JPH0789012B2 - Carbon monoxide separation and purification equipment - Google Patents

Carbon monoxide separation and purification equipment

Info

Publication number
JPH0789012B2
JPH0789012B2 JP61312463A JP31246386A JPH0789012B2 JP H0789012 B2 JPH0789012 B2 JP H0789012B2 JP 61312463 A JP61312463 A JP 61312463A JP 31246386 A JP31246386 A JP 31246386A JP H0789012 B2 JPH0789012 B2 JP H0789012B2
Authority
JP
Japan
Prior art keywords
gas
raw material
material gas
carbon monoxide
liquefied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61312463A
Other languages
Japanese (ja)
Other versions
JPS63163771A (en
Inventor
明 吉野
Original Assignee
大同ほくさん株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大同ほくさん株式会社 filed Critical 大同ほくさん株式会社
Priority to JP61312463A priority Critical patent/JPH0789012B2/en
Publication of JPS63163771A publication Critical patent/JPS63163771A/en
Publication of JPH0789012B2 publication Critical patent/JPH0789012B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0223H2/CO mixtures, i.e. synthesis gas; Water gas or shifted synthesis gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0252Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0261Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0266Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/08Separating gaseous impurities from gases or gaseous mixtures or from liquefied gases or liquefied gaseous mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/04Recovery of liquid products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/14Carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/904External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by liquid or gaseous cryogen in an open loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、製鉄所の副生ガス,コークス炉ガスおよび
プロパン,ブタン等を酸化させて製造された一酸化炭素
製造用ガス等から一酸化炭素を分離する一酸化炭素分離
精製装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a carbon monoxide-producing gas or the like produced by oxidizing a by-product gas of a steel mill, a coke oven gas, propane, butane, or the like. The present invention relates to an apparatus for separating and purifying carbon monoxide for separating carbon.

〔従来の技術〕[Conventional technology]

一酸化炭素(CO)は反応性に富んでいるため、合成化学
の原料として使用されており、特に近年では、C1化学の
中で最も重要な炭素源と考えられている。上記COは、製
鉄所をはじめ工場の副生ガス中に多量に含まれているも
のであり、従来は、せいぜい燃料として熱エネルギーが
回収されているにすぎない。しかし、近年のCOに対する
需要の高まりから上記工場副生ガスからCOを分離回収す
る装置が開発されている。また、最近では、上記のよう
なCOの重要性に鑑み、プロパン,ブタン等を酸化してつ
くられたCO原料ガスからCOを分離回収する装置も提案さ
れている。これらの装置には主として、ゼオライト等の
吸着剤を使用し、この吸着剤によってCOを濃縮して回収
する装置と、COを選択的に吸収するコソーブ(COSORB)
液を使用する装置の2種類の装置が用いられている。し
かしながら、上記吸着剤を使用する吸着分離装置(PSA
法に基づく)は、装置自体に多数の弁を必要とすると同
時に、吸着剤を弁操作によつて切り換え、再生使用する
必要があり、装置全体が複雑になるうえ、煩雑な弁操作
を必要とするという難点がある。また、原料ガスからの
COの回収率が低いため、廃ガスを再度原料ガスに混合し
てCOの分離回収を図らなければならず、ランニングコス
トが高くなり製品COのコストが高くなるという欠点も有
している。そのうえ、純度が99.5%程度の製品COしか得
られず高純度品が得られないという難点がある。
Since carbon monoxide (CO) is highly reactive, it is used as a raw material for synthetic chemistry, and in recent years, it has been considered to be the most important carbon source in C 1 chemistry. The above-mentioned CO is contained in a large amount in the by-product gas of steel plants and other factories, and conventionally, at most, thermal energy is recovered as fuel. However, due to the increasing demand for CO in recent years, a device for separating and recovering CO from the above factory by-product gas has been developed. Further, in recent years, in view of the importance of CO as described above, an apparatus for separating and recovering CO from a CO source gas produced by oxidizing propane, butane, etc. has been proposed. An adsorbent such as zeolite is mainly used for these devices, and CO adsorbent concentrates and collects CO, and COSORB that selectively absorbs CO (COSORB)
Two types of devices are used, devices that use liquids. However, an adsorption separation device (PSA
(Based on the law) requires a large number of valves in the device itself, and at the same time, the adsorbent must be switched by valve operation and regenerated, which complicates the entire device and requires complicated valve operation. There is a difficulty to do it. Also, from the source gas
Since the CO recovery rate is low, it is necessary to mix waste gas with the raw material gas again to separate and recover CO, which has the drawback of increasing running costs and increasing product CO costs. In addition, there is a drawback that only high-purity CO can be obtained because only CO with a purity of about 99.5% can be obtained.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

コソーブ法を実施する装置は、上記PSA装置のような多
数の弁を要しないという利点を備えており、例えば、転
炉ガス等の製鉄所副生ガスを対象としてCOの分離回収を
実現する。上記転炉ガスの組成は、CO;68〜72vol%,C
O2;13〜17vol%,N2;11〜16vol%,H2;0.8〜1.3vol%,O2;
0.3〜0.5vol%であり、それ以外に、アンモニア,硫化
水素,二酸化硫黄等の微量成分と、ダストならびに7%
程度の水分を含んでいる。このようなガスを対象とする
コソーブ装置の一例を第3図に示す。図において、60は
転炉ガスからなる原料ガスの供給源、61は圧縮機で、上
記原料ガスを圧縮し昇圧させる。この圧縮機61におい
て、ダストは圧縮機61の油に捕集され、この油を冷却す
るための油循環系に設置されているフイルタによつて除
去される。62はブライン冷却器で、昇圧された原料ガス
を予備脱湿する。63は活性炭を充填した吸着筒で原料ガ
スの硫黄,アンモニアを吸着除去する。64は合成ゼオラ
イトを充填した2個1組の吸着筒で、水分および炭酸ガ
ス等を吸着除去する。この2個1組の吸着筒64は交互に
切り換え使用される。65は吸収塔で、上記不純物除去お
よび脱湿された原料ガスを、塔上部から流下するコソー
ブ液と向流接触させて原料ガス中のCOをコソーブ液に選
択的に吸収させるようになつている。上記コソーブ液は
トルエンにCuAlCl4を溶解したもので、つぎのような反
応により、低温下でCOを選択的に吸収し、高温下におい
てCOを放散する。
An apparatus for carrying out the Cossorb method has an advantage that it does not require a large number of valves unlike the PSA apparatus described above, and for example, CO separation and recovery is realized for a steel mill byproduct gas such as a converter gas. The composition of the converter gas is CO; 68-72 vol%, C
O 2 ; 13 to 17 vol%, N 2 ; 11 to 16 vol%, H 2 ; 0.8 to 1.3 vol%, O 2 ;
0.3-0.5vol%, other than that, trace components such as ammonia, hydrogen sulfide, sulfur dioxide, dust and 7%
Contains some moisture. FIG. 3 shows an example of a co-sorbing device for such a gas. In the figure, reference numeral 60 is a supply source of a raw material gas composed of a converter gas, and 61 is a compressor, which compresses and raises the pressure of the raw material gas. In this compressor 61, dust is collected in the oil of the compressor 61 and removed by a filter installed in an oil circulation system for cooling this oil. Reference numeral 62 denotes a brine cooler, which preliminarily dehumidifies the pressurized raw material gas. 63 is an adsorption cylinder filled with activated carbon for adsorbing and removing the raw material gases sulfur and ammonia. Reference numeral 64 is a set of two adsorption columns filled with synthetic zeolite for adsorbing and removing water and carbon dioxide gas. The pair of suction cylinders 64 are alternately switched and used. Reference numeral 65 denotes an absorption tower, in which the raw material gas from which the impurities have been removed and dehumidified is brought into countercurrent contact with the cosorb liquid flowing down from the upper part of the tower so that CO in the raw material gas is selectively absorbed by the cosorb liquid. . The Cossorb solution is a solution of CuAlCl 4 dissolved in toluene, and selectively absorbs CO at a low temperature and emits CO at a high temperature by the following reaction.

66は熱交換器で、上記吸収塔65内でCOを選択吸収し塔65
の底部から送出されたコソーブ液を、放散塔67の底部か
ら送出される液と熱交換させて加熱する。上記放散塔67
は、塔頂から上記CO吸収コソーブ液を流下させ、リボイ
ラ68の加熱により発生したトルエン蒸気と接触させ、CO
吸収コソーブ液中のCOを放散させる。ここで、COを放散
したコソーブ液は、放散塔67の底部から熱交換器66およ
び水冷却器69を経て冷却され再生されて吸収塔65の塔頂
へ戻される。吸収塔65の上部からは廃ガスが送出され、
ブライン冷却器70で−10℃まで冷却されてトルエンを回
収され、高炉ガス等の配管系へ送出される。そして、上
記放散塔67の上部からは製品CO(ガス)が取り出され
る。この場合、コソーブ液中には少量のCO2,N2,H2,O2
溶解されるため、上記放散塔67から得られる製品COに
は、これらが混入されている。71は水冷却器であり、上
記製品COを冷却しトルエンを回収する。72はコンプレツ
サーで、上記製品COを昇圧させる。73はブライン冷却器
で、上記製品COを−10℃まで冷却してトルエンを回収す
る。74は製品COの貯槽であり、適宜に製品COを送出す
る。
66 is a heat exchanger that selectively absorbs CO in the absorption tower 65
The cossorb liquid sent from the bottom of the heat exchanger is heated by exchanging heat with the liquid sent from the bottom of the stripping tower 67. Dispersion tower 67 above
Is the CO-absorbing COSORB liquid flowing down from the top of the tower, contacting with the toluene vapor generated by heating the reboiler 68, CO
Dissipates CO in absorbed cosorb liquid. Here, the COSORB liquid that has diffused CO is cooled and regenerated from the bottom of the diffusion tower 67 via the heat exchanger 66 and the water cooler 69 and returned to the top of the absorption tower 65. Waste gas is sent out from the upper part of the absorption tower 65,
It is cooled to −10 ° C. by the brine cooler 70, and toluene is recovered and sent to a piping system such as blast furnace gas. Then, the product CO (gas) is taken out from the upper part of the diffusion tower 67. In this case, since a small amount of CO 2 , N 2 , H 2 , and O 2 is dissolved in the cossorb liquid, these are mixed in the product CO obtained from the stripping tower 67. 71 is a water cooler, which cools the above product CO and recovers toluene. 72 is a compressor, which boosts the pressure of the product CO. A brine cooler 73 cools the above product CO to -10 ° C to recover toluene. 74 is a storage tank for product CO, and sends out product CO as appropriate.

しかしながら、上記の装置では、必然的に微量の不純分
が製品CO中に混入するため、超高純度の一酸化炭素の回
収は実質的に不可能であり99.5%程度のものしか得られ
ない。また、この装置も製品COの回収率が低いという欠
点を有している。
However, in the above-mentioned apparatus, trace amounts of impurities are inevitably mixed in the product CO, so that it is practically impossible to recover ultra-high purity carbon monoxide, and only about 99.5% is obtained. In addition, this device also has a drawback that the recovery rate of product CO is low.

この発明は、このような事情に鑑みなされたもので、超
高純度の一酸化炭素を高回収率で回収しうる一酸化炭素
分離精製装置の提供をその目的とする。
The present invention has been made in view of such circumstances, and an object thereof is to provide a carbon monoxide separation / purification device capable of recovering ultrahigh-purity carbon monoxide at a high recovery rate.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するため、この発明の一酸化炭素分離
精製装置は、一酸化炭素を含む原料ガスを圧縮する圧縮
手段と、上記原料ガス中の酸素を除去する除去手段と、
この酸素が除去された原料ガスを冷却する熱交換手段
と、上記原料ガス中の水分を除去する除去手段と、上記
原料ガス中の炭酸ガスを液化して分離除去する除去手段
と、上記酸素,水分および炭酸ガスが除去された原料ガ
スを冷却するための熱交換手段と、沸点の差により原料
ガス中の一酸化炭素を液化して内部に溜め不純分ガスを
分離して排出する精留塔と、上記熱交換手段から上記精
留塔に原料ガスを導く原料ガス供給路と、装置外から液
体窒素の供給を受けこれを貯蔵する液体窒素貯蔵手段
と、この液体窒素貯蔵手段内の液体窒素を一酸化炭素液
化の寒冷源として上記精留塔に導く導入路と、上記精留
塔内で寒冷源としての作用を終え気化された窒素ガスを
取り出す取出路と、上記精留塔内の貯溜液化一酸化炭素
を製品一酸化炭素として取り出す取出路および上記貯溜
液化一酸化炭素の気化物を製品一酸化炭素として取り出
す取出路の少なくとも一方を備えているという構成をと
る。
In order to achieve the above object, the apparatus for separating and purifying carbon monoxide according to the present invention is a compression unit that compresses a raw material gas containing carbon monoxide, and a removing unit that removes oxygen in the raw material gas.
A heat exchanging means for cooling the raw material gas from which oxygen has been removed, a removing means for removing water in the raw material gas, a removing means for liquefying and separating and removing carbon dioxide gas in the raw material gas, the oxygen, A heat exchange means for cooling the raw material gas from which water and carbon dioxide have been removed, and a rectification column for liquefying carbon monoxide in the raw material gas due to the difference in boiling points and storing it inside to separate and discharge the impurity gas A raw material gas supply path for introducing a raw material gas from the heat exchange means to the rectification column, a liquid nitrogen storage means for receiving liquid nitrogen supplied from the outside of the apparatus and storing it, and a liquid nitrogen inside the liquid nitrogen storage means To the rectification tower as a cold source for liquefying carbon monoxide, an extraction path for taking out the vaporized nitrogen gas after finishing the action as a cold source in the rectification tower, and a storage in the rectification tower. Liquefied carbon monoxide as product carbon monoxide Takeout path for taking out and adopt a configuration that includes at least one of the take-out path taking out the vaporization of the reservoir liquefied carbon monoxide as a product of carbon monoxide.

すなわち、この装置は、深冷液化分離法を応用したもの
であり、圧縮手段,それぞれの除去手段,熱交換手段を
経た原料ガスを、熱交換手段に導入して超低温に冷却
し、これを精留塔に導き、その内部においてさらに液体
窒素貯蔵手段から供給される液体窒素の冷熱でさらに冷
却して、原料ガス中のCOを液化するとともに、不純ガス
を気体のまま製品ガスおよび廃ガスに分離して除去し、
これを精留塔から個々に排出すると同時に、液化COをそ
のまま取り出すようにするため、超高純度の一酸化炭素
を回収することが可能になる。また、排出される不純分
ガス中のN2は製品ガスとして取り出すことが可能にな
る。すなわち、この装置は、上記コソーブ装置のような
コソーブ液の加熱,冷却によるCOの吸収,放散を利用し
たり、PSA装置のような吸着剤による吸収を利用するも
のではないため、コソーブ液中にCO2,N2等の微量不純ガ
スが溶解したり、吸着剤の吸着不良に起因する不純ガス
の混入等を生じず、したがつて、それら不純溶解分に起
因する製品一酸化炭素の純度阻害現象を生じない。
That is, this apparatus is an application of the cryogenic liquefaction separation method, in which the raw material gas that has passed through the compression means, the respective removal means, and the heat exchange means is introduced into the heat exchange means and cooled to an ultralow temperature, and this is refined. It is led to a distillation column, and inside it is further cooled by the cold heat of liquid nitrogen supplied from liquid nitrogen storage means to liquefy the CO in the raw material gas and separate the impure gas as a gas into a product gas and a waste gas. Then remove
Since this is discharged individually from the rectification tower and the liquefied CO is taken out as it is, ultrahigh-purity carbon monoxide can be recovered. Further, N 2 in the discharged impurity gas can be taken out as a product gas. That is, this device does not utilize the absorption and desorption of CO by heating and cooling of the cosorb liquid as in the above-mentioned cosorb device, or the absorption by the adsorbent as in the PSA device. Trace amounts of impure gases such as CO 2 and N 2 do not dissolve, and impure gases due to poor adsorption of the adsorbent do not mix, thus impairing the purity of the product carbon monoxide caused by these impure dissolved components. No phenomenon occurs.

つぎに、この発明を実施例にもとづいて詳しく説明す
る。
Next, the present invention will be described in detail based on examples.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示している。図におい
て、1は原料ガスの吸入貯蔵タンク、2は原料ガス中の
塵埃を補集し除去するフイルター、3は原料ガスを圧縮
し昇圧させる圧縮機である。4はPt触媒を内蔵する触媒
塔であり、圧縮機3により圧縮された原料ガスに水素を
添加し、この水素と原料ガス中の酸素とを250℃程度の
温度雰囲気中で反応させ水として原料ガス中から除去す
る。5は原料ガス(250℃)を後述する廃ガス(低温)
と接触させ冷却する再生用熱交換器、6は水冷により原
料ガスを冷却する水系熱交換器、7は原料ガス中の水分
を分離除去するドレン分離器である。このドレン分離器
7にはドレン排水を排出する排出パイプ8が連結されて
いる。9は排出パイプ8に設けられた開閉弁である。10
は酸素および水が除去された原料ガスを水分吸着筒(ド
ライヤー)11に送る原料ガス送入パイプであり、開閉弁
12a,12bを備えている。吸着筒11は2個1組からなり、
内部に吸着剤としてのアルミナゲルが充填され、内部を
通過する原料ガス中の残存水分およびエタン,プロパ
ン,アセチレン等の炭化水素を吸着除去するようになつ
ている。13aは吸着筒11で水分が吸着除去された原料ガ
スを送出する原料ガス送出パイプで開閉弁12c,12dを備
えている。この2個1組の吸着筒11は開閉弁12a,12b,12
c,12dを切り換えることにより8時間ごとに交互に使用
できるようになつている。38cは上記吸着筒11に廃ガス
からなる再生ガスを送入する送入パイプで弁12g,12hを
備えている。また、38dは開閉弁12e,12fを備えた排出パ
イプで廃ガス放出パイプ38bに連通しており、再生処理
済の再生ガスを大気中に放出するようになつている。こ
の場合、上記2個1組の吸着筒11は、一方が水等の吸着
動作をしているときは、他方が上記開閉弁12g,12h,12e,
12fの開閉により再生される。14は上記吸着筒11で水分
が吸着除去された原料ガスを低温に冷却する熱交換器、
13bは上記熱交換器14を経た原料ガスをもう1個の熱交
換器15に送る供給パイプである。この熱交換器15内には
フロン冷凍器16から送られてくる冷媒フロンガスが循環
しており、このフロンガスが、原料ガスを冷却すること
により原料ガス中に含有するガスのうち沸点の高いCO2
ガスを液化するようになつている。13cは供給パイプで
あり、液化生成した液化CO2を含む原料ガスを遠心分離
器17に送入する。遠心分離器17は、原料ガス中の液化CO
2ガスを遠心分離し、パイプ18を介して液化CO2タンク19
に送るようになつている。20はパイプ18に設けられた開
閉弁である。21は合成ゼオライト(モレキユラシーブ)
内蔵の2個1組の吸着筒であり、パイプ13dから送入さ
れる原料ガスに、なお残存するCO2等の不純ガス分を吸
着除去する。22aは上記のようにしてO2,H2O,CO2等が吸
着除去された原料ガスを熱交換器23に送る原料ガス供給
パイプである。上記熱交換器23は上記原料ガスを超低温
に冷却し低温原料ガス送入パイプ22bを介して精留塔24
に送入する。上記精留塔24は、凝縮器25内蔵の分縮器部
26と、中圧の塔部27と、下部凝縮器部28とからなり、中
圧の塔部27内には多数の精留棚29が配設されている。そ
して、上記下部凝縮器部28に、上記熱交換器23から延び
る低温原料ガス送入パイプ22bが開口しており、超低温
に冷却された原料ガスを送入するようになつている。こ
の下部凝縮器部28内において、O2,H2O,CO2が除去され殆
どがCOガスとなつている原料ガス(不純分としてN2,H2
を含む)は、CO分の殆どが液化され、またN2分も液化さ
れ貯溜液34となるが、それらよりも低沸点のH2は液化さ
れず気体状態で残存する。このH2ガスは、下部凝縮器部
28の上部に連結されたH2取出パイプ30を介して外部へ放
出される。一方、液化N2を含む液化CO(貯溜液34)は、
導入パイプ31を介して塔部27内の上部側に送入されるよ
うになつている。32は導入パイプ31に設けられた膨脹弁
である。33は液面計であり、上記下部凝縮器部28におけ
る貯溜液34の液面が一定レベルを保つようその液面に応
じて膨脹弁32を開閉,開度制御するようになつている。
塔部27内においては、液化COを主成分とする貯溜液34が
気液混合状態で吹き込まれ、塔部27内の精留作用によ
り、沸点の高いCOが液化されて塔部27内を下方に流下
し、塔部27の下側に製品液化COとして貯溜され、H2,N2
等の不純ガスとCOの残部が混合気体状態で塔部27の上方
に上昇する。35は上記塔部27の上部と分縮器部26内の凝
縮器25とを接続する第1の還流液パイプであり、上記塔
部27の上方に上昇した混合ガスを凝縮器25内に送入する
ようになつている。36は遮蔽板であり、上記混合気体を
第1の還流液パイプ35に導く流路を形成し、この流路を
流れる混合ガスの移動により塔部27の塔頂に溜る不純ガ
ス(H2,N2)を混合ガスに随伴させ不純ガスの塔頂滞留
を防止する。上記凝縮器25内においては、沸点の差によ
りCOが液化され、N2,H2等が気体状態で凝縮器25から上
方に延びる廃ガスパイプ37aを経て除去されるようにな
つている。この廃ガスパイプ37aは、廃ガスパイプ37b,3
7cに連通しており、廃ガスを熱交換器23,14を経由させ
て加熱し常温近傍の温度にしたのち、さらに再生用熱交
換器5に送るようになつている。そして、上記再生用熱
交換器5でさらに加熱された廃ガス(N2ガスが主成分)
は、パイプ38aを経て、2個1組の吸着筒11のうち再生
側の吸着筒11に、内蔵吸着剤の水分を除去し、吸着剤を
再生させるパージガスとして吹き込まれ、吸着剤の再生
後は廃ガス放出パイプ38bから大気中に放出される。39
は上記精留塔24の凝縮器25の下部から塔部27の上部内に
延びる第2の還流板パイプであり、上記凝縮器25の底部
に溜る液化COを塔部27内の受け皿40内に還流液として流
下させるようになつている。この受け皿40内に流下した
液化COは溢流して塔部27内を還流液として下方に流れ
る。41aは取出パイプで、塔部27の下部側に連通され、
塔部27の底部の貯留液体COの気化により生成した気体CO
を製品COガスとして取り出す。このパイプ41aは、パイ
プ41bを介してCOガス取出パイプ41cに連通しており、製
品COガスを、熱交換器23,14を経由させ熱交換して冷却
したのち、COガス取出パイプ41cから外部に製品として
供給するようになつている。42は装置外から液体窒素の
供給を受け、これを貯蔵する液体窒素貯槽であり、内部
の液体窒素を導入路パイプ43を経由させて精留塔24の分
縮器部26内に送入し、分縮器部26内における凝縮器25の
寒冷源とする。44は送入液体窒素である。45aは精留塔2
4の分縮器部26内において寒冷としての作用を終え気化
した窒素を送出する送出パイプであつて、送出パイプ45
bを介してN2ガス取出パイプ45cと連通しており、気化し
た窒素を、熱交換器23,14を経由させて熱交換させたの
ち,N2ガス取出パイプ45cから外部に送出し使用に供する
ようになつている。46は上記精留塔24の塔部27における
底部に溜まつた液化CO47を製品COとして取り出す取出パ
イプである。48は製品COの貯蔵タンクであり、この貯蔵
タンク48から製品COが適宜取り出される。上記取出パイ
プ46には、調節弁49が設けられている。50は液面調節計
であり、上記精留塔塔部27における底部の貯溜液化CO47
の液面が一定レベルを保つよう、その液面に応じて調節
弁49を制御するようになつている。また、上記導入路パ
イプ43に設けられた調節弁51も、上記精留塔24の分縮器
部26内の液体窒素の液面が一定レベルを保つよう、液面
調節計52で制御されるようになつている。なお、上記熱
交換器14,吸着筒21および上記熱交換器23精留塔24は、
それぞれ図示の一点鎖線で示すように、真空断熱容器53
および54内に収容されている。
FIG. 1 shows an embodiment of the present invention. In the figure, 1 is a suction / storage tank for raw material gas, 2 is a filter for collecting and removing dust in the raw material gas, and 3 is a compressor for compressing and raising the pressure of the raw material gas. Reference numeral 4 denotes a catalyst tower containing a Pt catalyst, in which hydrogen is added to the raw material gas compressed by the compressor 3, and the hydrogen and oxygen in the raw material gas are reacted in an atmosphere at a temperature of about 250 ° C. Remove from gas. 5 is a waste gas (low temperature) which is a raw material gas (250 ° C) described later.
A heat exchanger for regeneration, which is brought into contact with and cooled by, a water-based heat exchanger 6 which cools the raw material gas by water cooling, and a drain separator 7 which separates and removes water in the raw material gas. A discharge pipe 8 for discharging drain drainage is connected to the drain separator 7. Reference numeral 9 is an opening / closing valve provided in the discharge pipe 8. Ten
Is a raw material gas inlet pipe for sending the raw material gas from which oxygen and water have been removed to the moisture adsorption column (dryer) 11, and an on-off valve
It has 12a and 12b. The adsorption cylinders 11 consist of two pieces,
Alumina gel as an adsorbent is filled in the interior to adsorb and remove residual water and hydrocarbons such as ethane, propane, and acetylene in the raw material gas passing through the interior. Reference numeral 13a is a raw material gas delivery pipe for delivering the raw material gas from which water has been adsorbed and removed by the adsorption cylinder 11, and is provided with open / close valves 12c and 12d. This pair of two adsorption cylinders 11 has open / close valves 12a, 12b, 12
By switching c and 12d, it can be used alternately every 8 hours. Reference numeral 38c is a feed pipe for feeding a regeneration gas consisting of waste gas into the adsorption cylinder 11 and is provided with valves 12g and 12h. Further, 38d is an exhaust pipe provided with open / close valves 12e, 12f, which communicates with the waste gas discharge pipe 38b, and discharges the regenerated regenerated gas into the atmosphere. In this case, when one of the two adsorption cylinders 11 is adsorbing water or the like, the other of the adsorption cylinders 11 has the other of the on-off valves 12g, 12h, 12e,
Played by opening and closing 12f. 14 is a heat exchanger for cooling the raw material gas from which water has been adsorbed and removed by the adsorption column 11 to a low temperature,
Reference numeral 13b is a supply pipe for sending the raw material gas having passed through the heat exchanger 14 to another heat exchanger 15. Refrigerant Freon gas sent from Freon refrigerator 16 is circulated in this heat exchanger 15, and this Freon gas has a high boiling point CO 2 among the gases contained in the raw material gas by cooling the raw material gas.
It is designed to liquefy gas. Reference numeral 13c is a supply pipe, which feeds the raw material gas containing the liquefied liquefied CO 2 into the centrifugal separator 17. The centrifuge 17 uses liquefied CO in the source gas.
2 Gas is centrifuged and liquefied CO 2 tank 19 via pipe 18
To send to. Reference numeral 20 is an opening / closing valve provided in the pipe 18. 21 is a synthetic zeolite (Morekiura Sieve)
It is a built-in set of two adsorption cylinders that adsorb and remove the remaining impure gas such as CO 2 from the raw material gas fed from the pipe 13d. Reference numeral 22a is a raw material gas supply pipe for sending the raw material gas from which O 2 , H 2 O, CO 2 and the like have been adsorbed and removed as described above to the heat exchanger 23. The heat exchanger 23 cools the raw material gas to an ultra-low temperature, and a rectification tower 24 through a low temperature raw material gas feed pipe 22b.
Send to. The rectification tower 24 is a partial condenser unit with a built-in condenser 25.
26, a medium pressure tower section 27, and a lower condenser section 28, and a large number of rectification shelves 29 are arranged in the medium pressure tower section 27. Then, a low temperature raw material gas feed pipe 22b extending from the heat exchanger 23 is opened in the lower condenser section 28 so as to feed the raw material gas cooled to an ultra low temperature. In this lower condenser section 28, a raw material gas in which O 2 , H 2 O, and CO 2 are removed and most of which is CO gas (N 2 , H 2 as impurities)
Most of the CO content is liquefied, and the N 2 content is also liquefied to become the stored liquid 34, but H 2 having a lower boiling point than these remains as a gas without being liquefied. This H 2 gas is
It is discharged to the outside through a H 2 extraction pipe 30 connected to the upper part of 28. On the other hand, liquefied CO (liquefied liquid 34) containing liquefied N 2 is
It is adapted to be fed to the upper side in the tower section 27 via the introduction pipe 31. Reference numeral 32 is an expansion valve provided in the introduction pipe 31. A liquid level gauge 33 is adapted to open and close the expansion valve 32 in accordance with the liquid level of the stored liquid 34 in the lower condenser portion 28 so as to maintain a constant level, and to control the opening degree.
In the tower section 27, a stored liquid 34 containing liquefied CO as a main component is blown in a gas-liquid mixed state, and CO having a high boiling point is liquefied by the rectification action in the tower section 27 to move downward in the tower section 27. Flowing down to the bottom of the tower 27 and stored as product liquefied CO, and H 2 , N 2
The remaining impurities such as impure gas and CO rise above the tower section 27 in a mixed gas state. Reference numeral 35 denotes a first reflux liquid pipe that connects the upper part of the tower section 27 and the condenser 25 in the partial condenser section 26, and sends the mixed gas rising above the tower section 27 into the condenser 25. It is supposed to enter. Reference numeral 36 denotes a shielding plate, which forms a flow path for guiding the mixed gas to the first reflux liquid pipe 35, and the impurity gas (H 2 , N 2 ) is mixed with the mixed gas to prevent impure gas from staying at the top of the column. In the condenser 25, CO is liquefied due to the difference in boiling points, and N 2 , H 2 and the like are removed in a gaseous state through the waste gas pipe 37a extending upward from the condenser 25. This waste gas pipe 37a is a waste gas pipe 37b, 3
It communicates with 7c, and after the waste gas is heated via the heat exchangers 23 and 14 to bring it to a temperature near room temperature, it is further sent to the heat exchanger 5 for regeneration. Then, the waste gas (N 2 gas is the main component) that is further heated in the regeneration heat exchanger 5
Is blown as a purge gas for removing the moisture of the built-in adsorbent and regenerating the adsorbent through the pipe 38a into the adsorbing cylinder 11 on the regeneration side of the pair of the adsorbing cylinders 11, and after the adsorbent is regenerated, It is discharged into the atmosphere from the waste gas discharge pipe 38b. 39
Is a second reflux plate pipe extending from the lower part of the condenser 25 of the rectification tower 24 into the upper part of the tower part 27, and the liquefied CO accumulated in the bottom part of the condenser 25 is placed in the tray 40 in the tower part 27. It is designed to flow down as a reflux liquid. The liquefied CO flowing down into the tray 40 overflows and flows downward in the tower section 27 as a reflux liquid. 41a is an extraction pipe, which is connected to the lower side of the tower 27,
Gas CO generated by vaporization of the stored liquid CO at the bottom of the tower 27
Is taken out as product CO gas. This pipe 41a communicates with the CO gas extraction pipe 41c via the pipe 41b, and after the product CO gas is cooled by exchanging heat with the heat exchangers 23 and 14, the CO gas is extracted from the CO gas extraction pipe 41c to the outside. To be supplied as a product to. 42 is a liquid nitrogen storage tank that receives supply of liquid nitrogen from the outside of the device and stores the liquid nitrogen, and the liquid nitrogen inside is sent into the dephlegmator section 26 of the rectification column 24 via the introduction path pipe 43. The cold source of the condenser 25 in the partial condenser unit 26. 44 is the liquid nitrogen introduced. 45a is rectification tower 2
A delivery pipe for delivering vaporized nitrogen after the action as cold in the demultiplexer unit 26 of 4 is delivered by the delivery pipe 45.
It is in communication with the N 2 gas extraction pipe 45c via b, and after vaporized nitrogen is heat-exchanged via the heat exchangers 23 and 14, it is sent to the outside from the N 2 gas extraction pipe 45c for use. It is ready to serve. Reference numeral 46 is a take-out pipe for taking out liquefied CO 47 accumulated at the bottom of the tower section 27 of the rectification tower 24 as product CO. Reference numeral 48 denotes a product CO storage tank, and the product CO is appropriately extracted from the storage tank 48. The extraction pipe 46 is provided with a control valve 49. Reference numeral 50 denotes a liquid level controller, which is a storage liquefied CO 47 at the bottom of the rectification tower section 27.
The control valve 49 is controlled in accordance with the liquid level so that the liquid level is maintained at a constant level. Further, the control valve 51 provided on the introduction path pipe 43 is also controlled by the liquid level controller 52 so that the liquid level of the liquid nitrogen in the dephlegmator section 26 of the rectification column 24 maintains a constant level. It is becoming like this. The heat exchanger 14, the adsorption column 21 and the heat exchanger 23 rectification column 24,
As shown by the one-dot chain line in the figure, the vacuum heat insulating container 53
And housed within 54.

この装置は、例えば、CO;70.0vol%,CO2;17.0vol%,N2;
11.5vol%,H2;1.0vol%,O2;0.5vol%の組成の、転炉ガ
スからなるCO原料ガスを対象としてつぎのようにして製
品COを製造する。すなわち、原料ガスの吸入貯蔵タンク
1から送られる原料ガスをフイルター2で除塵したの
ち、圧縮機3により圧縮し、触媒塔4でその圧縮原料ガ
ス中のO2を除去し、このO2が除去された原料ガスを再生
用熱交換器5および水系熱交換器6で冷却し、ドレン分
離器7で水を除去したのち、さらに、吸着筒11で残留水
分を吸着除去する。ついで、O2,H2Oが除去された原料ガ
スを精留塔24からのN2ガス,COガスおよび廃ガスによつ
て冷却されている熱交換器14に送り込んで低温に冷却す
る。そして、この低温に冷却された原料ガスをさらに熱
交換器15で冷却し、原料ガス中のCO2ガスを液化し、こ
の液化CO2を含む原料ガスを、遠心分離器17に掛けて遠
心分離しパイプ18を介して製品液化CO2タンク19に送
る。一方、遠心分離器17内で液化CO2が除去され純度ア
ツプした原料ガスは吸着筒21に送り込まれ、なお、原料
ガス中に微量残存するCO2ガスを吸着除去される。この
ようにして、O2,H2O,CO2が除去された原料ガス(主成分
がCOガスでN2ガス,H2ガスを不純分として含む、温度約
−50℃)を、熱交換器14よりも下流側に位置し、精留塔
24からのN2ガス,COガスおよび廃ガスによつて熱交換器1
4よりもさらに低温に冷却されている熱交換器23に送り
込んで超低温(約−172℃)に冷却する。そして、超低
温に冷却された原料ガスを、精留塔24の下部凝縮器部28
内に送入し、周囲の貯溜製品液化COで冷却されている凝
縮パイプ28a内で原料ガス中のCOおよびN2を液化分離
し、H2を気体状態でH2取出パイプ30を経て外部に放出す
る。そして、液化N2を含む液化COを膨脹弁32を介して精
留塔24の塔部27内に気液混合状態で導入し、塔部27の精
留作用により、気液混合状態の原料中のCOを液化し塔部
27の底部に製品液化CO47として溜める。この時、上記原
料中の不純H2,N2ガスは、沸点の差により液化せず塔部2
7を上方に上昇する。また、上記原料中のCOの一部も液
化されずに、気体のまま上記H2,N2ガス等に随伴して上
昇する。上記上昇H2,N2,COの混合ガスは、第1の還流液
パイプ35から精留塔24の凝縮器25に送入され、ここで、
COガスのみが沸点の差によつて液化され、還流液として
第2の還流液パイプ39を介して精留塔24における塔部27
の受け皿40内に戻る。他方、H2,N2ガスは凝縮器25の上
部から廃ガスパイプ37aによつて取り出される。この廃
ガスは、廃ガスパイプ37aに連通した廃ガスパイプ37b,3
7cを通過する間に熱交換器23,14内で原料ガスと熱交換
して再生用熱交換器5に送られる。そして、上記再生用
熱交換器5により加熱されて送出され、再生作動中の吸
着筒11の吸着剤を再生したのち大気中に放出される。精
留塔24における塔部27の底部に溜まつた製品液化CO47
は、製品液化CO取出パイプ46から液化製品として取り出
され、貯蔵タンク48内に一旦貯蔵されたのち適宜使用に
供される。また、上記製品液化CO47の気化で生成し、上
記塔部27の貯溜製品液化CO47の液面上に滞留するCOガス
は、取出パイプ41a,41b,COガス取出パイプ41cを経由
し、その間に熱交換器23,14で熱交換されて外部に取り
出される。また、液体窒素貯槽42から分縮器部26内に送
入された液体窒素は凝縮器25の寒冷作用を終えたのち気
化されて送出パイプ45a,45b,N2ガス取出パイプ45cを経
由し、上記COガスと同様に熱交換器23,14で熱交換され
て外部に取り出される。
This device is, for example, CO; 70.0vol%, CO 2 ; 17.0vol%, N 2;
The product CO is manufactured as follows for the CO raw material gas composed of the converter gas having the composition of 11.5vol%, H 2 ; 1.0vol%, O 2 ; 0.5vol%. That is, the raw material gas sent from the intake and storage tank 1 of the raw material gas is dedusted by the filter 2, then compressed by the compressor 3, and O 2 in the compressed raw material gas is removed by the catalyst tower 4, and this O 2 is removed. The raw material gas thus obtained is cooled by the regeneration heat exchanger 5 and the water-based heat exchanger 6, water is removed by the drain separator 7, and then residual water is adsorbed and removed by the adsorption column 11. Then, the raw material gas from which O 2 and H 2 O have been removed is sent to the heat exchanger 14 cooled by the N 2 gas, the CO gas and the waste gas from the rectification tower 24 and cooled to a low temperature. Then, the raw material gas cooled to this low temperature is further cooled by the heat exchanger 15, the CO 2 gas in the raw material gas is liquefied, and the raw material gas containing this liquefied CO 2 is applied to the centrifugal separator 17 to perform centrifugal separation. It is sent to the product liquefied CO 2 tank 19 via the pipe 18. On the other hand, the raw material gas in which the liquefied CO 2 has been removed and the purity has been increased in the centrifuge 17 is sent to the adsorption column 21, and the trace amount of CO 2 gas remaining in the raw material gas is adsorbed and removed. In this way, the source gas from which O 2 , H 2 O, and CO 2 have been removed (the main component is CO gas, which contains N 2 gas and H 2 gas as impurities, the temperature is approximately −50 ° C.) A rectification tower located downstream of vessel 14.
Heat exchanger by N 2 gas, CO gas and waste gas from 24 1
It is sent to the heat exchanger 23 cooled to a temperature lower than 4 and cooled to an ultra-low temperature (about -172 ° C). Then, the raw material gas cooled to the ultra low temperature is supplied to the lower condenser section 28 of the rectification tower 24.
CO and N 2 in the raw material gas are liquefied and separated in the condensing pipe 28a that has been cooled by the liquefied CO stored in the surrounding stored product, and H 2 in the gas state is passed to the outside via the H 2 extraction pipe 30. discharge. Then, liquefied CO containing liquefied N 2 is introduced into the column section 27 of the rectification column 24 through the expansion valve 32 in a gas-liquid mixed state, and by the rectification action of the column section 27, in the raw material in the gas-liquid mixed state. Liquefies CO in the tower
Store as product liquefied CO47 at the bottom of 27. At this time, the impure H 2 and N 2 gases in the above raw material were not liquefied due to the difference in boiling points, and the tower portion 2
Ascend 7 upwards. Further, some of the CO in the raw material is not liquefied but rises as it is along with the H 2 and N 2 gases as it is. The mixed gas of the ascending H 2 , N 2 and CO is fed into the condenser 25 of the rectification column 24 from the first reflux liquid pipe 35, where
Only CO gas is liquefied due to the difference in boiling point, and as the reflux liquid, the column portion 27 in the rectification column 24 is passed through the second reflux liquid pipe 39.
Return to the saucer 40. On the other hand, the H 2 and N 2 gases are taken out from the upper part of the condenser 25 by the waste gas pipe 37a. This waste gas is connected to the waste gas pipe 37a and the waste gas pipes 37b, 3b.
While passing through 7c, heat is exchanged with the raw material gas in the heat exchangers 23 and 14 and sent to the regeneration heat exchanger 5. Then, the adsorbent in the adsorption column 11 that is being regenerated is regenerated and then discharged into the atmosphere after being heated and delivered by the regeneration heat exchanger 5. Product liquefaction CO47 accumulated at the bottom of tower 27 in rectification tower 24
Is taken out as a liquefied product from the product liquefied CO take-out pipe 46, once stored in the storage tank 48, and then used as appropriate. Further, the CO gas generated by the vaporization of the product liquefied CO47 and staying on the liquid surface of the stored product liquefied CO47 in the tower section 27 passes through the extraction pipes 41a, 41b, the CO gas extraction pipe 41c, and heat The heat is exchanged in the exchangers 23 and 14 and taken out. Further, the liquid nitrogen sent from the liquid nitrogen storage tank 42 into the dephlegmator section 26 is vaporized after finishing the cooling action of the condenser 25 and then sent through the delivery pipes 45a, 45b and N 2 gas extraction pipe 45c, Like the CO gas, it is heat-exchanged in the heat exchangers 23 and 14 and taken out.

このように、この装置は、上記フイルター2,触媒塔4,ド
レン分離器7,吸着筒11,遠心分離器17,吸着筒21で不純分
が除去された原料ガスを精留塔24で深冷液化分離して液
化COを製造するため、得られる液化CO製品の純度が超高
純度となる。しかも、原料ガスの成分組成が変動して精
留塔24の下部凝縮器部28へ送入される原料ガス中のCO分
が変動しその液化量が変動しても、液面計33による膨脹
弁32の制御,液面調節計52による液化窒素供給用導入路
パイプ43の調節弁51の制御および液面調節計50による製
品液化CO取出パイプ46の調節弁49の制御により自動的に
対応できる。したがつて、原料ガスの成分組成が変動し
ても常時一定の純度の高純度製品液化CO,製品COガスを
製造しうる。原料ガスの流入量の変動にも同様に対応で
きる。また、この装置は、精留塔24における分縮器部26
の凝縮器25内に、精留塔24内の原料ガスの一部を常時案
内して液化するため、凝縮器25内へ液化COが所定量溜ま
つたのちは、それ以降生成する液化COが還流液として常
時精留塔24の塔部27内に戻るようになる。したがつて、
凝縮器25からの還流液の流下供給の断続に起因する製品
純度のばらつき(還流液の流下の中断により精留棚では
還流液がなくなりガスの吹き抜け現象を招いて製品純度
が下がり、流下の再開時には純度が回復する)を生じ
ず、常時安定した純度の製品液化COを供給することがで
きる。さらに、この装置は、上記のようにCOガスおよび
N2ガスを製品として供給しうるという効果を奏する外、
廃ガスを水分吸着筒の吸着剤の乾燥再生に使用できると
いう効果も有する。
In this way, this apparatus is a refrigerating column 24 for refrigerating the raw material gas from which impurities have been removed by the filter 2, the catalyst column 4, the drain separator 7, the adsorption column 11, the centrifugal separator 17, and the adsorption column 21. Since liquefied CO is produced by liquefaction separation, the purity of the liquefied CO product obtained is extremely high. Moreover, even if the liquefied amount of the raw gas fed to the lower condenser section 28 of the rectification column 24 fluctuates due to the fluctuation of the component composition of the raw gas, the expansion by the liquid level gauge 33 This can be automatically controlled by controlling the valve 32, controlling the control valve 51 of the introduction channel pipe 43 for supplying liquefied nitrogen by the liquid level controller 52, and controlling the control valve 49 of the product liquefaction CO extraction pipe 46 by the liquid level controller 50. . Therefore, high purity product liquefied CO and product CO gas with a constant purity can always be produced even if the component composition of the raw material gas changes. It is possible to deal with the fluctuation of the inflow amount of the raw material gas in the same manner. In addition, this device is equipped with a dephlegmator section 26 in the rectification tower 24.
In the condenser 25, since a part of the raw material gas in the rectification column 24 is constantly guided and liquefied, after a predetermined amount of liquefied CO is accumulated in the condenser 25, the liquefied CO generated thereafter is As a reflux liquid, it always returns to the inside of the tower section 27 of the rectification tower 24. Therefore,
Variation in product purity due to intermittent supply of reflux liquid from the condenser 25 Sometimes the purity recovers) and stable product liquefied CO can always be supplied. In addition, the device is equipped with CO gas and
In addition to the effect that N 2 gas can be supplied as a product,
It also has an effect that the waste gas can be used for drying and regenerating the adsorbent in the water adsorption column.

第2図はこの発明の他の実施例を示している。すなわ
ち、第2図の装置は第1図の装置のように製品液化COお
よび製品COガスの双方を製造するのではなく、製品COガ
スのみを製造しうるようにし、その際、製品COガスの需
要量の増加等に対応できるようにバツクアツプライン55
を設けている。上記バツクアツプライン55は、液化CO蒸
発器56,これに製品COの貯蔵タンク48から液化COを供給
するパイプ55a,上記液化CO蒸発器56で気化生成したCOガ
スを製品COガス取出パイプ41cに送入する案内パイプ55
b,この案内パイプ55bに設けられた圧力調節弁57から構
成されている。上記圧力調節弁57は、2次側(使用側)
の圧力が設定圧力より下がると、弁を開き、または弁の
開度を調節し、2次側の圧力が設定圧力を保つよう作用
する。このバツクアツプライン55では、精留塔ラインが
故障したり、または製品COガスの需要量が大幅に増加し
たりして製品COガス取出パイプ46内の圧力が下がると、
上記圧力調節弁57が開成作動するため、上記製品COの貯
蔵タンク48から液化COが液化CO蒸発器56に流れて気化
し、その生成気化COガスが製品COガスとして上記取出パ
イプ41c内に流入するようになつている。それ以外の部
分は第1図の装置と同じである。
FIG. 2 shows another embodiment of the present invention. That is, the apparatus of FIG. 2 does not produce both the product liquefied CO and the product CO gas as the apparatus of FIG. 1 does, but only the product CO gas can be produced. Back-up line 55 to meet the increasing demand
Is provided. The back-up line 55 is a liquefied CO evaporator 56, a pipe 55a for supplying liquefied CO from the storage tank 48 for the product CO to the liquefied CO evaporator 56, and a product CO gas extraction pipe 41c for the CO gas vaporized and produced by the liquefied CO evaporator 56. Guide pipe 55 to be sent
b, a pressure control valve 57 provided on the guide pipe 55b. The pressure control valve 57 is on the secondary side (use side).
When the pressure falls below the set pressure, the valve is opened or the opening degree of the valve is adjusted so that the pressure on the secondary side maintains the set pressure. In this backup up line 55, when the pressure in the product CO gas extraction pipe 46 decreases due to a failure of the rectification tower line or a large increase in the demand amount of the product CO gas,
Since the pressure control valve 57 is opened, the liquefied CO flows from the storage tank 48 for the product CO to the liquefied CO evaporator 56 and vaporizes, and the produced vaporized CO gas flows into the extraction pipe 41c as the product CO gas. It is about to do. The other parts are the same as those of the apparatus shown in FIG.

この装置は、上記のようにバツクアツプライン55を設け
ることにより、精留塔ラインの故障時もしくは精留塔だ
けで対応できないような製品COガスの需要量の大幅な増
加時に、上記液化CO蒸発器56を作動させ、上記製品COの
貯蔵タンク48の液化COを製品COガスとして気化させうる
ため、製品COガスの供給がとぎれたり、需要量の大幅増
加時における製品COガスの純度低下が生じない。
By providing the back-up line 55 as described above, this equipment can vaporize the liquefied CO when the demand for the product CO gas increases significantly when the rectification tower line fails or the rectification tower alone cannot handle it. Since the liquefied CO in the product CO storage tank 48 can be vaporized as the product CO gas by operating the vessel 56, the supply of the product CO gas is interrupted and the purity of the product CO gas decreases when the demand increases significantly. Absent.

なお、第1図の装置において、製品COガス取出パイプ41
aを除去し、製品一酸化炭素の全てを液化COにすること
もできる。
In addition, in the device of FIG. 1, the product CO gas extraction pipe 41
It is also possible to remove a and turn all of the product carbon monoxide into liquefied CO.

〔発明の効果〕〔The invention's effect〕

この発明の一酸化炭素分離精製装置は、以上のように構
成されているため、超高純度の一酸化炭素を効率よく製
造することができる。しかも、この装置は、精留塔等の
寒冷源として装置外から液体窒素貯蔵手段に供給された
液体窒素を使用するため、膨脹タービン等の回転機器を
必要とせず、したがつて、回転機器の運転,保全等の煩
雑な手間が不要となるうえ、装置全体の小形化をも実現
することができるようになる。
Since the carbon monoxide separation / purification device of the present invention is configured as described above, it is possible to efficiently produce ultra-high purity carbon monoxide. Moreover, since this device uses liquid nitrogen supplied to the liquid nitrogen storage means from outside the device as a cold source for the rectification column or the like, it does not require a rotating device such as an expansion turbine, and therefore, the rotating device This eliminates the need for troublesome operations such as operation and maintenance, and also enables downsizing of the entire device.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例の構成図、第2図は他の実
施例の構成図、第3図は従来例の構成図である。 3……圧縮機、4……触媒塔、5,14,15,23……熱交換
器、7……ドレン分離器、11……吸着筒、17……遠心分
離器、22b……原料ガス送入パイプ、24……精留塔、37
a,37b,37c……廃ガスパイプ、38a……パイプ、41c……C
Oガス取出パイプ、42……液体窒素貯槽、43……導入路
パイプ、45c……N2ガス取出パイプ、46……取出パイプ
FIG. 1 is a block diagram of an embodiment of the present invention, FIG. 2 is a block diagram of another embodiment, and FIG. 3 is a block diagram of a conventional example. 3 ... Compressor, 4 ... Catalyst tower, 5,14,15,23 ... Heat exchanger, 7 ... Drain separator, 11 ... Adsorption cylinder, 17 ... Centrifugal separator, 22b ... Raw material gas Inlet pipe, 24 …… rectification tower, 37
a, 37b, 37c …… waste gas pipe, 38a …… pipe, 41c …… C
O gas extraction pipe, 42 ...... Liquid nitrogen storage tank, 43 …… Introduction pipe, 45c …… N 2 gas extraction pipe, 46 …… Extraction pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一酸化炭素を含む原料ガスを圧縮する圧縮
手段と、上記原料ガス中の酸素を除去する除去手段と、
この酸素が除去された原料ガスを冷却する熱交換手段
と、上記原料ガス中の水分を除去する除去手段と、上記
原料ガス中の炭酸ガスを液化して分離除去する除去手段
と、上記酸素,水分および炭酸ガスが除去された原料ガ
スを冷却するための熱交換手段と、沸点の差により原料
ガス中の一酸化炭素を液化して内部に溜め不純分ガスを
分離して排出する精留塔と、上記熱交換手段から上記精
留塔に原料ガスを導く原料ガス供給路と、装置外から液
体窒素の供給を受けこれを貯蔵する液体窒素貯蔵手段
と、この液体窒素貯蔵手段内の液体窒素を一酸化炭素液
化の寒冷源として上記精留塔に導く導入路と、上記精留
塔内で寒冷源としての作用を終え気化された窒素ガスを
取り出す取出路と、上記精留塔内の貯溜液化一酸化炭素
を製品一酸化炭素として取り出す取出路および上記貯溜
液化一酸化炭素の気化物を製品一酸化炭素として取り出
す取出路の少なくとも一方を備えていることを特徴とす
る一酸化炭素分離精製装置。
1. A compressing means for compressing a raw material gas containing carbon monoxide, and a removing means for removing oxygen in the raw material gas,
A heat exchanging means for cooling the raw material gas from which oxygen has been removed, a removing means for removing water in the raw material gas, a removing means for liquefying and separating and removing carbon dioxide gas in the raw material gas, the oxygen, A heat exchange means for cooling the raw material gas from which water and carbon dioxide have been removed, and a rectification column for liquefying carbon monoxide in the raw material gas due to the difference in boiling points and storing it inside to separate and discharge the impurity gas A raw material gas supply path for introducing a raw material gas from the heat exchange means to the rectification column, a liquid nitrogen storage means for receiving liquid nitrogen supplied from the outside of the apparatus and storing it, and a liquid nitrogen inside the liquid nitrogen storage means To the rectification tower as a cold source for liquefying carbon monoxide, an extraction path for taking out the vaporized nitrogen gas after finishing the action as a cold source in the rectification tower, and a storage in the rectification tower. Liquefied carbon monoxide as product carbon monoxide Taken takeout path and the reservoir liquefied carbon monoxide separation and purification apparatus characterized in that it comprises at least one of the take-out path retrieving vaporization of carbon monoxide as a product of carbon monoxide.
JP61312463A 1986-12-26 1986-12-26 Carbon monoxide separation and purification equipment Expired - Fee Related JPH0789012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61312463A JPH0789012B2 (en) 1986-12-26 1986-12-26 Carbon monoxide separation and purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61312463A JPH0789012B2 (en) 1986-12-26 1986-12-26 Carbon monoxide separation and purification equipment

Publications (2)

Publication Number Publication Date
JPS63163771A JPS63163771A (en) 1988-07-07
JPH0789012B2 true JPH0789012B2 (en) 1995-09-27

Family

ID=18029501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61312463A Expired - Fee Related JPH0789012B2 (en) 1986-12-26 1986-12-26 Carbon monoxide separation and purification equipment

Country Status (1)

Country Link
JP (1) JPH0789012B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101376551B1 (en) * 2013-10-28 2014-04-01 (주)지비아이 Gas purifier for glove box
US9033947B2 (en) 2004-03-29 2015-05-19 The Procter & Gamble Company Disposable absorbent articles with zones comprising elastomeric components

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0816583B2 (en) * 1986-12-29 1996-02-21 大同ほくさん株式会社 Carbon monoxide separation and purification equipment
JP2685533B2 (en) * 1988-09-22 1997-12-03 株式会社日立製作所 Liquid level control method and device for rectification column
JP4503255B2 (en) * 2003-09-05 2010-07-14 俊廣 阿部 Carbon dioxide recovery device
FR2911390B1 (en) * 2007-01-16 2009-04-17 Air Liquide PROCESS AND APPARATUS FOR PRODUCING CARBON MONOXIDE BY CRYOGENIC DISTILLATION
FR2916523B1 (en) * 2007-05-21 2014-12-12 Air Liquide STORAGE CAPABILITY, APPARATUS AND PROCESS FOR PRODUCING CARBON MONOXIDE AND / OR HYDROGEN BY CRYOGENIC SEPARATION INTEGRATING SUCH CAPABILITY.
FR2930332A1 (en) * 2008-04-18 2009-10-23 Air Liquide METHOD AND APPARATUS FOR CRYOGENIC SEPARATION OF A MIXTURE OF HYDROGEN AND CARBON MONOXIDE
JP5134578B2 (en) * 2009-04-03 2013-01-30 三菱重工業株式会社 CO2 recovery apparatus and method
EP2562502A1 (en) * 2011-06-24 2013-02-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and installation for supplying gaseous carbon monoxide by cryogenic distillation
WO2018111719A1 (en) * 2016-12-13 2018-06-21 Linde Aktiengesellschaft Purification process for production of ultra high purity carbon monoxide
KR102596869B1 (en) * 2018-03-06 2023-11-02 스미토모 세이카 가부시키가이샤 Method for removing oxygen from crude carbon monoxide gas and method for purifying carbon monoxide gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9033947B2 (en) 2004-03-29 2015-05-19 The Procter & Gamble Company Disposable absorbent articles with zones comprising elastomeric components
US9220637B2 (en) 2004-03-29 2015-12-29 The Procter & Gamble Company Disposable absorbent articles with zones comprising elastomeric components
KR101376551B1 (en) * 2013-10-28 2014-04-01 (주)지비아이 Gas purifier for glove box

Also Published As

Publication number Publication date
JPS63163771A (en) 1988-07-07

Similar Documents

Publication Publication Date Title
US5656557A (en) Process for producing various gases for semiconductor production factories
US3894856A (en) Liquefaction of natural gas with product used as adsorber
US4270938A (en) Processes for decontaminating nuclear process off-gas streams
JPH0639230A (en) Method for recovering argon from waste gas produced in argon-oxygen-carbon removing process
JPH0789012B2 (en) Carbon monoxide separation and purification equipment
WO1986000693A1 (en) Apparatus for producing high-frequency nitrogen gas
JP2000088455A (en) Method and apparatus for recovering and refining argon
JP2585955B2 (en) Air separation equipment
JPS6158747B2 (en)
JPH0816583B2 (en) Carbon monoxide separation and purification equipment
JP2574270B2 (en) Carbon monoxide separation and purification equipment
JP3532465B2 (en) Air separation device
US5787730A (en) Thermal swing helium purifier and process
JP2939814B2 (en) Methane separation device and method
JPH11221420A (en) Apparatus and method for producing and supplying nitrogen and/or oxygen and purified air
JPH0942831A (en) Highly pure nitrogen gas producing apparatus
JPH0816581B2 (en) Carbon monoxide separation and purification equipment
JPH0789011B2 (en) Carbon monoxide separation and purification equipment
JP2997939B2 (en) Recovery and utilization of evaporative gas in low-temperature storage tank
JPH0789007B2 (en) Carbon monoxide separation and purification equipment
JPH0816582B2 (en) Carbon monoxide separation and purification equipment
JP3532466B2 (en) Air separation device
JPH11325720A (en) Manufacture of ultra-high-purity nitrogen gas and device therefor
JP3969874B2 (en) Air liquefaction separator
JP2672250B2 (en) High-purity nitrogen gas production equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees