JPH0816582B2 - Carbon monoxide separation and purification equipment - Google Patents

Carbon monoxide separation and purification equipment

Info

Publication number
JPH0816582B2
JPH0816582B2 JP61234196A JP23419686A JPH0816582B2 JP H0816582 B2 JPH0816582 B2 JP H0816582B2 JP 61234196 A JP61234196 A JP 61234196A JP 23419686 A JP23419686 A JP 23419686A JP H0816582 B2 JPH0816582 B2 JP H0816582B2
Authority
JP
Japan
Prior art keywords
gas
raw material
carbon monoxide
material gas
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61234196A
Other languages
Japanese (ja)
Other versions
JPS6387580A (en
Inventor
明 吉野
Original Assignee
大同ほくさん株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大同ほくさん株式会社 filed Critical 大同ほくさん株式会社
Priority to JP61234196A priority Critical patent/JPH0816582B2/en
Publication of JPS6387580A publication Critical patent/JPS6387580A/en
Publication of JPH0816582B2 publication Critical patent/JPH0816582B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0223H2/CO mixtures, i.e. synthesis gas; Water gas or shifted synthesis gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0252Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0261Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0266Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/08Separating gaseous impurities from gases or gaseous mixtures or from liquefied gases or liquefied gaseous mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/80Processes or apparatus using separation by rectification using integrated mass and heat exchange, i.e. non-adiabatic rectification in a reflux exchanger or dephlegmator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/04Recovery of liquid products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/14Carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/904External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by liquid or gaseous cryogen in an open loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、プロパン,ブタン等を酸化させて製造さ
れた一酸化炭素製造用ガスや製鉄所の副生ガス等から一
酸化炭素を分離する一酸化炭素分離精製装置に関するも
のである。
TECHNICAL FIELD The present invention separates carbon monoxide from a carbon monoxide-producing gas produced by oxidizing propane, butane, or the like, a byproduct gas of a steel mill, or the like. The present invention relates to a carbon monoxide separation / purification device.

〔従来の技術〕[Conventional technology]

一酸化炭素(CO)は反応性に富んでいるため、合成化
学の原料として使用されており、特に近年では、C1化学
の中でも最も重要な炭素源と考えられている。上記CO
は、製鉄所をはじめ工場の副生ガス中に多量に含まれて
いるものであり、従来は、せいぜい燃料として熱エネル
ギーが回収されているにすぎない。しかし、近年のCOに
対する需要の高まりから上記工場副生ガスからCOを分離
回収する装置が開発されている。また、最近では、上記
のようなCOの重要性に鑑み、プロパン,ブタン等を酸化
してつくられたCO原料ガスからCOを分離回収する装置も
提案されている。これらの装置には主として、ゼオライ
ト等の吸着剤を使用し、この吸着剤によつてCOを選択吸
収して回収する装置と、COを選択的に吸収するコソーブ
(COSORB)液を使用する装置の2種類の装置が用いられ
ている。しかしながら、上記吸着剤を使用する吸着分離
装置(PSA法に基づく)は、装置自体に高速切換弁を必
要とすると同時に、吸着剤を弁操作によつて切り換え、
再生使用する必要があり、かつ吸着剤として完全な性能
を有しているものがなく、寿命,性能にいまひとつ信頼
性がおけないという難点がある。また、原料ガスからの
CO回収率が低いため、廃ガスを再度原料ガスに混合して
COの分離回収を図らなければならず、ランニングコスト
が高くなり製品COが高くなるという欠点も有している。
そのうえ、純度が98.0%程度の製品COしか得られず高純
度品が得られないという難点がある。
Because rich in carbon monoxide (CO) is reactive, it has been used as a raw material for synthetic chemistry, especially in recent years, are considered the most important carbon source among C 1 chemistry. CO above
Is contained in a large amount in by-product gas from factories, including steelworks, and conventionally, at best, thermal energy is only recovered as fuel. However, an increase in demand for CO in recent years has led to the development of an apparatus for separating and recovering CO from the above-mentioned by-product gas. Recently, in view of the importance of CO as described above, an apparatus for separating and recovering CO from a CO raw material gas produced by oxidizing propane, butane, or the like has been proposed. These devices mainly use an adsorbent such as zeolite, and a device that selectively absorbs and collects CO with this adsorbent and a device that uses a COSORB liquid that selectively absorbs CO Two types of devices are used. However, the adsorption separation device using the above adsorbent (based on the PSA method) requires a high-speed switching valve in the device itself, and at the same time, switches the adsorbent by valve operation.
There is a drawback that there is no adsorbent that has perfect performance as it needs to be reused, and the life and performance cannot be completely reliable. Also, from the source gas
Since the CO recovery rate is low, the waste gas must be mixed with the raw gas again.
Since CO has to be separated and collected, there is a drawback that the running cost becomes high and the product CO becomes high.
In addition, there is a drawback that only high-purity CO can be obtained because only CO with a purity of about 98.0% can be obtained.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

コソーブ法を実施する装置は、上記PSA装置のような
高速切換弁を要しないという利点を備えており、例え
ば、転炉ガス等の製鉄所副生ガスを対象としてCOの分離
回収を実現する。上記転炉ガスの組成は、CO;68〜72vol
%,CO2;13〜17vol%,N2;11〜16vol%,H2;0.8〜1.3vol
%,O2;0.1vol%以下であり、それ以外に、アンモニア,
硫化水素,二酸化硫黄等の微量成分と、ダストならびに
7%程度の水分を含んでいる。このようなガスを対象と
するコソーブ装置の一例を第3図に示す。図において、
40は転炉ガスからなる原料ガスの供給源、41は圧縮機
で、上記原料ガスを圧縮し昇圧させる。この圧縮機41に
おいて、ダストは圧縮機41の油に捕集され、この油を冷
却するための油循環系に設置されているフイルタによつ
て除去される。42はブライン冷却器で、昇圧された原料
ガスを予備脱湿する。43は活性炭を充填した吸着筒で原
料ガス中の硫黄,アンモニアを吸着除去する。44は合成
ゼオライトを充填した2個1組の吸着筒で、水分および
炭酸ガス等を吸着除去する。この2個1組の吸着筒44は
交互に切り換え使用される。45は吸収塔で、上記不純物
除去および脱湿された原料ガスを、塔上部から流下する
コソーブ液と向流接触させて原料ガス中のCOをコソーブ
液に選択的に吸収させるようになつている。上記コソー
ブ液はトルエンにCuAlCl4を溶解したもので、つぎのよ
うな反応により、低温下でCOを選択的に吸収し、高温下
においてCOを放散する。
The apparatus for carrying out the Cossorb method has an advantage that it does not require a high-speed switching valve unlike the PSA apparatus described above, and for example, realizes the separation and recovery of CO by targeting a steelworks byproduct gas such as a converter gas. The composition of the converter gas is CO; 68-72vol
%, CO 2 ; 13 ~ 17vol%, N 2 ; 11 ~ 16vol%, H 2 ; 0.8 ~ 1.3vol
%, O 2 ; 0.1 vol% or less, and other than that, ammonia,
It contains trace components such as hydrogen sulfide and sulfur dioxide, dust and about 7% water. FIG. 3 shows an example of a cosorb apparatus for such a gas. In the figure,
Reference numeral 40 is a supply source of a raw material gas composed of a converter gas, and 41 is a compressor, which compresses and raises the pressure of the raw material gas. In this compressor 41, dust is collected in the oil of the compressor 41 and removed by a filter installed in an oil circulation system for cooling this oil. A brine cooler 42 preliminarily dehumidifies the pressurized raw material gas. 43 is an adsorption column filled with activated carbon that adsorbs and removes sulfur and ammonia in the raw material gas. Reference numeral 44 is a set of two adsorption columns filled with synthetic zeolite for adsorbing and removing water and carbon dioxide. The pair of suction cylinders 44 are alternately switched and used. Reference numeral 45 denotes an absorption tower, in which the raw material gas from which the above impurities have been removed and dehumidified is brought into countercurrent contact with the cosorb liquid flowing down from the upper part of the tower so that CO in the raw material gas is selectively absorbed by the cosorb liquid. . The Cossorb solution is a solution of CuAlCl 4 dissolved in toluene, and selectively absorbs CO at a low temperature and emits CO at a high temperature by the following reaction.

47は熱交換器で、上記吸収塔45内でCOを選択吸収し塔
45の底部から送出されたコソーブ液を、放散塔45の底部
から送出される液と熱交換させて加熱する。上記放散塔
45は、塔頂から上記CO吸収コソーブ液を流下させ、リボ
イラ49の加熱により発生したトルエン蒸気と接触させ、
CO吸収コソーブ液中のCOを放散させる。ここで、COを放
散したコソーブ液は、放散塔46の底部から熱交換器47お
よび水冷却塔48を経て冷却され再生されて吸収塔45の塔
頂へ戻される。吸収塔45の上部からは廃ガスが送出さ
れ、ブライン冷却器42′で−10℃まで冷却されてトルエ
ンを回収され、高炉ガス等の配管系へ送出される。そし
て、上記放散塔46の上部からは製品CO(ガス)が取り出
される。この場合、コソーブ液中には少量のCO2,N2,N2,
O2が溶解されるため、上記放散塔46から得られる製品CO
には、これらが混入するとともに、コソーブ液のトルエ
ンが微量に混入している。50は水冷却塔であり、上記製
品COを冷却しトルエンを回収する。51はコンプレツサー
で、上記製品COを昇圧させる。52はブライン冷却器で、
上記製品COを−10℃まで冷却してトルエンを回収する。
53は製品COの貯槽であり、適宜に製品COを送出する。
47 is a heat exchanger, which selectively absorbs CO in the absorption tower 45
The cossorb liquid delivered from the bottom of 45 is heated by exchanging heat with the liquid delivered from the bottom of the stripping tower 45. The diffusion tower
45, the CO-absorbing cosorb liquid flowed down from the top of the tower, and contact with the toluene vapor generated by heating the reboiler 49,
CO Absorbs CO in COSORB solution. Here, the COSORB liquid that has diffused CO is cooled and regenerated from the bottom of the diffusion tower 46 via the heat exchanger 47 and the water cooling tower 48, and is returned to the top of the absorption tower 45. Waste gas is sent from the upper part of the absorption tower 45, cooled to −10 ° C. by the brine cooler 42 ′ to recover toluene, and sent to a piping system for blast furnace gas or the like. Then, the product CO (gas) is taken out from the upper part of the stripping tower 46. In this case, a small amount of CO 2 , N 2 , N 2 ,
As O 2 is dissolved, the product CO obtained from the diffusion tower 46 above
In addition to these, the trace amount of toluene in the cossorb solution is also mixed. 50 is a water cooling tower, which cools the above product CO and recovers toluene. 51 is a compressor, which boosts the pressure of the product CO. 52 is a brine cooler,
Cool the above product CO to -10 ° C and recover toluene.
Reference numeral 53 is a product CO storage tank, which appropriately sends the product CO.

しかしながら、上記の装置では、必然的に微量の不純
分が製品CO中に混入するため、超高純度の一酸化炭素の
回収は実質的に不可能であり98.0%程度のものしか得ら
れない。また、この装置も製品COの回収率が低いという
欠点を有している。
However, in the above apparatus, a trace amount of impurities are inevitably mixed in the product CO, so that it is practically impossible to recover ultra-high purity carbon monoxide, and only about 98.0% is obtained. In addition, this device also has a drawback that the recovery rate of product CO is low.

この発明は、このような事情に鑑みなされたもので、
超高純度の一酸化炭素を高回収率で回収しうる一酸化炭
素分離精製装置の提供をその目的とする。
The present invention has been made in view of such circumstances,
It is an object of the present invention to provide a carbon monoxide separation and purification apparatus capable of recovering ultra-high purity carbon monoxide at a high recovery rate.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するため、この発明の一酸化炭素分
離精製装置は、一酸化炭素を含む原料ガスを圧縮する圧
縮手段と、上記原料ガス中の炭酸ガスと水分とを除去す
る除去手段と、上記原料ガスを冷却するための熱交換手
段と、上記原料ガス中の炭酸水素系不純ガスを冷却凝縮
させ液化除去するための炭化水素系不純ガス液化除去器
と、上記炭化水素系不純ガス液化除去器を経た原料ガス
を精留塔内に導く原料ガス供給路と、沸点の差により原
料ガス中の一酸化炭素を液化して底部に溜め不純ガスを
分離して上部から排出する精留塔と、装置外から液体窒
素の供給を受けこれを貯蔵する液体窒素貯蔵手段と、こ
の液体窒素貯蔵手段内の液体窒素を一酸化炭素化の寒冷
源として上記精留塔内に導く第1の導入路と、上記精留
塔底部の貯留液体一酸化炭素の気化により生じた気化一
酸化炭素を炭化水素系不純ガス液化の寒冷源として上記
炭化水素系不純ガス液化除去器に導き熱交換させる第2
の導入路と、上記炭化水素系不純ガス液化除去器で熱交
換した気化一酸化炭素の製品一酸化炭素として取り出す
取出路を備えるという構成をとる。
In order to achieve the above object, the apparatus for separating and purifying carbon monoxide of the present invention is a compression unit for compressing a raw material gas containing carbon monoxide, a removing unit for removing carbon dioxide gas and water in the raw material gas, A heat exchange means for cooling the raw material gas, a hydrocarbon-based impure gas liquefaction remover for cooling and condensing the hydrogen carbonate-based impure gas in the raw material gas to liquefy, and a liquefaction removal of the hydrocarbon-based impure gas And a rectification column that liquefies carbon monoxide in the source gas due to the difference in boiling points and collects it at the bottom and separates the impure gas and discharges it from the top. A liquid nitrogen storage means for receiving and storing liquid nitrogen from the outside of the apparatus, and a first introduction path for guiding the liquid nitrogen in the liquid nitrogen storage means into the rectification column as a cold source for carbon monoxide conversion And the stored liquid at the bottom of the rectification column Of the hydrocarbon second to lead heat exchange impure gas liquefaction remover vaporized carbon monoxide produced by the vaporization of carbon as cooling source of the hydrocarbon-based impurity gas liquefaction
And an extraction path for extracting vaporized carbon monoxide that has been heat-exchanged by the hydrocarbon-based impure gas liquefaction remover as product carbon monoxide.

すなわち、この装置は、深冷液化分離法によるものであ
り、圧縮手段,除去手段,熱交換手段を経た原料ガス
を、熱交換手段に導入して超低温に冷却し、これを精留
塔に導き、その内部においてさらに液体窒素貯蔵手段か
ら供給される液体窒素の冷熱で冷却して、原料ガス中の
COを液化するとともに、不純ガスを気体のまま除去し、
これを精留塔から排出すると同時に、液化COを気化して
取り出すようにするため、超高純度の一酸化炭素を回収
することが可能になる。すなわち、この装置は、上記コ
ソーブ装置のようなコソーブ液の加熱,冷却によるCOの
吸収,放散を利用したり、PSA装置のような吸着剤によ
る吸着を利用するものではないため、コソーブ液に対す
るCO2,N2等の微量不純ガスの溶解や、吸着剤の吸着不良
に起因する不純ガスの混入等を生じず、したがつて、そ
れら不純溶解分に起因する製品一酸化炭素の純度阻害現
象を生じない。
That is, this device is based on the cryogenic liquefaction separation method, and the raw material gas that has passed through the compression means, the removal means, and the heat exchange means is introduced into the heat exchange means and cooled to an ultralow temperature, and this is guided to the rectification column. , Inside of which is further cooled by the cold heat of liquid nitrogen supplied from the liquid nitrogen storage means,
While liquefying CO, the impure gas is removed as a gas,
Since this is discharged from the rectification tower and liquefied CO is vaporized and taken out, it becomes possible to recover ultrahigh-purity carbon monoxide. That is, since this device does not utilize the absorption and desorption of CO by heating and cooling of the cosorb liquid as in the above-mentioned cosorb device and the adsorption by the adsorbent as in the PSA device, the CO Dissolution of trace amounts of impure gases such as 2 , N 2 and contamination of impure gases due to poor adsorption of the adsorbent does not occur, and therefore the phenomenon of impaired purity of product carbon monoxide caused by these impure dissolved components Does not happen.

つぎに、この発明を実施例にもとづいて詳しく説明す
る。
Next, the present invention will be described in detail based on examples.

〔実施例〕〔Example〕

第1図はこの発明の一実施例の構成図である。図にお
いて、1は原料ガス圧縮機、2はドレン分離器、3はフ
ロン冷却器、4は2個1組の吸着筒である。上記吸着筒
4は内部に合成ゼオライトもしくは活性炭または両者の
混合物が充填されていて、原料ガス圧縮機1により圧縮
された原料ガス中のH2OおよびCO2等を吸着除去する。5
はH2O,CO2等が吸着除去された原料ガスを送る原料ガス
供給パイプである。6は熱交換器であり、吸着筒4によ
りH2O,CO2等が吸着除去された圧縮原料ガスが送り込ま
れる。7はCH4等の炭化水素系不純ガスを冷却凝縮さ
せ、液化除去する炭化水素系不純ガス液化除去器であ
る。8は上記炭化水素系不純ガス液化除去器7中に、上
記熱交換器6により冷却された圧縮原料ガスを送り込む
パイプである。10は上記炭化水素系不純ガス液化除去器
7から下方へ延びる排出パイプで、上記除去器7で冷却
凝縮液化された原料ガス中の炭化水素系不純ガスを廃棄
する。25はその中間部に設けられた熱交換器である。上
記熱交換器25は、前記原料ガス供給パイプ5から分岐す
る分岐パイプ26によつて送入される圧縮原料ガスの一部
を、排出パイプ10を通る液体(液化炭化水素系不純ガ
ス)の冷熱で冷却し、戻しパイプ27で矢印のようにパイ
プ8に戻すようになつている。11は精留塔であり、凝縮
器28内蔵の分縮器部12と中圧の塔部13とからなり、中圧
の塔部13内には多数の精留棚14が配設されている。この
塔部13内のヒータ用配管25aに、上記炭化水素系不純ガ
ス液化除去器7から延びる低温原料ガス送入パイプ8aが
接続しており、低温に冷却された原料ガスを送入するよ
うになつている。上記ヒータ用配管25aの先端は、塔部1
3を貫通して外部に延び、そこから上方に屈曲して塔部1
3の中央部において塔部13内に連通し、ヒータ用配管25a
を経由した低温原料ガスを塔部13内に吐出する。この塔
部13内において、原料ガス中におけるCOの一部が液化さ
れて下方に流下して底部に溜り、H2,N2等の不純ガスとC
Oの残部が混合気体状態で塔部13の上方に上昇する。塔
部13の底部に溜まつた液体COは上記ヒータ用配管25a中
を流通する原料空気と熱交換して一部が気化し、この気
化ガスが取出パイプ37から取り出され、前記炭化水素系
不純ガス液化除去器7へ案内され、その内部で寒冷とし
ての作用を発揮したのち、さらに熱交換器6内に案内さ
れそこでも寒冷として作用しそれ自身は常温のCOガスと
なり、メインパイプ37aから製品COガスとして取り出さ
れるようになつている。15は上記塔部13の上部と分縮器
部12内の凝縮器28とを接続する第1の還流液パイプであ
り、上記塔部13の上方に上昇した混合ガスを凝縮器28内
に送入するようになつている。15aは遮蔽板であり、上
記混合気体を第1の還流液パイプ15に導く流路を形成
し、この流路を流れる混合ガスの移動により、塔頂に溜
る不純ガス(H2,N2)を混合ガスに随伴させ不純ガスの
塔頂滞留を防止する。上記凝縮器28内においては、沸点
の差によりCOが液化され、N2,H2等が気体状態で、凝縮
器28から上方に延びる廃ガスパイプ30を経て除去される
ようになつている。16は上記凝縮器28の下部から塔部13
の上部内に延びる第2の還流液パイプであり、上記凝縮
器28の底部に溜る液化COを、液化CO溜め38内に案内し、
その一部を、パイプ39から液体CO貯蔵タンク100に送入
し貯蔵すると同時に残部をパイプ16aを経由させ塔部13
内の受け皿17内に還流液として流下させるようになつて
いる。なお、22aは液面調節計で、液化CO溜め38の液面
によつて弁39aを制御し、上記液体CO貯蔵タンク100に送
入する液体COの量の制御をする。101は液体CO送入パイ
プで、塔部13内の液面を一定に保つ液面調節計21によつ
て制御される弁102および送液ポンプPを備えており、
精留塔塔部13の底部の貯溜液体COを上記液化CO溜め38に
供給する。この場合、上記供給される液体COが気液混合
物の状態になつても、それが一旦液化CO溜め38に入つた
のち還流液として精留塔塔部13内に流下するため、還流
液がバブリング現象を生じず安定に流下するという利点
がある。そして、精留塔塔部13の受け皿17内に流下した
液化COは、溢流して塔部13内を下方に流れ、低温原料ガ
ス送入パイプ8aから塔部13内に送入された原料ガスと向
流的に接触し、その蒸発熱により、原料ガス中のCOガス
を液化し沸点の低い不純ガスを上方移行させることによ
りCOの精製を行うようになつている。18は装置外から液
体窒素の供給を受け、これを貯蔵する液体窒素貯槽であ
り、内部の液体窒素を導入路パイプ32を経由させて精留
塔11の分縮器部12内に送入し、分縮器部12内における凝
縮器28の寒冷源とする。36aは送入液体窒素である。31
は精留塔11の分縮器部12内において寒冷としての作用を
終え気化した液化窒素を送出する送出パイプであつて、
N2ガス取出パイプ32aと連通しており、気化した液化窒
素を、熱交換器6を経由させて熱交換させたのち、N2
ス取出パイプ32aから外部に送出し使用に供するように
なつている。上記導入路パイプ32に設けられた調節弁34
は、上記精留塔11の分縮器部12内の液体窒素の液面が一
定レベルを保つよう、液面調節計22で制御されるように
なつている。なお、上記熱交換器6,精留塔11は、図示の
一点鎖線で示すように、真空断熱容器内に収容されてい
る。また、103は蒸発器104および弁105を備えたバツク
アツプ系ラインであり、精留塔ラインが故障したとき、
もしくは精留塔ラインだけでは製品CO量が不足したとき
に液体CO貯蔵タンク100内の液体COを蒸発器104により蒸
発させてメインパイプ37aに送り込み、製品COガスの供
給がとだえることのないよう、もしくは製品CO量に不足
が生じないようにする。なお、上記液体CO貯蔵タンク10
0から液体COを製品として取り出すこともでき、また、
装置外から液体COを供給してこれを還流液として上記受
け皿17内に流下させ、装置立ち上がり時における早期稼
働を実現することもできる。
FIG. 1 is a block diagram of one embodiment of the present invention. In the figure, 1 is a raw material gas compressor, 2 is a drain separator, 3 is a Freon cooler, and 4 is a set of two adsorption tubes. The adsorption column 4 is filled with synthetic zeolite or activated carbon or a mixture of both, and adsorbs and removes H 2 O, CO 2 and the like in the raw material gas compressed by the raw material gas compressor 1. 5
Is a raw material gas supply pipe for sending the raw material gas from which H 2 O, CO 2, etc. have been adsorbed and removed. Reference numeral 6 denotes a heat exchanger, into which the compressed raw material gas from which H 2 O, CO 2, etc. have been adsorbed and removed by the adsorption cylinder 4 is fed. Reference numeral 7 denotes a hydrocarbon-based impurity gas liquefaction remover that liquefies and removes a hydrocarbon-based impurity gas such as CH 4 by cooling and condensation. Reference numeral 8 is a pipe for feeding the compressed raw material gas cooled by the heat exchanger 6 into the hydrocarbon-based impure gas liquefaction remover 7. Reference numeral 10 denotes an exhaust pipe extending downward from the hydrocarbon-based impure gas liquefaction remover 7, which discards the hydrocarbon-based impure gas in the raw material gas cooled and condensed by the remover 7. Reference numeral 25 is a heat exchanger provided in the middle portion. In the heat exchanger 25, a part of the compressed raw material gas fed by the branch pipe 26 branched from the raw material gas supply pipe 5 is used to cool the liquid (liquefied hydrocarbon-based impure gas) passing through the discharge pipe 10. It is cooled by and returned to the pipe 8 by the return pipe 27 as shown by the arrow. Reference numeral 11 denotes a rectification column, which is composed of a condenser section 12 having a built-in condenser 28 and a medium pressure column section 13, and a large number of rectification shelves 14 are arranged in the medium pressure column section 13. . A low temperature raw material gas feed pipe 8a extending from the hydrocarbon-based impure gas liquefaction remover 7 is connected to the heater pipe 25a in the tower section 13 so as to feed the raw material gas cooled to a low temperature. I'm running. The tip of the heater pipe 25a is the tower 1
It extends through 3 to the outside and bends upward from there to the tower 1
In the central part of 3, it communicates with the inside of the tower 13, and the heater pipe 25a
The low temperature raw material gas passing through is discharged into the tower section 13. In this tower section 13, a part of CO in the raw material gas is liquefied and flows downward and collects at the bottom, and H 2 , N 2 and other impure gases and C
The rest of O rises above the tower section 13 in a mixed gas state. The liquid CO accumulated at the bottom of the tower 13 exchanges heat with the raw material air flowing through the heater pipe 25a to partially vaporize it, and this vaporized gas is taken out from the take-out pipe 37, and the hydrocarbon-based impurities are impure. After being guided to the gas liquefaction remover 7 and exerting the action as cold inside it, it is further guided to the inside of the heat exchanger 6 where it also acts as cold and becomes CO gas at room temperature, and becomes the product from the main pipe 37a. It is coming out as CO gas. Reference numeral 15 is a first reflux liquid pipe that connects the upper part of the tower section 13 and the condenser 28 in the dephlegmator section 12, and sends the mixed gas rising above the tower section 13 into the condenser 28. It is supposed to enter. Reference numeral 15a is a shielding plate, which forms a flow path for guiding the above mixed gas to the first reflux liquid pipe 15, and the movement of the mixed gas flowing through this flow path causes the impure gas (H 2 , N 2 ) accumulated at the top of the tower. Is mixed with the mixed gas to prevent impure gas from staying at the top of the column. In the condenser 28, CO is liquefied due to the difference in boiling points, and N 2 , H 2 and the like are removed in a gaseous state through a waste gas pipe 30 extending upward from the condenser 28. 16 is from the bottom of the condenser 28 to the tower 13
Is a second reflux liquid pipe extending into the upper part of the, and guides the liquefied CO accumulated in the bottom of the condenser 28 into the liquefied CO reservoir 38,
A part of it is sent from the pipe 39 to the liquid CO storage tank 100 for storage, and at the same time, the rest is passed through the pipe 16a and the tower section 13
It is made to flow down as a reflux liquid in the receiving tray 17 inside. A liquid level controller 22a controls the valve 39a by the liquid level of the liquefied CO reservoir 38 to control the amount of liquid CO fed into the liquid CO storage tank 100. Reference numeral 101 is a liquid CO inflow pipe, which is provided with a valve 102 and a liquid delivery pump P which are controlled by a liquid level controller 21 which keeps the liquid level in the tower 13 constant.
The stored liquid CO at the bottom of the rectification column section 13 is supplied to the liquefied CO reservoir 38. In this case, even if the supplied liquid CO is in a gas-liquid mixture state, it once enters the liquefied CO reservoir 38 and then flows down as a reflux liquid into the rectification column section 13, so that the reflux liquid is bubbled. There is an advantage that the phenomenon does not occur and the material flows down stably. Then, the liquefied CO that has flowed down into the tray 17 of the rectification tower tower 13 overflows and flows downward in the tower section 13, and the raw material gas fed into the tower section 13 from the low temperature raw material gas feed pipe 8a. In countercurrent contact with the CO2, the CO2 in the raw material gas is liquefied by the heat of vaporization and the impure gas with a low boiling point is transferred upward to purify CO. Reference numeral 18 denotes a liquid nitrogen storage tank which receives supply of liquid nitrogen from the outside of the device and stores the liquid nitrogen. , The cold source of the condenser 28 in the partial condenser unit 12. 36a is the input liquid nitrogen. 31
Is a delivery pipe for delivering vaporized liquefied nitrogen after finishing the action as cold in the dephlegmator section 12 of the rectification tower 11,
It is in communication with the N 2 gas extraction pipe 32a, and after vaporized liquefied nitrogen is heat-exchanged through the heat exchanger 6, it is sent out from the N 2 gas extraction pipe 32a to be used. There is. Control valve 34 provided in the introduction pipe 32
Is controlled by the liquid level controller 22 so that the liquid level of the liquid nitrogen in the dephlegmator section 12 of the rectification column 11 is kept at a constant level. The heat exchanger 6 and the rectification column 11 are housed in a vacuum heat insulating container as shown by the alternate long and short dash line. Further, 103 is a back-up system line equipped with an evaporator 104 and a valve 105, and when the rectification column line fails,
Alternatively, when the amount of product CO is insufficient in the rectification tower line alone, the liquid CO in the liquid CO storage tank 100 is evaporated by the evaporator 104 and sent to the main pipe 37a, and the supply of product CO gas is not interrupted. Or make sure that there is no shortage of product CO. The above liquid CO storage tank 10
Liquid CO can be taken out from 0 as a product, and
It is also possible to supply liquid CO from the outside of the device and cause it to flow down into the receiving tray 17 as a reflux liquid to realize an early operation when the device starts up.

この装置は、例えば、CO;69.93vol%,H2;30vol%,C
H4;0.03vol%,CO2;0.03vol%,N2;0.01vol%の組成の、C
O原料ガス(プロパン,ブタンの酸化により製造)を対
象としてつぎのようにして製品COを製造する。すなわ
ち、原料ガス圧縮機1により原料ガスを圧縮し、ドレン
分離器2により、圧縮された原料ガス中の水分を除去し
てフロン冷却器3によりさらに冷却し、その状態で吸着
筒4に送り込み原料ガス中のH2OおよびCO2を吸着除去す
る。ついで、H2O,CO2が吸着除去された原料ガスの一部
を、精留塔11からの窒素ガス,廃ガスおよび製品COガス
によつて冷却されている熱交換器6に送り込んで超低温
に冷却すると同時に、残部を炭化水素系不純ガス液化物
で冷却されている熱交換器25内に送入して超低温に冷却
する。そして、これら両ガスを合流させ、さらに炭化水
素系不純ガス液化除去器7内に導入し、製品COガスと熱
交換させ、精留塔11の底部のヒータ用配管25aを経由さ
せて精留塔11の塔部13内に送入(原料ガス温度約−170
℃)する。そして、受け皿17からの溢流液化COと向流的
に接触させて、原料ガス中のCOを液化し塔部13の底部に
液体COとして溜める。この時、原料ガス中のH2,N2ガス
等は、塔部13を上方に上昇する。また、原料ガスのCOの
一部も液化されずに、気体のまま上記H2,N2ガス等に随
伴して上昇する。上記上昇H2,N2,COの混合ガスは、第1
の還流液パイプ15から精留塔11の凝縮器28に送入され、
ここで、COガスのみが沸点の差によつて液化され、還流
液として第2の還流液パイプ16を介して液化CO溜め38に
送入され、弁39aの開閉,開度調節により液体CO貯蔵タ
ンク100内もしくは、精留塔11における塔部13の受け皿1
7内あるいは上記双方に送られる。他方、H2,N2ガスは凝
縮器28の上部から廃ガスパイプ30によつて取り出され、
熱交換器6内で原料ガスと熱交換し大気中に放出され
る。そして、精留塔11における塔部13の底部に溜まつた
液体COは、ヒータ用配管25aの作用により順次気化さ
れ、取出パイプ37から取り出され、炭化水素系不純ガス
液化除去器7,熱交換器6を経由し、常温の製品COガスと
してメインパイプ37aから取り出される。
This device is, for example, CO; 69.93vol%, H 2 ; 30vol%, C
C of H 4 ; 0.03vol%, CO 2 ; 0.03vol%, N 2 ; 0.01vol%
The product CO is manufactured as follows for O source gas (manufactured by oxidation of propane and butane). That is, the raw material gas compressor 1 compresses the raw material gas, the drain separator 2 removes the water content in the compressed raw material gas, and the CFC cooler 3 further cools the raw material gas. Adsorbs and removes H 2 O and CO 2 in gas. Then, a part of the raw material gas from which H 2 O and CO 2 have been adsorbed and removed is sent to the heat exchanger 6 which is cooled by the nitrogen gas from the rectification tower 11, the waste gas and the product CO gas, and the ultra low temperature is reached. At the same time as the cooling, the balance is fed into the heat exchanger 25 cooled by the hydrocarbon impure gas liquefaction and cooled to an ultra-low temperature. Then, these two gases are merged and further introduced into the hydrocarbon-based impure gas liquefaction remover 7 to exchange heat with the product CO gas, and passed through the heater pipe 25a at the bottom of the rectification column 11 to the rectification column. Introduced into the tower section 13 of 11 (raw material gas temperature of about -170
℃). Then, the CO in the raw material gas is liquefied and stored as liquid CO at the bottom of the tower section 13 by making countercurrent contact with the overflow liquefied CO from the tray 17. At this time, the H 2 and N 2 gases in the raw material gas rise upward in the tower section 13. Further, a part of CO in the raw material gas is not liquefied but rises as it is along with the above H 2 and N 2 gases and the like. The mixed gas of rising H 2 , N 2 and CO is the first
Is sent from the reflux liquid pipe 15 to the condenser 28 of the rectification column 11,
Here, only the CO gas is liquefied due to the difference in boiling point, and is fed into the liquefied CO reservoir 38 as the reflux liquid through the second reflux liquid pipe 16, and the liquid CO storage is performed by opening / closing the valve 39a and adjusting the opening degree. In the tank 100 or in the rectification tower 11, the saucer 1 of the tower section 13
7 or both. On the other hand, H 2 and N 2 gas is taken out from the upper part of the condenser 28 by a waste gas pipe 30,
The heat is exchanged with the raw material gas in the heat exchanger 6 and released into the atmosphere. Then, the liquid CO accumulated at the bottom of the tower section 13 in the rectification tower 11 is sequentially vaporized by the action of the heater pipe 25a, taken out from the take-out pipe 37, the hydrocarbon-based impure gas liquefaction remover 7, heat exchange. It is taken out from the main pipe 37a as normal temperature product CO gas through the container 6.

このように、この装置は、上記吸着筒4で不純分が除
去された原料ガスを精留塔11で深冷液化分離して液化CO
を製造するため、得られる液化CO製品の純度が超高純度
となる。しかも、製品液化COの需要量の変動が生じて
も、上記精留塔11の分縮器部12における液面調節計22の
制御作用によつて、液体窒素貯槽18から、精留塔11の分
縮器部12に供給される液体窒素の供給量が自動的に制御
される。したがつて、需要量の変動に自動的に、かつ迅
速に対応できるのであり、しかも、このときに純度ばら
つきを生じない。特に、この装置は、精留塔11における
分縮器部12の凝縮器28内に、精留塔11内の原料ガスの一
部を常時案内して液化するため、凝縮器28内へ液化COが
所定量溜まつたのちは、それ以降生成する液化COが還流
液として常時精留塔11の塔部13内に戻るようになる。し
たがつて、凝縮器28からの還流液の流下供給の断続に起
因する製品純度のばらつき(還流液の流下の中断により
精留棚では還流液がなくなりガスの吹き抜け現象を招い
て製品純度が下がり、流下の再開時には純度が回復す
る)を生じず、常時安定した純度の製品液化COを供給す
ることができる。
In this way, in this device, the raw material gas from which the impurities have been removed in the adsorption column 4 is cryogenic liquefied and separated in the rectification column 11 to produce liquefied CO
Therefore, the purity of the liquefied CO product obtained is extremely high. Moreover, even if the demand amount of the product liquefied CO fluctuates, by the control action of the liquid level controller 22 in the dephlegmator section 12 of the rectification column 11, the liquid nitrogen storage tank 18 causes the rectification column 11 to move. The supply amount of liquid nitrogen supplied to the partial condenser unit 12 is automatically controlled. Therefore, it is possible to automatically and promptly respond to the fluctuation of the demand amount, and at the same time, there is no variation in purity. In particular, this device constantly guides a part of the raw material gas in the rectification tower 11 into the condenser 28 of the dephlegmator section 12 in the rectification tower 11 and liquefies it. After a predetermined amount has accumulated, the liquefied CO that is generated thereafter will always return to the inside of the tower section 13 of the rectification tower 11 as a reflux liquid. Therefore, variations in product purity due to intermittent supply of reflux liquid from the condenser 28 (Discontinuation of the flow of the reflux liquid causes the reflux liquid to disappear in the rectification shelf, leading to a gas blow-through phenomenon and lowering the product purity. , And the purity recovers when the flow is resumed), and product liquefied CO of stable purity can always be supplied.

そのうえ、上記液面調節計22による制御では対応でき
ないような需要量の大幅な増加時、もしくは精留塔ライ
ンの故障によつて精留塔11から製品COガスが得られなく
なつたりしたとき等に、バツクアツプ系ライン103が作
動して液体CO貯蔵タンク100内の液体COを直接蒸発器104
で気化し、これを製品COガスとしてメインパイプ37aに
流下すため、需要量の大幅増加時における製品COガスの
純度低下現象の発生や、製品COガス供給のとだえが回避
され、常時安定に製品COガスを供給しうる。
In addition, when the demand volume increases significantly that cannot be controlled by the liquid level controller 22, or when the product CO gas cannot be obtained from the rectification tower 11 due to a failure of the rectification tower line, etc. In addition, the backup system line 103 is activated to directly vaporize the liquid CO in the liquid CO storage tank 100.
Is vaporized in the main pipe 37a as product CO gas, which reduces the purity of the product CO gas when a large increase in demand occurs, and avoids the CO supply of the product. CO gas can be supplied.

第2図は他の実施例を示している。この装置は、精留
塔塔部13の底部から延びる液体CO送入パイプ101の先端
を、液体CO貯蔵タンク100から精留塔塔部13に延びるパ
イプ39に連通させている。それ以外の部分は第1図の装
置と同じである。
FIG. 2 shows another embodiment. In this device, the tip of a liquid CO feed pipe 101 extending from the bottom of the rectification column section 13 is connected to a pipe 39 extending from the liquid CO storage tank 100 to the rectification column section 13. Other parts are the same as those of the apparatus shown in FIG.

このように構成した結果、液体CO送入パイプ101の送
液ポンプが不要になり、部品数の低減効果が得られるよ
うになる。
As a result of such a configuration, a liquid feed pump for the liquid CO feed pipe 101 becomes unnecessary, and the effect of reducing the number of parts can be obtained.

なお、上記の実施例では、原料ガスとしてCO2,O2成分
が少ないもの(双方の合計量が0.1%以下)を用いるよ
うにしているが、CO2,O2成分の多いものを原料ガスとし
て用いるときには、O2成分を除去するために、原料ガス
圧縮機1に続いて触媒塔(Pd,Pt,Ni等)を設けてO2成分
をCO2かH2Oもしくは双方に変え、かつCO2成分を除去す
るためにフロン冷却器3に続いてCO2を液化CO2に変える
冷凍機を設けるようにすることが好適である。
It should be noted that, in the above-mentioned embodiment, a material gas with a small amount of CO 2 and O 2 components (the total amount of both is 0.1% or less) is used, but a material gas with a large amount of CO 2 and O 2 components is used as the material gas. In order to remove the O 2 component, a catalyst tower (Pd, Pt, Ni, etc.) is installed after the source gas compressor 1 to remove the O 2 component, and the O 2 component is changed to CO 2 or H 2 O or both, and In order to remove the CO 2 component, it is preferable to provide the chlorofluorocarbon cooler 3 with a refrigerator for converting CO 2 into liquefied CO 2 .

〔発明の効果〕〔The invention's effect〕

この発明の一酸化炭素分離精製装置は、以上のように
構成されているため、超高純度の一酸化炭素を効率よく
製造することができる。しかも、この装置は、精留塔等
の寒冷源として装置外から液体窒素貯蔵手段に供給され
た液体窒素を使用するため、膨脹タービン等の回転機器
を必要とせず、したがつて、回転機器の運転,保全等の
煩雑な手間が不要となるうえ、装置全体の小形化をも実
現することができるようになる。
Since the apparatus for separating and purifying carbon monoxide of the present invention is configured as described above, it is possible to efficiently produce ultra-high-purity carbon monoxide. Moreover, since this device uses liquid nitrogen supplied to the liquid nitrogen storage means from outside the device as a cold source for the rectification column or the like, it does not require a rotating device such as an expansion turbine, and therefore, the rotating device This eliminates the need for troublesome operations such as operation and maintenance, and also enables downsizing of the entire device.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例の構成図、第2図は他の実
施例の構成図、第3図は従来例の構成図である。 1……原料ガス圧縮機、4……吸着筒、6……熱交換
器、7……炭化水素系不純ガス液化除去器、8a……送入
パイプ、11……精留塔、18……液体窒素貯槽、32……導
入路パイプ
FIG. 1 is a block diagram of one embodiment of the present invention, FIG. 2 is a block diagram of another embodiment, and FIG. 3 is a block diagram of a conventional example. 1 ... Raw material gas compressor, 4 ... Adsorption column, 6 ... Heat exchanger, 7 ... Hydrocarbon-based impure gas liquefaction remover, 8a ... Inlet pipe, 11 ... Fractionation tower, 18 ... Liquid nitrogen storage tank, 32 ...... Introduction pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一酸化炭素を含む原料ガスを圧縮する圧縮
手段と、上記原料ガス中の炭酸ガスと水分とを除去する
除去手段と、上記原料ガスを冷却するための熱交換手段
と、上記原料ガス中の炭酸水素系不純ガスを冷却凝縮さ
せ液化除去するための炭化水素系不純ガス液化除去器
と、上記炭化水素系不純ガス液化除去器を経た原料ガス
を精留塔内に導く原料ガス供給路と、沸点の差により原
料ガス中の一酸化炭素を液化して底部に溜め不純ガスを
分離して上部から排出する精留塔と、装置外から液体窒
素の供給を受けこれを貯蔵する液体窒素貯蔵手段と、こ
の液体窒素貯蔵手段内の液体窒素を一酸化炭素化の寒冷
源として上記精留塔内に導く第1の導入路と、上記精留
塔底部の貯留液体一酸化炭素の気化により生じた気化一
酸化炭素を炭化水素系不純ガス液化の寒冷源として上記
炭化水素系不純ガス液化除去器に導き熱交換させる第2
の導入路と、上記炭化水素系不純ガス液化除去器で熱交
換した気化一酸化炭素の製品一酸化炭素として取り出す
取出路を備えていることを特徴とする一酸化炭素分離精
製装置。
1. A compression means for compressing a raw material gas containing carbon monoxide, a removing means for removing carbon dioxide gas and moisture in the raw material gas, a heat exchange means for cooling the raw material gas, and A hydrocarbon-based impure gas liquefaction remover for cooling and condensing hydrogencarbonate-based impure gas in the raw material gas, and a raw material gas for guiding the raw material gas through the hydrocarbon-based impure gas liquefaction remover into the rectification column A supply channel, a rectification column that liquefies carbon monoxide in the raw material gas due to the difference in boiling point and collects it at the bottom to separate the impure gas and discharges it from the top, and receives liquid nitrogen from outside the device and stores it. A liquid nitrogen storage means, a first introduction path for guiding the liquid nitrogen in the liquid nitrogen storage means into the rectification column as a refrigeration source for carbon monoxide, and a liquid carbon monoxide stored at the bottom of the rectification column. The vaporized carbon monoxide produced by vaporization is converted to hydrocarbon. The is leading heat exchanger as cooling source of impure gas liquefaction to the hydrocarbon-based impurity gas liquefaction remover 2
And an extraction path for extracting vaporized carbon monoxide that has been heat-exchanged by the hydrocarbon-based impure gas liquefaction remover as product carbon monoxide.
JP61234196A 1986-09-30 1986-09-30 Carbon monoxide separation and purification equipment Expired - Fee Related JPH0816582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61234196A JPH0816582B2 (en) 1986-09-30 1986-09-30 Carbon monoxide separation and purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61234196A JPH0816582B2 (en) 1986-09-30 1986-09-30 Carbon monoxide separation and purification equipment

Publications (2)

Publication Number Publication Date
JPS6387580A JPS6387580A (en) 1988-04-18
JPH0816582B2 true JPH0816582B2 (en) 1996-02-21

Family

ID=16967188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61234196A Expired - Fee Related JPH0816582B2 (en) 1986-09-30 1986-09-30 Carbon monoxide separation and purification equipment

Country Status (1)

Country Link
JP (1) JPH0816582B2 (en)

Also Published As

Publication number Publication date
JPS6387580A (en) 1988-04-18

Similar Documents

Publication Publication Date Title
JPH0313505B2 (en)
JP4782380B2 (en) Air separation device
WO1986000693A1 (en) Apparatus for producing high-frequency nitrogen gas
JPH0789012B2 (en) Carbon monoxide separation and purification equipment
JP2000088455A (en) Method and apparatus for recovering and refining argon
JP2585955B2 (en) Air separation equipment
KR890001768B1 (en) Highly pure nitrogen gas producing apparatus
JP3719832B2 (en) Ultra high purity nitrogen and oxygen production equipment
JP3532465B2 (en) Air separation device
JPH0816583B2 (en) Carbon monoxide separation and purification equipment
JPH0816582B2 (en) Carbon monoxide separation and purification equipment
JP2574270B2 (en) Carbon monoxide separation and purification equipment
JP3181546B2 (en) Method and apparatus for producing nitrogen and argon from air
JPH0789011B2 (en) Carbon monoxide separation and purification equipment
JPH0816581B2 (en) Carbon monoxide separation and purification equipment
JPH0789007B2 (en) Carbon monoxide separation and purification equipment
JP2997939B2 (en) Recovery and utilization of evaporative gas in low-temperature storage tank
JP4242507B2 (en) Method and apparatus for producing ultra high purity gas
JPH0882476A (en) Apparatus for producing high-purity nitrogen gas
JP3532466B2 (en) Air separation device
JPH11325720A (en) Manufacture of ultra-high-purity nitrogen gas and device therefor
JPS6086015A (en) Purification of liquefied carbonic acid
JP2004020161A (en) High-purity nitrogen gas manufacturing device
JP2533262B2 (en) High-purity nitrogen and oxygen gas production equipment
KR900005986B1 (en) High-purity nitrogen gas production equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees