JPS6115068A - Production unit for high-purity nitrogen gas - Google Patents

Production unit for high-purity nitrogen gas

Info

Publication number
JPS6115068A
JPS6115068A JP59136748A JP13674884A JPS6115068A JP S6115068 A JPS6115068 A JP S6115068A JP 59136748 A JP59136748 A JP 59136748A JP 13674884 A JP13674884 A JP 13674884A JP S6115068 A JPS6115068 A JP S6115068A
Authority
JP
Japan
Prior art keywords
nitrogen
nitrogen gas
compressed air
rectification column
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59136748A
Other languages
Japanese (ja)
Other versions
JPS6148071B2 (en
Inventor
明 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Sanso Co Ltd
Original Assignee
Daido Sanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Sanso Co Ltd filed Critical Daido Sanso Co Ltd
Priority to JP59136748A priority Critical patent/JPS6115068A/en
Publication of JPS6115068A publication Critical patent/JPS6115068A/en
Publication of JPS6148071B2 publication Critical patent/JPS6148071B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/044Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04636Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a hybrid air separation unit, e.g. combined process by cryogenic separation and non-cryogenic separation techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/42Nitrogen or special cases, e.g. multiple or low purity N2
    • F25J2215/44Ultra high purity nitrogen, i.e. generally less than 1 ppb impurities

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、高純度窒素ガス製造装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a high purity nitrogen gas production apparatus.

〔背景技術〕[Background technology]

電子工業では極めて多量の窒素ガスが使用されているが
、部品精度維持向上の観点から窒素ガスの純度について
厳しい要望をだしてきている。ずなわち、窒素ガスは、
一般に、空気を原料とし、これを圧縮機で圧縮したのち
、吸着筒に入れて炭酸ガスおよび水分を除去し、さらに
熱交換器を通して冷媒と熱交換させて冷却し、ついで精
留塔で深冷液化分離して製品窒素ガスを製造し、これを
前記の熱交換器を通して常温近傍に昇温させるという工
程を経て製造されている。しかしながら、このようにし
て製造される製品窒素ガスには、酸素が不純分として混
在しているため、これをそのまま使用することは不都合
なことが多い。不純酸素の除去方法としては、■pt触
媒を使用し窒素ガス中に微量の水素を添加して不純酸素
と200℃程度の温度雰囲気中で反応させ水として除去
する方、法および■Ni触媒を使用し、窒素ガス中の不
純酸素を200℃程度の温度雰囲気においてNl触媒と
接触させNi+1/20□−NiOの反応を起こさせて
除去する方法がある。しかしながら、これらの方法は、
いずれも窒素ガスを高温にして触媒と接触させなければ
ならないため、その装置を、超低温系である窒素ガス製
造装置中には組み込めない。したがって、窒素ガス製造
装置とは別個に精製装置を設置しなければならず、全体
が大形になるという欠点がある。そのうえ、前記■の方
法では、水素の添加量の調整に高精度が要求され、不純
酸素量と丁度反応するだけの量の水素を添加しないと、
酸素が残存したり、また添加した水素が残存して不純分
となってし末う、ため、操作に熟練を要するという問題
がある。また、前記■の方法では、不純酸素との反応で
生じたNiOの再生(NiO+H,→Ni+H20)を
する゛必要が生じ、再生用H2ガス設備が必要となって
精製費の上昇を招いていた。したがって、これらの改善
が強く望まれていた。
Extremely large amounts of nitrogen gas are used in the electronics industry, but strict requirements have been placed on the purity of nitrogen gas from the perspective of maintaining and improving component precision. In other words, nitrogen gas is
Generally, air is used as a raw material, and after compressing it with a compressor, it is put into an adsorption column to remove carbon dioxide and moisture, and then cooled by exchanging heat with a refrigerant through a heat exchanger, and then deeply cooled in a rectification column. It is manufactured through a process of liquefying and separating product nitrogen gas, and raising the temperature of this gas to near room temperature through the aforementioned heat exchanger. However, since the product nitrogen gas produced in this way contains oxygen as an impurity, it is often inconvenient to use it as it is. As methods for removing impure oxygen, there is a method in which a trace amount of hydrogen is added to nitrogen gas using a PT catalyst, which is reacted with impure oxygen in an atmosphere at a temperature of about 200°C, and removed as water, and a method using a Ni catalyst. There is a method of removing impure oxygen in nitrogen gas by bringing it into contact with an Nl catalyst in an atmosphere at a temperature of about 200° C. to cause a Ni+1/20□-NiO reaction. However, these methods
In either case, the nitrogen gas must be brought into contact with the catalyst at a high temperature, so the device cannot be incorporated into a nitrogen gas production device that is an ultra-low temperature system. Therefore, it is necessary to install a purification device separately from the nitrogen gas production device, which has the drawback of increasing the overall size. Furthermore, the method (2) requires high precision in adjusting the amount of hydrogen added, and if the amount of hydrogen that is not added is just enough to react with the amount of impure oxygen,
There is a problem in that oxygen remains or added hydrogen remains and becomes impurities, which requires skill in operation. In addition, in the method (2) above, it became necessary to regenerate NiO produced by the reaction with impure oxygen (NiO + H, → Ni + H20), which required H2 gas equipment for regeneration, leading to an increase in refining costs. . Therefore, these improvements have been strongly desired.

また、従来の窒素ガスの製造装置は、圧縮機で圧縮され
た圧縮空気を冷却するための熱交換器の冷媒冷却用に、
膨張タービンを用い、これを精留塔内に溜る液体空気(
深冷液化分離により低沸点の窒素はガスとして取り出さ
れ、残部が酸素リッチな液体空気となって溜る)から蒸
発したガスの圧力で駆動するようになっている。ところ
が、膨張タービンは回転速度が極めて大(数万回/分)
であって負荷変動に対する追従運転が困難であり、特別
に養成した運転員が必要である。また、このものは高速
回転するため機械構造上高精度が要求され、かつ高価で
あり、機構が複雑なため特別に養成した要員が必要とい
う難点を有している。
In addition, conventional nitrogen gas production equipment uses a refrigerant for cooling the heat exchanger to cool the compressed air compressed by the compressor.
An expansion turbine is used to convert the liquid air (
Through cryogenic liquefaction separation, low-boiling point nitrogen is extracted as a gas, and the remainder accumulates as oxygen-rich liquid air.It is driven by the pressure of the evaporated gas. However, expansion turbines have extremely high rotational speeds (tens of thousands of revolutions per minute).
Therefore, it is difficult to follow load fluctuations, and specially trained operators are required. Furthermore, since this device rotates at a high speed, it requires high precision in its mechanical structure, is expensive, and has the disadvantage of requiring specially trained personnel due to its complicated mechanism.

すなわち、膨張タービンは高速回転部を有するため、上
記のような諸問題を生じるのであり、このような高速回
転部を有する膨張タービンの除去に対して強い要望があ
った。
That is, since the expansion turbine has a high-speed rotating section, it causes the various problems described above, and there has been a strong desire to eliminate the expansion turbine having such a high-speed rotating section.

この発明者は、このような要望に応えるため、膨張ター
ビンを除去し、それに代えて外部から液体窒素を寒冷と
して精留塔内に供給する窒素ガス製造装置を開発し、す
でに特許出願(特願昭58−38050)L、ている。
In order to meet these demands, the inventor has developed a nitrogen gas production device that removes the expansion turbine and instead supplies chilled liquid nitrogen from outside into the rectification column, and has already filed a patent application (patent application) for this device. 1983-38050) L,

この装置は、極めて高純度の窒素ガスを製造しうるため
、これまでのような精製装置が全く不要になる。また、
膨張タービンを除去しているため、それにもとづく弊害
も全く生じない。したがって、電子工業向に最適である
。しかしながら、電子工業では、窒素ガス以外に、酸素
ガスも使用しており、1台の装置で窒素ガスのみならず
酸素ガスも製造しうるような装置の提供が望まれてきて
いる。
Since this device can produce nitrogen gas of extremely high purity, conventional purification equipment is completely unnecessary. Also,
Since the expansion turbine is removed, there are no adverse effects caused by it. Therefore, it is most suitable for the electronic industry. However, in the electronics industry, oxygen gas is also used in addition to nitrogen gas, and it has been desired to provide a device that can produce not only nitrogen gas but also oxygen gas with one device.

〔発明の目的〕[Purpose of the invention]

この発明は、膨張タービンや精製装置を用いることなく
高純度の窒素ガスを製造でき、かつ同時に酸素ガスも製
造しろる高純度窒素ガス製鐵装置の提供をその目的とす
るものである。
An object of the present invention is to provide a high-purity nitrogen gas iron manufacturing apparatus that can produce high-purity nitrogen gas without using an expansion turbine or a purification device, and can also produce oxygen gas at the same time.

(発明の開示〕 上記の目的を達成するため、この発明の高純度窒素ガス
製造装置は、外部より取り入れた空気を圧縮する空気圧
縮手段と、この空気圧縮手段によって圧縮された圧縮空
気中の炭酸ガスと水とを除去する除去手段と、液体窒素
を貯蔵する液体窒素貯蔵手段と、上記除去手段を経た圧
縮空気を超低温に冷却する熱交換手段と、この熱交換手
段により超低温に冷却された圧縮空気の一部を液化して
内部に溜め窒素のみを気体として保持する窒素精留塔と
、上記液体窒素貯蔵手段内の液体窒素を圧縮空気液化用
の寒冷源とし2て上記窒素精留塔内に導く導入路と、寒
冷源としての作用を終えて気化した液体窒素および上記
窒素精留塔内に保持されている気化窒素の双方を製品窒
素ガスとして上記窒素精留塔より取り出す窒素ガス取山
路と、上記窒素精留塔内に溜められた圧縮空気液化物も
しくはその気化物等の流体を外部に放出する放出路を備
え、窒素を選択的に吸着する吸着剤内蔵の吸着筒が上記
放出路に接続され、窒素除去後の流体を取り出す取出路
が上記吸着筒に接続されているという構成をとるもので
ある。
(Disclosure of the Invention) In order to achieve the above object, the high purity nitrogen gas production apparatus of the present invention includes an air compression means for compressing air taken in from the outside, and a carbon dioxide in the compressed air compressed by the air compression means. A removal means for removing gas and water, a liquid nitrogen storage means for storing liquid nitrogen, a heat exchange means for cooling the compressed air that has passed through the removal means to an ultra-low temperature, and a compressed air cooled to an ultra-low temperature by the heat exchange means. A nitrogen rectification column that liquefies a part of the air and stores it inside to hold only nitrogen as a gas, and a nitrogen rectification column that uses the liquid nitrogen in the liquid nitrogen storage means as a cold source for liquefying compressed air. and a nitrogen gas intake path for taking out both the liquid nitrogen vaporized after its role as a cooling source and the vaporized nitrogen held in the nitrogen rectification tower as product nitrogen gas from the nitrogen rectification tower. and a discharge path for discharging fluid such as compressed air liquefied product or its vaporized product stored in the nitrogen rectification column to the outside, and an adsorption cylinder with a built-in adsorbent that selectively adsorbs nitrogen is provided in the discharge channel. , and a take-out passage for taking out the fluid after nitrogen removal is connected to the adsorption cylinder.

つぎに、この発明を実施例にもとづいて説明する。Next, the present invention will be explained based on examples.

第1図はこの発明の一実施例を示している。図において
、9は空気圧縮機、10はドレン分離器、11はフロン
冷却器、12は2個1組の吸着筒である。吸着筒12は
内部にモレキュラーシーブが充填されていて空気圧縮機
9により圧縮された空気中のH,OおよびCO□を吸着
除去する作用をする。13は熱交換器であり、吸着筒1
2によりH,OおよびCo2が吸着除去された圧縮空気
が、圧縮空気供給パイプ8を経て送り込まれる。
FIG. 1 shows an embodiment of the invention. In the figure, 9 is an air compressor, 10 is a drain separator, 11 is a fluorocarbon cooler, and 12 is a set of two adsorption cylinders. The adsorption column 12 is filled with molecular sieve and functions to adsorb and remove H, O, and CO□ in the air compressed by the air compressor 9. 13 is a heat exchanger, and adsorption cylinder 1
The compressed air from which H, O, and Co2 have been adsorbed and removed by the compressed air supply pipe 8 is sent through the compressed air supply pipe 8.

ここに送り込まれた圧縮空気は、熱交換器13の熱交換
作用により超低温に冷却される。15は塔頂部が凝縮器
21aを有する分縮器部21になっている窒素精留塔で
あり、熱交換器13により超低温に冷却されパイプ17
を経て送り込まれる圧縮空気をさらに冷却し、その一部
を液化し液体空気18として底部に溜め、窒素のみを気
体状態で取り出すようになっている。−すなわち、上記
精留塔15は、仕切板20によって上部が区切られてい
て分縮器部21になっており、それより下の部分が塔部
22となっている。この塔部22の上部側の部分には、
液体窒素貯槽23から液体窒素が導入路パイプ24aを
介して直接送入されるとともに、その上部側の部分に設
けられた液体窒素溜め21d内に上記分縮器部21の凝
縮器21aで生成した液体窒素がパイプ21Cを通って
流下供給され、この双方の液体窒素が塔部22内を下方
に流下し、塔部22の底部から上昇する圧縮空気と向流
的に接触し冷却してその一部を液化するようになってい
る。この過程で圧縮空気中の高沸点成分は液化されて塔
部22の底部に溜り、低沸点成分の窒素ガスが塔部22
の上部に溜る。また、上記分縮器部21内には、上記の
ように凝縮器21aが配設されており、塔部22の上部
に溜る窒素ガスの一部がパイプ21bを介して送入され
る、この分縮器部21内は、塔部22内よりも減圧状態
になっており、塔部22の底部の貯留液体空気(N、5
0〜70%、oz3o〜50%)18が膨張弁19a付
きパイプ19を経て送り込まれ、気化して内部温度を液
体窒素の沸点以下の温度に冷却するようになっている。
The compressed air sent here is cooled to an extremely low temperature by the heat exchange action of the heat exchanger 13. Reference numeral 15 designates a nitrogen rectification column whose top part is a condenser section 21 having a condenser 21a, which is cooled to an ultra-low temperature by a heat exchanger 13 and passed through a pipe 17.
The compressed air sent through the tank is further cooled, a part of which is liquefied and stored at the bottom as liquid air 18, and only nitrogen is taken out in a gaseous state. - That is, the rectifying column 15 is divided at the upper part by a partition plate 20 to form a dephlegmator part 21, and the part below it is a column part 22. In the upper part of this tower part 22,
Liquid nitrogen is directly fed from the liquid nitrogen storage tank 23 through the introduction pipe 24a, and the liquid nitrogen produced in the condenser 21a of the demultiplexer section 21 is stored in the liquid nitrogen reservoir 21d provided in the upper part of the liquid nitrogen storage tank 23. Liquid nitrogen is supplied flowing down through the pipe 21C, and both of the liquid nitrogens flow downward in the column section 22, contact countercurrently with the compressed air rising from the bottom of the column section 22, cool it, and cool it down. It is designed to liquefy some parts. In this process, the high boiling point components in the compressed air are liquefied and accumulate at the bottom of the column section 22, and the low boiling point components, nitrogen gas, are liquefied and accumulated at the bottom of the column section 22.
It collects at the top of the. Further, the condenser 21a is disposed in the demultiplexer section 21 as described above, and a part of the nitrogen gas accumulated in the upper part of the column section 22 is sent to this condenser 21a through the pipe 21b. The inside of the dephlegmator section 21 is in a lower pressure state than the inside of the column section 22, and the liquid air (N, 5
0 to 70%, 30 to 50%) 18 is fed through a pipe 19 with an expansion valve 19a, and is vaporized to cool the internal temperature to a temperature below the boiling point of liquid nitrogen.

この冷却により、凝縮器21a内に送入された窒素ガス
が液化し、前記のように塔部22内の液体窒素溜め21
d内に流下するのである。25は液面計であり、分縮器
部21内の液体空気の液面に応じてバルブ26を制御し
液体窒素貯槽23からの液体窒素の供給量を制御する。
Due to this cooling, the nitrogen gas fed into the condenser 21a is liquefied, and the liquid nitrogen reservoir 21 in the tower section 22 is heated as described above.
It flows down into d. Reference numeral 25 denotes a liquid level gauge, which controls a valve 26 according to the liquid level of liquid air in the partial condenser section 21 to control the amount of liquid nitrogen supplied from the liquid nitrogen storage tank 23.

27は精留塔塔部22の上部に溜った窒素ガスを取り出
す取出パイプで、超低温の窒素ガスを熱交換器13内に
案内し、そこに送り込まれる圧縮空気と熱交換させて常
温にしメインパイプ28に送り込む作用をする。この場
合、精留塔塔部22の最上部には、窒素ガスとともに、
沸点の低いHe(−269℃)、N2  (−253℃
)が溜りやすいため、取出パイプ27は、塔部22の最
上部よりかなり下側に開口しており、He、N2の混在
しない純窒素ガスのみを取、り出すようになっている。
Reference numeral 27 is a take-out pipe for taking out the nitrogen gas accumulated in the upper part of the rectification column section 22, which guides the extremely low-temperature nitrogen gas into the heat exchanger 13, and exchanges heat with the compressed air sent there to bring it to room temperature. 28. In this case, at the top of the rectification column section 22, along with nitrogen gas,
He with a low boiling point (-269℃), N2 (-253℃
) is likely to accumulate, so the extraction pipe 27 is opened considerably below the top of the tower section 22 to extract only pure nitrogen gas that does not contain He or N2.

29は分縮器部21内の不用気化液体空気を熱交換器1
3に送り込む放出路パイプであり、29aはその保圧弁
である。40゜41.42はそれぞれ内部にN2を選択
的に吸着する吸着剤(合成ゼオライト:モレキュラーシ
ーブ)が充填されている吸着筒で、それぞれその入口が
、弁40b、41b、42bを備えた流入路40a、4
1a、42aを介して上記放出路パイプ29に接続され
ている。44は真空ポンプで、吸引路43および弁40
c、41c、42cを介して上記吸着筒40,41.4
2の入口に接続されている。40d、41d、42dは
、それぞれ上記吸着筒40,41.42の出口に接続さ
れている取出路で、それぞれ弁40e、41e、42e
を備えている。これらの取出路40d、41d、42d
は、製品酸素ガス取出路45を介して緩衝タンク46に
接続されている。上記吸着筒40.41.42は、その
なかの1個が吸着に使用され、その間残るものが真空ポ
ンプ44の真空吸引による再生作用を受け、ついで再生
されたものの1個が吸着に使用され、先に吸着作動をし
ていたものが再生作用を受ける。これを繰り返して連続
吸着作動するようになっている。なお、30はバックア
ップ系ラインであり、空気圧縮ラインが故障したときに
液体窒素貯槽23内の液体窒素を蒸発器31により蒸発
させてメインパイプ28に送り込み、窒素ガスの供給が
とだえることのないようにする。32は不純物分析針で
あり、メインパイプ28に送り出される製品窒素ガスの
純度を分析し、純度の低いときは、弁34.342を作
動させて製品窒素ガスを矢印Bのように外部に逃気する
作用をする。また、一点鎖線は真空保冷函であり、精留
塔15等を収容して精製効率の向上を図る。
29 transfers the waste vaporized liquid air in the dephlegmator section 21 to the heat exchanger 1
3, and 29a is its pressure holding valve. 40, 41, and 42 are adsorption cylinders each filled with an adsorbent (synthetic zeolite: molecular sieve) that selectively adsorbs N2, and each inlet has an inflow channel equipped with valves 40b, 41b, and 42b. 40a, 4
It is connected to the discharge path pipe 29 via 1a and 42a. 44 is a vacuum pump, which includes a suction path 43 and a valve 40.
c, 41c, 42c to the adsorption cylinders 40, 41.4.
It is connected to the second entrance. 40d, 41d, and 42d are take-out passages connected to the outlets of the adsorption cylinders 40, 41, and 42, respectively, and valves 40e, 41e, and 42e, respectively.
It is equipped with These extraction paths 40d, 41d, 42d
is connected to a buffer tank 46 via a product oxygen gas extraction path 45. One of the adsorption cylinders 40, 41, 42 is used for adsorption, while the remaining one is subjected to the regeneration action by vacuum suction of the vacuum pump 44, and then one of the regenerated cylinders is used for adsorption, What was previously acting as an adsorbent undergoes a regeneration action. This process is repeated for continuous suction operation. In addition, 30 is a backup system line, and when the air compression line breaks down, the liquid nitrogen in the liquid nitrogen storage tank 23 is evaporated by the evaporator 31 and sent to the main pipe 28, so that the supply of nitrogen gas is interrupted. Make sure not to. 32 is an impurity analysis needle that analyzes the purity of the product nitrogen gas sent to the main pipe 28, and when the purity is low, operates valves 34 and 342 to release the product nitrogen gas to the outside as shown by arrow B. have the effect of Furthermore, the dashed line indicates a vacuum cooling box, which accommodates the rectification column 15 and the like to improve purification efficiency.

この装置は、つぎのようにして製品窒素ガスおよび酸素
ガスを製造する。すなわち、空気圧縮機9により空気を
圧縮し、ドレン分離器10により圧縮された空気中の水
分を除去してフロン冷却器11により冷却し、その状態
で吸着筒12に送り込み、空気中のH2CおよびCO2
を吸着除去する。ついで、H,O,CO2が吸着除去さ
れた圧縮空気を熱交換器13に送り込んで超低温に冷却
し、その状態で精留塔塔部22の下部内に投入する。つ
いで、この投入圧縮空気を、液体窒素貯槽23から精留
塔塔部22内に送り込まれた液体窒素および液体窒素溜
め21dからの溢流液体窒素と接触させて冷却し、その
一部を液化して塔部22の底部に液体空気18として溜
める。この過程において、窒素と酸素の沸点の差(酸素
の沸点=183℃、窒素の沸点−196℃)により、圧
縮空気中の高沸点成分である酸素が液化し、窒素が気体
のまま残る。ついで、この気体のまま残った窒素を取出
パイプ27から取り出して熱交換513に送り込み、常
温近くまで昇温さセメインパイプ28から製品窒素ガス
として送り出す。この場合、液体窒素貯槽23から供給
された液体窒素は、圧縮空気液化用の寒冷源として作用
し、それ自身は気化して取出パイプ27から製品窒素ガ
スの一部として取り出される。他方、精留塔塔部22の
下部に溜った液体空気18は、分縮器部21内に送り込
まれて凝縮器21aを冷却したのち気化して不用気化液
体空気となり、パイプ29を経て熱交換器13内に送入
されて昇温し、その状態で吸着筒40,41.42のう
ちの任意の吸着筒に送り込まれ、そこで窒素ガスを吸着
除去され酸素ガスとなって緩衝タンク46に送り込まれ
る。この場合、吸着ff140,41.42のながの任
意の1個が吸着作動し、残るものはその間真空ポンプ4
4の真空再生作用を受け、つぎに吸着作動した吸着筒が
再生にまわり、再生済みのものの1個が吸着作動にはい
るというように、各弁40b〜42b、40c 〜42
c、40e 〜42eが制御サレる。このようにして、
高純度の窒素ガスと酸素ガスが1台の装置により同時に
得られるようになる。この場合、得られる製品窒素ガス
と製品酸素ガスの比率(体積比)は、はぼ1ollとな
る。
This device produces product nitrogen gas and oxygen gas as follows. That is, air is compressed by the air compressor 9, water in the compressed air is removed by the drain separator 10, and cooled by the fluorocarbon cooler 11. In this state, the air is sent to the adsorption column 12 to remove H2C and CO2
is removed by adsorption. Then, the compressed air from which H, O, and CO2 have been adsorbed and removed is sent to the heat exchanger 13 and cooled to an ultra-low temperature, and in that state is introduced into the lower part of the rectification column section 22. Next, this input compressed air is cooled by contacting with the liquid nitrogen sent into the rectification column section 22 from the liquid nitrogen storage tank 23 and the overflowing liquid nitrogen from the liquid nitrogen reservoir 21d, and a part of it is liquefied. The air is stored as liquid air 18 at the bottom of the tower section 22. In this process, due to the difference in boiling point between nitrogen and oxygen (boiling point of oxygen = 183°C, boiling point of nitrogen -196°C), oxygen, which is a high boiling point component in compressed air, liquefies, and nitrogen remains as a gas. Next, the remaining gaseous nitrogen is taken out from the extraction pipe 27 and sent to the heat exchanger 513, where it is heated to near normal temperature and sent out from the main pipe 28 as a product nitrogen gas. In this case, the liquid nitrogen supplied from the liquid nitrogen storage tank 23 acts as a cold source for liquefying the compressed air, and is itself vaporized and taken out from the take-out pipe 27 as part of the product nitrogen gas. On the other hand, the liquid air 18 accumulated in the lower part of the rectification column section 22 is sent into the partial condenser section 21 to cool the condenser 21a, and then vaporized to become waste vaporized liquid air, which is then heat exchanged through the pipe 29. The gas is fed into the vessel 13 and heated up, and in that state is sent to any adsorption cylinder among the adsorption cylinders 40, 41, and 42, where nitrogen gas is adsorbed and removed, and it becomes oxygen gas and is sent to the buffer tank 46. It will be done. In this case, any one of the suction ffs 140, 41.42 is activated for suction, and the remaining ones are used for the vacuum pump 4.
Each valve 40b to 42b, 40c to 42 receives the vacuum regeneration action of step 4, and then the adsorption column that is activated for adsorption goes into regeneration, and one of the regenerated cylinders goes into adsorption operation, and so on.
c, 40e to 42e are controlled. In this way,
High purity nitrogen gas and oxygen gas can now be obtained simultaneously with one device. In this case, the ratio (volume ratio) of the product nitrogen gas and product oxygen gas obtained is approximately 1 oll.

なお、第1図の窒素精留塔に代えて第2図に示すような
構造の精留塔を用いてもよい。すなわち、この精留塔】
5は、多数のパイプ20aが植設された仕切板20によ
って分縮器部21り(塔部22と区切られており、この
分縮器部21内に液体窒素貯槽23から液体窒素が供給
され、パイプ19から塔部22内に供給された圧縮空気
を、仕切板20のパイプ20a内で冷却して酸素分を液
化し、窒素を気体の状態で分縮器部21の頂部より取り
出すようになっている。この場合は、前記実施例とは異
なり、精留塔15の塔部22の底部に溜まる液体空気1
日が、酸素ガスの原料として用いられ、熱交換器13で
昇温され気化した状態で任意の吸着筒40.41.42
に供給される。
Note that a rectification column having a structure as shown in FIG. 2 may be used instead of the nitrogen rectification column shown in FIG. 1. In other words, this rectification column]
5 is separated from a partial condenser section 21 (tower section 22) by a partition plate 20 in which a large number of pipes 20a are installed, and liquid nitrogen is supplied from a liquid nitrogen storage tank 23 into this partial condenser section 21. The compressed air supplied from the pipe 19 into the column section 22 is cooled in the pipe 20a of the partition plate 20 to liquefy the oxygen content, and the nitrogen is taken out in a gaseous state from the top of the dephlegmator section 21. In this case, unlike the previous embodiment, the liquid air 1 accumulated at the bottom of the column section 22 of the rectification column 15
Oxygen gas is used as a raw material for oxygen gas, heated in the heat exchanger 13, and vaporized into any adsorption column 40.41.42.
supplied to

〔発明の効果〕〔Effect of the invention〕

この発明の高純度窒素ガス製造装置は、膨張タービンを
用いず、それに代えて何ら回転部をもたない液体窒素貯
槽を用いるため、装置全体として回転部がなくなり故障
が全く生じない。しかも膨張タービンは高価であるのに
対して液体窒素貯槽は安価であり、また特別な要員も不
要になる。そのうえ、膨張タービン(窒素精留塔内に溜
る液体空気から蒸発したガスの圧力で駆動する)は、回
転速度が極めて大(数万回/分)であるため、負荷変動
(製品窒素ガスの取出量の変化)に対するきめ細かな追
従運転が困難である。したがって、製品窒素ガスの取出
量の変化に応じて膨張タービンに対する液体空気の供給
量を正確に変化させ、窒素ガス製造原料である圧縮空気
を常時一定温度に冷却することが困難であり、その結果
、得られる製品窒素ガスの純度がばらつき、頻繁に低純
度のものがつくりだされ全体的に製品窒素ガスの純度が
低くなっていた。この装置は、それに代えて液体窒素貯
槽を用い、供給量のきめ細かい調節が可能な液体窒素を
圧縮空気の寒冷源として用いるため、負荷変動に対する
きめ細かな追従が可能となり、純度が安定していて極め
て高い窒素ガスを製造しうるようになる。したがって、
従来の精製装置が不要となる。しかも、この装置は、液
体窒素を寒冷として用い、使用後これを逃気するのでは
なく、空気を原料として製造される窒素ガスに併せて製
品窒素ガスとするため資源の無駄を生じない。そのうえ
、この装置は、窒素を選択的に吸着する吸着剤内蔵の吸
着筒を備えており、窒素ガス採取後の酸素リッチな不用
気化液体空気を窒素精留塔から吸着筒に供給して酸素ガ
スを製造するため、効率よく酸素ガスを得ることができ
る。このように、この発明の装置は、1台の装置で高純
度の窒素ガスと酸素ガスとを効率よく製造することがで
きるため、電子工業向けに最適である。
The high-purity nitrogen gas production apparatus of the present invention does not use an expansion turbine and instead uses a liquid nitrogen storage tank that does not have any rotating parts, so the apparatus as a whole has no rotating parts and does not have any trouble. Furthermore, while expansion turbines are expensive, liquid nitrogen storage tanks are inexpensive and do not require special personnel. Furthermore, the expansion turbine (which is driven by the pressure of the gas evaporated from the liquid air accumulated in the nitrogen rectification column) has an extremely high rotational speed (tens of thousands of rotations/minute), so load fluctuations (the removal of product nitrogen gas) It is difficult to perform fine-grained follow-up operation for changes in quantity. Therefore, it is difficult to accurately change the amount of liquid air supplied to the expansion turbine in accordance with changes in the amount of product nitrogen gas taken out, and to constantly cool compressed air, which is the raw material for nitrogen gas production, to a constant temperature. However, the purity of the product nitrogen gas obtained varied, and low-purity products were frequently produced, resulting in an overall low purity product nitrogen gas. This device uses a liquid nitrogen storage tank instead, and uses liquid nitrogen, whose supply amount can be finely adjusted, as the cooling source for the compressed air, making it possible to closely follow load fluctuations, and with extremely stable purity. It becomes possible to produce high nitrogen gas. therefore,
Conventional purification equipment is not required. Furthermore, this device does not use liquid nitrogen for cooling and release it after use, but rather uses it as a product nitrogen gas with nitrogen gas produced using air as a raw material, so no resources are wasted. In addition, this device is equipped with an adsorption column with a built-in adsorbent that selectively adsorbs nitrogen, and the oxygen-rich waste vaporized liquid air after nitrogen gas collection is supplied from the nitrogen rectification column to the adsorption column to produce oxygen gas. Oxygen gas can be obtained efficiently. As described above, the apparatus of the present invention is ideal for use in the electronics industry because it can efficiently produce high-purity nitrogen gas and oxygen gas with one apparatus.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の構成図、第2図はその変
形例の構成図である。 9・・・空気圧縮v&】2・・・吸着筒 13.・・・
熱交換器 15・・・窒素精留塔 17・・・パイプ 
18・・・液体空気 21・・・分縮器部 21a・・
・凝縮器 21d・・・液体窒素溜め 22・・・塔部
 23・・・液体窒素貯槽 24a・・・導入路パイプ
 27・・・取出パイプ 28・・・メインパイプ 2
9・・・放出路パイプ40.41.42・・・吸着筒 
44・・・真空ポンプ45・・・製品酸素ガス取出路
FIG. 1 is a block diagram of an embodiment of the present invention, and FIG. 2 is a block diagram of a modification thereof. 9...Air compression v&】2...Adsorption cylinder 13. ...
Heat exchanger 15...Nitrogen rectification column 17...Pipe
18...Liquid air 21...Decentralizer part 21a...
・Condenser 21d...Liquid nitrogen reservoir 22...Tower section 23...Liquid nitrogen storage tank 24a...Inlet pipe 27...Outlet pipe 28...Main pipe 2
9...Discharge pipe 40.41.42...Adsorption cylinder
44...Vacuum pump 45...Product oxygen gas extraction path

Claims (3)

【特許請求の範囲】[Claims] (1)外部より取り入れた空気を圧縮する空気圧縮手段
と、この空気圧縮手段によつて圧縮された圧縮空気中の
炭酸ガスと水とを除去する除去手段と、液体窒素を貯蔵
する液体窒素貯蔵手段と、上記除去手段を経た圧縮空気
を超低温に冷却する熱交換手段と、この熱交換手段によ
り超低温に冷却された圧縮空気の一部を液化して内部に
溜め窒素のみを気体として保持する窒素精留塔と、上記
液体窒素貯蔵手段内の液体窒素を圧縮空気液化用の寒冷
源として上記窒素精留塔内に導く導入路と、寒冷源とし
ての作用を終えて気化した液体窒素および上記窒素精留
塔内に保持されている気化窒素の双方を製品窒素ガスと
して上記窒素精留塔より取り出す窒素ガス取出路と、上
記窒素精留塔内に溜められた圧縮空気液化物もしくはそ
の気化物等の流体を外部に放出する放出路を備え、窒素
を選択的に吸着する吸着剤内蔵の吸着筒が上記放出路に
接続され、窒素除去後の流体を取り出す取出路が上記吸
着筒に接続されていることを特徴とする高純度窒素ガス
製造装置。
(1) Air compression means for compressing air taken in from the outside, removal means for removing carbon dioxide and water from the compressed air compressed by the air compression means, and liquid nitrogen storage for storing liquid nitrogen. a heat exchange means that cools the compressed air that has passed through the removal means to an ultra-low temperature; and a nitrogen liquefier that liquefies a portion of the compressed air that has been cooled to an ultra-low temperature by the heat exchange means and stores it inside to retain only nitrogen as a gas. a rectification column, an introduction path for introducing liquid nitrogen in the liquid nitrogen storage means into the nitrogen rectification column as a cold source for liquefying compressed air, and liquid nitrogen that has been vaporized after its role as a cold source and the nitrogen A nitrogen gas extraction path for taking out both of the vaporized nitrogen held in the rectification column as product nitrogen gas from the nitrogen rectification column, and a compressed air liquefied product or its vaporized product stored in the nitrogen rectification column, etc. an adsorption cylinder containing a built-in adsorbent that selectively adsorbs nitrogen is connected to the discharge path, and an extraction path for taking out the fluid after nitrogen removal is connected to the adsorption cylinder. High purity nitrogen gas production equipment.
(2)吸着筒が複数個それぞれ弁付き流路を介して放出
路に接続され、弁の切換えによつてそのなかの任意の吸
着筒が使用されるようになつている特許請求の範囲第1
項記載の高純度窒素ガス製造装置。
(2) A plurality of adsorption cylinders are each connected to a discharge path via a flow path with a valve, and any one of the adsorption cylinders can be used by switching the valve.
High-purity nitrogen gas production equipment as described in .
(3)吸着剤が合成ゼオライトである特許請求の範囲第
1項または第2項記載の高純度窒素ガス製造装置。
(3) The high-purity nitrogen gas production apparatus according to claim 1 or 2, wherein the adsorbent is synthetic zeolite.
JP59136748A 1984-07-02 1984-07-02 Production unit for high-purity nitrogen gas Granted JPS6115068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59136748A JPS6115068A (en) 1984-07-02 1984-07-02 Production unit for high-purity nitrogen gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59136748A JPS6115068A (en) 1984-07-02 1984-07-02 Production unit for high-purity nitrogen gas

Publications (2)

Publication Number Publication Date
JPS6115068A true JPS6115068A (en) 1986-01-23
JPS6148071B2 JPS6148071B2 (en) 1986-10-22

Family

ID=15182582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59136748A Granted JPS6115068A (en) 1984-07-02 1984-07-02 Production unit for high-purity nitrogen gas

Country Status (1)

Country Link
JP (1) JPS6115068A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1070421C (en) * 1994-09-02 2001-09-05 佳能株式会社 Ink jet recording apparatus
EP3640571A1 (en) * 2018-10-18 2020-04-22 Linde Aktiengesellschaft Method and installation for the production of an oxygen-rich air product

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940071A (en) * 1972-08-17 1974-04-15
JPS5047882A (en) * 1973-04-13 1975-04-28
JPS5140549A (en) * 1974-10-02 1976-04-05 Tokyo Shibaura Electric Co
JPS5241232A (en) * 1975-09-24 1977-03-30 Bayer Ag Weed killer
JPS5242158A (en) * 1975-09-30 1977-04-01 Yokogawa Hokushin Electric Corp Device for measuring breaking time of relay
JPS5514351A (en) * 1978-07-14 1980-01-31 Aisin Warner Ltd Controller of automatic change gear
JPS5525344A (en) * 1978-08-11 1980-02-23 Tokyo Electric Co Ltd Ribbon cassette case
JPS5579972A (en) * 1978-12-11 1980-06-16 Hitachi Ltd Operation control of nitrogen production system
JPS5864478A (en) * 1981-10-15 1983-04-16 日本酸素株式会社 Device for manufacturing nitrogen having high purity

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940071A (en) * 1972-08-17 1974-04-15
JPS5047882A (en) * 1973-04-13 1975-04-28
JPS5140549A (en) * 1974-10-02 1976-04-05 Tokyo Shibaura Electric Co
JPS5241232A (en) * 1975-09-24 1977-03-30 Bayer Ag Weed killer
JPS5242158A (en) * 1975-09-30 1977-04-01 Yokogawa Hokushin Electric Corp Device for measuring breaking time of relay
JPS5514351A (en) * 1978-07-14 1980-01-31 Aisin Warner Ltd Controller of automatic change gear
JPS5525344A (en) * 1978-08-11 1980-02-23 Tokyo Electric Co Ltd Ribbon cassette case
JPS5579972A (en) * 1978-12-11 1980-06-16 Hitachi Ltd Operation control of nitrogen production system
JPS5864478A (en) * 1981-10-15 1983-04-16 日本酸素株式会社 Device for manufacturing nitrogen having high purity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1070421C (en) * 1994-09-02 2001-09-05 佳能株式会社 Ink jet recording apparatus
EP3640571A1 (en) * 2018-10-18 2020-04-22 Linde Aktiengesellschaft Method and installation for the production of an oxygen-rich air product

Also Published As

Publication number Publication date
JPS6148071B2 (en) 1986-10-22

Similar Documents

Publication Publication Date Title
KR930000478B1 (en) High purity nitrogen and oxygen gas production equipment
WO1984003554A1 (en) Apparatus for producing high-purity nitrogen gas
KR900005985B1 (en) High- purity nitrogen gas production equipment
JPS6124967A (en) Production unit for high-purity nitrogen gas
WO1985004466A1 (en) Apparatus for producing high-purity nitrogen gas
JPS6158747B2 (en)
JPH06129763A (en) Air separator
JPS6115068A (en) Production unit for high-purity nitrogen gas
JPH06281322A (en) Manufacturing apparatus for high purity nitrogen and oxygen gas
JPS6115070A (en) Production unit for high-purity nitrogen gas
JPS6124969A (en) Production unit for high-purity nitrogen gas
JP2533262B2 (en) High-purity nitrogen and oxygen gas production equipment
JPS60232470A (en) Production unit for high-purity nitrogen gas
JP3021389B2 (en) High-purity nitrogen gas production equipment
JPH0882476A (en) Apparatus for producing high-purity nitrogen gas
JPS62116887A (en) Production unit for high-impurity nitrogen gas
KR900005986B1 (en) High-purity nitrogen gas production equipment
JPS62158977A (en) Production unit for high-purity nitrogen gas
JPS6115066A (en) Production unit for high-purity nitrogen gas
JPS6115067A (en) Production unit for high-purity nitrogen gas
JPH04297780A (en) High purity nitrogen gas manufacturing equipment
JPS60232472A (en) Manufacture of high-purity nitrogen gas
JPS6115069A (en) Production unit for high-purity nitrogen gas
JPS62158975A (en) Production unit for high-purity nitrogen gas
JPH0719724A (en) High purity nitrogen gas preparing apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees