JPH0418222B2 - - Google Patents

Info

Publication number
JPH0418222B2
JPH0418222B2 JP61189400A JP18940086A JPH0418222B2 JP H0418222 B2 JPH0418222 B2 JP H0418222B2 JP 61189400 A JP61189400 A JP 61189400A JP 18940086 A JP18940086 A JP 18940086A JP H0418222 B2 JPH0418222 B2 JP H0418222B2
Authority
JP
Japan
Prior art keywords
liquid
nitrogen
air
rectification column
nitrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61189400A
Other languages
Japanese (ja)
Other versions
JPS62116887A (en
Inventor
Akira Yoshino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Sanso Co Ltd
Original Assignee
Daido Sanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Sanso Co Ltd filed Critical Daido Sanso Co Ltd
Priority to JP61189400A priority Critical patent/JPS62116887A/en
Publication of JPS62116887A publication Critical patent/JPS62116887A/en
Publication of JPH0418222B2 publication Critical patent/JPH0418222B2/ja
Priority to JP5091152A priority patent/JPH0611255A/en
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/044Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04824Stopping of the process, e.g. defrosting or deriming; Back-up procedures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/0483Rapid load change of the air fractionation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/42Nitrogen or special cases, e.g. multiple or low purity N2
    • F25J2215/44Ultra high purity nitrogen, i.e. generally less than 1 ppb impurities

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、高純度窒素ガス製造装置に関する
ものである。〔従来の技術〕 一般に、窒素は深冷液化分離装置により製造さ
れている。この種の窒素製造装置は、例えば特公
昭52−41232号広報に示されるように、圧縮機で
圧縮された圧縮機を熱交換するための熱交換機の
冷媒冷却用に、膨脹タービンを用い、これを、精
留塔内に溜る液体空気(深冷液化分離により底沸
点の窒素はガスとして取り出され、残部が窒素リ
ツチな液体空気となつて溜る)から蒸発した廃ガ
スの圧力で工藤するようになつている。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a high-purity nitrogen gas production apparatus. [Prior Art] Generally, nitrogen is produced using a cryogenic liquefaction separation device. This type of nitrogen production equipment uses an expansion turbine to cool the refrigerant of a heat exchanger for exchanging heat with the compressor, as shown in Japanese Patent Publication No. 52-41232, for example. The pressure of the waste gas evaporated from the liquid air that accumulates in the rectification column (the nitrogen at the bottom boiling point is extracted as gas through cryogenic liquefaction separation, and the remainder accumulates as nitrogen-rich liquid air) It's summery.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、膨脹タービンは回転速度が極めて大
(数万回/分)であり、負荷変動に対する迅速な
追従運転が困難である。すなわち、膨脹タービン
の流路に流れる廃ガスの流量調節弁で制御するこ
とにより膨張タービンの発生寒冷量を変えて製品
窒素ガスの需要量の変動に対応しようとしても、
膨脹タービンの発生寒冷量を変えるには時間がか
かるために速やかに対応することができない(数
十分の時間遅れを生じる)。
However, the rotational speed of the expansion turbine is extremely high (tens of thousands of rotations/minute), making it difficult to quickly follow load fluctuations. In other words, even if an attempt is made to respond to fluctuations in the demand for product nitrogen gas by changing the amount of refrigeration generated by the expansion turbine by controlling the flow rate regulating valve of the waste gas flowing into the flow path of the expansion turbine,
Changing the amount of refrigeration generated by the expansion turbine takes time and cannot be done quickly (a time delay of several tens of minutes occurs).

一方、上記のような膨張タービンの発生寒冷を
用いるのではなく、それに代えて、液体窒素タン
ク内に貯蔵された液体窒素を寒冷として精留塔内
に導入する装置も提案(特開昭50−47882号)さ
れている。しかし、この装置は、機構上、製品窒
素ガスの需要変動に応じて、寒冷液体窒素の供給
量を調節する調節機構を設けられないものであ
り、いわば定量運転専用機であることから、製品
窒素ガスの需要変動に全く対応できないという欠
点を有している。
On the other hand, instead of using the refrigeration generated by the expansion turbine as described above, a device was also proposed in which liquid nitrogen stored in a liquid nitrogen tank was cooled and introduced into the rectification column (Japanese Patent Application Laid-Open No. 1973- No. 47882). However, due to its mechanism, this device cannot be equipped with an adjustment mechanism to adjust the supply amount of chilled liquid nitrogen in response to fluctuations in demand for product nitrogen gas, and because it is a machine exclusively for fixed-quantity operation, It has the disadvantage of not being able to respond to fluctuations in gas demand at all.

したがつて、需要量の変動に迅速に対応できる
窒素ガス製造装置の提供が望まれている。
Therefore, it is desired to provide a nitrogen gas production apparatus that can quickly respond to changes in demand.

この発明は、このような事情に鑑みなされたも
ので、上記のような性能を備えた高純度窒素ガス
製造装置の提供をその目的とする。
The present invention was made in view of the above circumstances, and an object of the present invention is to provide a high-purity nitrogen gas production apparatus having the above-mentioned performance.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するため、この発明の高純度
窒素ガス製造装置は、外部より取り入れた空気を
圧縮する空気圧縮手段と、この空気圧縮手段によ
つて圧縮された圧縮空気中の炭酸ガスと水分とを
除去する手段と、この除去手段を経た圧縮空気を
超低温に冷却する熱交換手段と、この熱交換手段
により超低温に冷却された圧縮空気の一部を液化
して底部に溜め窒素のみを気体として上部側から
取り出す精留塔を備えた窒素ガス製造装置におい
て、精留塔の上部に設けられた凝縮機内蔵型の分
縮器と、精留塔の底部の貯留液化空気を上記凝縮
器冷却用の寒冷として上記分縮器中に導く液体空
気導入パイプと、上記分縮器中で生じた気化液体
空気を外部に放出するパイプと、上記放出パイプ
の気化液体空気を利用して発熱を発生し生成冷熱
を上記熱交換手段に送り冷却する膨脹器と、精留
塔内で生成した窒素ガスの一部を上記凝縮器内に
案内する第1の還流液パイプと、上記凝縮器内で
生じた液化窒素を還流液として精留塔内に戻す第
2の還流液パイプと、装置外から液体窒素の供給
を受けこれを貯蔵する液体窒素貯蔵手段と、この
液体窒素貯蔵手段内の液体窒素を圧縮空気液化用
の寒冷として上記精留塔内に導く導入路と、上記
精留塔に対する上記液体窒素貯蔵手段まらの液体
窒素の供給量を制御することにより上記分縮器内
の液体空気の液面を一定に制御する制御手段と、
上記精留塔から気体として取り出される窒素およ
び上記精留塔内において寒冷源としての作用を終
え気化した上記液体窒素を上記熱交換手段を経由
させその内部を通る圧縮空気と熱交換させること
により温度上昇させ製品窒素ガスとする窒素ガス
取出路を備えるという構成をとる。
In order to achieve the above object, the high purity nitrogen gas production apparatus of the present invention includes an air compression means for compressing air taken in from the outside, and carbon dioxide and moisture in the compressed air compressed by the air compression means. a heat exchange means for cooling the compressed air that has passed through the removal means to an ultra-low temperature, and a part of the compressed air cooled to an ultra-low temperature by the heat exchange means to be liquefied and stored at the bottom to convert only nitrogen into gas. In a nitrogen gas production device equipped with a rectification column that is taken out from the top side, a decentralizer with a built-in condenser is installed at the top of the rectification column, and the liquefied air stored at the bottom of the rectification column is cooled by the condenser. A pipe for introducing liquid air into the dephlegmator for cooling purposes, a pipe for discharging the vaporized liquid air generated in the dephlegmator to the outside, and generating heat using the vaporized liquid air in the discharge pipe. an expander that sends and cools the generated cold heat to the heat exchange means; a first reflux pipe that guides a portion of the nitrogen gas generated in the rectification column into the condenser; a second reflux liquid pipe that returns the liquefied nitrogen as reflux liquid into the rectification column; a liquid nitrogen storage means for receiving and storing liquid nitrogen from outside the apparatus; and a liquid nitrogen storage means for storing the liquid nitrogen in the liquid nitrogen storage means. The amount of liquid air in the dephlegmator is controlled by controlling the introduction path that leads the compressed air into the rectification column as cold air for liquefaction, and the supply amount of liquid nitrogen from the liquid nitrogen storage means to the rectification column. a control means for controlling the liquid level to a constant level;
The nitrogen taken out as a gas from the rectification column and the liquid nitrogen that has finished acting as a cold source and has been vaporized in the rectification column are passed through the heat exchange means and exchanged heat with the compressed air passing through the inside of the column. The structure includes a nitrogen gas extraction passage for raising the nitrogen gas and turning it into product nitrogen gas.

つぎに、この発明を実施例にもとづいて詳しく
説明する。
Next, the present invention will be explained in detail based on examples.

〔実施例〕〔Example〕

第1図はこの発明の一実施例の構成図である。
図において、1は器圧縮機、2はドレン分離器、
3はフロン冷却器、4は2個1組の吸着筒であ
る。吸着筒4は内部にモレキユラーシーブが充填
されていて空気圧縮機1により圧縮された空気中
のH2OおよびCO2を吸着除去する作用をする。1
3はH2O、CO2吸着除去された圧縮空気を送る圧
縮空気供給パイプである。38は熱交換器であ
り、吸着筒4によりH2OおよびCO2吸着除去され
圧縮空気が送り込まれる。10は精留塔であり、
第2図に示ずように、塔頂に凝縮器15a内蔵の
分縮器15を備えており、熱交換器38(第1
図)により超低温に冷却され、パイプ16を経て
送り込まれる圧縮空気をさらに冷却し、その一部
を液化し液体空気36として底部に溜め、窒素の
みを気体状態で上部天井部に溜めるようになつて
いる。第1図において、7は装置外から液体窒素
の供給を受けこれを貯蔵する液体窒素貯槽であ
り、内部の液体窒素(高純度品)を、導入路パイ
プ40を経由させ精留塔10の上部側に挿入し、
精留塔10内に供給される圧縮空気の寒冷源にす
る。ここで上記精留塔10についてより詳しく説
明すると、上記精留塔10は、第2図に示すよう
に、天井板20の上側に分縮器15を備えてお
り、上記分縮器15内の凝縮器15aには、精留
塔10の上部に溜る窒素ガスの一部が第1の還流
液パイプ15bを介して送入される。この分縮器
15内は、精留塔10内よりも源圧状態になつて
おり、精留塔10の底部の著液体空気(N2;50
〜70%、O2;30〜50%)36が膨脹弁18a付き
パイプ37を経て送り込まれ、気化して内部温度
を液体窒素の沸点以下の温度に冷却するようにな
つている、この冷却により、精留塔10から第1
の還流液パイプ15bを介して凝縮器15a内に
挿入された窒素ガスが液化する。23は液面計で
あり、分縮器15内の液体空気の液面が一定レベ
ル保つようにその液面に応じてバイプ24を制御
し液体窒素貯槽7からの液体窒素の供給量を制御
する。精留塔10の上部側の部分には、上記分縮
器15内の凝縮器15aで生成した液体窒素が第
の還流液体パイプ15cを通つて流下供給される
とともに、液体窒素貯槽7から液体窒素が導入路
パイプ40を経て供給され、これらが液体窒素溜
め39を経て精留塔10内を下方に流下し、精留
塔10の底部から上昇する圧縮空気と向流的に接
触し冷却しその一部を液化するようになつてい
る。この過程で圧縮空気中の高沸点成分(酸素)
は液化されて精留塔10の底部に溜り、低沸点成
分の窒素ガスが精留塔10の上部に溜る。41は
精留塔10の上部天井部に溜つた窒素ガスを製品
窒素ガスとして取り出す取出パイプで、超低温の
窒素ガスを熱交換器38内に案内し、そこに送り
込まれる圧縮空気と熱交換させて常温にしメイン
パイプ9を送り込む作用をする。11は3Å、4
Åもしくは5Åの細孔径をもつ合成ゼオライト3
A,4Aもしくは5A(モレキユラーシーブ3A,
4A,5A、ユニオンカーバイト社製)を充填し
た酸素等の不純分を吸着する吸着筒であり、上記
取出パイプ41の途中に設けられ上記超低温の窒
素ガス中の酸素および一酸化炭素を選択吸着除去
する。また、上記の合成ゼオライト3A,4A,
5Aに代えて上記ユニオンカーバイト社製の合成
ゼオライト13Xを用いることも行われる。この
ように、−150℃程度の温度域において酸素および
一酸化炭素のみが選択吸着除去されるため、超低
温窒素ガスが高純度のものになる。この場合、酸
素吸着筒11内へ導入される超低温窒素ガス中の
不純酸素および一酸化炭素量が精留塔10を経る
ことによりすでに低レベルになつているため、吸
着される酸素および一酸化炭素量は微量である。
したがつて、吸着筒11も1基のみで足り、ゼオ
ライトの再生も年1回で充分なのである。なお、
上記精留塔10内における最上部には、一沿ガス
とともに、沸点の低いHe(−269℃)、H2(−253
℃)が溜りやすいため、取出パイプ41は、精留
塔10の最上部よりかなり下側に開口しており、
He、H2の混在しない純窒素ガスのみを製品窒素
ガスして取り出すようになつている。35は分縮器
15内の気化液体空気(廃ガス)を膨脹タービン
34の駆動部に送り込む放出パイプ運であり、気
化液体空気の圧力により膨脹タービン34(第1
図参照)を駆動し、冷媒を矢印Bの経路で送り、
熱交換器38内へ送り込まれる圧縮空気を超低温
に冷却して精留塔10へ送り込むようになつてい
る。
FIG. 1 is a block diagram of an embodiment of the present invention.
In the figure, 1 is a container compressor, 2 is a drain separator,
3 is a fluorocarbon cooler, and 4 is a set of two adsorption cylinders. The adsorption cylinder 4 is filled with a molecular sieve and functions to adsorb and remove H 2 O and CO 2 from the air compressed by the air compressor 1. 1
3 is a compressed air supply pipe that sends compressed air from which H 2 O and CO 2 have been adsorbed and removed. 38 is a heat exchanger, into which compressed air is fed after H 2 O and CO 2 are adsorbed and removed by the adsorption cylinder 4 . 10 is a rectification tower;
As shown in FIG.
The compressed air that is cooled to an ultra-low temperature by the air filter (Fig.) and sent through the pipe 16 is further cooled, a part of which is liquefied and stored at the bottom as liquid air 36, and only nitrogen is stored in a gaseous state at the upper ceiling. There is. In FIG. 1, reference numeral 7 denotes a liquid nitrogen storage tank that receives liquid nitrogen from outside the device and stores it. Insert it on the side,
The compressed air supplied into the rectification column 10 is used as a cold source. Here, the rectification column 10 will be explained in more detail. As shown in FIG. A part of the nitrogen gas accumulated in the upper part of the rectification column 10 is sent to the condenser 15a via the first reflux pipe 15b. The inside of this dephlegmator 15 is at a source pressure state higher than that inside the rectification column 10, and the liquid air (N 2 ; 50
~70%, O2 ; 30~50%) 36 is fed through a pipe 37 with an expansion valve 18a, and is vaporized to cool the internal temperature to a temperature below the boiling point of liquid nitrogen. , from the rectification column 10 to the first
Nitrogen gas inserted into the condenser 15a through the reflux pipe 15b is liquefied. 23 is a liquid level gauge, which controls the pipe 24 according to the liquid level so that the liquid level of the liquid air in the partial condenser 15 is maintained at a constant level, and controls the amount of liquid nitrogen supplied from the liquid nitrogen storage tank 7. . The upper part of the rectification column 10 is supplied with liquid nitrogen generated in the condenser 15a in the demultiplexer 15 through the reflux liquid pipe 15c, and liquid nitrogen is supplied from the liquid nitrogen storage tank 7. are supplied through the inlet pipe 40, flow down through the liquid nitrogen reservoir 39 into the rectification column 10, contact countercurrently with the compressed air rising from the bottom of the rectification column 10, and cool it. Some of it is liquefied. In this process, the high boiling point component (oxygen) in the compressed air
is liquefied and accumulates at the bottom of the rectification column 10, and nitrogen gas, which is a low boiling point component, accumulates at the top of the rectification column 10. Reference numeral 41 denotes an extraction pipe for taking out the nitrogen gas accumulated in the upper ceiling of the rectification column 10 as a product nitrogen gas, which guides the ultra-low temperature nitrogen gas into the heat exchanger 38 and exchanges heat with the compressed air sent there. It functions to keep the temperature at room temperature and feed the main pipe 9. 11 is 3Å, 4
Synthetic zeolite 3 with pore size of Å or 5 Å
A, 4A or 5A (Molecular sieve 3A,
4A, 5A, manufactured by Union Carbide Co., Ltd.) to adsorb impurities such as oxygen, and is installed in the middle of the extraction pipe 41 to selectively adsorb oxygen and carbon monoxide in the ultra-low temperature nitrogen gas. Remove. In addition, the above synthetic zeolites 3A, 4A,
Synthetic zeolite 13X manufactured by Union Carbide may also be used in place of 5A. In this way, only oxygen and carbon monoxide are selectively adsorbed and removed in the temperature range of about -150°C, resulting in ultra-low temperature nitrogen gas of high purity. In this case, since the amount of impure oxygen and carbon monoxide in the ultra-low temperature nitrogen gas introduced into the oxygen adsorption column 11 has already been reduced to a low level by passing through the rectification column 10, the amount of oxygen and carbon monoxide to be adsorbed is The amount is minute.
Therefore, only one adsorption column 11 is required, and it is sufficient to regenerate the zeolite once a year. In addition,
At the top of the rectification column 10, He (-269°C), which has a low boiling point, and H 2 (-253
℃) tends to accumulate, the take-out pipe 41 opens considerably below the top of the rectification column 10.
Only pure nitrogen gas containing no He or H 2 is extracted as product nitrogen gas. 35 is a discharge pipe that sends the vaporized liquid air (waste gas) in the decentralizer 15 to the driving part of the expansion turbine 34, and the pressure of the vaporized liquid air causes the expansion turbine 34 (first
(see figure) and sends the refrigerant along the path of arrow B.
The compressed air sent into the heat exchanger 38 is cooled to an extremely low temperature and sent to the rectification column 10.

この装置は、つぎのようにして製品窒素ガスを
製造する。すなわち、空気圧縮機1により空気を
圧縮し、ドレン分離器2により圧縮された空気中
の水分を除去してフロ冷却器3により冷却し、そ
の状態で吸着筒4に送り込み、空気中のH2Oお
よびCO2吸着除去する。ついで、H2O、CO2が吸
着除去された圧縮空気を、精留塔10からパイプ
35を経て送り込まれる製品窒素ガスおよび膨脹
タービンから矢印Bの経路で送り込まれる冷媒に
つ冷やされている熱交換器38に送り込んで込低
温に冷却し、その状態で精留塔10の下部内に投
入する。ついで、この投入圧縮空気を、液体窒素
貯槽7から導入路パイプ40を経由して精留塔1
0内に送り込まれた液体窒素および液体窒素溜め
39からの盆溜液体窒素と接触させて冷却し、一
部を液化して精留塔10の底部を液体空気36と
して溜める。この過程において、窒素と酸素の沸
点の差(炭素の沸点−183℃)、窒素の沸点−196
℃)により、圧縮空気中の高沸点成分である炭素
が液化し、窒素が液体のまま残る。ついで、この
気体のまま残つた窒素を取出パイプ41から取り
出して熱交換器38に送り込み、常温近くまで昇
温させメインパイプ9から製品窒素ガスとして送
り出す。他方、精留塔10の下部に溜つた液体空
気36については、これを分縮器15内に送り込
み凝縮器15aを冷却させる。この冷却により、
精留塔10の上部から凝縮器15aに送入された
窒素ガスが液化して精留塔10用の還流液とな
り、第2の還流液パイプ15cを経て精留塔10
に戻る。そして、凝縮器15aを冷却し終えた液
体空気36は、気化し放出パイプ35により熱交
換器38に送られその熱交換器38を冷やしたの
ち、空気中に放出される。なお、液体窒素著槽7
から導入路パイプ40を経由して精留塔10内に
送り込まえた液体窒素は、圧縮空気液化用の寒冷
源として作用し、それ自身は気化して取出パイプ
41から製品窒素ガスの一部として取り出され
る。
This device produces product nitrogen gas in the following manner. That is, air is compressed by an air compressor 1, moisture in the compressed air is removed by a drain separator 2, and the moisture in the compressed air is removed by a flow cooler 3, and in this state, it is sent to an adsorption column 4 to remove H 2 in the air. Removes O and CO2 by adsorption. Next, the compressed air from which H 2 O and CO 2 have been adsorbed and removed is cooled by the product nitrogen gas sent from the rectifier 10 through the pipe 35 and the refrigerant sent from the expansion turbine along the path shown by arrow B. It is sent to the exchanger 38 and cooled to a low temperature, and in that state is charged into the lower part of the rectification column 10. Next, this input compressed air is passed from the liquid nitrogen storage tank 7 to the rectification column 1 via the introduction pipe 40.
It is cooled by contacting with the liquid nitrogen sent into the tank 0 and the basin liquid nitrogen from the liquid nitrogen reservoir 39, and a part of it is liquefied, and the bottom of the rectification column 10 is stored as liquid air 36. In this process, the difference between the boiling points of nitrogen and oxygen (the boiling point of carbon - 183℃), the boiling point of nitrogen - 196
℃), carbon, a high-boiling component in compressed air, liquefies, leaving nitrogen as a liquid. Next, the remaining gaseous nitrogen is taken out from the extraction pipe 41 and sent to the heat exchanger 38, where it is heated to near room temperature and sent out from the main pipe 9 as a product nitrogen gas. On the other hand, the liquid air 36 accumulated in the lower part of the rectification column 10 is sent into the dephlegmator 15 to cool the condenser 15a. With this cooling,
Nitrogen gas fed into the condenser 15a from the upper part of the rectification column 10 is liquefied and becomes a reflux liquid for the rectification column 10, and then flows through the second reflux liquid pipe 15c to the rectification column 10.
Return to The liquid air 36 that has finished cooling the condenser 15a is vaporized and sent to the heat exchanger 38 through the discharge pipe 35, cools the heat exchanger 38, and then is discharged into the air. In addition, liquid nitrogen tank 7
The liquid nitrogen fed into the rectification column 10 via the inlet pipe 40 acts as a cold source for liquefying compressed air, and is vaporized and taken out from the take-out pipe 41 as part of the product nitrogen gas. It will be done.

この高純度窒素ガス製造装置は、膨脹タービン
の発生寒冷のみでなく、液体窒素貯槽の液体窒素
をを寒冷として用いるため、製品窒素ガスの需要
量の変動、特に大幅な重要量の変動に迅速に対応
できるようになる。すなわち、膨脹タービンを定
常運転させ所定量の製品窒素ガスを製造するよう
にし、さらに図用変動分を液体窒素貯槽からの液
体窒素で補うようにすることにより、膨脹タービ
ンの回転速度等を変えることなく、迅速に需要量
の変動に対応できるようになる。より詳し述べる
と、膨脹タービンの回転数うの変動には長時間か
かるところ、液体窒素貯槽からの液体窒素の供給
量の変動は迅速に行うことができるため、需要量
の変動に迅速に対応できるようになる。しかも、
昼間と夜間の製品窒素ガスの需要量の変動が大幅
に異なるような場合には、膨脹タービンによつて
夜間の寒冷をまかなうようにし、昼間における寒
冷の不足分を液体窒素貯槽からの液体窒素で補う
ようにすることにより、昼間と夜間の需要量の著
しい変動にも迅速にかつ正確に対応できるように
なる。さらに、この装置によれば高純度の製品窒
素ガスが得られるため、従来例のような製造装置
が降必要になり、窒素全体の応形化や操作に熟練
を要するというような不都合も生じず、また、製
品窒素ガスのコストアツプを招くということもな
い。特に、この高純度窒素ガス製造装置は、精留
塔10の上部に凝縮器15a内蔵型の分縮器15
を設け、上記凝縮器15a内へ精留塔10内の窒
素ガスの一部を常時案内して液化するため、凝縮
器15a内へ液化窒素が定量溜まつたのちは、そ
れ以降生成する液化窒素が還流液として常時精留
塔10内に戻るようになる。したがつて、凝縮器
15aからの還流液の流下供給の断続に起因する
製品純度のばらつき(還流液の流下の中断により
上部精留棚では液がなくなりガスの吹抜け現象を
招いて製品純度が下がり、流下の再開時には一定
純度を戻る)を生じず、常時安定した純度の製品
窒素ガスを供給することができる。そのうえ、こ
の装置では、製品窒素ガスの需要量に変動が生じ
ても液面計23のような制御手段がバルブ24の
開度塔を制御し精留塔10に対する液体窒素の供
給量を制御することにより分縮器15内の液体空
気を液面を一定に制御するため、需要量の変動に
迅速に対応でき、かつこのときにも先に述べた理
由により純度ばらつきを生じない。すなわち、製
品窒素ガスの需要量が多くなると、生成窒素ガス
の殆どが取出パイプ41から取り出され、凝縮器
15aに送られる窒素ガスの量が少なくなつて凝
縮器15aで生成される還流液量が少なくなり、
その結果、精留塔底部の貯留液体空気36の量が
減少し、そこから送られる液体空気の量が減少す
るため分縮器15における液体空気の液面が下が
る。これにより液面計23が作動し精留塔10に
対する液体窒素の供給量を増加させ、その気化に
より迅速に製品窒素ガスを製造し需要量の増大に
素早く対応する。そして、この液体窒素の供給量
の増加により精留塔底部の貯溜液体空気量が増大
してそれに伴つて分縮器15内の液面が回復する
と、液面計23によつて精留塔10に対する液対
窒素の供給量が適正に減少制御される。製品窒素
ガスの需要量が少なくなると、上記とは逆に、分
縮器15内の液面が上昇するため、液面計23が
作動して精留塔10に対する液体窒素の供給量を
減少させ液体窒素の過剰供給にもとづく不合理を
排除する。このように、この装置は、純度のばら
つきを生じることなく迅速かつ合理的に製品窒素
ガスの需要量の変動に対応できるのである。その
うえ、吸着筒11の作用により、酸素および一酸
化炭素塔の不純分が除去されるため、製品窒素ガ
スの一層の高純度化を実現できるようになり、ま
た空気圧縮機1から取り込む原料空気として、工
業地帯等において不純分が多く含まれているもの
でも使用可能であり、それを用いても好結果を得
ることができるようになる。
This high-purity nitrogen gas production equipment not only uses the refrigeration generated by the expansion turbine, but also the liquid nitrogen from the liquid nitrogen storage tank, so it can quickly respond to changes in the demand for product nitrogen gas, especially large changes in important amounts. Be able to respond. That is, the expansion turbine is operated steadily to produce a predetermined amount of product nitrogen gas, and the rotational speed of the expansion turbine is changed by making up for the fluctuations in the figure with liquid nitrogen from the liquid nitrogen storage tank. This makes it possible to quickly respond to changes in demand. In more detail, it takes a long time to change the rotational speed of the expansion turbine, but the amount of liquid nitrogen supplied from the liquid nitrogen storage tank can be changed quickly, so it is possible to respond quickly to changes in demand. It becomes like this. Moreover,
In cases where the demand for product nitrogen gas differs significantly between daytime and nighttime, an expansion turbine can be used to cover the nighttime cooling, and liquid nitrogen from the liquid nitrogen storage tank can make up for the lack of daytime cooling. By doing so, it becomes possible to quickly and accurately respond to significant fluctuations in demand between daytime and nighttime. Furthermore, since this device can obtain highly pure product nitrogen gas, there is no need for production equipment like in conventional systems, and there are no inconveniences such as the need for skill in shaping and operating the nitrogen as a whole. Furthermore, the cost of the nitrogen gas product does not increase. In particular, this high-purity nitrogen gas production apparatus has a demultiplexer 15 with a built-in condenser 15a in the upper part of the rectification column 10.
A part of the nitrogen gas in the rectification column 10 is constantly guided into the condenser 15a and liquefied. is constantly returned to the rectification column 10 as a reflux liquid. Therefore, variations in product purity due to intermittent supply of reflux liquid from the condenser 15a (interruption of flow of reflux liquid causes liquid to run out in the upper rectifying shelf, causing gas blow-by phenomenon and reducing product purity). , the purity returns to a constant level when the flow resumes), and product nitrogen gas of stable purity can be supplied at all times. Furthermore, in this device, even if the demand for product nitrogen gas fluctuates, the control means such as the liquid level gauge 23 controls the opening of the valve 24 to control the amount of liquid nitrogen supplied to the rectification column 10. As a result, the liquid level of the liquid air in the dephlegmator 15 is controlled to be constant, so that fluctuations in demand can be quickly responded to, and also at this time, variations in purity do not occur for the reasons mentioned above. That is, when the demand for product nitrogen gas increases, most of the generated nitrogen gas is taken out from the extraction pipe 41, the amount of nitrogen gas sent to the condenser 15a decreases, and the amount of reflux liquid generated in the condenser 15a decreases. becomes less,
As a result, the amount of liquid air 36 stored at the bottom of the rectification column decreases, and the amount of liquid air sent therefrom decreases, so that the level of liquid air in the dephlegmator 15 decreases. As a result, the liquid level gauge 23 is activated to increase the amount of liquid nitrogen supplied to the rectification column 10, and by vaporizing the liquid nitrogen, product nitrogen gas is quickly produced to quickly respond to an increase in demand. When the amount of liquid air stored at the bottom of the rectification column increases due to the increase in the supply amount of liquid nitrogen, and the liquid level in the dephlegmator 15 recovers, the liquid level in the rectification column 15 is detected by the liquid level gauge 23. The supply amount of liquid to nitrogen is appropriately controlled to decrease. When the demand for product nitrogen gas decreases, contrary to the above, the liquid level in the dephlegmator 15 rises, so the liquid level gauge 23 operates to reduce the amount of liquid nitrogen supplied to the rectification column 10. Eliminate the absurdity based on oversupply of liquid nitrogen. In this way, this device can quickly and rationally respond to fluctuations in the demand for product nitrogen gas without causing variations in purity. Furthermore, the action of the adsorption column 11 removes oxygen and impurities from the carbon monoxide column, making it possible to achieve even higher purity of the product nitrogen gas. It is possible to use even those containing many impurities in industrial areas, etc., and good results can be obtained even if they are used.

第3図は他の実施例の構成図である。すなわ
ち、この実施例は液体窒素貯槽7からメインパイ
プ9に延びるバツクアツプ系ライン12を設け、
空気圧縮系ラインが故障したときに、液体窒素貯
槽7内の液体窒素を蒸発器14により蒸発させ
て、メインパイプ9に送り込み窒素ガスの供給が
途絶えることのないようにする。また、メインパ
イプ9に不純物分析系27、弁28,29を設
け、メインパイプ9に送り出される製品窒素ガス
の純度を分析し、純度の低いときは弁29,28
を作動させて、製品窒素ガスを矢印Aのように、
外部に逃気させるようにしている。それ以外の部
分は、実質的に第1の装置と同じであるから、同
一部分に同一符号を付している。
FIG. 3 is a block diagram of another embodiment. That is, in this embodiment, a backup line 12 extending from the liquid nitrogen storage tank 7 to the main pipe 9 is provided,
When an air compression system line breaks down, liquid nitrogen in a liquid nitrogen storage tank 7 is evaporated by an evaporator 14 and fed into a main pipe 9 so that the supply of nitrogen gas is not interrupted. In addition, an impurity analysis system 27 and valves 28 and 29 are installed in the main pipe 9 to analyze the purity of the product nitrogen gas sent to the main pipe 9, and when the purity is low, the valves 29 and 29
Activate the product nitrogen gas as shown by arrow A.
I am trying to let the air escape to the outside. The other parts are substantially the same as the first device, so the same parts are given the same reference numerals.

この装置も、第1図の装置と同様の効果を奏す
る外、空気圧縮系ラインが故障したときにも、製
品窒素ガスの供給に支障をきたさないという効果
を奏する。
This device also has the same effect as the device shown in FIG. 1, and also has the effect that even if the air compression system line breaks down, the supply of product nitrogen gas will not be hindered.

〔発明の効果〕〔Effect of the invention〕

この発明の高純度窒素ガス製造装置は、膨脹タ
ービンの発生寒冷のみでなく、液体窒素著槽の液
体窒素を寒冷として用いるため、製品窒素ガスの
需要量の変動、特に大幅な需要量の変動に迅速に
対応できるようになる。すなわち、膨脹タービン
を定常運転させて所定量の製品窒素ガスを常時一
定量製造するようにし、さらに需要変動分を液体
窒素貯槽からの液体窒素で補うようにすることに
より、膨脹タービンの回転速度等を変えることな
く、迅速に需要量の変動に対応できるようにな
る。より詳しく述べると、膨張タービンは高速回
転器であり、製品窒素ガスの取出量の変化に応じ
て膨脹タービンに対する廃ガスの供給量を迅速に
変化させることが困難であり、必ず時間遅れを生
じる。この発明は、うこのような時間遅れを生じ
る膨張タービンと、液体窒素貯槽からの液体窒素
の供給とを併用し、膨脹タービンを一定速度で回
転させることにより一定量の寒冷を生成させ、寒
冷の残部(変動分も含む)を液体窒素でまかなう
ことにより需要量の変動に迅速に対応うることが
できる。この場合、絵入対窒素貯槽からの液体窒
素は液体であり、その供給量の調節は迅速かつ精
密に行うことができ、かつ液体窒素は自動精留塔
に供給されるため、その供給量の調節の効果は迅
速に現れる。この発明のの装置は、昼間と夜間の
製品窒素ガスの需要量の変動が大幅に異なる(昼
間が多い)ような場合に特に有効である。すなわ
ち、膨タービンによつて夜間の寒冷の部分をまか
なう(深液電力は安価である)ようにし、昼間に
おける寒冷の不足分は液体窒貯槽かろの液体窒素
で補うようにすることにおり、昼間と夜間の需要
量の著しい変動に対応でき、しかも製品窒素ガス
の需要変動にも対応できるようになる。特に、こ
の発明の高純度窒素ガス製造装置は、製品窒素ガ
スの需要量の変動にもとづくえ液体窒素の供給量
の調節に関して、制御手段によつて上記精留塔に
対する液体窒素貯蔵手段からの液体窒素の供給量
を制御して分縮器の液面を一定に制御するため、
需要変動に対して極めて迅速にかつ精密かつ精密
に対応することができ、製品窒素ガスの純度ばら
つきを全く生じさせることがない。
The high-purity nitrogen gas production device of this invention uses not only the cooling generated by the expansion turbine but also the liquid nitrogen from the liquid nitrogen tank as cooling, so it is able to withstand fluctuations in the demand for product nitrogen gas, especially large fluctuations in the demand. Be able to respond quickly. In other words, by operating the expansion turbine in a steady state to always produce a predetermined amount of product nitrogen gas, and by supplementing demand fluctuations with liquid nitrogen from the liquid nitrogen storage tank, the rotational speed of the expansion turbine, etc. It will be possible to quickly respond to changes in demand without changing the amount. More specifically, the expansion turbine is a high-speed rotating machine, and it is difficult to quickly change the amount of waste gas supplied to the expansion turbine in response to changes in the amount of product nitrogen gas taken out, and a time delay inevitably occurs. This invention uses an expansion turbine that causes a time delay in combination with the supply of liquid nitrogen from a liquid nitrogen storage tank, generates a certain amount of cold by rotating the expansion turbine at a constant speed, and generates a certain amount of cold. By covering the remainder (including fluctuations) with liquid nitrogen, it is possible to quickly respond to fluctuations in demand. In this case, the liquid nitrogen from the painted nitrogen storage tank is a liquid, and the supply amount can be adjusted quickly and precisely, and since the liquid nitrogen is supplied to the automatic rectification column, the supply amount can be adjusted quickly and precisely. The effects of adjustment appear quickly. The apparatus of the present invention is particularly effective in cases where fluctuations in demand for product nitrogen gas during the daytime and nighttime are significantly different (mostly during the daytime). In other words, the expansion turbine is used to cover the cold part at night (deep liquid electricity is cheap), and the lack of daytime cooling is made up for by liquid nitrogen from the liquid nitrogen storage tank. It will be possible to respond to significant fluctuations in demand during the night, and it will also be able to respond to fluctuations in demand for product nitrogen gas. In particular, the high-purity nitrogen gas production apparatus of the present invention has the control means controlling the amount of liquid nitrogen supplied from the liquid nitrogen storage means to the rectification column in order to adjust the amount of liquid nitrogen supplied based on fluctuations in the demand for product nitrogen gas. In order to control the nitrogen supply amount and keep the liquid level in the dephlegmator constant,
It is possible to respond to demand fluctuations extremely quickly, accurately, and precisely, and there is no variation in the purity of the product nitrogen gas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を構成図、第2図
はその要部の要部詳細図、第3図は他の実施例の
構成図である。 4……吸着筒、7……液体窒素貯蔵、9……メ
インパイプ、10……精留塔、41……取出パイ
プ、11……酸素吸着筒、15……圧縮器、15
a……凝縮器、15b……第1の還流液パイプ、
15c……第2の交換器、40……導入路パイ
プ。
FIG. 1 is a block diagram of one embodiment of the present invention, FIG. 2 is a detailed diagram of the main part thereof, and FIG. 3 is a block diagram of another embodiment. 4... Adsorption column, 7... Liquid nitrogen storage, 9... Main pipe, 10... Rectification column, 41... Take-out pipe, 11... Oxygen adsorption column, 15... Compressor, 15
a... Condenser, 15b... First reflux pipe,
15c...Second exchanger, 40...Introduction pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 外部より取り入れた空気を圧縮する空気圧縮
手段と、この空気圧縮手段によつて圧縮された圧
縮空気中の炭酸ガスと水分とを除去する除去手段
と、この除去手段を経た圧縮空気を超低温に冷却
する熱交換手段と、この熱交換手段により超低温
に冷却された圧縮空気の一部を液化して底部に溜
め窒素のみを気体として上部側から取り出す精留
塔を備えた窒素ガス製造装置において、精留塔の
上部に設けられた凝縮器内蔵型の分縮器と、精留
塔の底部の貯溜液体空気を上記凝縮器冷却用の寒
冷として上記分縮器中に導く液体空気導入パイプ
と、上記分縮器中で生じた気化液体空気を外部に
放出する放出パイプと、上記放出パイプの気化液
体空気を利用して冷熱を発生し生成冷熱を上記熱
交換手段に送り冷却する膨脹器と、精留塔内で生
成した窒素ガスの一部を上記凝縮器内に案内する
第1の還流液パイプと、上記凝縮器内で生じた液
化窒素を還流液として精留塔内に戻す第2の還流
液パイプと、装置外から液体窒素の供給を受けこ
れを貯蔵する液体窒素貯蔵手段と、この液体窒素
貯蔵手段内の液体窒素を圧縮空気液化用の寒冷と
して上記精留塔内に導く導入路と、上記精留塔に
対する上記液体窒素貯蔵手段からの液体窒素の供
給量を制御することにより上記分縮器内の液体空
気の液面を一定に制御する制御手段と、上記精留
塔から気体として取り出される窒素および上記精
留塔内において寒冷源としての作用を終え気化し
た上記液体窒素を上記熱交換手段を経由させその
内部を通る圧縮空気と熱交換させることにより温
度上昇させ製品窒素ガスとする窒素ガス取出路を
備えたことを特徴とする高純度窒素ガス製造装
置。
1. Air compression means for compressing air taken in from the outside, removal means for removing carbon dioxide and moisture from the compressed air compressed by this air compression means, and cooling the compressed air that has passed through this removal means to an ultra-low temperature. In a nitrogen gas production device equipped with a cooling heat exchange means and a rectification column that liquefies a part of the compressed air cooled to an ultra-low temperature by the heat exchange means and stores it at the bottom and extracts only nitrogen as a gas from the upper side, a condenser with a built-in condenser installed in the upper part of the rectification column; a liquid air introduction pipe that guides the liquid air stored at the bottom of the rectification column into the condenser as cold air for cooling the condenser; a discharge pipe that discharges the vaporized liquid air generated in the dephlegmator to the outside; an expander that generates cold heat using the vaporized liquid air of the discharge pipe and sends the generated cold heat to the heat exchange means for cooling; a first reflux liquid pipe that guides a portion of the nitrogen gas generated in the rectification column into the condenser; and a second reflux liquid pipe that returns liquefied nitrogen generated in the condenser to the rectification column as a reflux liquid. A reflux liquid pipe, a liquid nitrogen storage means for receiving and storing liquid nitrogen from outside the apparatus, and an introduction path for guiding the liquid nitrogen in the liquid nitrogen storage means into the rectification column as cold for liquefying compressed air. a control means for controlling the liquid level of liquid air in the dephlegmator to a constant level by controlling the amount of liquid nitrogen supplied from the liquid nitrogen storage means to the rectification column; The nitrogen taken out as a nitrogen gas and the liquid nitrogen that has finished acting as a cold source and has been vaporized in the rectification column are passed through the heat exchange means and exchanged heat with the compressed air passing through the inside, thereby increasing the temperature and converting it into product nitrogen gas. A high-purity nitrogen gas production device characterized by being equipped with a nitrogen gas extraction path.
JP61189400A 1986-08-12 1986-08-12 Production unit for high-impurity nitrogen gas Granted JPS62116887A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61189400A JPS62116887A (en) 1986-08-12 1986-08-12 Production unit for high-impurity nitrogen gas
JP5091152A JPH0611255A (en) 1986-08-12 1993-04-19 High purity nitrogen gas preparing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61189400A JPS62116887A (en) 1986-08-12 1986-08-12 Production unit for high-impurity nitrogen gas
JP5091152A JPH0611255A (en) 1986-08-12 1993-04-19 High purity nitrogen gas preparing device

Related Child Applications (4)

Application Number Title Priority Date Filing Date
JP41788790A Division JP2540243B2 (en) 1990-12-28 1990-12-28 High-purity nitrogen gas production equipment
JP5091152A Division JPH0611255A (en) 1986-08-12 1993-04-19 High purity nitrogen gas preparing device
JP31217293A Division JPH0719725A (en) 1993-12-13 1993-12-13 High purity nitrogen gas preparing apparatus
JP31217193A Division JPH0719724A (en) 1993-12-13 1993-12-13 High purity nitrogen gas preparing apparatus

Publications (2)

Publication Number Publication Date
JPS62116887A JPS62116887A (en) 1987-05-28
JPH0418222B2 true JPH0418222B2 (en) 1992-03-27

Family

ID=26432618

Family Applications (2)

Application Number Title Priority Date Filing Date
JP61189400A Granted JPS62116887A (en) 1986-08-12 1986-08-12 Production unit for high-impurity nitrogen gas
JP5091152A Withdrawn JPH0611255A (en) 1986-08-12 1993-04-19 High purity nitrogen gas preparing device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP5091152A Withdrawn JPH0611255A (en) 1986-08-12 1993-04-19 High purity nitrogen gas preparing device

Country Status (1)

Country Link
JP (2) JPS62116887A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0328682A (en) * 1989-06-27 1991-02-06 Kobe Steel Ltd Separation of air and equipment for the same
US5170630A (en) * 1991-06-24 1992-12-15 The Boc Group, Inc. Process and apparatus for producing nitrogen of ultra-high purity
JPH0882476A (en) * 1995-09-25 1996-03-26 Daido Hoxan Inc Apparatus for producing high-purity nitrogen gas

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5047882A (en) * 1973-04-13 1975-04-28
JPS5241232A (en) * 1975-09-24 1977-03-30 Bayer Ag Weed killer
JPS5514351A (en) * 1978-07-14 1980-01-31 Aisin Warner Ltd Controller of automatic change gear

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5047882A (en) * 1973-04-13 1975-04-28
JPS5241232A (en) * 1975-09-24 1977-03-30 Bayer Ag Weed killer
JPS5514351A (en) * 1978-07-14 1980-01-31 Aisin Warner Ltd Controller of automatic change gear

Also Published As

Publication number Publication date
JPH0611255A (en) 1994-01-21
JPS62116887A (en) 1987-05-28

Similar Documents

Publication Publication Date Title
JPH0313505B2 (en)
JPS6146747B2 (en)
US5778698A (en) Ultra high purity nitrogen and oxygen generator unit
EP1275920B1 (en) Nitrogen rejection method and apparatus
JPS6158747B2 (en)
JPS63163771A (en) Carbon monoxide separating purifier
JPH0217795B2 (en)
JPH0418222B2 (en)
JP3065968B2 (en) Air liquefaction separation device and air liquefaction separation method
JPH0719725A (en) High purity nitrogen gas preparing apparatus
JPS6119902B2 (en)
JP2540243B2 (en) High-purity nitrogen gas production equipment
JPH0882476A (en) Apparatus for producing high-purity nitrogen gas
JP2672250B2 (en) High-purity nitrogen gas production equipment
JPH08296961A (en) Air separation method and apparatus used therefor
JP3021389B2 (en) High-purity nitrogen gas production equipment
JP3181482B2 (en) High-purity nitrogen gas production method and apparatus used therefor
JPH0418223B2 (en)
JPS6148071B2 (en)
JP2967427B2 (en) Air separation method and apparatus suitable for demand fluctuation
JPH051882A (en) Super high-purity nitrogen manufacturing device
JPH0318108B2 (en)
JPS6244190B2 (en)
JPH0512638B2 (en)
JPH0719724A (en) High purity nitrogen gas preparing apparatus