JPS6115070A - Production unit for high-purity nitrogen gas - Google Patents

Production unit for high-purity nitrogen gas

Info

Publication number
JPS6115070A
JPS6115070A JP13675084A JP13675084A JPS6115070A JP S6115070 A JPS6115070 A JP S6115070A JP 13675084 A JP13675084 A JP 13675084A JP 13675084 A JP13675084 A JP 13675084A JP S6115070 A JPS6115070 A JP S6115070A
Authority
JP
Japan
Prior art keywords
nitrogen
nitrogen gas
air
compressed air
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13675084A
Other languages
Japanese (ja)
Other versions
JPS6149594B2 (en
Inventor
明 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Sanso Co Ltd
Original Assignee
Daido Sanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Sanso Co Ltd filed Critical Daido Sanso Co Ltd
Priority to JP13675084A priority Critical patent/JPS6115070A/en
Publication of JPS6115070A publication Critical patent/JPS6115070A/en
Publication of JPS6149594B2 publication Critical patent/JPS6149594B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04636Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a hybrid air separation unit, e.g. combined process by cryogenic separation and non-cryogenic separation techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • F25J3/0426The cryogenic component does not participate in the fractionation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/42Nitrogen or special cases, e.g. multiple or low purity N2
    • F25J2215/44Ultra high purity nitrogen, i.e. generally less than 1 ppb impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、高純度窒素ガス製造装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a high purity nitrogen gas production apparatus.

〔背景技術〕[Background technology]

電子工業では極めて多量の窒素ガスが使用されているが
、部品精度維持向上の観点から窒素ガスの純度について
厳しい要望をだしてきている。すなわち、窒素ガスは、
一般に、空気を原料とし、これを圧縮機で圧縮したのち
、吸着筒に入れて炭酸ガスおよび水分を除去し、さらに
熱交換器を通して冷媒と熱交換させて冷却し、ついで精
留塔で深冷液化分離して製品窒素ガスを製造し、これを
前記の熱交換器を通して常温近傍に昇温させるという工
程を経て製造されている。しかしながら、このようにし
て製造される製品窒素ガスには、酸素が不純分として混
在しているため、これをそのまま使用することは不都合
なことが多い。不純酸素の除去方法としては、■p【触
媒を使用し窒素ガス中に微量の水素を添加して不純酸素
と200℃程度の温度雰囲気中で反応させ水として除去
する方法および■Ni触媒を使用し、窒素ガス中の不純
酸素を200 ’C程度の温度雰囲気においてNi触媒
と接触させN i + 1/ 202−N i Oの反
応を起こさせて除去する方法がある。しかしながら、こ
れらの方法は、いずれも窒素ガスを高温にして触媒と接
触させなければならないため、その装置を、超低温系で
ある窒素ガス製造装置中には組み込めない。したがって
、窒素ガス製造装置とは別個に精製装置を設置しなけれ
ばならず、全体が人形になるという欠点がある。そのう
え、前記■の方法では、水素の添加量の調整に高精度が
要求され、不純酸素量と丁度反応するだけの量の水素を
添加しないと、酸素が残存したり、また添加した水素が
残存して不純分となってしま・うため、操作に熟練を要
するという問題がある。また、前記■の方法では、不純
酸素との反応で生じたNiOの再生(NiO+H2→N
i+H20)をする必要が生じ、再生用H2ガス設備が
必要となって精製費の上昇を招いていた。したがって、
これらの改善が強く望まれていた。
Extremely large amounts of nitrogen gas are used in the electronics industry, but strict requirements have been placed on the purity of nitrogen gas from the perspective of maintaining and improving component precision. In other words, nitrogen gas is
Generally, air is used as a raw material, and after compressing it with a compressor, it is put into an adsorption column to remove carbon dioxide and moisture, and then cooled by exchanging heat with a refrigerant through a heat exchanger, and then deeply cooled in a rectification column. It is manufactured through a process of liquefying and separating product nitrogen gas, and raising the temperature of this gas to near room temperature through the aforementioned heat exchanger. However, since the product nitrogen gas produced in this way contains oxygen as an impurity, it is often inconvenient to use it as it is. Methods for removing impure oxygen include: ■P [method in which a small amount of hydrogen is added to nitrogen gas using a catalyst and reacted with impure oxygen in an atmosphere at a temperature of about 200°C to remove it as water; and ■Using a Ni catalyst. However, there is a method of removing impure oxygen in nitrogen gas by bringing it into contact with a Ni catalyst in an atmosphere at a temperature of about 200'C to cause a reaction of N i + 1/202-N i O. However, in all of these methods, the nitrogen gas must be heated to a high temperature and brought into contact with the catalyst, so the apparatus cannot be incorporated into a nitrogen gas production apparatus that is an ultra-low temperature system. Therefore, the purification device must be installed separately from the nitrogen gas production device, and there is a drawback that the entire device becomes a doll. Furthermore, the method (■) requires high precision in adjusting the amount of hydrogen added, and if the amount of hydrogen that is not added is just enough to react with the amount of impure oxygen, oxygen may remain or the added hydrogen may remain. There is a problem in that it requires skill to operate, as it becomes impurities. In addition, in the method (2) above, the regeneration of NiO produced by the reaction with impure oxygen (NiO + H2 → N
i+H20), and regeneration H2 gas equipment was required, leading to an increase in refining costs. therefore,
These improvements were strongly desired.

