JPH08296961A - Air separation method and apparatus used therefor - Google Patents

Air separation method and apparatus used therefor

Info

Publication number
JPH08296961A
JPH08296961A JP7101316A JP10131695A JPH08296961A JP H08296961 A JPH08296961 A JP H08296961A JP 7101316 A JP7101316 A JP 7101316A JP 10131695 A JP10131695 A JP 10131695A JP H08296961 A JPH08296961 A JP H08296961A
Authority
JP
Japan
Prior art keywords
air
catalyst
compressed air
nitrogen
pressure rectification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7101316A
Other languages
Japanese (ja)
Inventor
Akira Yoshino
明 吉野
Atsushi Miyamoto
篤 宮本
Hisanao Jo
久尚 城
Junya Suenaga
純也 末長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Hoxan Inc
Original Assignee
Daido Hoxan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Hoxan Inc filed Critical Daido Hoxan Inc
Priority to JP7101316A priority Critical patent/JPH08296961A/en
Priority to TW084111904A priority patent/TW286353B/en
Priority to KR1019960006907A priority patent/KR100427138B1/en
Publication of JPH08296961A publication Critical patent/JPH08296961A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04181Regenerating the adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04157Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04424Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system without thermally coupled high and low pressure columns, i.e. a so-called split columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/20Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/54Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the low pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/66Regenerating the adsorption vessel, e.g. kind of reactivation gas
    • F25J2205/70Heating the adsorption vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/82Processes or apparatus using other separation and/or other processing means using a reactor with combustion or catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Catalysts (AREA)
  • Drying Of Gases (AREA)

Abstract

PURPOSE: To provide an inexpensive air separation method wherein performance of a catalyst contained in a catalyst tower is not deteriorated and there is no need of maintenance over a long period of time. CONSTITUTION: An air separation method is adapted such that air taken in from the outside is compressed into compressed air which is in turn introduced into adsorption towers 8, 9 where carbon dioxide gas and water in the air are adsorbed for their removal, and the air after the passage through the adsorption towers 8, 9 is deeply cooled, liquefied, and separated into nitrogen and oxygen. In the method, prior to the introduction of the compressed air into the adsorption towers 8, 9, the compressed air raised in its temperature owing to compression heat upon air compression is introduced into a freezer 4 to remove water in the compressed air and then the air after passage through the freezer 4 is passed to a catalyst tower 7 to oxidize carbon monoxide and hydrogen in the air.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、触媒の早期の性能劣化
を防止することのできる空気分離方法およびそれに用い
る装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air separation method and an apparatus used therefor capable of preventing early performance deterioration of a catalyst.

【0002】[0002]

【従来の技術】従来から、高純度の窒素ガス,酸素ガ
ス,アルゴンガス等は、空気分離装置を用い、窒素,酸
素,アルゴン等の沸点の差を利用してこれらを分離する
ことにより製造されている。すなわち、上記高純度窒素
ガス等は、空気を原料とし、この原料空気を空気圧縮機
で圧縮し、ついでこの圧縮によって昇温した圧縮空気を
冷却器で冷却して降温し、つぎにこの降温した圧縮空気
を吸着塔に入れて圧縮空気中の炭酸ガスおよび水分を除
去してから(ここ迄は原料空気精製ラインである)、熱
交換器を通して冷媒と熱交換させて冷却し(これ以降は
深冷液化分離ラインである)、そののち精留塔で上記沸
点の差を利用し深冷液化分離するという工程を経て製造
されている。ところが、このような空気分離装置では、
窒素の沸点と一酸化炭素の沸点との間にあまり差がな
く、気化状態での比重量も殆ど同じであるため、原料空
気中の一酸化炭素の分離除去が難しく、製品ガス中に一
酸化炭素が不純物として残存するという不都合がある。
また、原料空気中に微量存在する水素についても、その
沸点が窒素の沸点より低いため、水素が液化除去されず
に製品ガス中に混在してしまうという問題もある。半導
体工業の技術内容がますます高度化している現状では、
このような極微量の不純物も問題となっている。
2. Description of the Related Art Conventionally, high-purity nitrogen gas, oxygen gas, argon gas, etc. have been produced by separating them using an air separation device by utilizing the difference in boiling points of nitrogen, oxygen, argon, etc. ing. That is, the high-purity nitrogen gas or the like uses air as a raw material, compresses the raw material air with an air compressor, then cools the compressed air heated by this compression with a cooler to lower the temperature, and then lowers the temperature. Compressed air is put into the adsorption tower to remove carbon dioxide gas and moisture in the compressed air (up to this point is the raw material air purification line), and then it is cooled by exchanging heat with the refrigerant through the heat exchanger. It is a cold liquefaction separation line), and then is subjected to deep liquefaction separation in the rectification column by utilizing the difference in boiling points. However, in such an air separation device,
Since there is not much difference between the boiling point of nitrogen and the boiling point of carbon monoxide, and the specific weight in the vaporized state is almost the same, it is difficult to separate and remove carbon monoxide in the raw material air, and it is difficult to remove carbon monoxide in the product gas. There is a disadvantage that carbon remains as an impurity.
In addition, since the boiling point of hydrogen existing in a small amount in the raw material air is lower than the boiling point of nitrogen, there is a problem that hydrogen is not liquefied and removed and is mixed in the product gas. In the present situation where the technical contents of the semiconductor industry are becoming more sophisticated,
Such a trace amount of impurities is also a problem.

【0003】[0003]

【発明が解決しようとする課題】そこで、上記原料空気
精製ラインにおいて、上記の一酸化炭素,水素を完全除
去するため、本発明者らは、図7に示すように、空気圧
縮機101と吸着塔107間に、パラジウム系触媒を内
蔵した触媒塔104を設け、この触媒塔104内のパラ
ジウム系触媒で圧縮空気中の一酸化炭素および水素を除
去するようにした空気分離装置を提案した。図におい
て、102は熱交換器であり、空気圧縮機101から取
り入れた圧縮空気と触媒塔104を経た空気を通して両
者を熱交換させることにより、空気圧縮機101の圧縮
によって昇温した圧縮空気をさらに昇温させるととも
に、触媒塔104を経た空気を降温させる作用をする。
103は熱交換器102で昇温させた圧縮空気を所定温
度(触媒塔104での反応に適した温度であり、180
℃以上の高温)にまで昇温させるヒーターであり、10
5はドレン分離器である。106は熱交換器102で降
温させた空気を所定温度(吸着塔107での吸着除去に
適した温度、通常、室温程度)にまで降温させるフロン
冷却器である。
Therefore, in order to completely remove the carbon monoxide and hydrogen in the raw material air purification line, the present inventors, as shown in FIG. A catalyst tower 104 containing a palladium-based catalyst therein was provided between the towers 107, and an air separation device was proposed in which the palladium-based catalyst in the catalyst tower 104 was used to remove carbon monoxide and hydrogen in the compressed air. In the figure, reference numeral 102 denotes a heat exchanger, which further exchanges heat between the compressed air taken in from the air compressor 101 and the air passing through the catalyst tower 104 so that the compressed air heated by the compression of the air compressor 101 is further heated. While raising the temperature, it acts to lower the temperature of the air that has passed through the catalyst tower 104.
Reference numeral 103 denotes a predetermined temperature of compressed air heated in the heat exchanger 102 (a temperature suitable for the reaction in the catalyst tower 104, 180
It is a heater that raises the temperature to a high temperature of ℃ or more)
5 is a drain separator. Reference numeral 106 is a CFC cooler for cooling the air cooled by the heat exchanger 102 to a predetermined temperature (a temperature suitable for adsorption removal in the adsorption tower 107, usually about room temperature).

【0004】上記装置において、空気圧縮機101によ
り空気を圧縮し、この空気圧縮機101で圧縮され昇温
された空気を熱交換器102およびヒーター103で所
定温度に昇温して触媒塔104に送り、ついでこの触媒
塔104内のパラジウム系触媒と圧縮空気中の一酸化炭
素および水素を酸化反応させる。これにより、圧縮空気
中の一酸化炭素および水素を炭酸ガスおよび水分に変え
る。つぎに触媒塔104を経た空気を熱交換器102お
よびフロン冷却器106で所定温度に降温し、そののち
吸着塔107に送り込み、吸着塔107内の吸着剤(活
性アルミナ,ゼオライト等)で炭酸ガスおよび水分を吸
着除去するようにしている。このようにして得られた精
製空気を深冷液化分離用の低温精留塔(図示せず)へ供
給し、窒素,酸素,アルゴン等に分離する。
In the above apparatus, air is compressed by the air compressor 101, and the air compressed and heated by the air compressor 101 is heated to a predetermined temperature by the heat exchanger 102 and the heater 103, and then is sent to the catalyst tower 104. Then, the palladium-based catalyst in the catalyst tower 104 and the carbon monoxide and hydrogen in the compressed air are oxidized. As a result, carbon monoxide and hydrogen in the compressed air are converted into carbon dioxide gas and water. Next, the air passing through the catalyst tower 104 is cooled to a predetermined temperature by the heat exchanger 102 and the Freon cooler 106, and then sent to the adsorption tower 107, and carbon dioxide gas is adsorbed by the adsorbent (activated alumina, zeolite, etc.) in the adsorption tower 107. And it is designed to absorb and remove water. The purified air thus obtained is supplied to a cryogenic rectification column (not shown) for cryogenic liquefaction separation and separated into nitrogen, oxygen, argon and the like.

【0005】しかしながら、上記の装置では、触媒塔1
04内のパラジウム系触媒が1年を経過せずに性能低下
してしまう場合がある。このため、高価な触媒を早期に
交換しなければならず、触媒の早期交換等メンテナンス
を頻繁に行わなければならないという問題や、トータル
コストが高価になるという問題がある。また、触媒塔1
04内の下部に微粉末が早期に溜まる等の不具合も発生
しており、この場合にも、上記微粉末の早期清掃等メン
テナンスを頻繁に行わなければならないという問題があ
る。
However, in the above apparatus, the catalyst tower 1
The performance of the palladium-based catalyst in 04 may deteriorate within one year. For this reason, there is a problem that an expensive catalyst must be replaced early, maintenance such as early replacement of the catalyst must be frequently performed, and total cost becomes high. Also, the catalyst tower 1
There is also a problem that fine powder accumulates in the lower part of 04 at an early stage, and in this case also, there is a problem that maintenance such as early cleaning of the fine powder must be frequently performed.

【0006】本発明は、このような事情に鑑みなされた
もので、触媒が早期に性能劣化することがなく、しかも
長期にわたってメンテナンスが不要で、安価な空気分離
方法およびそれに用いる装置の提供をその目的とする。
The present invention has been made in view of the above circumstances, and provides an inexpensive air separation method and a device used therefor, in which the performance of the catalyst does not deteriorate early and maintenance is not required for a long time. To aim.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は、外部より取り入れた空気を圧縮して圧縮
空気とし、この圧縮空気を除去手段に導入して空気中の
炭酸ガスと水とを除去し、上記除去手段を経た空気を深
冷液化分離し窒素と酸素とに分ける空気分離方法であっ
て、上記圧縮空気を除去手段に導入するに先立って、空
気圧縮の際の圧縮熱によって昇温した圧縮空気を冷凍機
に通して圧縮空気中の水分を除去し、ついで、上記冷凍
機を経由した空気を触媒に接触させ空気中の一酸化炭素
および水素を酸化する空気分離方法を第1の要旨とし、
外部より取り入れた空気を圧縮する空気圧縮手段と、上
記空気圧縮手段を経由した圧縮空気中の炭酸ガスと水を
除去する除去手段と、この除去手段を経た空気を窒素と
酸素とに液化分離する深冷液化分離手段を備えた空気分
離装置であって、上記空気圧縮手段と除去手段との間
に、空気圧縮手段による圧縮熱によって昇温した圧縮空
気を冷却して空気中の水分を除去する冷凍機と、この冷
凍機で水分除去された空気を加熱する加熱手段と、この
加熱手段により加熱されて昇温した空気中の一酸化炭素
および水素を酸化する触媒塔を設けた空気分離装置を第
2の要旨とする。
In order to achieve the above-mentioned object, the present invention compresses air taken in from the outside into compressed air, and introduces this compressed air into a removing means to remove carbon dioxide gas in the air. An air separation method for removing water and separating the air that has passed through the removing means into deep liquefaction and separating it into nitrogen and oxygen, wherein the compressed air is compressed before the introduction into the removing means. An air separation method in which compressed air heated by heat is passed through a refrigerator to remove moisture in the compressed air, and then air passing through the refrigerator is brought into contact with a catalyst to oxidize carbon monoxide and hydrogen in the air Is the first gist,
Air compression means for compressing air taken in from the outside, removal means for removing carbon dioxide gas and water in the compressed air that has passed through the air compression means, and air that has passed through this removal means is liquefied and separated into nitrogen and oxygen. An air separation device equipped with a cryogenic liquefaction separating means, wherein compressed air heated by the compression heat of the air compressing means is cooled between the air compressing means and the removing means to remove moisture in the air. An air separation device provided with a refrigerator, heating means for heating the air from which water has been removed by the refrigerator, and a catalyst tower for oxidizing carbon monoxide and hydrogen in the air heated by the heating means and heated. This is the second summary.

【0008】[0008]

【作用】すなわち、本発明者らは、触媒塔内のパラジウ
ム系触媒が1年程度で性能低下を招く原因および触媒塔
内の下部に微粉末が溜まる原因について一連の研究を重
ねた。その研究の過程で、上記パラジウム系触媒のよう
に、アルミナの外周面にパラジウム系皮膜を形成したも
のでは、アルミナの外周面の隙間や溝に水分が入り込む
と、アルミナが膨張し、パラジウム系皮膜に亀裂が入っ
て皮膜が剥離,脱落し、これにより活性面積が小さくな
り早期に性能低下を招くこと、および上記脱落したパラ
ジウム系皮膜が微粉末となって触媒塔の下部に溜まる等
することを突き止めた。また、これに加えて、圧縮空気
中に多くの水分が含まれていると、触媒塔での水素およ
び一酸化炭素の酸化反応を容易にするため圧縮空気を1
80℃以上の高温にして触媒塔に送り込む必要が生じ、
このような高温に曝されることで触媒が劣化しやすくな
って早期に性能低下を招くことも突き止めた。そして、
さらに研究を重ねた結果、上記圧縮空気を除去手段に導
入するに先立って、空気圧縮の際の圧縮熱によって昇温
した圧縮空気を冷凍機に通して圧縮空気中の水分を除去
し、ついで、上記冷凍機を経由した空気を触媒に接触さ
せ空気中の一酸化炭素および水素を酸化すると、圧縮空
気を触媒に接触させる前に冷凍機で圧縮空気を冷却して
結露等させることで圧縮空気中から水分を殆ど除去する
ことができる。このため、触媒を早期に劣化させること
がなく、しかも、圧縮空気中から水分が除去されている
ため圧縮空気をそれぼど高温にする必要もないことか
ら、上記触媒の優れた性能を長期にわたって維持できる
ことを見出し本発明に到達した。この発明で、冷凍機と
は、圧縮空気を約5〜7℃の範囲内で冷却することので
きる機械,器具等の装置を指す。
In other words, the present inventors have conducted a series of studies on the cause of the performance deterioration of the palladium-based catalyst in the catalyst tower in about one year and the cause of the accumulation of fine powder in the lower part of the catalyst tower. In the process of its research, in the case where a palladium-based film is formed on the outer peripheral surface of alumina like the above-mentioned palladium-based catalyst, when water enters the gaps or grooves on the outer peripheral surface of alumina, the alumina expands and the palladium-based film There is a crack in the film and the film peels off and falls off, resulting in a small active area, which leads to early deterioration of performance, and the fact that the dropped palladium-based film becomes fine powder and accumulates at the bottom of the catalyst tower. I found it. In addition to this, if a large amount of water is contained in the compressed air, the compressed air is reduced to 1% in order to facilitate the oxidation reaction of hydrogen and carbon monoxide in the catalyst tower.
It becomes necessary to feed it to the catalyst tower at a high temperature of 80 ° C or higher,
It was also found that exposure to such a high temperature facilitates deterioration of the catalyst, leading to early deterioration of performance. And
As a result of further research, prior to introducing the compressed air into the removing means, the compressed air heated by the compression heat at the time of air compression is passed through a refrigerator to remove water in the compressed air, and then, When the air passing through the refrigerator is brought into contact with the catalyst to oxidize carbon monoxide and hydrogen in the air, the compressed air is cooled in the refrigerator before being brought into contact with the catalyst to cause dew condensation, etc. Most of the water can be removed. For this reason, the catalyst is not deteriorated at an early stage, and since it is not necessary to raise the temperature of the compressed air to a high temperature because the water is removed from the compressed air, the excellent performance of the catalyst can be maintained for a long period of time. The inventors have reached the present invention by finding that they can be maintained. In the present invention, the refrigerator refers to a device such as a machine or a device capable of cooling compressed air within a range of about 5 to 7 ° C.

【0009】つぎに、この発明を実施例にもとづいて詳
しく説明する。
Next, the present invention will be described in detail based on embodiments.

【0010】[0010]

【実施例】図1は本発明の空気分離装置の一実施例の原
料空気精製ラインを示している。深冷液化分離ラインに
ついては後述の図3に示す。図1において、1は外部よ
り取り入れた原料空気(25℃程度)を圧縮して圧縮空
気とする渦巻式(もしくはスクリュー式,レシプロ式)
の空気圧縮機であり、圧縮空気は圧縮熱によって100
℃に昇温される。2はプレートフィン式(もしくはシェ
ルアンドチューブ式)の第1熱交換器である。この第1
熱交換器2には、その内部に、空気圧縮機1から取り入
れた圧縮空気が通る通路2aと、吸着剤再生用の排ガス
(後述する精留塔で発生する排ガスであり、10℃程
度)が通る通路2bが形成されており、各通路2a,2
bを通る圧縮空気と排ガスとの熱交換により、圧縮空気
を70℃程度に降温させるとともに排ガスを90℃程度
に昇温させる作用をする。3はクーラーであり、第1熱
交換器2で降温された圧縮空気を冷却して30〜40℃
程度に降温させるとともに、圧縮空気中の水分除去を行
う。4は冷凍機であり、クーラー3で降温された圧縮空
気をさらに冷却して5〜7℃にまで降温させ、これによ
り、圧縮空気中の水分を結露させて圧縮空気中から水分
を略完全に除去する。5はプレートフィン式(もしくは
シェルアンドチューブ式)のアルミニウム製第2熱交換
器である。この第2熱交換器5には、その内部に、冷凍
機4を経た圧縮空気が通る通路5aと、触媒塔7を経た
空気が通る通路5bが形成されており、各通路5a,5
bを通る両空気の熱交換により、圧縮空気を125℃程
度に昇温させるとともに触媒塔7を経た空気を10℃程
度(吸着塔8,9での吸着除去に適した温度)に降温さ
せる作用をする。6は第1ヒーターであり、上記第2熱
交換器5で昇温された圧縮空気を加熱してさらに135
℃程度(触媒塔7での酸化反応に適した温度)にまで昇
温させる。7は触媒塔であり、空気中の一酸化炭素およ
び水素を酸化して炭酸ガスと水を生成するための触媒が
内蔵されている。この触媒としては、白金系(アルミナ
粒子の外周面に白金系皮膜を形成したもの)もしくはパ
ラジウム系(アルミナ粒子の外周面にパラジウム系皮膜
を形成したもの)触媒が用いられる。8,9は同一構造
の吸着塔であり、それぞれの内部には、圧縮空気中の水
分および炭酸ガスを吸着除去するための吸着剤が収容さ
れている。この吸着剤としては、アルミナやモレキュラ
ーシーブ(合成ゼオライト)11等が用いられる。この
ような両吸着塔8,9は、吸着工程および吸着剤11の
再生工程に用いられる。10は第2ヒーターであり、第
1熱交換器2で昇温された排ガスを加熱してさらに20
0℃にまで昇温させる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a feed air purification line of an embodiment of the air separation device of the present invention. The cryogenic liquefaction separation line is shown in FIG. 3 described later. In FIG. 1, reference numeral 1 is a spiral type (or screw type, reciprocating type) in which raw material air (about 25 ° C.) taken from the outside is compressed into compressed air.
This is an air compressor of
The temperature is raised to ℃. Reference numeral 2 denotes a plate fin type (or shell and tube type) first heat exchanger. This first
Inside the heat exchanger 2, there are provided a passage 2a through which the compressed air taken in from the air compressor 1 passes, and an exhaust gas for adsorbent regeneration (exhaust gas generated in a rectification tower described later, about 10 ° C.). A passage 2b passing therethrough is formed, and each passage 2a, 2
The heat exchange between the compressed air passing through b and the exhaust gas serves to lower the temperature of the compressed air to about 70 ° C. and raise the temperature of the exhaust gas to about 90 ° C. Reference numeral 3 denotes a cooler, which cools the compressed air cooled in the first heat exchanger 2 to 30 to 40 ° C.
The temperature is lowered to a certain degree and water in the compressed air is removed. Reference numeral 4 denotes a refrigerator, which further cools the compressed air cooled by the cooler 3 and cools it to 5 to 7 ° C., whereby the moisture in the compressed air is condensed and the moisture in the compressed air is almost completely removed. Remove. Reference numeral 5 denotes a plate fin type (or shell and tube type) aluminum second heat exchanger. The second heat exchanger 5 is internally provided with a passage 5a through which the compressed air that has passed through the refrigerator 4 passes and a passage 5b through which the air that has passed through the catalyst tower 7 passes.
The action of raising the temperature of the compressed air to about 125 ° C. and lowering the temperature of the air passing through the catalyst tower 7 to about 10 ° C. (a temperature suitable for adsorption and removal in the adsorption towers 8 and 9) by heat exchange of both air passing through b. do. Reference numeral 6 denotes a first heater, which heats the compressed air heated by the second heat exchanger 5 to further 135
The temperature is raised to about C (the temperature suitable for the oxidation reaction in the catalyst tower 7). A catalyst tower 7 has a built-in catalyst for oxidizing carbon monoxide and hydrogen in the air to generate carbon dioxide gas and water. As this catalyst, a platinum-based (alumina particle with a platinum-based coating formed on the outer peripheral surface) or a palladium-based (alumina particle with a palladium-based coating formed on the outer peripheral surface) catalyst is used. Reference numerals 8 and 9 are adsorption towers having the same structure, and an adsorbent for adsorbing and removing water and carbon dioxide in the compressed air is housed inside each of the adsorption towers. As the adsorbent, alumina, molecular sieve (synthetic zeolite) 11 or the like is used. Both such adsorption towers 8 and 9 are used in the adsorption step and the regeneration step of the adsorbent 11. Reference numeral 10 is a second heater, which heats the exhaust gas heated by the first heat exchanger 2 and further 20
Raise the temperature to 0 ° C.

【0011】上記第2熱交換器5と各吸着塔8,9は、
つぎのような配管類で連結されている。すなわち、第2
熱交換器5の通路5bに連結する圧縮空気供給管15が
二股に分岐しており、一方が開閉弁16a付き第1導入
管16となって第1吸着塔8の空気入口に連結し、他方
が開閉弁17a付き第2導入管17となって第2吸着塔
9の空気入口に連結している。そして、第1吸着塔8の
空気出口から延びる開閉弁18a付き第1導出管18と
第2吸着塔9の空気出口から延びる開閉弁19a付き第
2導出管19とが精製空気取出管30に合流している。
また、上記第1導入管16(の開閉弁16aと第1吸着
塔8の空気入口間の部分)と第2導入管17(の開閉弁
17aと第2吸着塔9の空気入口間の部分)とが、一対
の開閉弁21a,21bを有する第1連結管21で連結
されているとともに、上記第1導出管18(の開閉弁1
8aと第1吸着塔8の空気出口間の部分)と第2導出管
19(の開閉弁19aと第2吸着塔9の空気出口間の部
分)とが、一対の開閉弁22a,22bを有する第2連
結管22で連結されている。図において、23は第1連
結管21の両開閉弁21a,21b間の部分から分岐す
る排ガス放出管である。
The second heat exchanger 5 and the adsorption towers 8 and 9 are
It is connected by the following pipes. That is, the second
The compressed air supply pipe 15 connected to the passage 5b of the heat exchanger 5 is bifurcated, one of which serves as a first introduction pipe 16 with an opening / closing valve 16a, which is connected to the air inlet of the first adsorption tower 8 and the other. Serves as a second introduction pipe 17 with an opening / closing valve 17a and is connected to the air inlet of the second adsorption tower 9. Then, the first outlet pipe 18 with an on-off valve 18 a extending from the air outlet of the first adsorption tower 8 and the second outlet pipe 19 with an on-off valve 19 a extending from the air outlet of the second adsorption tower 9 join the purified air extraction pipe 30. are doing.
Further, the first introduction pipe 16 (a portion between the opening / closing valve 16a and the air inlet of the first adsorption tower 8) and the second introduction pipe 17 (a portion between the opening / closing valve 17a and the air inlet of the second adsorption tower 9). Are connected by a first connecting pipe 21 having a pair of open / close valves 21a and 21b, and the first outlet pipe 18 (open / close valve 1 of
8a and a portion between the air outlet of the first adsorption tower 8) and the second outlet pipe 19 (a portion between the opening / closing valve 19a of the second adsorption tower 9 and the air outlet of the second adsorption tower 9) have a pair of opening / closing valves 22a and 22b. They are connected by the second connecting pipe 22. In the figure, reference numeral 23 is an exhaust gas discharge pipe branched from a portion of the first connecting pipe 21 between the on-off valves 21a and 21b.

【0012】一方、精留塔から供給される排ガスの通路
である排ガス供給管24(図1では、その終端部24a
の近傍部しか示されていない)と各吸着塔8,9は、つ
ぎのような配管類で連結されている。すなわち、排ガス
供給管24が、その終端部24aから延び第1熱交換器
2の通路2bに連結する開閉弁25a付き第1供給管2
5,第1熱交換器2の通路2b,この通路2bから延び
第2ヒーター10の排ガス入口に連結する第2供給管2
6を介して第2ヒーター10に連結し、この第2ヒータ
ー10の排ガス出口から延びる第3供給管27が、上記
第2連結管22の両開閉弁22a,22b間の部分に連
結している。また、排ガス供給管24の終端部24aと
第3供給管27とが開閉弁28a付き第3連結管28で
連結している。
On the other hand, an exhaust gas supply pipe 24 (in FIG. 1, its end portion 24a) which is a passage for the exhaust gas supplied from the rectification tower.
Is only shown) and the adsorption towers 8 and 9 are connected by the following pipes. That is, the exhaust gas supply pipe 24 extends from the end portion 24a thereof and is connected to the passage 2b of the first heat exchanger 2 with the opening / closing valve 25a.
5, passage 2b of the first heat exchanger 2, second supply pipe 2 extending from the passage 2b and connected to the exhaust gas inlet of the second heater 10.
A third supply pipe 27, which is connected to the second heater 10 via 6 and extends from the exhaust gas outlet of the second heater 10, is connected to a portion of the second connection pipe 22 between the on-off valves 22a and 22b. . Further, the end portion 24a of the exhaust gas supply pipe 24 and the third supply pipe 27 are connected by a third connecting pipe 28 with an opening / closing valve 28a.

【0013】上記装置において、第1吸着塔8を吸着工
程で用い、第2吸着塔9を再生工程で用いる場合の作用
を説明する。この場合には、図2に示すように、開閉弁
16a,18a,21b,22b,25aを開弁し(開
弁状態にあることを、矢印で示す)、開閉弁17a,1
9a,21a,22a,28aを閉弁する(閉弁状態に
あることを、バルブを黒く塗りつぶすことで示す)。ま
ず、空気圧縮機1で外部から原料空気を取り入れて圧縮
空気とする。ついで、この圧縮された高圧圧縮空気を第
1熱交換器2で排ガスと熱交換して降温したのち、クー
ラー3で冷却して30〜40℃程度に降温する。つぎ
に、この降温させた圧縮空気を冷凍機4に供給する。こ
の冷凍機4では、圧縮空気がさらに冷却されて5〜7℃
に降温し、これにより、圧縮空気中の水分が結露して略
完全に水分が除去される。つぎに、冷凍機4を経た圧縮
空気を第2熱交換器5に供給し、この第2熱交換器5で
触媒塔7を経た空気と熱交換して昇温したのち第1ヒー
ター6で135℃に昇温して触媒塔7に供給する。この
触媒塔7では、触媒により、空気中の一酸化炭素が酸化
されて炭酸ガスが生成され、水素が酸化されて水が生成
される。つぎに、触媒塔7を経た空気を第2熱交換器5
に供給し、この第2熱交換器5で冷凍機4を経た空気と
熱交換して10℃に降温したのち、圧縮空気供給管1
5,第1導入管16を介して第1吸着塔8に供給する。
この第1吸着塔8では、吸着剤11により、空気中の炭
酸ガスおよび水分が吸着除去される。この第1吸着塔8
を経た空気を第1導出管18を通して精製空気取出管3
0に送る。一方、精留塔から送られる排ガスを、排ガス
供給管24および第1供給管25を通して第1熱交換器
2に供給し、この第1熱交換器2で空気圧縮機1から取
り入れた圧縮空気と熱交換して昇温する。つぎに、この
第1熱交換器2で昇温した排ガスを、第2供給管26を
通して第2ヒーター10に供給し、この第2ヒーター1
0で200℃に昇温したのち、第3供給管27,第2連
結管22,第2導出管19を通して第2吸着塔9に供給
する。この第2吸着塔9では、吸着剤11が高温の排ガ
スにさらされて再生される。そののち、第2吸着塔9を
経た排ガスを第2導入管17、第1連結管21および排
ガス放出管23を通して大気に放出する。また、第2吸
着塔9の再生後に、開閉弁28aを開弁し、開閉弁25
aを閉弁して、排ガスを加熱することなく直接に第2吸
着塔9に供給する。これにより、第2吸着塔9では、吸
着剤11が排ガスで冷却され、つぎの吸着工程に備え
る。
In the above apparatus, the operation when the first adsorption tower 8 is used in the adsorption step and the second adsorption tower 9 is used in the regeneration step will be described. In this case, as shown in FIG. 2, the on-off valves 16a, 18a, 21b, 22b, 25a are opened (the open state is indicated by an arrow), and the on-off valves 17a, 1
The valves 9a, 21a, 22a and 28a are closed (the closed state is indicated by filling the valves with black). First, the air compressor 1 takes in raw material air from the outside to make compressed air. Then, the compressed high-pressure compressed air is heat-exchanged with the exhaust gas by the first heat exchanger 2 to lower the temperature, and then cooled by the cooler 3 to lower the temperature to about 30 to 40 ° C. Next, the cooled compressed air is supplied to the refrigerator 4. In this refrigerator 4, the compressed air is further cooled to 5 to 7 ° C.
The temperature of the compressed air is reduced, and the moisture in the compressed air is condensed to almost completely remove the moisture. Next, the compressed air that has passed through the refrigerator 4 is supplied to the second heat exchanger 5, the second heat exchanger 5 exchanges heat with the air that has passed through the catalyst tower 7, and the temperature is raised. The temperature is raised to ℃ and supplied to the catalyst tower 7. In the catalyst tower 7, carbon monoxide in the air is oxidized by the catalyst to generate carbon dioxide gas, and hydrogen is oxidized to generate water. Next, the air that has passed through the catalyst tower 7 is transferred to the second heat exchanger 5
To the compressed air supply pipe 1 after the second heat exchanger 5 exchanges heat with the air passing through the refrigerator 4 to lower the temperature to 10 ° C.
5, supplied to the first adsorption tower 8 via the first introduction pipe 16.
In the first adsorption tower 8, the carbon dioxide gas and water in the air are adsorbed and removed by the adsorbent 11. This first adsorption tower 8
The air that has passed through the first outlet pipe 18 and the purified air extraction pipe 3
Send to 0. On the other hand, the exhaust gas sent from the rectification tower is supplied to the first heat exchanger 2 through the exhaust gas supply pipe 24 and the first supply pipe 25, and the compressed air taken in from the air compressor 1 is supplied to the first heat exchanger 2. Heat is exchanged to raise the temperature. Next, the exhaust gas whose temperature has been raised in the first heat exchanger 2 is supplied to the second heater 10 through the second supply pipe 26, and the second heater 1
After the temperature is raised to 200 ° C. at 0, it is supplied to the second adsorption tower 9 through the third supply pipe 27, the second connecting pipe 22, and the second outlet pipe 19. In the second adsorption tower 9, the adsorbent 11 is exposed to high temperature exhaust gas and regenerated. After that, the exhaust gas that has passed through the second adsorption tower 9 is discharged to the atmosphere through the second introduction pipe 17, the first connecting pipe 21, and the exhaust gas discharge pipe 23. After the regeneration of the second adsorption tower 9, the open / close valve 28a is opened to open the open / close valve 25a.
The valve a is closed, and the exhaust gas is directly supplied to the second adsorption tower 9 without being heated. As a result, in the second adsorption tower 9, the adsorbent 11 is cooled by the exhaust gas and prepared for the next adsorption step.

【0014】上記両吸着塔8,9は、各開閉弁の開閉操
作により、自動切替えすることができる。すなわち、第
1吸着塔8を再生工程で用い、第2吸着塔9を吸着工程
で用いる場合には、開閉弁17a,19a,21a,2
2a,25aを開弁し、開閉弁16a,18a,21
b,22b,28aを閉弁する。
The adsorption towers 8 and 9 can be automatically switched by opening / closing the opening / closing valves. That is, when the first adsorption tower 8 is used in the regeneration step and the second adsorption tower 9 is used in the adsorption step, the on-off valves 17a, 19a, 21a, 2
2a and 25a are opened to open / close valves 16a, 18a and 21
The valves b, 22b and 28a are closed.

【0015】このように、上記装置では、触媒塔7内に
供給する前に圧縮空気中の水分を冷凍機4で略完全に除
去するようにしているため、触媒塔7内の触媒の表面に
水分が入り込んでこれを膨張させることが殆どなくな
る。このため、触媒の表面に形成されたパラジウム系粒
子等が剥離,脱落すること等がなくなる。しかも、上記
したように、圧縮空気中の水分が殆ど吸着除去されてい
るため、触媒塔7に供給する際に圧縮空気の温度を低く
設定することができる。したがって、触媒の早期性能低
下を招いたり、触媒塔7の下部に微粉末が早期に溜まっ
たりすることがなくなり、長期にわたってメンテナンス
が不要になり、かつトータルコストが安価になる。
As described above, in the above apparatus, the water in the compressed air is almost completely removed by the refrigerator 4 before being supplied into the catalyst tower 7, so that the surface of the catalyst in the catalyst tower 7 is removed. Almost no penetration of water and expansion of it occurs. Therefore, the palladium-based particles and the like formed on the surface of the catalyst are prevented from peeling off or falling off. Moreover, as described above, most of the water in the compressed air is adsorbed and removed, so that the temperature of the compressed air can be set low when the compressed air is supplied to the catalyst tower 7. Therefore, the performance of the catalyst is not deteriorated at an early stage, and the fine powder is not accumulated in the lower part of the catalyst tower 7 at an early stage, maintenance is unnecessary for a long period of time, and the total cost is reduced.

【0016】この装置と、図7に示す従来技術とにおい
て、触媒塔7の入口露点の違いによるパラジウム触媒の
反応温度と空気中の水素の(酸化)除去率(2H2 +O
2 →2H2 O)を、下記の表1に示す。この表1から明
らかなように、この装置が、水素の除去率において非常
にすぐれていることが判る。
In this apparatus and the prior art shown in FIG. 7, the reaction temperature of the palladium catalyst and the (oxidation) removal rate (2H 2 + O) of hydrogen in the air depending on the difference in the dew point at the inlet of the catalyst tower 7.
2 → 2H 2 O) is shown in Table 1 below. As can be seen from Table 1, this device is very excellent in the removal rate of hydrogen.

【0017】[0017]

【表1】 [Table 1]

【0018】図3は上記原料空気精製ラインに続く深冷
液化分離ラインを示す構成図であり、原料空気精製ライ
ンで精製された精製空気(圧縮空気)を深冷液化分離し
窒素,酸素に分けるようにする。図において、51は主
熱交換器であり、この主熱交換器51に精製空気が精製
空気取出管30(図1参照)から送り込まれ熱交換作用
により超低温に冷却される。30cは精製空気取出管3
0から分岐した分岐管であり、精製空気取出管30を通
る圧縮空気の一部を主熱交換器51に通したのち膨張タ
ービン52に送り込む。53aは膨張タービン52によ
り得られた冷気を冷媒として主熱交換器51に送り込む
第1冷媒供給管であり、53bは主熱交換器51の冷媒
としての作用を終えた冷気を低圧精留塔64に送り込む
第2冷媒供給管である。54は棚段式の高圧精留塔であ
り、主熱交換器51により超低温に冷却された圧縮空気
をさらに冷却し、その一部を液化し液体空気55として
底部に溜めるとともに、上部に窒素のみを気体状態で溜
めるようになっている。58は主コンデンサであり、内
部に凝縮器59が配設されている。この凝縮器59に、
高圧精留塔54の上部に溜る窒素ガスの一部が第1還流
管56を介して送り込まれて液化され、第2還流管57
を経て、高圧精留塔54の上部に設けられた液体窒素溜
め54aに送り込まれる。この送り込まれた液体窒素
は、液体窒素溜め54aから溢れて高圧精留塔54内を
下方に流下し、高圧精留塔54の底部から上昇する圧縮
空気と向流的に接触し冷却してその一部を液化するよう
になっている。すなわち、この過程で圧縮空気中の高沸
点成分(酸素分)が液化されて高圧精留塔54の底部に
溜り、低沸点成分の窒素ガスが高圧精留塔54の上部に
溜る。また、主コンデンサ58は減圧状態となってお
り、ここに高圧精留塔54の底部に貯留された液体空気
(N2 :60〜65% ,O2 :33〜38%)55が膨
脹弁(図示せず)付き接続管60を経て噴霧状に送り込
まれ、膨脹弁で液体空気中の窒素分を気化させて主コン
デンサ58の内部温度を超低温に保持している。そし
て、主コンデンサ58に噴霧状に送り込まれた液体空気
の一部は気化液体空気(N2 :60〜65% ,O2 :3
3〜38%)となって上部に溜まり、他部は酸素リッチ
な超低温液体(N2 :30〜35% ,O2 :63〜68
%)61となって主コンデンサ58の底部に溜るように
なっている。この酸素リッチな超低温液体61の冷熱に
より凝縮器59内に送り込まれた窒素ガスが液化し、前
記のように第2還流管57を通って高圧精留塔54に送
り込まれる。また、凝縮器59内を通る窒素ガスで加熱
されて主コンデンサ58の底部に溜まった酸素リッチな
超低温液体61は気化され、気化液体空気となって上部
に溜まる。
FIG. 3 is a block diagram showing a cryogenic liquefaction separation line following the raw air purification line. The purified air (compressed air) purified in the raw air purification line is cryogenic liquefied and separated into nitrogen and oxygen. To do so. In the figure, reference numeral 51 denotes a main heat exchanger, and purified air is sent into the main heat exchanger 51 from a purified air take-out pipe 30 (see FIG. 1) and cooled to an ultra-low temperature by a heat exchange action. 30c is a purified air extraction pipe 3
It is a branch pipe branched from 0, and a part of the compressed air passing through the purified air extraction pipe 30 is sent to the expansion turbine 52 after passing through the main heat exchanger 51. Reference numeral 53a is a first refrigerant supply pipe for sending the cold air obtained by the expansion turbine 52 to the main heat exchanger 51 as a refrigerant, and 53b is the low-pressure rectification tower 64 for the cold air which has finished its operation as the refrigerant of the main heat exchanger 51. It is a second refrigerant supply pipe that is sent to. Reference numeral 54 is a tray type high-pressure rectification column, which further cools the compressed air cooled to an ultra-low temperature by the main heat exchanger 51 and liquefies a part of the compressed air to store it as liquid air 55 in the bottom portion, and only nitrogen in the upper portion. Is stored in a gaseous state. Reference numeral 58 is a main condenser, and a condenser 59 is arranged inside. In this condenser 59,
Part of the nitrogen gas accumulated in the upper part of the high-pressure rectification column 54 is sent through the first reflux pipe 56 to be liquefied, and the second reflux pipe 57
Then, it is sent to the liquid nitrogen reservoir 54a provided at the upper part of the high pressure rectification column 54. The fed liquid nitrogen overflows from the liquid nitrogen reservoir 54a and flows downward in the high pressure rectification column 54, and comes into countercurrent contact with the compressed air rising from the bottom of the high pressure rectification column 54 to cool it. It is designed to liquefy a part. That is, in this process, the high boiling point component (oxygen content) in the compressed air is liquefied and accumulated at the bottom of the high pressure rectification column 54, and the nitrogen gas of the low boiling point component accumulates at the upper part of the high pressure rectification column 54. Further, the main condenser 58 is in a depressurized state, and the liquid air (N 2 : 60 to 65%, O 2 : 33 to 38%) 55 stored at the bottom of the high-pressure rectification column 54 is expanded by the expansion valve ( It is sent in a spray form through a connecting pipe 60 (not shown), and the expansion valve evaporates the nitrogen content in the liquid air to keep the internal temperature of the main condenser 58 at an ultralow temperature. Then, a part of the liquid air sent to the main condenser 58 in the form of spray is vaporized liquid air (N 2 : 60 to 65%, O 2 : 3).
3 to 38%) and accumulates in the upper part, and the other parts are oxygen-rich ultra-low temperature liquids (N 2 : 30 to 35%, O 2 : 63 to 68).
%) 61 and accumulates at the bottom of the main condenser 58. Due to the cold heat of the oxygen-rich ultra-low temperature liquid 61, the nitrogen gas sent into the condenser 59 is liquefied and sent to the high pressure rectification column 54 through the second reflux pipe 57 as described above. Further, the oxygen-rich ultra-low temperature liquid 61 heated at the bottom of the main condenser 58 by being heated by the nitrogen gas passing through the condenser 59 is vaporized and becomes vaporized liquid air and is accumulated at the upper portion.

【0019】64は棚段式の低圧精留塔であり、上記高
圧精留塔54と同一レベルに設けられている。この低圧
精留塔64は、その中段の部分が連結管62によって主
コンデンサ58の底部と接続しており、主コンデンサ5
8の底部に溜った酸素リッチな超低温液体(液体空気)
61が連結管62を介して送り込まれる。この送り込ま
れた液体空気は低圧精留塔64内を流下したのち低圧精
留塔64の底部に溜まり、低圧精留塔64の底部に内蔵
された凝縮器66を冷却する。この凝縮器66は、主コ
ンデンサ58の頂部から導入管63を介して送り込まれ
た気化液体空気の一部を液化したのち導出管68に送り
込み、過冷却器67を通して過冷却状態にしたのち低圧
精留塔64に噴霧状に送り込む作用をする。過冷却器6
7を通って低圧精留塔64に噴霧状に送り込まれた液体
空気も、低圧精留塔64内を流下したのち低圧精留塔6
4の底部に溜まり、低圧精留塔64の底部に内蔵された
凝縮器66を冷却する。そして、低圧精留塔64の底部
に溜まった液体空気65は、凝縮器66を通る気化液体
空気で焚き上げられる。70は主コンデンサ58の凝縮
器59で液化された液体窒素(この液体窒素の一部は、
前記したように、高圧精留塔54の液体窒素溜め54a
に送り込まれる)を過冷却器67の冷媒として送る第1
液体窒素供給管であり、71は冷媒としての作用を終え
た液体窒素を低圧精留塔64の液体窒素溜め64aに送
る第2液体窒素供給管である。72は低圧精留塔64の
上部に溜った窒素ガスを製品窒素ガスとして取り出す窒
素ガス取出管で、超低温の窒素ガスを過冷却器67に案
内し、この過冷却器67により熱交換作用で降温させた
のち主熱交換器51内に案内し、そこに送り込まれる圧
縮空気と熱交換させて常温にし、製品窒素ガス取出管7
3に送り込む作用をする。74は酸素ガス取出管で、低
圧精留塔64の底部の滞留液体酸素65から気化した酸
素ガスを取り出し、主熱交換器51内に案内し、そこに
送り込まれる圧縮空気と熱交換させて常温にし、製品酸
素ガス取出管75に送り込む作用をする。76は低圧精
留塔64内に溜った窒素分(純度はそれ程高くない)等
を排ガスとして取り出す排ガス取出管で、低圧精留塔6
4から取り出した排ガスを主熱交換器51内に案内し、
そこに送り込まれる圧縮空気と熱交換させて常温にし、
排ガス放出管77に送り込むとともに、その一部を排ガ
ス供給管24(図1参照)に送り込む作用をする。
Reference numeral 64 denotes a tray type low pressure rectification column, which is provided at the same level as the high pressure rectification column 54. The low-pressure rectification column 64 has its middle part connected to the bottom of the main condenser 58 by a connecting pipe 62.
Oxygen-rich ultra-low temperature liquid (liquid air) accumulated at the bottom of 8
61 is sent through the connecting pipe 62. The sent liquid air flows down in the low-pressure rectification column 64 and then collects at the bottom of the low-pressure rectification column 64 to cool the condenser 66 built in the bottom of the low-pressure rectification column 64. The condenser 66 liquefies a part of the vaporized liquid air sent from the top of the main condenser 58 through the introduction pipe 63 and then sends it to the discharge pipe 68, and puts it in a supercooled state through the supercooler 67, and then the low-pressure purification. It acts to feed the distillation column 64 in the form of a spray. Subcooler 6
The liquid air sent to the low-pressure rectification tower 64 in a spray form through 7 also flows down in the low-pressure rectification tower 64, and then the low-pressure rectification tower 6
4 and cools the condenser 66 built in the bottom of the low pressure rectification column 64. Then, the liquid air 65 accumulated at the bottom of the low-pressure rectification column 64 is heated by the vaporized liquid air passing through the condenser 66. 70 is liquid nitrogen liquefied in the condenser 59 of the main condenser 58 (a part of this liquid nitrogen is
As described above, the liquid nitrogen reservoir 54a of the high pressure rectification column 54
Is sent to the subcooler 67 as the refrigerant.
A liquid nitrogen supply pipe 71 is a second liquid nitrogen supply pipe for sending the liquid nitrogen, which has finished its function as a refrigerant, to the liquid nitrogen reservoir 64a of the low-pressure rectification column 64. Reference numeral 72 denotes a nitrogen gas extraction pipe for taking out the nitrogen gas accumulated in the upper part of the low-pressure rectification column 64 as product nitrogen gas. After that, it is guided into the main heat exchanger 51, and heat is exchanged with the compressed air fed therein to normal temperature, and the product nitrogen gas extraction pipe 7
It acts to send to 3. Reference numeral 74 denotes an oxygen gas take-out pipe, which takes out vaporized oxygen gas from the retained liquid oxygen 65 at the bottom of the low-pressure rectification column 64, guides it into the main heat exchanger 51, and exchanges heat with the compressed air fed therein to room temperature. And acts to feed the product oxygen gas extraction pipe 75. Reference numeral 76 denotes an exhaust gas extraction pipe for taking out nitrogen components (purity not so high) accumulated in the low pressure rectification column 64 as exhaust gas, and the low pressure rectification column 6
The exhaust gas taken out from No. 4 is guided into the main heat exchanger 51,
It heats up to the normal temperature by exchanging heat with the compressed air sent there,
It sends the exhaust gas to the exhaust gas discharge pipe 77 and also sends a part of it to the exhaust gas supply pipe 24 (see FIG. 1).

【0020】この装置は、つぎのようにして製品窒素ガ
スおよび酸素ガスを製造する。すなわち、上記精製空気
取出管30から送られた精製空気を主熱交換器51内に
送り込んで超低温に冷却し、高圧精留塔54の下部内に
投入する。ついで、この投入圧縮空気を、主コンデンサ
58から高圧精留塔54内に送り込まれ液体窒素溜め5
4aから溢流する液体窒素と向流的に接触させて冷却
し、その一部を液化して高圧精留塔54の底部に溜め
る。この過程において、窒素と酸素の沸点の差(酸素の
沸点−183℃,窒素の沸点−196℃)により、圧縮
空気中の高沸点成分である酸素が液化し、窒素が気体の
まま残る。そして、高圧精留塔54の底部には酸素分が
多い液体空気55が溜る。つぎに、この酸素リッチな液
体空気55を膨脹弁で断熱膨脹させたのち主コンデンサ
58に送り込み、液化して主コンデンサ58の底部に液
体空気61として溜めて主コンデンサ58内蔵の凝縮器
59を冷却する。一方、高圧精留塔54の上部に溜まっ
た窒素ガスを、主コンデンサ58内蔵の凝縮器59に送
り込み、液体空気により冷却して液化し高圧精留塔54
内の液体窒素溜め54a内に還流する。と同時に、凝縮
器59で液化した液体空気を第1液体窒素供給管70に
通して過冷却器67に供給し、この過冷却器67で過冷
却状態にしたのち、低圧精留塔64内の液体窒素溜め6
4a内に送り込む。また、主コンデンサ58の底部に溜
まった液体空気61を連結管62で低圧精留塔64に送
り込んで底部に溜める。この低圧精留塔64の底部に溜
まった液体空気65は、主コンデンサ58の頂部から導
入管63を介して低圧精留塔64内蔵の凝縮器66に送
り込まれた気化液体空気で焚き上げられる。一方、凝縮
器66内を通る気化液体空気の一部を熱交換作用で液化
したのち導出管68に通して過冷却器67に供給し、こ
の過冷却器67で過冷却状態にしたのち低圧精留塔64
に送り込む。低圧精留塔64内では、高圧精留塔54内
と同様に、低圧精留塔64の気化液体空気を液体窒素溜
め64aから溢流する液体窒素と向流的に接触させて冷
却し、その一部を液化して低圧精留塔64の底部に溜め
る。この過程において、窒素と酸素の沸点の差により、
圧縮空気中の高沸点成分である酸素が液化し、窒素が気
体のまま残る。そして、低圧精留塔64の底部には酸素
分が多い液体空気65が溜り、上部には窒素ガスが溜ま
る。このようにして、低圧精留塔64の上部に溜まった
窒素ガスは、そのまま製品として窒素ガス取出管72か
ら取り出され、主熱交換器51で熱交換されたのち、常
温製品ガスとして系外に送出される。低圧精留塔64の
底部の液体空気65は、そのまま製品として取り出され
るのではなく、その気化物(酸素ガス)として酸素ガス
取出管74から取り出され、主熱交換器51で熱交換さ
れたのち、常温製品ガスとして系外に送出される。この
ようにして、高純度の窒素ガスと酸素ガスが得られる。
This apparatus produces product nitrogen gas and oxygen gas as follows. That is, the purified air sent from the purified air take-out pipe 30 is sent into the main heat exchanger 51 to be cooled to an ultralow temperature, and then introduced into the lower part of the high pressure rectification column 54. Then, this input compressed air is sent from the main condenser 58 into the high pressure rectification column 54 and the liquid nitrogen reservoir 5
The liquid nitrogen overflowing from 4a is contacted countercurrently and cooled, and a part of it is liquefied and stored in the bottom of the high pressure rectification column 54. In this process, due to the difference in boiling point between nitrogen and oxygen (boiling point of oxygen-183 ° C., boiling point of nitrogen-196 ° C.), oxygen, which is a high-boiling point component in the compressed air, is liquefied and nitrogen remains as a gas. Then, liquid air 55 having a large oxygen content is accumulated at the bottom of the high-pressure rectification column 54. Next, this oxygen-rich liquid air 55 is adiabatically expanded by an expansion valve and then sent to the main condenser 58, liquefied and stored as liquid air 61 at the bottom of the main condenser 58 to cool the condenser 59 with the built-in main condenser 58. To do. On the other hand, the nitrogen gas accumulated in the upper part of the high pressure rectification column 54 is sent to a condenser 59 with a built-in main condenser 58, cooled by liquid air and liquefied to be liquefied.
Reflux into the liquid nitrogen reservoir 54a therein. At the same time, the liquid air liquefied in the condenser 59 is passed through the first liquid nitrogen supply pipe 70 to be supplied to the supercooler 67, and the supercooler 67 is brought into a supercooled state. Liquid nitrogen reservoir 6
It is sent into 4a. Further, the liquid air 61 collected at the bottom of the main condenser 58 is sent to the low-pressure rectification column 64 through the connecting pipe 62 and stored at the bottom. The liquid air 65 accumulated at the bottom of the low-pressure rectification column 64 is heated up by the vaporized liquid air sent from the top of the main condenser 58 to the condenser 66 built in the low-pressure rectification column 64 via the introduction pipe 63. On the other hand, a part of the vaporized liquid air passing through the inside of the condenser 66 is liquefied by a heat exchange action, then is supplied to a subcooler 67 through a discharge pipe 68, is supercooled by the subcooler 67, and is then subjected to low pressure purification. Distillation tower 64
Send to. In the low-pressure rectification tower 64, as in the high-pressure rectification tower 54, the vaporized liquid air in the low-pressure rectification tower 64 is countercurrently contacted with the liquid nitrogen overflowing from the liquid nitrogen reservoir 64a to cool it. A part is liquefied and stored in the bottom of the low pressure rectification column 64. In this process, due to the difference between the boiling points of nitrogen and oxygen,
Oxygen, which is a high-boiling point component of compressed air, is liquefied and nitrogen remains as a gas. Then, the liquid air 65 containing a large amount of oxygen is accumulated at the bottom of the low-pressure rectification column 64, and the nitrogen gas is accumulated at the upper part. In this way, the nitrogen gas accumulated in the upper part of the low pressure rectification column 64 is taken out from the nitrogen gas take-out pipe 72 as a product as it is, and is heat-exchanged by the main heat exchanger 51, and then is taken out of the system as a room temperature product gas. Sent out. The liquid air 65 at the bottom of the low-pressure rectification column 64 is not taken out as a product as it is, but is taken out as a vaporized product (oxygen gas) from the oxygen gas taking-out pipe 74, and is heat-exchanged in the main heat exchanger 51. , Is sent out of the system as room temperature product gas. In this way, high-purity nitrogen gas and oxygen gas are obtained.

【0021】この装置では、高圧精留塔54と低圧精留
塔64が同一レベルに設置されているため、装置全体の
高さが低くなる。したがって、装置全体を小形化するこ
とができるとともに、製作コストの低減化を実現するこ
とができる。このため、装置をユーザーの敷地内に設置
してガス販売すること(オンサイト供給)が簡単に行え
るという利点もある。
In this apparatus, the high-pressure rectification column 54 and the low-pressure rectification column 64 are installed at the same level, so that the height of the entire apparatus becomes low. Therefore, it is possible to reduce the size of the entire device and reduce the manufacturing cost. Therefore, there is also an advantage that it is easy to install the device on the user's premises and sell the gas (on-site supply).

【0022】図4は上記深冷液化分離ラインの他の例を
示している。この例では、製品窒素ガスの一部を、低圧
精留塔64の底部に溜まる液体空気65を焚き上げる加
熱源として用いている。すなわち、製品窒素ガス取出管
73に昇圧器80を設け、この昇圧器80より製品窒素
ガス取出口(図示せず)側の部分から分岐管81を分岐
し、この分岐管81を主熱交換器51を通したのち低圧
精留塔64内蔵の凝縮器66に接続している。そして、
この凝縮器66を通る製品窒素ガスで低圧精留塔64の
底部の液体空気65を焚き上げるとともに、この製品窒
素ガスを凝縮器66内で液化し、導出管68を通して過
冷却器67に供給し、この過冷却器67で過冷却状態に
したのち低圧精留塔64に導入している。一方、主コン
デンサ58の頂部から取り出される気化液体空気
(N2 :60〜65% ,O2 :35〜40%)を導入管
82を通して過冷却器67に供給し、この過冷却器67
で過冷却状態にしたのち低圧精留塔64に導入してい
る。それ以外の部分は図3に示す装置と同様であり、同
様の部分には同じ符号を付している。このものでも、図
3に示す装置と同様の効果を奏するうえ、製品窒素ガス
を再び低圧精留塔64に戻しているため、図3に示す装
置より高純度の窒素ガスを得ることができるという利点
がある。
FIG. 4 shows another example of the cryogenic liquefaction separation line. In this example, a part of the product nitrogen gas is used as a heating source for heating the liquid air 65 accumulated at the bottom of the low pressure rectification column 64. That is, a booster 80 is provided in the product nitrogen gas take-out pipe 73, and a branch pipe 81 is branched from a part of the product nitrogen gas take-out port (not shown) side of the booster 80, and the branch pipe 81 is used as a main heat exchanger. After passing through 51, it is connected to a condenser 66 with a built-in low-pressure rectification column 64. And
Liquid nitrogen 65 at the bottom of the low-pressure rectification column 64 is heated by the product nitrogen gas passing through the condenser 66, and the product nitrogen gas is liquefied in the condenser 66 and supplied to the subcooler 67 through the outlet pipe 68. After being supercooled by the supercooler 67, it is introduced into the low pressure rectification column 64. On the other hand, vaporized liquid air (N 2 : 60 to 65%, O 2 : 35 to 40%) taken out from the top of the main condenser 58 is supplied to the subcooler 67 through the introduction pipe 82, and this subcooler 67 is supplied.
It is introduced into the low pressure rectification column 64 after being supercooled by. The other parts are the same as those of the device shown in FIG. 3, and the same parts are denoted by the same reference numerals. Even in this case, the same effect as that of the apparatus shown in FIG. 3 is obtained, and since the product nitrogen gas is returned to the low-pressure rectification column 64 again, it is possible to obtain nitrogen gas of higher purity than that of the apparatus shown in FIG. There are advantages.

【0023】図5は上記深冷液化分離ラインのさらに他
の例を示している。この例では、両精留塔54,64の
上部にそれぞれ主コンデンサ58,85を設けている。
そして、高圧精留塔54の主コンデンサ58の底部に溜
まった余剰の液化空気61(N2 :60〜70% ,
2 :30〜40%)を低圧精留塔64の第2主コンデ
ンサ85に導入してこれの寒冷用として利用している。
また、低圧精留塔64の頂部から取り出した窒素ガスを
第2主コンデンサ85で液化して液体窒素とし、これを
還流液として低圧精留塔64に戻すようにしている。す
なわち、85は第2主コンデンサであり、内部に凝縮器
86が配設されている。この凝縮器86に、低圧精留塔
64の上部に溜る窒素ガスの一部が第3還流管87を介
して送り込まれて液化され、第4還流管88を経て、低
圧精留塔64の上部に設けられた液体窒素溜め64aに
送り込まれる。この送り込まれた液体窒素は、液体窒素
溜め64aから溢れて低圧精留塔64内を下方に流下
し、低圧精留塔64の底部から上昇する圧縮空気と向流
的に接触し冷却してその一部を液化するようになってい
る。すなわち、この過程で圧縮空気中の高沸点成分(酸
素分)が液化されて低圧精留塔64の底部に溜り、低沸
点成分の窒素ガスが低圧精留塔64の上部に溜る。ま
た、第2主コンデンサ85は減圧状態となっており、こ
こに第1主コンデンサ58の底部に貯留された液体空気
61が膨脹弁(図示せず)付き接続管90を経て噴霧状
に送り込まれ、膨脹弁で液体空気中の窒素分を気化させ
て第2主コンデンサ85の内部温度を超低温に保持して
いる。そして、第2主コンデンサ85に噴霧状に送り込
まれた液体空気の一部は気化液体空気(N2 :60〜6
5% ,O 2 :33〜38%)となって上部に溜まり、他
部は酸素リッチな超低温液体(N 2 :33〜38% ,O
2 :60〜65%)89となって第2主コンデンサ85
の底部に溜るようになっている。この酸素リッチな超低
温液体89の冷熱により凝縮器86内に送り込まれた窒
素ガスが液化し、前記のように第4還流管88を通って
低圧精留塔64に送り込まれ、低圧精留塔64の底部に
溜まる。91aは第2主コンデンサ85の上部に溜まっ
た気化液体空気を取り出したのち過冷却器67に供給し
てここで降温させる第1排ガス取出管であり、91bは
過冷却器67で降温した気化液体空気を主熱交換器51
内に案内し、そこに送り込まれる圧縮空気と熱交換させ
て常温にしたのち排ガス放出管94に送り込む第2排ガ
ス取出管である。92は高圧精留塔54の第1還流管5
6から延びる第1窒素ガス取出管であり、低圧精留塔6
4の第3還流管87から延びる第2窒素ガス取出管93
と合流する。この合流窒素ガス取出管95(図3の窒素
ガス取出管72に相当する)は第1窒素ガス取出管92
および第2窒素ガス取出管93から取り出された窒素ガ
スを過冷却器67に供給し、この過冷却器67により熱
交換作用で昇温させたのち主熱交換器51内に案内す
る。それ以外の部分は図3に示す装置と同様であり、同
様の部分には同じ符号を付している。
FIG. 5 shows still another example of the cryogenic liquefaction separation line.
Shows an example of. In this example, both rectification columns 54 and 64
Main capacitors 58 and 85 are provided on the upper part, respectively.
Then, it is collected at the bottom of the main condenser 58 of the high pressure rectification tower 54.
Excessive liquefied air 61 (N2: 60-70%,
O2: 30-40%) to the second main condenser of the low pressure rectification column 64.
Introduced into sensor 85 and used for cold weather.
In addition, the nitrogen gas taken out from the top of the low pressure rectification column 64 is
It is liquefied by the second main condenser 85 into liquid nitrogen, which is
The reflux liquid is returned to the low pressure rectification column 64. You
That is, 85 is the second main condenser, which has a condenser inside.
86 is provided. This condenser 86 is equipped with a low pressure rectification column.
A part of the nitrogen gas accumulated in the upper part of 64 passes through the third reflux pipe 87.
Then, it is liquefied and passed through the fourth reflux pipe 88 to a low level.
In the liquid nitrogen reservoir 64a provided in the upper part of the pressure rectification tower 64
Sent in. This sent liquid nitrogen is liquid nitrogen
It overflows from the reservoir 64a and flows downward in the low pressure rectification column 64.
However, the compressed air rising from the bottom of the low pressure rectification tower 64 and the countercurrent
Contact with each other to cool and liquefy a part of it.
It That is, in this process, high boiling point components (acid
(Elementary component) is liquefied and accumulated at the bottom of the low-pressure rectification column 64, resulting in low boiling
Nitrogen gas as a point component accumulates in the upper part of the low pressure rectification column 64. Well
Also, the second main condenser 85 is in a depressurized state,
Liquid air stored at the bottom of the first main condenser 58
61 is atomized through a connecting pipe 90 with an expansion valve (not shown)
It is sent to and the nitrogen content in the liquid air is vaporized by the expansion valve.
Keep the internal temperature of the second main capacitor 85 at a very low temperature
There is. Then, it is sent to the second main condenser 85 as a spray.
Part of the liquid air entrapped is vaporized liquid air (N2: 60-6
5%, O 2: 33-38%) and accumulates in the upper part, etc.
The oxygen-rich ultra-low temperature liquid (N 2: 33-38%, O
2: 60 to 65%) 89 and the second main capacitor 85
It collects at the bottom of the. This oxygen rich ultra low
Nitrogen sent into the condenser 86 by the cold heat of the warm liquid 89
The raw gas is liquefied and passes through the fourth reflux pipe 88 as described above.
It is sent to the low pressure rectification tower 64 and
Collect. 91a accumulates on the upper part of the second main capacitor 85.
The vaporized liquid air is taken out and then supplied to the subcooler 67.
91b is the first exhaust gas extraction pipe for lowering the temperature here.
The vaporized liquid air cooled by the supercooler 67 is used as the main heat exchanger 51.
Guided inside and exchange heat with the compressed air sent there.
Second exhaust gas that is sent to the exhaust gas discharge pipe 94 after being brought to room temperature by
It is a discharge tube. 92 is the first reflux pipe 5 of the high-pressure rectification column 54
6 is a first nitrogen gas extraction pipe extending from the low pressure rectification column 6
Second nitrogen gas extraction pipe 93 extending from the third reflux pipe 87 of No. 4
Join up with. This combined nitrogen gas extraction pipe 95 (nitrogen in FIG.
(Corresponding to the gas extraction pipe 72) is a first nitrogen gas extraction pipe 92.
And the nitrogen gas taken out from the second nitrogen gas take-out pipe 93.
Is supplied to the subcooler 67, and heat is generated by the subcooler 67.
After raising the temperature by the exchange action, guide it into the main heat exchanger 51.
It The other parts are the same as those of the device shown in FIG.
Like parts are given the same reference numerals.

【0024】この装置は、低圧精留塔64においても、
つぎのようにして製品窒素ガスおよび酸素ガスを製造す
る。すなわち、高圧精留塔54の第1主コンデンサ58
の底部から液体窒素61を膨脹弁で断熱膨脹させたのち
第2主コンデンサ85に送り込み、液化して第2主コン
デンサ85の底部に液体空気89として溜めて第2主コ
ンデンサ85内蔵の凝縮器86を冷却する。一方、低圧
精留塔64の上部に溜まった窒素ガスを、第2主コンデ
ンサ85内蔵の凝縮器86に送り込み、液体空気89に
より冷却して液化し低圧精留塔64内の液体窒素溜め6
4a内に還流する。そして、低圧精留塔64内で気化液
体空気を液体窒素溜め64aから溢流する液体窒素と向
流的に接触させて冷却し、その一部を液化して低圧精留
塔64の底部に溜める。この過程において、窒素と酸素
の沸点の差により、圧縮空気中の高沸点成分である酸素
が液化し、窒素が気体のまま残る。そして、低圧精留塔
64の底部には酸素分が多い液体空気65が溜る。そし
て、高圧精留塔54の上部に溜まった窒素ガスおよび低
圧精留塔64の上部に溜まった窒素ガスを第1窒素ガス
取出管92および第2窒素ガス取出管93を介して取り
出し、そのまま製品として製品窒素ガス取出管73に送
る。また、低圧精留塔64の底部の液体空気65は、そ
のまま製品として取り出されるのではなく、その気化物
(酸素ガス)として製品酸素ガス取出管75から取り出
される。このようにして、高純度の窒素ガスと酸素ガス
が得られる。
This device is also applicable to the low pressure rectification tower 64.
Product nitrogen gas and oxygen gas are manufactured as follows. That is, the first main condenser 58 of the high pressure rectification column 54
After the liquid nitrogen 61 is adiabatically expanded from the bottom of the second main condenser 85 by the expansion valve, it is liquefied and stored as liquid air 89 at the bottom of the second main condenser 85, and the condenser 86 with the second main condenser 85 built therein. To cool. On the other hand, the nitrogen gas accumulated in the upper part of the low pressure rectification column 64 is sent to the condenser 86 with the second main condenser 85 built therein, cooled by the liquid air 89 to be liquefied, and the liquid nitrogen reservoir 6 in the low pressure rectification column 64 is liquefied.
Reflux into 4a. Then, in the low pressure rectification column 64, the vaporized liquid air is countercurrently contacted with the liquid nitrogen overflowing from the liquid nitrogen reservoir 64a to cool it, and a part of it is liquefied and stored at the bottom of the low pressure rectification column 64. . In this process, due to the difference between the boiling points of nitrogen and oxygen, oxygen, which is a high boiling point component in the compressed air, is liquefied and nitrogen remains as a gas. Then, liquid air 65 having a large oxygen content is accumulated at the bottom of the low pressure rectification column 64. Then, the nitrogen gas accumulated in the upper part of the high-pressure rectification column 54 and the nitrogen gas accumulated in the upper part of the low-pressure rectification column 64 are taken out through the first nitrogen gas take-out pipe 92 and the second nitrogen gas take-out pipe 93, and the product as it is. As the product nitrogen gas extraction pipe 73. The liquid air 65 at the bottom of the low-pressure rectification column 64 is not taken out as a product as it is, but taken out as a vaporized product (oxygen gas) from the product oxygen gas taking-out pipe 75. In this way, high-purity nitrogen gas and oxygen gas are obtained.

【0025】このものでも、図3に示す装置と同様の効
果を奏するうえ、各精留塔54,64にそれぞれ主コン
ザンサー58,85を設けているため、図3より純度の
高い窒素ガスを製造することができる。
Even in this case, the same effect as that of the apparatus shown in FIG. 3 is obtained, and since the main rectifiers 58 and 85 are provided in the respective rectification columns 54 and 64, respectively, nitrogen gas of higher purity than that in FIG. 3 is produced. can do.

【0026】図6は上記深冷液化分離ラインのさらに他
の例を示している。この例では、図3〜図5の各例にお
けに膨張タービン52の代わりに、寒冷源として液体窒
素を用い、これを直接に高圧精留塔54に導入してい
る。それ以外の部分は図3に示す装置と同様であり、同
様の部分には同じ符号を付している。このものでも、図
3のものと同様の効果を奏する。しかも、図3〜図5の
各例のように膨張タービン52を使用する場合には、こ
の膨張タービン52が回転速度が極めて大であって負荷
変動(製品窒素の取出量)に対する追従運転が困難であ
り、負荷変動時に製品の純度がばらつくという難点を有
している。しかも、この膨張タービン52が高速回転す
るため機械構造上高精度が要求され、かつ高価であり、
機構が複雑なため特別に養成した要員が必要であるとい
う難点をも有している。これに対し、この例のように液
体窒素を用いると、供給量のきめ細かい調節が可能であ
り、負荷変動に対するきめ細かな追従が可能であること
から、純度が安定して極めて純度の高い窒素ガス等を製
造しうるようになるという利点がある。しかも、装置と
して回転部がなくなるため、故障が全く生じないという
利点がある。
FIG. 6 shows still another example of the cryogenic liquefaction separation line. In this example, liquid nitrogen is used as a cold source instead of the expansion turbine 52 in each of FIGS. 3 to 5, and this is directly introduced into the high pressure rectification column 54. The other parts are the same as those of the device shown in FIG. 3, and the same parts are denoted by the same reference numerals. This one also has the same effect as that of FIG. Moreover, when the expansion turbine 52 is used as in each of the examples of FIGS. 3 to 5, the expansion turbine 52 has an extremely high rotation speed, and it is difficult to follow the load fluctuation (the amount of product nitrogen taken out). Therefore, there is a problem that the purity of the product varies when the load changes. Moreover, since the expansion turbine 52 rotates at high speed, high precision is required in terms of mechanical structure, and it is expensive.
It also has the drawback that specially trained personnel are required due to the complicated mechanism. On the other hand, when liquid nitrogen is used as in this example, it is possible to finely adjust the supply amount and to finely follow load fluctuations, so nitrogen gas with stable purity and extremely high purity, etc. Has the advantage of being able to be manufactured. Moreover, there is an advantage that no failure occurs at all because the rotating part is eliminated as the device.

【0027】なお、図3〜図5では、膨張タービン52
により得られた冷気を冷媒として低圧精留塔64に供給
しているが、これに限定するものではなく、高圧精留塔
54に供給するようにしてもよい。また、図6では、液
体窒素を冷媒として高圧精留塔54に供給しているが、
これに限定するものではなく、低圧精留塔64に供給す
るようにしてもよい。
In FIGS. 3-5, the expansion turbine 52 is shown.
The cold air obtained by the above is supplied to the low-pressure rectification column 64 as a refrigerant, but it is not limited to this and may be supplied to the high-pressure rectification column 54. Further, in FIG. 6, liquid nitrogen is supplied to the high-pressure rectification column 54 as a refrigerant,
The present invention is not limited to this and may be supplied to the low pressure rectification column 64.

【0028】[0028]

【発明の効果】以上のように、本発明の空気分離方法に
よれば、従来の方法では、触媒塔に供給される圧縮空気
中に水分が多量に含まれていたため、触媒反応には18
0℃以上の高温が必要であったのに対し、本発明では、
圧縮空気を触媒で接触させる前にその圧縮空気中の水分
の吸着除去がなされているため、135℃という低い温
度でも反応を進めることができる。また、高温に加熱す
ることによる触媒の劣化も上記反応温度の低下により、
従来の方法と比べて大幅に抑えることが可能である。し
たがって、触媒の優れた性能を長期にわたって維持する
ことができ、また、メンテナンスも長期間不要になる。
そのうえ、従来の方法のように、高温で用いる必要があ
る場合には、熱交換器の材質としてステンレス等の高価
なものを用いなければならないのに対して、本発明で
は、上記反応温度の低下によりアルミニウムのような安
価なものを用いることが可能となる。また、本発明の装
置によれば、本発明の方法を簡単に、かつ効率的に実現
することができる。
As described above, according to the air separation method of the present invention, in the conventional method, a large amount of water was contained in the compressed air supplied to the catalyst tower, so that the catalytic reaction was performed in 18
Whereas a high temperature of 0 ° C. or higher was required, in the present invention,
Since the water in the compressed air is adsorbed and removed before the compressed air is brought into contact with the catalyst, the reaction can proceed even at a temperature as low as 135 ° C. Further, deterioration of the catalyst due to heating to a high temperature is also caused by the decrease in the reaction temperature,
It is possible to significantly reduce it compared with the conventional method. Therefore, the excellent performance of the catalyst can be maintained for a long period of time, and maintenance is unnecessary for a long period of time.
Moreover, as in the conventional method, when it is necessary to use at a high temperature, an expensive material such as stainless steel must be used as the material of the heat exchanger, whereas in the present invention, the reaction temperature is lowered. This makes it possible to use an inexpensive material such as aluminum. Further, according to the apparatus of the present invention, the method of the present invention can be implemented simply and efficiently.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】上記実施例の作用を示す構成図である。FIG. 2 is a configuration diagram showing an operation of the above embodiment.

【図3】精製空気を窒素ガス,酸素ガス等に分離する装
置を示す構成図である。
FIG. 3 is a configuration diagram showing an apparatus for separating purified air into nitrogen gas, oxygen gas and the like.

【図4】上記分離する装置の他の例を示す構成図であ
る。
FIG. 4 is a configuration diagram showing another example of the separating device.

【図5】上記分離する装置のさらに他の例を示す構成図
である。
FIG. 5 is a configuration diagram showing still another example of the separating device.

【図6】上記分離する装置のさらに他の例を示す構成図
である。
FIG. 6 is a configuration diagram showing still another example of the separating device.

【図7】従来例を示す構成図である。FIG. 7 is a configuration diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1 空気圧縮機 2 第1熱交換器 3 クーラー 4 冷凍機 5 第2熱交換器 6 第1ヒーター 7 触媒塔 8,9 吸着塔 10 第2ヒーター 1 Air Compressor 2 1st Heat Exchanger 3 Cooler 4 Refrigerator 5 2nd Heat Exchanger 6 1st Heater 7 Catalyst Tower 8 and 9 Adsorption Tower 10 2nd Heater

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年5月19日[Submission date] May 19, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0003[Name of item to be corrected] 0003

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0003】[0003]

【発明が解決しようとする課題】そこで、上記原料空気
精製ラインにおいて、上記の一酸化炭素,水素を完全除
去するため、本発明者らは、図7に示すように、空気圧
縮機101と吸着塔107間に、パラジウム系触媒を内
蔵した触媒塔104を設け、この触媒塔104内のパラ
ジウム系触媒で圧縮空気中の一酸化炭素および水素を除
去するようにした空気分離装置を提案した。図におい
て、102は熱交換器であり、空気圧縮機101から取
り入れた圧縮空気と触媒塔104を経た空気を通して両
者を熱交換させることにより、空気圧縮機101の圧縮
によって昇温した圧縮空気をさらに昇温させるととも
に、触媒塔104を経た空気を降温させる作用をする。
103は熱交換器102で昇温させた圧縮空気を所定温
度(触媒塔104での反応に適した温度であり、180
℃以上の高温)にまで昇温させるヒーターであり、10
6はドレン分離器である。105は熱交換器102で降
温させた空気を所定温度(吸着塔107での吸着除去に
適した温度、通常、室温程度)にまで降温させるフロン
冷却器である。
Therefore, in order to completely remove the carbon monoxide and hydrogen in the raw material air purification line, the present inventors, as shown in FIG. A catalyst tower 104 containing a palladium-based catalyst therein was provided between the towers 107, and an air separation device was proposed in which the palladium-based catalyst in the catalyst tower 104 was used to remove carbon monoxide and hydrogen in the compressed air. In the figure, reference numeral 102 denotes a heat exchanger, which further exchanges heat between the compressed air taken in from the air compressor 101 and the air passing through the catalyst tower 104 so that the compressed air heated by the compression of the air compressor 101 is further heated. While raising the temperature, it acts to lower the temperature of the air that has passed through the catalyst tower 104.
Reference numeral 103 denotes a predetermined temperature of compressed air heated in the heat exchanger 102 (a temperature suitable for the reaction in the catalyst tower 104, 180
It is a heater that raises the temperature to a high temperature of ℃ or more)
6 is a drain separator. Reference numeral 105 denotes a CFC cooler that cools the air cooled by the heat exchanger 102 to a predetermined temperature (a temperature suitable for adsorption removal in the adsorption tower 107, usually about room temperature).

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0004】上記装置において、空気圧縮機101によ
り空気を圧縮し、この空気圧縮機101で圧縮され昇温
された空気を熱交換器102およびヒーター103で所
定温度に昇温して触媒塔104に送り、ついでこの触媒
塔104内のパラジウム系触媒と圧縮空気中の一酸化炭
素および水素を酸化反応させる。これにより、圧縮空気
中の一酸化炭素および水素を炭酸ガスおよび水分に変え
る。つぎに触媒塔104を経た空気を熱交換器102お
よびフロン冷却器105で所定温度に降温し、そののち
吸着塔107に送り込み、吸着塔107内の吸着剤(活
性アルミナ,ゼオライト等)で炭酸ガスおよび水分を吸
着除去するようにしている。このようにして得られた精
製空気を深冷液化分離用の低温精留塔(図示せず)へ供
給し、窒素,酸素,アルゴン等に分離する。
In the above apparatus, air is compressed by the air compressor 101, and the air compressed and heated by the air compressor 101 is heated to a predetermined temperature by the heat exchanger 102 and the heater 103, and then is sent to the catalyst tower 104. Then, the palladium-based catalyst in the catalyst tower 104 and the carbon monoxide and hydrogen in the compressed air are oxidized. As a result, carbon monoxide and hydrogen in the compressed air are converted into carbon dioxide gas and water. Next, the air passing through the catalyst tower 104 is cooled to a predetermined temperature by the heat exchanger 102 and the freon cooler 105, and then sent to the adsorption tower 107, and carbon dioxide gas is adsorbed by the adsorbent (activated alumina, zeolite, etc.) in the adsorption tower 107. And it is designed to absorb and remove water. The purified air thus obtained is supplied to a cryogenic rectification column (not shown) for cryogenic liquefaction separation and separated into nitrogen, oxygen, argon and the like.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 外部より取り入れた空気を圧縮して圧縮
空気とし、この圧縮空気を除去手段に導入して空気中の
炭酸ガスと水とを除去し、上記除去手段を経た空気を深
冷液化分離し窒素と酸素とに分ける空気分離方法であっ
て、上記圧縮空気を除去手段に導入するに先立って、空
気圧縮の際の圧縮熱によって昇温した圧縮空気を冷凍機
に通して圧縮空気中の水分を除去し、ついで、上記冷凍
機を経由した空気を触媒に接触させ空気中の一酸化炭素
および水素を酸化することを特徴とする空気分離方法。
1. The air taken in from the outside is compressed into compressed air, the compressed air is introduced into a removing means to remove carbon dioxide gas and water in the air, and the air passing through the removing means is chilled and liquefied. A method for separating air into nitrogen and oxygen, in which compressed air heated by the compression heat during air compression is passed through a refrigerator before being introduced into the removing means. Is removed, and then air passing through the refrigerator is brought into contact with a catalyst to oxidize carbon monoxide and hydrogen in the air.
【請求項2】 触媒が、パラジウム触媒である請求項1
記載の空気分離方法。
2. The catalyst is a palladium catalyst.
The described air separation method.
【請求項3】 外部より取り入れた空気を圧縮する空気
圧縮手段と、上記空気圧縮手段を経由した圧縮空気中の
炭酸ガスと水を除去する除去手段と、この除去手段を経
た空気を窒素と酸素とに液化分離する深冷液化分離手段
を備えた空気分離装置であって、上記空気圧縮手段と除
去手段との間に、空気圧縮手段による圧縮熱によって昇
温した圧縮空気を冷却して空気中の水分を除去する冷凍
機と、この冷凍機で水分除去された空気を加熱する加熱
手段と、この加熱手段により加熱されて昇温した空気中
の一酸化炭素および水素を酸化する触媒塔を設けたこと
を特徴とする空気分離装置。
3. An air compression means for compressing air taken from the outside, a removal means for removing carbon dioxide gas and water in the compressed air that has passed through the air compression means, and an air passed through the removal means for nitrogen and oxygen. An air separation device provided with a cryogenic liquefaction separation means for liquefying and separating into compressed air which is heated by the compression heat of the air compression means between the air compression means and the removal means to cool the inside of the air. A refrigerator for removing the water content, heating means for heating the air content removed by the refrigerator, and a catalyst tower for oxidizing carbon monoxide and hydrogen in the air heated by the heating means and heated. An air separation device characterized in that
【請求項4】 触媒が、パラジウム触媒である請求項1
記載の空気分離装置。
4. The catalyst is a palladium catalyst as claimed in claim 1.
Air separation device as described.
JP7101316A 1995-04-25 1995-04-25 Air separation method and apparatus used therefor Pending JPH08296961A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP7101316A JPH08296961A (en) 1995-04-25 1995-04-25 Air separation method and apparatus used therefor
TW084111904A TW286353B (en) 1995-04-25 1995-11-10 Air separation method and its device
KR1019960006907A KR100427138B1 (en) 1995-04-25 1996-03-15 Air separation method and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7101316A JPH08296961A (en) 1995-04-25 1995-04-25 Air separation method and apparatus used therefor

Publications (1)

Publication Number Publication Date
JPH08296961A true JPH08296961A (en) 1996-11-12

Family

ID=14297415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7101316A Pending JPH08296961A (en) 1995-04-25 1995-04-25 Air separation method and apparatus used therefor

Country Status (3)

Country Link
JP (1) JPH08296961A (en)
KR (1) KR100427138B1 (en)
TW (1) TW286353B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100784029B1 (en) * 2001-12-26 2007-12-07 주식회사 포스코 Apparatus for controling liquid air level in oxygen manufacturing device
WO2009137213A2 (en) * 2008-05-07 2009-11-12 Praxair Technology, Inc. Method and apparatus for separating air
US8549878B2 (en) 2005-06-23 2013-10-08 Air Water Inc. Method of generating nitrogen and apparatus for use in the same
KR20140090421A (en) * 2013-01-09 2014-07-17 주식회사 원익아이피에스 Apparatus for refining gas
GB2614358A (en) * 2022-07-20 2023-07-05 Peak Scient Instruments Limited Improvements in or relating to gas apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102259807B1 (en) * 2019-07-02 2021-06-03 주식회사 포스코 Adsorption device and air separation plant having the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100784029B1 (en) * 2001-12-26 2007-12-07 주식회사 포스코 Apparatus for controling liquid air level in oxygen manufacturing device
US8549878B2 (en) 2005-06-23 2013-10-08 Air Water Inc. Method of generating nitrogen and apparatus for use in the same
WO2009137213A2 (en) * 2008-05-07 2009-11-12 Praxair Technology, Inc. Method and apparatus for separating air
WO2009137213A3 (en) * 2008-05-07 2011-03-10 Praxair Technology, Inc. Method and apparatus for separating air
US8286446B2 (en) 2008-05-07 2012-10-16 Praxair Technology, Inc. Method and apparatus for separating air
KR20140090421A (en) * 2013-01-09 2014-07-17 주식회사 원익아이피에스 Apparatus for refining gas
GB2614358A (en) * 2022-07-20 2023-07-05 Peak Scient Instruments Limited Improvements in or relating to gas apparatus
GB2614358B (en) * 2022-07-20 2024-01-10 Peak Scient Instruments Limited Improvements in or relating to gas apparatus

Also Published As

Publication number Publication date
KR960037101A (en) 1996-11-19
KR100427138B1 (en) 2004-07-12
TW286353B (en) 1996-09-21

Similar Documents

Publication Publication Date Title
JPH0313505B2 (en)
JPH06207775A (en) Low-temperature air separating method for manufacturing nitrogen having no carbon monoxide
JPS6146747B2 (en)
JPS6148072B2 (en)
JPH08291967A (en) Method and apparatus for separating the air
JPH08296961A (en) Air separation method and apparatus used therefor
JPS6158747B2 (en)
JPH0633934B2 (en) Air separation device
US4530708A (en) Air separation method and apparatus therefor
JP3203181B2 (en) Oxygen production method associated with nitrogen production equipment
JP3532293B2 (en) Air separation equipment
JP2001033155A (en) Air separator
JP2672250B2 (en) High-purity nitrogen gas production equipment
JPH0882476A (en) Apparatus for producing high-purity nitrogen gas
JPH0719725A (en) High purity nitrogen gas preparing apparatus
JP2540243B2 (en) High-purity nitrogen gas production equipment
JP2997939B2 (en) Recovery and utilization of evaporative gas in low-temperature storage tank
JPH06281322A (en) Manufacturing apparatus for high purity nitrogen and oxygen gas
JP3021389B2 (en) High-purity nitrogen gas production equipment
JP3732774B2 (en) Cryogenic liquefaction separator
JPS62116887A (en) Production unit for high-impurity nitrogen gas
CN1164014A (en) Air separation method and its apparatus
JP2540244B2 (en) Nitrogen gas production equipment
JP3532466B2 (en) Air separation device
JPH05231763A (en) Ultra-high purity nitrogen manufacturing device and its actuating method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010417