nitrogen. In this way, this device can quickly and rationally respond to fluctuations in the demand amount of product nitrogen gas without causing variations in purity. In addition, since the adsorption column 11 removes impurities such as oxygen and carbon monoxide, the product nitrogen gas can be further purified, and the raw material air taken from the air compressor 1 can be obtained. It is also possible to use a material containing a large amount of impurities in an industrial area or the like, and it becomes possible to obtain a good result.
【0017】図3は他の実施例の構成図である。すなわ
ち、この実施例は液体窒素貯槽7からメインパイプ9に
延びるバックアップ系ライン12を設け、空気圧縮系ラ
インが故障したときに、液体窒素貯槽7内の液体窒素を
蒸発器14により蒸発させて、メインパイプ9に送り込
み窒素ガスの供給が途絶えることのないようにする。ま
た、メインパイプ9に不純物分析計27,弁28,29
を設け、メインパイプ9に送り出される製品窒素ガスの
純度を分析し、純度の低いときは弁29,28を作動さ
せて、製品窒素ガスを矢印Aのように、外部に逃気させ
るようにしている。それ以外の部分は、実質的に第1の
装置と同じであるから、同一部分に同一符号を付してい
る。FIG. 3 is a block diagram of another embodiment. That is, in this embodiment, a backup system line 12 extending from the liquid nitrogen storage tank 7 to the main pipe 9 is provided, and when the air compression system line fails, the liquid nitrogen in the liquid nitrogen storage tank 7 is evaporated by the evaporator 14, Make sure that the supply of nitrogen gas to the main pipe 9 is not interrupted. Further, the main pipe 9 has an impurity analyzer 27, valves 28, 29.
Is provided, and the purity of the product nitrogen gas sent to the main pipe 9 is analyzed. When the purity is low, the valves 29 and 28 are operated to let the product nitrogen gas escape to the outside as shown by arrow A. There is. Since the other parts are substantially the same as those of the first device, the same parts are designated by the same reference numerals.
【0018】この装置も、図1の装置と同様の効果を奏
する外、空気圧縮系ラインが故障したときにも、製品窒
素ガスの供給に支障をきたさないという効果を奏する。This device has the same effect as that of the device shown in FIG. 1, and also has an effect that it does not hinder the supply of the product nitrogen gas even if the air compression system line fails.
【0019】[0019]
【発明の効果】この発明の高純度窒素ガス製造装置は、
以上のように構成されているため、需要量の変動に対応
でき、しかも全体が小形で操作に熟練を要さず、かつ製
品窒素ガスを安価に製造しうるのである。The high-purity nitrogen gas producing apparatus of the present invention is
Since it is configured as described above, it is possible to cope with the fluctuation of the demand amount, and it is possible to manufacture the product nitrogen gas at a low cost while the whole is small in size and does not require skill in operation.
【図1】この発明の一実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.
【図2】その要部の要部詳細図である。FIG. 2 is a detailed view of a main part of the main part.
【図3】他の実施例の構成図である。FIG. 3 is a configuration diagram of another embodiment.
4 吸着筒 7 液体窒素貯槽 9 メインパイプ 10 精留塔 41 取出パイプ 11 酸素吸着筒 15 分縮器 15a 凝縮器 15b 第1の還流液パイプ 15c 第2の還流液パイプ 34 膨脹タービン 38 熱交換器 40 導入路パイプ 4 Adsorption Column 7 Liquid Nitrogen Storage Tank 9 Main Pipe 10 Fractionation Column 41 Extraction Pipe 11 Oxygen Adsorption Column 15 Decompressor 15a Condenser 15b First Reflux Liquid Pipe 15c Second Reflux Liquid Pipe 34 Expansion Turbine 38 Heat Exchanger 40 Introductory pipe
Claims (1)
圧縮手段と、この空気圧縮手段によって圧縮された圧縮
空気中の炭酸ガスと水分とを除去する除去手段と、この
除去手段を経た圧縮空気を超低温に冷却する熱交換手段
と、この熱交換手段により超低温に冷却された圧縮空気
の一部を液化して底部に溜め窒素のみを気体として上部
側から取り出す精留塔を備えた窒素ガス製造装置におい
て、精留塔の上部に設けられた凝縮器内蔵型の分縮器
と、精留塔の底部の貯溜液体空気を上記凝縮器冷却用の
寒冷として上記分縮器中に導く液体空気導入パイプと、
上記分縮器中で生じた気化液体空気を外部に放出する放
出パイプと、上記放出パイプの気化液体空気を利用して
冷熱を発生し生成冷熱を上記熱交換手段に送り冷却する
膨脹器と、精留塔内で生成した窒素ガスの一部を上記凝
縮器内に案内する第1の還流液パイプと、上記凝縮器内
で生じた液化窒素を還流液として精留塔内に戻す第2の
還流液パイプと、装置外から液体窒素の供給を受けこれ
を貯蔵する液体窒素貯蔵手段と、この液体窒素貯蔵手段
内の液体窒素を圧縮空気液化用の寒冷として連続的に上
記精留塔内に導く導入路を備えたことを特徴とする高純
度窒素ガス製造装置。1. An air compression means for compressing air taken in from the outside, a removal means for removing carbon dioxide gas and moisture in the compressed air compressed by the air compression means, and compressed air passed through this removal means. Nitrogen gas production equipment equipped with heat exchange means for cooling to ultra-low temperature and a rectification column for liquefying a part of the compressed air cooled to ultra-low temperature by this heat-exchange means and collecting it in the bottom part to take out only nitrogen from the upper side as gas In, a condenser built-in type condenser provided in the upper part of the rectification tower, and a liquid air introduction pipe for guiding the stored liquid air at the bottom of the rectification tower into the condenser as cold for cooling the condenser. When,
A discharge pipe for discharging the vaporized liquid air generated in the dephlegmator to the outside, and an expander for generating cold heat by using the vaporized liquid air of the discharge pipe and sending the generated cold heat to the heat exchange means for cooling. A first reflux liquid pipe that guides a part of the nitrogen gas generated in the rectification column into the condenser, and a second reflux liquid pipe that returns the liquefied nitrogen generated in the condenser into the rectification column as reflux liquid. A reflux liquid pipe, liquid nitrogen storage means for receiving and supplying liquid nitrogen from outside the apparatus, and liquid nitrogen in the liquid nitrogen storage means is continuously cooled in the rectification column as chill for compressed air liquefaction. An apparatus for producing high-purity nitrogen gas, which is equipped with a lead-in path for leading.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31217193A JPH0719724A (en) | 1993-12-13 | 1993-12-13 | High purity nitrogen gas preparing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31217193A JPH0719724A (en) | 1993-12-13 | 1993-12-13 | High purity nitrogen gas preparing apparatus |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61189400A Division JPS62116887A (en) | 1986-08-12 | 1986-08-12 | Production unit for high-impurity nitrogen gas |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0719724A true JPH0719724A (en) | 1995-01-20 |
Family
ID=18026087
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31217193A Withdrawn JPH0719724A (en) | 1993-12-13 | 1993-12-13 | High purity nitrogen gas preparing apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0719724A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0882476A (en) * | 1995-09-25 | 1996-03-26 | Daido Hoxan Inc | Apparatus for producing high-purity nitrogen gas |
-
1993
- 1993-12-13 JP JP31217193A patent/JPH0719724A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0882476A (en) * | 1995-09-25 | 1996-03-26 | Daido Hoxan Inc | Apparatus for producing high-purity nitrogen gas |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1984003554A1 (en) | Apparatus for producing high-purity nitrogen gas | |
JPH0313505B2 (en) | ||
KR900005985B1 (en) | High- purity nitrogen gas production equipment | |
WO1985004466A1 (en) | Apparatus for producing high-purity nitrogen gas | |
JPS6124967A (en) | Production unit for high-purity nitrogen gas | |
JPS6158747B2 (en) | ||
JPH0882476A (en) | Apparatus for producing high-purity nitrogen gas | |
JP2672250B2 (en) | High-purity nitrogen gas production equipment | |
JPH0719725A (en) | High purity nitrogen gas preparing apparatus | |
JPH0719724A (en) | High purity nitrogen gas preparing apparatus | |
JP3021389B2 (en) | High-purity nitrogen gas production equipment | |
JP2540243B2 (en) | High-purity nitrogen gas production equipment | |
JPH0611255A (en) | High purity nitrogen gas preparing device | |
JPH06281322A (en) | Manufacturing apparatus for high purity nitrogen and oxygen gas | |
JPH06341760A (en) | Nitrogen gas processing device | |
JPS6152388B2 (en) | ||
JP2000292055A (en) | Method and apparatus for manufacturing ultrahigh purity gas | |
JP2540244B2 (en) | Nitrogen gas production equipment | |
KR900005986B1 (en) | High Purity Nitrogen Gas Production Equipment | |
JP2533262B2 (en) | High-purity nitrogen and oxygen gas production equipment | |
JPH0587447A (en) | Producing apparatus for nitrogen gas | |
JPS6115068A (en) | Production unit for high-purity nitrogen gas | |
JPH01239375A (en) | Device for manufacturing highly pure nitrogen gas | |
JPS60232471A (en) | Production unit for high-purity nitrogen gas | |
JPS6152390B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19941201 |