また、従来の窒素ガスの製造装置は、圧縮機で圧縮され
た圧縮空気を冷却するための熱交換器の冷媒冷却用に、
膨張タービンを用い、これを精留塔内に溜る液体空気(
深冷液化分離により低沸点の窒素はガスとして取り出さ
れ、残部が酸素リッチな液体空気となって溜る)から暴
発したガスの圧力で駆動するようになっている。ところ
が、膨張タービンは回転速度が極めて大(数万回/分)
であって負荷変動に対する追従運転が困難であり、特別
に養成した運転員が必要である。また、このものは高速
回転するため機械構造上高精度が要求され、かつ高価で
あり、機構が複雑なため特別に養成した要員が必要とい
う難点を有している。
In addition, conventional nitrogen gas production equipment uses a refrigerant for cooling the heat exchanger to cool the compressed air compressed by the compressor.
An expansion turbine is used to convert the liquid air (
The low-boiling point nitrogen is extracted as a gas through cryogenic liquefaction separation, and the remainder becomes oxygen-rich liquid air (which accumulates) and is driven by the pressure of the gas that explodes. However, expansion turbines have extremely high rotational speeds (tens of thousands of revolutions per minute).
Therefore, it is difficult to follow load fluctuations, and specially trained operators are required. Furthermore, since this device rotates at a high speed, it requires high precision in its mechanical structure, is expensive, and has the disadvantage of requiring specially trained personnel due to its complicated mechanism.

すなわち、膨張タービンは高速回転部を有するため、上
記のような諸問題を生じるのであり、このような高速回
転部を有する膨張タービンの除去に対して強い要望があ
った。
That is, since the expansion turbine has a high-speed rotating section, it causes the various problems described above, and there has been a strong desire to eliminate the expansion turbine having such a high-speed rotating section.

この発明者は、このような要望に応えるため、膨張ター
ビンを除去し、それに代えて外部から寒冷として液体窒
素を熱交換器のような熱交換手段内に供給する窒素ガス
製造装置を開発し、すでに特許比1m(特願昭58−4
760)している。この装置は、極めて高純度の窒素ガ
スを製造しうるため、これまでのような精製装置が全く
不要になる。また、膨張タービンを除去しているため、
それにもとづく弊害も全く生じない。したがって、電子
工業向に最適である。しかしながら、電子工業では、窒
素ガス以外に、酸素ガスも使用しており、1台の装置で
窒素ガスのみならず酸素ガスも製造しうるような装置の
提供が望まれてきている。
In order to meet such demands, the inventor has developed a nitrogen gas production device that removes the expansion turbine and instead supplies cold liquid nitrogen from the outside into a heat exchange means such as a heat exchanger. Already patent ratio 1m (patent application 1984-4)
760). Since this device can produce nitrogen gas of extremely high purity, conventional purification equipment is completely unnecessary. Also, since the expansion turbine has been removed,
There are no harmful effects caused by this. Therefore, it is most suitable for the electronic industry. However, in the electronics industry, oxygen gas is also used in addition to nitrogen gas, and it has been desired to provide a device that can produce not only nitrogen gas but also oxygen gas with one device.

〔発明の目的〕[Purpose of the invention]

この発明は、膨張タービンや精製装置を用いることなく
高純度の窒素ガスを製造でき、かつ同時に酸素ガスも製
造しうる高純度窒素ガス製造装置の提供をその目的とす
るものである。
An object of the present invention is to provide a high-purity nitrogen gas production apparatus that can produce high-purity nitrogen gas without using an expansion turbine or a purification device, and can also produce oxygen gas at the same time.

〔発明の開示〕[Disclosure of the invention]

上記の目的を達成するため、この発明の高純度窒素ガス
製造装置は、外部より取り入れた空気を圧縮する空気圧
縮手段と、この空気圧縮手段によって圧縮された圧縮空
気中の炭酸ガスと水とを除去する除去手段と、上記除去
手段を経た圧縮空気を超低温に冷却する熱交換手段と、
液体窒素を貯蔵する液体窒素貯蔵手段と、上記液体窒素
貯蔵手段内の液体窒素を上記熱交換手段の寒冷源とする
よう上記熱交換手段に導く導入路と、上記熱交換手段に
より超低温に冷却された圧縮空気の一部を液化して内部
に溜め窒素のみを気体として保持する窒素精留塔と、上
記熱交換手段の寒冷源としての作用を終えて気化した液
体窒素および上記窒素精留塔内に保持されている気化窒
素の双方を製品窒素ガスとして上記窒素精留塔より取り
出す窒素ガス取出路と、上記窒素精留塔内に溜められた
圧縮空気液化物もしくはその気化物等の流体を外部に放
出する放出路を備え、窒素を選択的に吸着する吸着剤内
蔵の吸着筒が上記放出路に接続され、窒素除去後の流体
を取り出す取出路が上記吸着筒に接続されているという
構成をとるものである。
In order to achieve the above object, the high-purity nitrogen gas production apparatus of the present invention includes an air compression means for compressing air taken in from the outside, and carbon dioxide and water in the compressed air compressed by the air compression means. a removing means for removing; a heat exchange means for cooling the compressed air that has passed through the removing means to an ultra-low temperature;
a liquid nitrogen storage means for storing liquid nitrogen; an introduction path leading the liquid nitrogen in the liquid nitrogen storage means to the heat exchange means so as to serve as a cold source for the heat exchange means; A nitrogen rectification column that liquefies a portion of the compressed air and stores it inside to retain only nitrogen as a gas, and liquid nitrogen that has been vaporized after the heat exchange means has finished functioning as a cold source and the inside of the nitrogen rectification column. A nitrogen gas take-out path takes out both of the vaporized nitrogen held in the nitrogen rectification column as product nitrogen gas from the nitrogen rectification column, and a fluid such as compressed air liquefied product or its vaporized product stored in the nitrogen rectification column is connected to the outside. an adsorption cylinder containing a built-in adsorbent that selectively adsorbs nitrogen is connected to the discharge path, and an extraction path for taking out the fluid after nitrogen removal is connected to the adsorption cylinder. It is something to take.

つぎに、この発明を実施例にもとづいて説明する。Next, the present invention will be explained based on examples.

第1図はこの発明の一実施例Iを示している。図におい
て、9は空気圧縮機、10はドレン分離器、11はフロ
ン冷却器、12は2個1組の吸着筒である。吸着筒12
は内部にモレキュラーシーブが充填されていて空気圧縮
機9により圧縮された空気中のH80およびCO2を吸
着除去する作用をする。13は熱交換器であり、吸着筒
12によりH,OおよびCOlが吸着除去された圧縮空
気が、圧縮空気供給パイプ8を経て送り込まれる。
FIG. 1 shows an embodiment I of the present invention. In the figure, 9 is an air compressor, 10 is a drain separator, 11 is a fluorocarbon cooler, and 12 is a set of two adsorption cylinders. Adsorption tube 12
The inside is filled with a molecular sieve, which functions to adsorb and remove H80 and CO2 in the air compressed by the air compressor 9. Reference numeral 13 denotes a heat exchanger, into which compressed air from which H, O, and COI have been adsorbed and removed by the adsorption column 12 is sent through the compressed air supply pipe 8 .

24aは液体窒素貯槽23から延びるパイプである。こ
の液体窒素貯槽23は、内部の液体窒素をパイプ24a
を経て熱交換器13へ送り込み、熱交換器13内に送り
込まれた圧縮空気と熱交換させ、圧縮空気を超低温に冷
却する一方、液体窒素を気化させるようになっている。
24a is a pipe extending from the liquid nitrogen storage tank 23. This liquid nitrogen storage tank 23 is connected to a pipe 24a for discharging the liquid nitrogen inside.
The liquid nitrogen is sent to the heat exchanger 13 through the heat exchanger 13, where it exchanges heat with the compressed air sent into the heat exchanger 13, cooling the compressed air to an ultra-low temperature, and vaporizing the liquid nitrogen.

熱交換器13によって気化された液体窒素は、パイプ2
4bを経て製品窒素ガス送出用のメインパイプ28内に
送り込まれるようになっている。15は塔頂部が凝縮器
21aを有する分縮器部21になっており、それより下
が塔部22になっている窒素精留塔であり、熱交換器1
3により超低温に冷却されパイプ17を経て送り込まれ
る圧縮空気をさらに冷却し、その一部を液化し液体空気
18として塔部22の底部に溜め、窒素のみを気体状態
で塔部22の上部天井部に溜めるようになっている。2
0は分縮器部21と塔部22を仕切る仕切板である。
The liquid nitrogen vaporized by the heat exchanger 13 is transferred to the pipe 2
4b and into the main pipe 28 for delivering the product nitrogen gas. Reference numeral 15 denotes a nitrogen rectification column whose top part is a dephlegmator part 21 having a condenser 21a, and the part below it is a column part 22.
3, the compressed air cooled to an ultra-low temperature and sent through the pipe 17 is further cooled, a part of which is liquefied and stored at the bottom of the tower section 22 as liquid air 18, and only nitrogen is in a gaseous state at the upper ceiling of the tower section 22. It is designed to be stored in 2
0 is a partition plate that partitions the dephlegmator section 21 and the tower section 22.

より詳しく述べると、上記分縮器部21内の凝縮器21
aには、塔部22の上部に溜る窒素ガスの一部がパイプ
21bを介して送入される。この分縮器部21内は、塔
部22内よりも減圧状態になっており、塔部22の底部
の貯留液体空気(N。
To explain in more detail, the condenser 21 in the demultiplexer section 21
A part of the nitrogen gas accumulated in the upper part of the column section 22 is fed into the column a through the pipe 21b. The pressure inside this dephlegmator section 21 is lower than that inside the column section 22, and the liquid air (N) is stored at the bottom of the column section 22.

50〜70%、0.30〜50%)18が膨張弁19a
付きパイプ19を経て送り込まれ、気化して内部温度を
液体窒素の沸点以下の温度に冷却するようになっている
。この冷却により、凝縮器21a内に送入された窒素ガ
スが液化する。精留塔15の塔部22の上部側の部分に
は、上記分縮器部21の凝縮器21aで生成した液体窒
素がパイプ21cを通って流下供給され、液体窒素溜め
21dを経て塔部22内を下方に流下し、塔部22の底
部から上昇する圧縮空気と向流的に接触し冷却してその
一部を液化するようになっている。この過程で圧縮空気
中の高沸点成分は液化されて塔部22の底部に溜り、低
沸点成分の窒素ガスが塔部22の上部に溜る。27は精
留塔塔部22の上部天井部に溜った窒素ガスを取り出す
取出パイプで、超低温の窒素ガスを熱交換器13内に案
内し、そこに送り込まれる圧縮空気と熱交換させて常温
にしメインパイプ28に送り込む作用をする。
50-70%, 0.30-50%) 18 is the expansion valve 19a
The liquid nitrogen is fed through a pipe 19, and is vaporized to cool the internal temperature to a temperature below the boiling point of liquid nitrogen. Due to this cooling, the nitrogen gas fed into the condenser 21a is liquefied. The liquid nitrogen produced in the condenser 21a of the demultiplexer section 21 is supplied to the upper part of the column section 22 of the rectification column 15 through a pipe 21c, and is supplied to the column section 22 through the liquid nitrogen reservoir 21d. The air flows downward through the tower section 22, contacts countercurrently with the compressed air rising from the bottom of the tower section 22, cools it, and partially liquefies it. In this process, the high boiling point components in the compressed air are liquefied and accumulate at the bottom of the column section 22, and the low boiling point components, nitrogen gas, accumulate at the top of the column section 22. Reference numeral 27 is a take-out pipe for taking out the nitrogen gas accumulated in the upper ceiling of the rectification column section 22, which guides the ultra-low temperature nitrogen gas into the heat exchanger 13 and exchanges heat with the compressed air sent there to bring it to room temperature. It acts to feed the water into the main pipe 28.

この場合、精留塔塔部22内における最上部には、窒素
ガスとともに、沸点の低いHe(−269°c)、H,
(−253℃)が溜りやすいため、取出パイプ27は、
塔部22の最上部よりかなり下側に開口し°Cおり、H
e、H,の混在しない純窒素ガスのみを製品窒素ガスと
して取り出すようになっている。29は分縮器部21内
の不用気化液体空気を熱交換器13に送り込む放出路パ
イプであり、29aはその保圧弁である。40.41゜
42はそれぞれ内部にN2を選択的に吸着する吸着剤(
合成ゼオライト:モレキュラーシーブ)が充填されてい
る吸着筒で、それぞれその入口が、弁40b、41b、
42bを備えた流入路40a、41a、42aを介して
上記放出路パイプ29に接続されている。44は真空ポ
ンプで、吸引路43および弁40c、41c、42Cを
介して上記吸着筒40.41.42の入口に接続されて
いる。40d、41d、42dは、それぞれ上記吸着筒
40.41.42の出口に接続されている取出路で、そ
れぞれ弁40e、41e、42eを備えている。これら
の取出路40d、41d、42dは、製品酸素ガス取出
路45を介して緩衝タンク46に接続されている。上記
吸着筒40.41.42は、そのなかの1個が吸着に使
用され、その間残るものが真空ポンプ44の真空吸引に
よる再生作用を受け、ついで再生されたものの1個が吸
着に使用され、先に吸着作動をしていたものが再生作用
を受ける。これを繰り返して連続吸着作動するようにな
っている。なお、30はバックアップ系ラインであり、
空気圧縮ラインが故障したときに液体窒素貯槽23内の
液体窒素を芸発器31により蒸発させてメインパイプ2
8に送り込み、窒素ガスの供給がとだえることのないよ
うにする。32は不純物分析計であり、メインパイプ2
8に送り出される製品窒素ガスの純度を分析し、純度の
低いときは、弁34.34aを作動させて製品窒素ガス
を矢印Bのように外部に逃気する作用をする。また、一
点&]11jlは真空保冷函であり、精留塔15等を収
容して精製効率の向上を図る。
In this case, at the top of the rectification column section 22, along with nitrogen gas, He (-269°C), which has a low boiling point, H,
(-253°C) tends to accumulate, so the extraction pipe 27 is
It opens considerably below the top of the tower section 22 and is heated to
Only pure nitrogen gas without any mixture of e, H, etc. is taken out as product nitrogen gas. Reference numeral 29 is a discharge path pipe that sends the waste vaporized liquid air in the dephlegmator section 21 to the heat exchanger 13, and 29a is its pressure holding valve. 40.41°42 is an adsorbent that selectively adsorbs N2 (
It is an adsorption cylinder filled with synthetic zeolite (molecular sieve), and its inlets are connected to valves 40b, 41b,
It is connected to the discharge pipe 29 through inflow passages 40a, 41a, and 42a provided with 42b. A vacuum pump 44 is connected to the inlets of the adsorption cylinders 40, 41, and 42 via a suction path 43 and valves 40c, 41c, and 42C. 40d, 41d, and 42d are take-out passages connected to the outlets of the adsorption cylinders 40, 41, and 42, respectively, and are provided with valves 40e, 41e, and 42e, respectively. These take-out paths 40d, 41d, and 42d are connected to a buffer tank 46 via a product oxygen gas take-out path 45. One of the adsorption cylinders 40, 41, 42 is used for adsorption, while the remaining one is subjected to the regeneration action by vacuum suction of the vacuum pump 44, and then one of the regenerated cylinders is used for adsorption, What was previously acting as an adsorbent undergoes a regeneration action. This process is repeated for continuous suction operation. In addition, 30 is a backup line,
When the air compression line breaks down, the liquid nitrogen in the liquid nitrogen storage tank 23 is evaporated by the generator 31 and the main pipe 2
8 to ensure that the supply of nitrogen gas does not stop. 32 is an impurity analyzer, and main pipe 2
The purity of the product nitrogen gas sent to step 8 is analyzed, and if the purity is low, the valves 34 and 34a are operated to release the product nitrogen gas to the outside as shown by arrow B. Moreover, one point &] 11jl is a vacuum cold storage box, which accommodates a rectification column 15 and the like to improve purification efficiency.

この装置は、つぎのようにして製品窒素ガスおよび酸素
ガスを製造する。すなわち、空気圧縮機9により空気を
圧縮し、ドレン分離器10により圧縮された空気中の水
分を除去してフロン冷却器11により冷却し、その状態
で吸着筒12に送り込み、空気中のH2OおよびCO2
を吸着除去する。ついで、+(、O,CO2が吸着除去
された圧縮空気を熱交換器13に送り込んで液体窒素貯
槽23から供給された液体窒素の冷熱によって超低温に
冷却し、その状態で精留塔塔部22の下部内に投入する
。ついで、この投入圧縮空気を、凝縮器21aから液体
窒素溜め21dに供給されそこから溢流する液体窒素と
接触させて冷却し、その一部を液化して塔部22の底部
に溜める。この過程において、窒素と酸素の沸点の差(
酸素の沸点−183℃、窒素の沸点−196℃)により
、圧縮空気中の高沸点成分である酸素が液化し、窒素が
気体のまま残る。ついで、この気体のまま残った窒素を
取出パイプ27から取り出して熱交換器134ご送り込
み、常温近くまで昇温させメインパイプ28から製品窒
素ガスとして送り出す。この場合、液体窒素貯槽23か
らの液体窒素は、熱交換器13の寒冷源として作用し、
それ自身は気化して取出パイプ27から製品窒素ガスの
一部として取り出される。他方、精留塔塔部22の下部
に溜った液体空気18は、分縮器部21内に送り込まれ
て凝縮121aを冷却したのち気化して不用気化液体空
気となり、パイプ29を経て熱交換器13内に送入され
て昇温し、その状態で吸着筒40.41.42のうちの
任意の吸着筒に送り込まれ、そこで窒素ガスを吸着除去
され酸素ガスとなって緩衝タンク46に送り込まれる。
This device produces product nitrogen gas and oxygen gas as follows. That is, air is compressed by the air compressor 9, water in the compressed air is removed by the drain separator 10, and cooled by the fluorocarbon cooler 11. In this state, the air is sent to the adsorption column 12 to remove H2O and CO2
is removed by adsorption. Next, the compressed air from which +(, O, and CO2 have been adsorbed and removed) is sent to the heat exchanger 13 and cooled to an ultra-low temperature by the cold heat of the liquid nitrogen supplied from the liquid nitrogen storage tank 23. Then, this input compressed air is supplied from the condenser 21a to the liquid nitrogen reservoir 21d, and is cooled by contacting with the liquid nitrogen overflowing therefrom. The difference between the boiling points of nitrogen and oxygen (
The boiling point of oxygen is -183°C and the boiling point of nitrogen is -196°C), so oxygen, which is a high boiling point component in compressed air, liquefies, and nitrogen remains as a gas. Next, the remaining gaseous nitrogen is taken out from the extraction pipe 27 and sent to the heat exchanger 134, where it is heated to near normal temperature and sent out from the main pipe 28 as a product nitrogen gas. In this case, the liquid nitrogen from the liquid nitrogen storage tank 23 acts as a cooling source for the heat exchanger 13,
The nitrogen gas itself is vaporized and taken out from the take-out pipe 27 as part of the product nitrogen gas. On the other hand, the liquid air 18 accumulated at the lower part of the rectification column section 22 is sent into the dephlegmator section 21 to cool the condensate 121a, and then vaporized to become waste vaporized liquid air, which is then passed through the pipe 29 to the heat exchanger. 13, the temperature rises, and in that state it is sent to any of the adsorption cylinders 40, 41, and 42, where the nitrogen gas is adsorbed and removed, and it becomes oxygen gas and is sent to the buffer tank 46. .

この場合、吸着筒40,41.42のなかの任意の1個
が吸着作動し、残るものはその間真空ポンプ44の真空
再生作用を受け、つぎに吸着作動した吸着筒が再生にま
わり、再生済みのものの1個が吸着作動にはいるという
ように、各弁40b〜42b、40c〜42c、40e
 〜42eが制御される。このようにして、高純度の窒
素ガスと酸素ガスが1台の装置により同時に得られるよ
うになる。この場合、得られる製品窒素ガスと製品酸素
ガスの比率(体積比)は、はぼ10:1となる。
In this case, any one of the adsorption cylinders 40, 41, 42 is activated for adsorption, and the remaining ones are subjected to the vacuum regeneration action of the vacuum pump 44 during that time, and then the adsorption cylinder that is activated for adsorption starts regeneration, and the regenerated adsorption cylinder is Each of the valves 40b to 42b, 40c to 42c, and 40e enters the suction operation.
~42e are controlled. In this way, high purity nitrogen gas and oxygen gas can be obtained simultaneously using one device. In this case, the ratio (volume ratio) of the product nitrogen gas to the product oxygen gas obtained is about 10:1.

なお、第1図の窒素精留塔に代えて第2図に示すような
構造の精留塔を用いてもよい。すなわち、この精留塔1
5は、多数のパイプ20aが植設された仕切板20によ
って分縮器部21が塔部22と区切られており、この分
縮器部21内、に液体窒素貯槽23から液体窒素が供給
され、パイプ19から塔部22内に供給された圧縮空気
を、仕切板20のパイプ20a内で冷却して酸素分を液
化し、窒素を気体の状態で分縮器部21の頂部より取り
出すようになっている。この場合は、前記実施例とは異
なり、精留塔15の塔部22の底部に溜まる液体空気1
8が、酸素ガスの原料として用いられ、熱交換器13で
昇温され気化した状態で任意の吸着M40.41.42
に供給される。
Note that a rectification column having a structure as shown in FIG. 2 may be used instead of the nitrogen rectification column shown in FIG. 1. That is, this rectification column 1
5, a dephlegmator part 21 is separated from a tower part 22 by a partition plate 20 in which a large number of pipes 20a are installed, and liquid nitrogen is supplied from a liquid nitrogen storage tank 23 into the dephlegmator part 21. The compressed air supplied from the pipe 19 into the column section 22 is cooled in the pipe 20a of the partition plate 20 to liquefy the oxygen content, and the nitrogen is taken out in a gaseous state from the top of the dephlegmator section 21. It has become. In this case, unlike the previous embodiment, the liquid air 1 accumulated at the bottom of the column section 22 of the rectification column 15
8 is used as a raw material for oxygen gas, and in the heated and vaporized state in the heat exchanger 13, any adsorption M40.41.42
supplied to

さらに、第3図に示すように、液体窒素貯槽23から延
びる液体窒素供給パイプ24aの、熱交換器13から出
たところに、温度センサ50を設け、その温度センサ5
0で、液体窒素供給パイブ24aの始端側に設けられた
弁51を制御し、製品窒素ガスの取出量が一定になるよ
うにしてもよい。
Furthermore, as shown in FIG. 3, a temperature sensor 50 is provided at the point where the liquid nitrogen supply pipe 24a extending from the liquid nitrogen storage tank 23 exits the heat exchanger 13.
0, the valve 51 provided at the starting end of the liquid nitrogen supply pipe 24a may be controlled so that the amount of product nitrogen gas taken out is constant.

〔発明の効果〕〔Effect of the invention〕

この発明の高純度窒素ガス製造装置は、膨張タービンを
用いず、それに代えて何ら回転部をもたない液体窒素貯
槽を用いるため、装置全体として回転部がなくなり故障
が全く生じない。しかも膨張タービンは高価であるのに
対して液体窒素貯槽は安価であり、また特別な要員も不
要になる。そのうえ、膨張タービン(窒素精留塔内に溜
る液体空気から蒸発したガスの圧力で駆動する)は、回
転速度が極めて大(数万回/分)であるため、負荷変動
(製品窒素ガスの取出量の変化)に対するきめ細かな追
従運転が困難である。したがって、製品窒素ガスの取出
量の変化に応じて膨張タービンに対する液体空気の供給
量を正確に変化させ、窒素ガス製造原料である圧縮空気
を常時一定温度に冷却することが困難であり、その結果
、得られる製品窒素ガスの純度がばらつき、頻繁に低純
度のものがつくりだされ全体的に製品窒素ガスの純度が
低くなっていた。この装置は、それに代えて夜体窒素貯
槽を用い、供給量のきめ細かい調節が可能な液体窒素を
熱交換器の寒冷源として用いるため、負荷変動に対する
きめ細かな追従が可能となり、純度が安定していて極め
て高い窒素ガスを製造しうるようになる。したがって、
従来の精製装置が不要となる。しかも、この装置は、液
体窒素を寒冷として用い、使用後これを逃気するのでは
なく、空気を原料として製造される窒素ガスに併せて製
品窒素ガスとするため資源の無駄を生じない。そのうえ
、この装置は、窒素を選択的に吸着する吸着剤内蔵の吸
着筒を備えており、窒素ガス採取後の酸素リッチな不用
気化液体空気を窒素精留塔から吸着筒に供給して酸素ガ
スを製造するため、効率よく酸素ガスを得ることができ
る。このように、この発明の装置は、1台の装置で高純
度の窒素ガスと酸素ガスとを効率よく製造することがで
きるため、電子工業向けに最適である。
The high-purity nitrogen gas production apparatus of the present invention does not use an expansion turbine and instead uses a liquid nitrogen storage tank that does not have any rotating parts, so the apparatus as a whole has no rotating parts and does not have any trouble. Furthermore, while expansion turbines are expensive, liquid nitrogen storage tanks are inexpensive and do not require special personnel. Furthermore, the expansion turbine (which is driven by the pressure of the gas evaporated from the liquid air accumulated in the nitrogen rectification column) has an extremely high rotational speed (tens of thousands of rotations/minute), so load fluctuations (the removal of product nitrogen gas) It is difficult to perform fine-grained follow-up operation for changes in quantity. Therefore, it is difficult to accurately change the amount of liquid air supplied to the expansion turbine in accordance with changes in the amount of product nitrogen gas taken out, and to constantly cool compressed air, which is the raw material for nitrogen gas production, to a constant temperature. However, the purity of the product nitrogen gas obtained varied, and low-purity products were frequently produced, resulting in an overall low purity product nitrogen gas. Instead, this device uses a night body nitrogen storage tank and uses liquid nitrogen, whose supply amount can be finely adjusted, as the cooling source for the heat exchanger, making it possible to closely follow load fluctuations and maintain stable purity. This makes it possible to produce extremely high nitrogen gas. therefore,
Conventional purification equipment is not required. Furthermore, this device does not use liquid nitrogen for cooling and release it after use, but rather uses it as a product nitrogen gas with nitrogen gas produced using air as a raw material, so no resources are wasted. In addition, this device is equipped with an adsorption column with a built-in adsorbent that selectively adsorbs nitrogen, and the oxygen-rich waste vaporized liquid air after nitrogen gas collection is supplied from the nitrogen rectification column to the adsorption column to produce oxygen gas. Oxygen gas can be obtained efficiently. As described above, the apparatus of the present invention is ideal for use in the electronics industry because it can efficiently produce high-purity nitrogen gas and oxygen gas with one apparatus.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の構成図、第2図および第
3図はその変形例の構成図である。 9・・・空気圧縮機 12・・・吸着筒 13.・・・
熱交換器 15・・・窒素精留塔 17・・・バイブ 
】8・・・液体空気 21・・・分縮器部 21a・・
・凝縮器 21d・・・液体窒素溜め 22・・・塔部
 23・・・液体窒素貯槽 24a・・・導入路パイプ
 27・・・取出バイブ 28・・・メインパイプ 2
9・・・放出路バイブ40.41.42・・・吸着筒 
44・・・真空ポンプ45・・・製品酸素ガス取出路
FIG. 1 is a block diagram of one embodiment of the present invention, and FIGS. 2 and 3 are block diagrams of modified examples thereof. 9...Air compressor 12...Adsorption cylinder 13. ...
Heat exchanger 15... Nitrogen rectification column 17... Vibrator
]8...Liquid air 21...Decentralizer section 21a...
・Condenser 21d...Liquid nitrogen reservoir 22...Tower part 23...Liquid nitrogen storage tank 24a...Inlet pipe 27...Takeout vibe 28...Main pipe 2
9...Discharge path vibrator 40.41.42...Adsorption cylinder
44...Vacuum pump 45...Product oxygen gas extraction path

Claims (3)

【特許請求の範囲】[Claims] (1)外部より取り入れた空気を圧縮する空気圧縮手段
と、この空気圧縮手段によつて圧縮された圧縮空気中の
炭酸ガスと水とを除去する除去手段と、上記除去手段を
経た圧縮空気を超低温に冷却する熱交換手段と、液体窒
素を貯蔵する液体窒素貯蔵手段と、上記液体窒素貯蔵手
段内の液体窒素を上記熱交換手段の寒冷源とするよう上
記熱交換手段に導く導入路と、上記熱交換手段により超
低温に冷却された圧縮空気の一部を液化して内部に溜め
窒素のみを気体として保持する窒素精留塔と、上記熱交
換手段の寒冷源としての作用を終えて気化した液体窒素
および上記窒素精留塔内に保持されている気化窒素の双
方を製品窒素ガスとして上記窒素精留塔より取り出す窒
素ガス取出路と、上記窒素精留塔内に溜められた圧縮空
気液化物もしくはその気化物等の流体を外部に放出する
放出路を備え、窒素を選択的に吸着する吸着剤内蔵の吸
着筒が上記放出路に接続され、窒素除去後の流体を取り
出す取出路が上記吸着筒に接続されていることを特徴と
する高純度窒素ガス製造装置。
(1) An air compression means that compresses air taken in from the outside, a removal means that removes carbon dioxide and water from the compressed air compressed by the air compression means, and a removal means that removes the compressed air that has passed through the removal means. A heat exchange means for cooling to an ultra-low temperature, a liquid nitrogen storage means for storing liquid nitrogen, and an introduction path leading the liquid nitrogen in the liquid nitrogen storage means to the heat exchange means so as to serve as a cold source for the heat exchange means; A nitrogen rectification column that liquefies a portion of the compressed air that has been cooled to an ultra-low temperature by the heat exchange means and stores it internally to retain only nitrogen as a gas, and a nitrogen rectification column that liquefies a portion of the compressed air that has been cooled to an ultra-low temperature by the heat exchange means and vaporizes the air after the heat exchange means has finished its function as a cold source. a nitrogen gas extraction path for extracting both liquid nitrogen and vaporized nitrogen held in the nitrogen rectification column from the nitrogen rectification column as product nitrogen gas; and a compressed air liquefied product stored in the nitrogen rectification column. Or, an adsorption cylinder equipped with a discharge path for releasing fluid such as the vaporized product to the outside, and a built-in adsorbent that selectively adsorbs nitrogen is connected to the discharge path, and an extraction path for taking out the fluid after nitrogen removal is connected to the adsorption column. A high-purity nitrogen gas production device characterized by being connected to a cylinder.
(2)吸着筒が複数個それぞれ弁付き流路を介して放出
路に接続され、弁の切換えによつてそのなかの任意の吸
着筒が使用されるようになつている特許請求の範囲第1
項記載の高純度窒素ガス製造装置。
(2) A plurality of adsorption cylinders are each connected to a discharge path via a flow path with a valve, and any one of the adsorption cylinders can be used by switching the valve.
High-purity nitrogen gas production equipment as described in .
(3)吸着剤が合成ゼオライトである特許請求の範囲第
1項または第2項記載の高純度窒素ガス製造装置。
(3) The high-purity nitrogen gas production apparatus according to claim 1 or 2, wherein the adsorbent is synthetic zeolite.
JP13675084A 1984-07-02 1984-07-02 Production unit for high-purity nitrogen gas Granted JPS6115070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13675084A JPS6115070A (en) 1984-07-02 1984-07-02 Production unit for high-purity nitrogen gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13675084A JPS6115070A (en) 1984-07-02 1984-07-02 Production unit for high-purity nitrogen gas

Publications (2)

Publication Number Publication Date
JPS6115070A true JPS6115070A (en) 1986-01-23
JPS6149594B2 JPS6149594B2 (en) 1986-10-30

Family

ID=15182629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13675084A Granted JPS6115070A (en) 1984-07-02 1984-07-02 Production unit for high-purity nitrogen gas

Country Status (1)

Country Link
JP (1) JPS6115070A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227601A (en) * 1988-03-08 1989-09-11 Toyota Autom Loom Works Ltd Maximum speed controller for battery vehicle
JPH02246788A (en) * 1989-03-16 1990-10-02 Mitsutoyo Corp Speed detecting circuit and speed controller for dc motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5047882A (en) * 1973-04-13 1975-04-28
JPS5241232A (en) * 1975-09-24 1977-03-30 Bayer Ag Weed killer
JPS5525344A (en) * 1978-08-11 1980-02-23 Tokyo Electric Co Ltd Ribbon cassette case

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5047882A (en) * 1973-04-13 1975-04-28
JPS5241232A (en) * 1975-09-24 1977-03-30 Bayer Ag Weed killer
JPS5525344A (en) * 1978-08-11 1980-02-23 Tokyo Electric Co Ltd Ribbon cassette case

Also Published As

Publication number Publication date
JPS6149594B2 (en) 1986-10-30

Similar Documents

Publication Publication Date Title
KR930000478B1 (en) High purity nitrogen and oxygen gas production equipment
WO1984003554A1 (en) Apparatus for producing high-purity nitrogen gas
KR900005985B1 (en) High- purity nitrogen gas production equipment
JPS6124967A (en) Production unit for high-purity nitrogen gas
WO1985004466A1 (en) Apparatus for producing high-purity nitrogen gas
JPS6158747B2 (en)
JPH06129763A (en) Air separator
US5546765A (en) Air separating unit
JPS6115070A (en) Production unit for high-purity nitrogen gas
JPH06281322A (en) Manufacturing apparatus for high purity nitrogen and oxygen gas
JPS6115068A (en) Production unit for high-purity nitrogen gas
JPS6124969A (en) Production unit for high-purity nitrogen gas
JP2533262B2 (en) High-purity nitrogen and oxygen gas production equipment
JPS6115069A (en) Production unit for high-purity nitrogen gas
KR900005986B1 (en) High-purity nitrogen gas production equipment
JPS6115066A (en) Production unit for high-purity nitrogen gas
JPS6115067A (en) Production unit for high-purity nitrogen gas
JPS60232470A (en) Production unit for high-purity nitrogen gas
JPS60232472A (en) Manufacture of high-purity nitrogen gas
JPS62158975A (en) Production unit for high-purity nitrogen gas
JPH01239375A (en) Device for manufacturing highly pure nitrogen gas
JPS61190278A (en) High-purity oxygen gas production unit
JPS62158976A (en) Production unit for high-purity nitrogen gas
JPH04297780A (en) High purity nitrogen gas manufacturing equipment
JPH0719724A (en) High purity nitrogen gas preparing apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees