JPH0816581B2 - Carbon monoxide separation and purification equipment - Google Patents

Carbon monoxide separation and purification equipment

Info

Publication number
JPH0816581B2
JPH0816581B2 JP61189401A JP18940186A JPH0816581B2 JP H0816581 B2 JPH0816581 B2 JP H0816581B2 JP 61189401 A JP61189401 A JP 61189401A JP 18940186 A JP18940186 A JP 18940186A JP H0816581 B2 JPH0816581 B2 JP H0816581B2
Authority
JP
Japan
Prior art keywords
carbon monoxide
raw material
gas
liquefied
material gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61189401A
Other languages
Japanese (ja)
Other versions
JPS6346367A (en
Inventor
明 吉野
Original Assignee
大同ほくさん株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大同ほくさん株式会社 filed Critical 大同ほくさん株式会社
Priority to JP61189401A priority Critical patent/JPH0816581B2/en
Publication of JPS6346367A publication Critical patent/JPS6346367A/en
Publication of JPH0816581B2 publication Critical patent/JPH0816581B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、プロパン、ブタン等を酸化させて製造さ
れた一酸化炭素製造用ガスや製鉄所の副生ガス等から一
酸化炭素を分離する一酸化炭素分離精製装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention separates carbon monoxide from a carbon monoxide-producing gas produced by oxidizing propane, butane, or the like, a by-product gas of an iron mill, or the like. The present invention relates to a carbon monoxide separation / purification device.

〔従来の技術〕[Conventional technology]

一酸化炭素(CO)は反応性に富んでいるため、合成化
学の原料として使用されており、特に近年では、C1化学
の中でも最も重要な炭素源と考えられている。上記CO
は、製鉄所をはじめ工場の副生ガス中に多量に含まれて
いるものであり、従来は、せいぜい燃料として熱エネル
ギーが回収されているにすぎない。しかし、近年のCOに
対する需要の高まりから上記工場副生ガスからCOを分離
回収する装置が開発されている。また、最近では、上記
のようなCOの重要性に鑑みプロパン、ブタン等を酸化し
てつくられたCO原料ガスからCOを分離回収する装置も提
案されている。これらの装置には主として、ゼオライト
等の吸着剤を使用し、この吸着剤によつてCOを濃縮して
回収する装置と、COを選択的に吸収するコソーブ(COSO
RB)液を使用する装置の2種類の装置が用いられてい
る。しかしながら、上記吸着剤を使用する吸着分離装置
(PSA法に基づく)は、装置自体に多数の弁を必要とす
ると同時に、吸着剤を弁操作によつて切り換え、再生使
用する必要があり、装置全体が複雑になるうえ、煩雑な
弁操作を必要とするという難点がある。また、原料ガス
からのCOの回収率が低いため、廃ガスを再度原料ガスに
混合してCOの分離回収を図らなければならず、ランニン
グコストが高くなり製品COが高くなるとういう欠点も有
している。そのうえ、純度が99.5%程度の製品COしか得
られず高純度品が得られないという難点がある。
Because rich in carbon monoxide (CO) is reactive, it has been used as a raw material for synthetic chemistry, especially in recent years, are considered the most important carbon source among C 1 chemistry. CO above
Is contained in a large amount in by-product gas from factories, including steelworks, and conventionally, at best, thermal energy is only recovered as fuel. However, an increase in demand for CO in recent years has led to the development of an apparatus for separating and recovering CO from the above-mentioned by-product gas. Further, recently, in view of the importance of CO as described above, an apparatus for separating and recovering CO from a CO source gas produced by oxidizing propane, butane, etc. has been proposed. An adsorbent such as zeolite is mainly used for these devices, a device for concentrating and collecting CO by this adsorbent, and a COSOB (COSO) that selectively absorbs CO
Two types of equipment are used, one that uses the RB solution. However, the adsorption-separation device (based on the PSA method) that uses the above-mentioned adsorbent requires a large number of valves in the device itself, and at the same time, it is necessary to switch the adsorbent by valve operation and recycle it. Is complicated, and complicated valve operation is required. In addition, since the recovery rate of CO from the raw material gas is low, it is necessary to mix waste gas with the raw material gas again to separate and collect CO, which has a drawback that the running cost becomes high and the product CO becomes high. are doing. In addition, there is a drawback that only high-purity CO can be obtained because only CO with a purity of about 99.5% can be obtained.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

コソーブ法実施する装置は、上記PSA装置のような多
数の弁を要しないという利点を備えており、例えば、転
炉ガス等の製鉄所副生ガスを対象としてCOの分離回収を
実施する。上記転炉ガスの組成は、CO;68〜72vol%,C
O2;13〜17vol%,N2;11〜16vol%,H2;0.8〜1.3vol%,O2;
0.1vol%以下であり、それ以外に、アンモニア、硫化水
素、二酸化硫黄等の微量成分と、ダストならびに7%程
度の水分を含んでいる。このようなガスを対象とするコ
ソーブ装置の一例を第3図に示す。図において、40は転
炉ガスからなる原料ガス、41は圧縮機で、上記原料ガス
を圧縮し昇圧させる。この圧縮機41において、ダストは
圧縮機41の油に捕集され、この油を冷却するための油循
環系に設置されているフイルタによつて除去される。42
はブライン冷却器で、昇圧された原料ガスを予備脱湿す
る。43は活性炭を充填した吸着筒で原料ガス中の硫黄、
アンモニアを吸着除去する。44は合成ゼオライトを充填
した2個1組の吸着筒で、水分および炭酸ガス等を吸着
除去する。この2個1組の吸着筒44は交互に切り換え使
用される。45は吸収塔で、上記不純物除去および脱湿さ
れた原料ガスを、塔上部から流下するコソーブ液と向流
接触させて原料ガス中のCOをコソーブ液に選択的に吸収
させるようになつている。上記コソーブ液はトルエンに
CuAlCl4を溶解したもので、つぎのような反応により、
低温下でCOを選択的に吸収し、高温下においてCOを放散
する。
The apparatus for carrying out the Cossorb method has an advantage that it does not require a large number of valves unlike the PSA apparatus described above. For example, CO separation and recovery is carried out for steelworks by-product gas such as converter gas. The composition of the converter gas is CO; 68-72 vol%, C
O 2 ; 13 to 17 vol%, N 2 ; 11 to 16 vol%, H 2 ; 0.8 to 1.3 vol%, O 2 ;
It is 0.1 vol% or less, and in addition to that, it contains trace components such as ammonia, hydrogen sulfide, and sulfur dioxide, dust, and about 7% of water. FIG. 3 shows an example of a cosorb apparatus for such a gas. In the figure, 40 is a raw material gas composed of a converter gas, and 41 is a compressor, which compresses the raw material gas to increase its pressure. In this compressor 41, dust is collected in the oil of the compressor 41 and removed by a filter installed in an oil circulation system for cooling this oil. 42
Is a brine cooler that preliminarily dehumidifies the pressurized raw material gas. 43 is an adsorption cylinder filled with activated carbon, which is sulfur in the raw material gas,
Adsorb and remove ammonia. Reference numeral 44 is a set of two adsorption columns filled with synthetic zeolite for adsorbing and removing water and carbon dioxide. The pair of suction cylinders 44 are alternately switched and used. Reference numeral 45 denotes an absorption tower, in which the raw material gas from which the above impurities have been removed and dehumidified is brought into countercurrent contact with the cosorb liquid flowing down from the upper part of the tower so that CO in the raw material gas is selectively absorbed by the cosorb liquid. . The above cosoave liquid is changed to toluene
It is a solution of CuAlCl 4 , and the following reaction
It selectively absorbs CO at low temperatures and emits CO at high temperatures.

47は熱交換器で、上記吸収塔45内でCOを選択吸収し塔
45の底部から送出されたコソーブ液を、放散塔46の底部
から送出される液と熱交換させて加熱する。上記放散塔
46は、塔頂から上記CO吸収コソーブ液を流下させ、リボ
イラ49の加熱により発生したトルエン蒸気と接触させ、
CO吸収コソーブ液中のCOを放散させる。ここで、COを放
散したコソーブ液は、放散塔46の底部から熱交換器47お
よび水冷却塔48を経て冷却され再生されて吸収塔45の塔
頂へ戻される。吸収塔45の上部からは廃ガスが送出さ
れ、ブライン冷却器42′で−10℃まで冷却されてトルエ
ンを回収され、高炉ガス等の配管系へ送出される。そし
て、上記放散塔46の上部からは製品CO(ガス)が取り出
される。この場合、コソーブ液中には少量のCO2,N2,H2,
O2が溶解されるため、上記放散塔46から得られる製品CO
には、これらが混入されている。50は水冷却塔であり、
上記製品COを冷却しトルエンを回収する。51はコンプレ
ツサーで、上記製品COを昇圧させる。52はブライン冷却
器で、上記製品COを−10℃まで冷却したトルエンを回収
する。53は製品COの貯槽であり、適宜に製品COを送出す
る。
47 is a heat exchanger, which selectively absorbs CO in the absorption tower 45
The Cosorb liquid delivered from the bottom of 45 is heated by exchanging heat with the liquid delivered from the bottom of the stripping tower 46. The diffusion tower
46, the CO-absorbing cosorb liquid flowed down from the top of the tower, contact with the toluene vapor generated by heating the reboiler 49,
CO Absorbs CO in COSORB solution. Here, the COSORB liquid that has diffused CO is cooled and regenerated from the bottom of the diffusion tower 46 via the heat exchanger 47 and the water cooling tower 48, and is returned to the top of the absorption tower 45. Waste gas is sent from the upper part of the absorption tower 45, cooled to −10 ° C. by the brine cooler 42 ′ to recover toluene, and sent to a piping system for blast furnace gas or the like. Then, the product CO (gas) is taken out from the upper part of the stripping tower 46. In this case, a small amount of CO 2 , N 2 , H 2 ,
As O 2 is dissolved, the product CO obtained from the diffusion tower 46 above
These are mixed. 50 is a water cooling tower,
The above product CO is cooled and toluene is recovered. 51 is a compressor, which boosts the pressure of the product CO. 52 is a brine cooler, which collects toluene obtained by cooling the above product CO to -10 ° C. Reference numeral 53 is a product CO storage tank, which appropriately sends the product CO.

しかしながら、上記の装置では、必然的に微量の不純
物が製品CO中に混入するため、超高純度の一酸化炭素の
回収は実質的に不可能であり99.5%程度のものしか得ら
れない。また、この装置も製品COの回収率が低いという
欠点を有している。
However, in the above apparatus, trace amounts of impurities are inevitably mixed in the product CO, so that it is practically impossible to recover ultrahigh-purity carbon monoxide, and only about 99.5% is obtained. In addition, this device also has a drawback that the recovery rate of product CO is low.

この発明は、このような事情に鑑みなされたもので、
超高純度の一酸化炭素を高回収率で回収しうる一酸化炭
素分離精製装置の提供をその目的とする。
The present invention has been made in view of such circumstances,
It is an object of the present invention to provide a carbon monoxide separation and purification apparatus capable of recovering ultra-high purity carbon monoxide at a high recovery rate.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するため、この発明の一酸化炭素分
離精製装置は、一酸化炭素を含む原料ガスを圧縮する圧
縮手段と、上記原料ガス中の炭酸ガスと水分とを除去す
る除去手段と、上記原料ガスを冷却するための熱交換手
段と、上記熱交換手段を経た原料ガスを上記凝縮器内臓
冷却器の凝縮器内に導く原料ガス供給路と、沸点の差に
より原料ガス中の一酸化炭素を液化して内部に溜め不純
ガスを分離して排出する精留塔と、装置外から液体窒素
の供給を受けこれを貯蔵する液体窒素貯蔵手段と、この
液体窒素貯蔵手段内の液体窒素を一酸化炭素液化の寒冷
源として上記精留塔に導く導入路と、上記精留塔内の貯
溜液化一酸化炭素をそのままもしくは気体状態で製品一
酸化炭素として取り出す取出路と、上記精留塔内の貯溜
液化一酸化炭素に対する上記取出路への取出量を制御す
ることにより上記貯溜液化一酸化炭素の液面を一定に制
御する制御手段と、上記精留塔内の貯溜液化一酸化炭素
の液面の上層に対応する上記精留塔の部分から延び上記
貯溜液化一酸化炭素の液面の上層に浮く炭化水素系液化
ガスを系外に排出する排出路を備えるという構成をと
る。
In order to achieve the above object, the apparatus for separating and purifying carbon monoxide of the present invention is a compression unit for compressing a raw material gas containing carbon monoxide, a removing unit for removing carbon dioxide gas and water in the raw material gas, A heat exchange means for cooling the raw material gas, a raw material gas supply path for guiding the raw material gas that has passed through the heat exchange means into the condenser of the condenser built-in cooler, and a monoxide in the raw material gas due to a difference in boiling point. A rectification column that liquefies carbon and stores it inside to separate and discharge impure gas, liquid nitrogen storage means that receives liquid nitrogen from outside the device and stores it, and liquid nitrogen inside this liquid nitrogen storage means Introducing path leading to the rectification column as a cold source for carbon monoxide liquefaction, withdrawal path for taking out the stored liquefied carbon monoxide in the rectification column as a product carbon monoxide as it is or in a gaseous state, and in the rectification column Of stored liquefied carbon monoxide Corresponding to the control means for controlling the liquid level of the stored liquefied carbon monoxide to a constant level by controlling the amount taken out to the take-out passage, and the upper layer of the liquid level of the stored liquefied carbon monoxide in the rectification column. A configuration is provided in which a discharge passage is provided for discharging the hydrocarbon-based liquefied gas floating from an upper part of the liquid surface of the stored liquefied carbon monoxide from the rectification column to the outside of the system.

すなわち、この装置は、深冷液化分離法であり、圧縮
手段,除去手段,熱交換手段を経た原料ガスを、熱交換
手段に導入して超低温に冷却し、これを精留塔に導き、
その内部においてさらに液体窒素貯蔵手段から供給され
る液体窒素の冷熱で冷却して、原料ガス中のCOを液化す
るとともに、不純ガスを気体のまま除去し、これを精留
塔から排出すると同時に、液化COをそのままもしくは気
化して取り出すようにするため、超高純度の一酸化炭素
を回収することが可能になる。すなわち、この装置は、
上記コソーブ装置のようなコソーブ液の加熱、冷却によ
るCOの吸収、放散を利用したり、PSA装置のような吸着
剤による吸収を利用するものではないため、コソーブ液
中にCO2,N2等の微量不純ガスが溶解したり、吸着剤の吸
着不良に起因する不純ガスの混入等を生じず、したがつ
て、それら不純溶解分に起因する製品一酸化炭素の純度
阻害現象を生じない。しかも、上記精留塔内の貯溜液化
一酸化炭素に対する(上記貯溜液化一酸化炭素をそのま
まもしくは気体状態で製品一酸化炭素とし取り出す)取
出路への取出量を制御することにより上記貯溜液化一酸
化炭素の液面を一定に制御する制御手段と、上記精留塔
内の貯溜液化一酸化炭素の液面の上層に対応する上記精
留塔の部分から延び上記貯溜液化一酸化炭素の液面の上
層に浮く炭化水素系液化ガスを系外に排出する排出路を
備えているため、上記制御手段により精留塔内の貯溜液
化一酸化炭素の液面を正確に制御することができるとと
もに、上記排出路から系外に上記貯溜液化一酸化炭素の
液面の上層に浮く炭化水素系液化ガスを排出することが
でき、一層純度の高い製品一酸化炭素を取り出すことが
できるようになる。
That is, this apparatus is a cryogenic liquefaction separation method, and the raw material gas that has passed through the compression means, the removal means, and the heat exchange means is introduced into the heat exchange means, cooled to an ultralow temperature, and guided to the rectification column.
Cooling with the cold heat of liquid nitrogen further supplied from the liquid nitrogen storage means inside it to liquefy CO in the raw material gas, remove impure gas as a gas, and at the same time discharging it from the rectification column, Since the liquefied CO is taken out as it is or after being vaporized, ultrahigh-purity carbon monoxide can be recovered. That is, this device
Since CO absorption, emission of CO by heating and cooling of co-sorb liquid like the above-mentioned co-sorb device is not used, or absorption by adsorbent like PSA device is not used, CO 2 , N 2 etc. in the co-sorb liquid Does not dissolve the trace amount of impure gas, does not mix the impure gas due to poor adsorption of the adsorbent, and thus does not cause the phenomenon of impairing the purity of the product carbon monoxide due to the impure dissolved components. In addition, the stored liquefied carbon monoxide in the rectification tower is controlled by controlling the amount of the stored liquid liquefied carbon monoxide (the stored liquid liquefied carbon monoxide as it is or in a gaseous state to be taken out as product carbon monoxide) in the extraction passage. A control means for controlling the liquid level of carbon to a constant level, and extending from the portion of the rectification column corresponding to the upper layer of the liquid level of the stored liquefied carbon monoxide in the rectification column, Since the discharge path for discharging the hydrocarbon-based liquefied gas floating in the upper layer is provided outside the system, the liquid level of the stored liquefied carbon monoxide in the rectification column can be accurately controlled by the control means, and The hydrocarbon-based liquefied gas floating above the liquid surface of the stored liquefied carbon monoxide can be discharged from the discharge path to the outside of the system, and the product carbon monoxide having a higher purity can be taken out.

つぎに、この発明を実施例に基づいて詳しく説明す
る。
Next, the present invention will be described in detail based on examples.

〔実施例〕〔Example〕

第1図はこの発明の一実施例の構成図である。図にお
いて、1は原料ガス圧縮機、2はドレン分離器、3はフ
ロン冷却器、4は2個1組の吸着筒である。上記吸着筒
4は内部に合成ゼオライトもしくは活性炭または両者の
混合物が充填されていて、原料ガス圧縮機1により圧縮
された原料ガス中のH2OおよびCO2等を吸着除去する。5
はH2O,CO2等が吸着除去された原料ガスを送る原料ガス
供給パイプである。6は熱交換器であり、吸着筒4によ
りH2O,CO2等が吸着除去された圧縮原料ガスが送り込ま
れる。11は精留塔であり、凝縮器28内臓の分縮器部12と
中圧の塔部13とからなり、中圧の塔部13内には多数の精
留棚14が配設されている。この塔部13に、上記熱交換器
6から延びる低温原料ガス送入パイプ29が開口してお
り、超低温に冷却された原料ガスを送入するようになつ
ている。この塔部13内において、原料ガス中におけるCO
の一部が液化されて下方に流下し、H2,N2等の不純ガス
とCOの残部が混合気体状態で塔部13の上方に上昇する。
15は上記塔部13の上部と分縮器部12内の凝縮器28とを接
続する第1の還流液パイプであり、上記塔部13の上方に
上昇した混合ガスを凝縮器28内に送入するようになつて
いる。15aは遮蔽板であり、上記混合気体を第1の還流
液パイプ15に導く流路を形成し、この流路を流れる混合
ガスの移動により塔頂に溜る不純ガス(H2,N2)を混合
ガスに随伴させ不純ガスの塔頂滞留を防止する。上記凝
縮器28内においては、沸点の差によりCOが液化され、
N2,H2等が気体状態で凝縮器28から上方に延びる廃ガス
パイプ30を経て除去されるようになつている。16は上記
凝縮器28の下部から塔部13の上部内に延びる第2の還流
液パイプであり、上記凝縮器28の底部に溜る液化COを塔
部13内の受け皿17内に還流液として流下させるようにな
つている。この受け皿17内に流下した液化COは溢流して
塔部13内を下方に流れ、低温原料ガス送入パイプ29から
塔部13内に送入された原料ガスと向流的に接触し、その
蒸発熱により、原料ガス中のCOガスを液化するようにな
つている。8は炭化水素系液化ガス排出パイプで、精留
塔塔部13の底部に溜まつた液化CO9の上層に、比重差に
より層状に浮くCH4等の炭化水素液化ガス9aを系外に排
出するようになつている。18は装置外から液体窒素の供
給を受け、これを貯蔵する液体窒素貯槽であり、内部の
液体窒素を導入路パイプ32を経由させて精留塔11の分離
器部12内に送入し、分縮器部12内における凝縮器28の寒
冷源とする。36aは送入液体窒素である。31は精留塔11
の分縮器部12内において寒冷としての作用を終え気化し
た液化窒素を送出する送出パイプであつて、N2ガス取出
パイプ32aと連通しており、気化した液化窒素を、熱交
換器6を経由させて熱交換させたのち、N2ガス取出パイ
プ32aから外部に送出し使用に供するようになつてい
る。19は上記精留塔11の塔部13における底部に溜まつた
液化CO9を製品COとして取り出す取出パイプである。36
は製品COの貯蔵タンクであり、このタンク36から製品CO
が適宜取り出される。上記取出パイプ19には、調節弁20
が設けられている。21は液面調節計であり、上記精留塔
塔部13における底部の貯溜液化CO9の液面が一定レベル
を保つよう、その液面に応じて調節弁20を制御するよう
になつている。また、上記導入路パイプ32に設けられた
調節弁34も、上記精留塔11の分縮器部12内の液体窒素の
液面が一定レベルを保つよう、液面調節計22で制御され
るようになつている。なお、上記熱交換器6精留塔11
は、図示の一点鎖線で示すように、真空断熱容器内に収
容されている。
FIG. 1 is a block diagram of one embodiment of the present invention. In the figure, 1 is a raw material gas compressor, 2 is a drain separator, 3 is a Freon cooler, and 4 is a set of two adsorption tubes. The adsorption column 4 is filled with synthetic zeolite or activated carbon or a mixture of both, and adsorbs and removes H 2 O, CO 2 and the like in the raw material gas compressed by the raw material gas compressor 1. 5
Is a raw material gas supply pipe for sending the raw material gas from which H 2 O, CO 2, etc. have been adsorbed and removed. Reference numeral 6 denotes a heat exchanger, into which the compressed raw material gas from which H 2 O, CO 2, etc. have been adsorbed and removed by the adsorption cylinder 4 is fed. Reference numeral 11 denotes a rectification tower, which comprises a condenser 28 built-in condenser 28 and a medium pressure tower section 13, and a large number of rectification shelves 14 are arranged in the medium pressure tower section 13. . A low temperature raw material gas feed pipe 29 extending from the heat exchanger 6 is opened in the tower portion 13 to feed the raw material gas cooled to an ultra low temperature. In the tower section 13, CO
Is partially liquefied and flows downward, and the impure gas such as H 2 and N 2 and the rest of CO rise above the column 13 in a mixed gas state.
Reference numeral 15 is a first reflux liquid pipe that connects the upper part of the tower section 13 and the condenser 28 in the dephlegmator section 12, and sends the mixed gas rising above the tower section 13 into the condenser 28. It is supposed to enter. Reference numeral 15a is a shielding plate, which forms a flow path for guiding the mixed gas to the first reflux liquid pipe 15, and the impure gas (H 2 , N 2 ) accumulated at the top of the tower is removed by the movement of the mixed gas flowing in this flow path. Prevent the impure gas from staying at the top of the column by accommodating the mixed gas. In the condenser 28, CO is liquefied due to the difference in boiling point,
N 2 , H 2 and the like are removed in a gaseous state from the condenser 28 through a waste gas pipe 30 extending upward. Reference numeral 16 denotes a second reflux liquid pipe extending from the lower portion of the condenser 28 into the upper portion of the tower portion 13, and the liquefied CO accumulated at the bottom portion of the condenser 28 flows down as a reflux liquid into a tray 17 in the tower portion 13. It is getting to let you. The liquefied CO that has flowed down into the tray 17 overflows and flows downward in the tower portion 13, and comes into countercurrent contact with the raw material gas fed into the tower portion 13 from the low temperature raw material gas feed pipe 29, CO gas in the raw material gas is liquefied by the heat of vaporization. Numeral 8 is a hydrocarbon liquefied gas discharge pipe, which discharges hydrocarbon liquefied gas 9a such as CH 4 floating in a layer due to the difference in specific gravity to the upper layer of the liquefied CO9 accumulated at the bottom of the rectification tower section 13 to the outside of the system. It is becoming like this. 18 is a liquid nitrogen storage tank that receives the supply of liquid nitrogen from outside the device and stores it, and sends the liquid nitrogen inside to the separator section 12 of the rectification column 11 via the introduction path pipe 32, The condenser 28 in the partial condenser unit 12 serves as a cold source. 36a is the input liquid nitrogen. 31 is a rectification tower 11
A delivery pipe for delivering vaporized liquefied nitrogen after ending the action as cold in the dephlegmator section 12 of No. 2 , which is in communication with the N 2 gas take-out pipe 32a, and vaporizes liquefied nitrogen through the heat exchanger 6. After passing through it for heat exchange, it is sent out from the N 2 gas extraction pipe 32a to the outside for use. Reference numeral 19 is an extraction pipe for taking out liquefied CO9 accumulated in the bottom portion of the tower portion 13 of the rectification tower 11 as product CO. 36
Is a storage tank for product CO, and from this tank 36 product CO
Are taken out as appropriate. A control valve 20 is provided on the take-out pipe 19.
Is provided. A liquid level controller 21 controls the control valve 20 according to the liquid level so that the liquid level of the stored liquefied CO9 at the bottom of the rectification column section 13 is kept at a constant level. Further, the control valve 34 provided in the introduction pipe 32 is also controlled by the liquid level controller 22 so that the liquid level of the liquid nitrogen in the dephlegmator section 12 of the rectification column 11 is maintained at a constant level. It is becoming like this. In addition, the heat exchanger 6 rectification tower 11
Are housed in a vacuum heat insulation container as indicated by the one-dot chain line in the figure.

この装置は、例えば、CO;69.93vol%,H2;30vol%,C
H4;0.03vol%,CO2;0,03vol%,N2;0.01vol%の組成の、C
O原料ガス(プロパン,ブタンの酸化により製造)を対
象としてつぎのようにして製品COを製造する。すなわ
ち、原料ガス圧縮機1により原料ガスを圧縮し、ドレン
分離器2により、圧縮された原料ガス中の水分を除去し
てフロン冷却器3によりさらに冷却し、その状態で吸着
筒4に送り込み原料ガス中のH2OおよびCO2を吸着除去す
る。ついで、H2O,CO2が吸着除去された原料ガスを、精
留塔11からの窒素ガスおよび廃ガスによつて冷却されて
いる熱交換器6に送り込んで超低温に冷却する。そし
て、超低温に冷却された原料ガスを、精留塔11の塔部13
内に送入し、受け皿17からの溢流液化COと向流的に接触
させて、原料ガス中のCOを液化し塔部13の底部に液化CO
9として溜める。この時、原料ガス中のH2,N2ガス等は、
塔部13を上方に上昇する。また、原料ガス中のCOの一部
も液化されずに、気体のまま上記H2,N2ガス等に随伴し
て上昇する。上記上昇H2,N2,COの混合ガスは、第1の還
流液パイプ15から精留塔11の凝縮器28に送入され、ここ
で、COガスのみが沸点の差によつて液化され、還流液と
して第2の還流液パイプ16を介して精留塔11における塔
部13の受け皿17内に戻る。他方、H2,N2ガスは凝縮器28
の上部から廃ガスパイプ30によつて取り出され、熱交換
器6内で原料ガスと熱交換し大気中に放出される。そし
て、精留塔11における塔部13の底部に溜まつた液化CO9
は、製品液化CO取出パイプ19から液化製品として取り出
され、貯蔵タンク36内に一旦貯蔵されたのち適宜使用に
供される。なお、上記液化CO9の上層のCH4等の炭化水素
系液化ガスは排出パイプ8から系外に排出される。
This device is, for example, CO; 69.93vol%, H 2 ; 30vol%, C
C of H 4 ; 0.03vol%, CO 2 ; 0,03vol%, N 2 ; 0.01vol%
The product CO is manufactured as follows for O source gas (manufactured by oxidation of propane and butane). That is, the raw material gas compressor 1 compresses the raw material gas, the drain separator 2 removes the water content in the compressed raw material gas, and the CFC cooler 3 further cools the raw material gas. Adsorbs and removes H 2 O and CO 2 in gas. Then, the raw material gas from which H 2 O and CO 2 have been adsorbed and removed is sent to the heat exchanger 6 which is cooled by the nitrogen gas and the waste gas from the rectification column 11 to be cooled to an ultralow temperature. Then, the raw material gas cooled to the ultra low temperature is supplied to the tower section 13 of the rectification tower 11.
The liquefied CO is liquefied at the bottom of the tower 13 by liquefying the CO in the source gas by countercurrently contacting the overflowed liquefied CO from the pan 17
Collect as 9. At this time, the H 2 and N 2 gases in the raw material gas are
The tower section 13 rises upward. Further, a part of CO in the raw material gas is not liquefied but rises as it is along with the H 2 and N 2 gases as it is. The mixed gas of the ascending H 2 , N 2 and CO is fed from the first reflux liquid pipe 15 to the condenser 28 of the rectification column 11, where only the CO gas is liquefied due to the difference in boiling points. , And returns to the receiving tray 17 of the tower section 13 in the rectification column 11 via the second reflux liquid pipe 16 as the reflux liquid. On the other hand, the H 2 and N 2 gases are
Is taken out by the waste gas pipe 30 from the upper part of the heat exchanger 6 and exchanges heat with the raw material gas in the heat exchanger 6 and is released into the atmosphere. Then, the liquefied CO 9 accumulated at the bottom of the tower section 13 in the rectification tower 11
Is taken out as a liquefied product from the product liquefied CO take-out pipe 19, is once stored in the storage tank 36, and is then appropriately used. The hydrocarbon-based liquefied gas such as CH 4 in the upper layer of the liquefied CO 9 is discharged out of the system through the exhaust pipe 8.

このように、この装置は、上記吸着筒4で不純分が除
去された原料ガスを精留塔11で深冷液化分離して液化CO
を製造するため、得られる液化CO製品の純度が超高純度
となる。しかも、製品液化COの需要量の変動が生じて
も、上記精留塔11の分縮器部12における液面計22の制御
作用によつて、液体窒素貯槽18から、精留塔11の分縮器
部12に供給される液体窒素の供給量が自動的に制御され
る。したがつて、需要量の変動に自動的に、かつ迅速に
対応できるのであり、しかも、このときに純度ばらつき
を生じない。特に、この装置は、精留塔11における分縮
塔部12の凝縮器28内に、精留塔11内の原料ガスの一部を
常時案内して液化するため、凝縮器28内へ液化COが所定
量溜まつたのちは、それ以降生成する液化COが還流液と
して常時精留塔11の塔部13内に戻るようになる。したが
つて、凝縮器28からの還流液の流下供給の断続に起因す
る製品純度のばらつき(還流液の流下の中断により精留
棚では還流液がなくなりガスの吹き抜け現象を招いて製
品純度が下がり、流下の再開時には純度が回復する)生
じず、常時安定した純度の製品液化COを供給することが
できる。
In this way, in this device, the raw material gas from which the impurities have been removed in the adsorption column 4 is cryogenic liquefied and separated in the rectification column 11 to produce liquefied CO
Therefore, the purity of the liquefied CO product obtained is extremely high. Moreover, even if the demand amount of the product liquefied CO fluctuates, the liquid nitrogen storage tank 18 separates the fraction of the rectification column 11 from the liquid nitrogen storage tank 18 by the control action of the liquid level gauge 22 in the partial condenser 12 of the rectification column 11. The supply amount of liquid nitrogen supplied to the compressor unit 12 is automatically controlled. Therefore, it is possible to automatically and promptly respond to the fluctuation of the demand amount, and at the same time, there is no variation in purity. In particular, this apparatus constantly guides a part of the raw material gas in the rectification column 11 into the condenser 28 of the fractionation column part 12 in the rectification column 11 to liquefy it, so that the liquefied CO After a predetermined amount has accumulated, the liquefied CO that is generated thereafter will always return to the inside of the tower section 13 of the rectification tower 11 as a reflux liquid. Therefore, variations in product purity due to intermittent supply of reflux liquid from the condenser 28 (Discontinuation of the flow of the reflux liquid causes the reflux liquid to disappear in the rectification shelf, leading to a gas blow-through phenomenon and lowering the product purity. , The purity recovers when the flow is resumed), and stable product liquefied CO can always be supplied.

第2図はこの発明の他の実施例を示している。この装
置は、熱交換器6を経た原料ガスを、精留塔塔部13の底
部貯溜液化CO9中を通る低温液化ガス送入パイプ延長部2
5a内に案内して液化OC9を加熱し気化させ、その気化CO
を製品COガスとして取出パイプ37から取り出すととも
に、凝縮器28で生成した液化COを、液化CO溜め38内に案
内し、パイプ39から製品液化COとして取り出しうるよう
になつている。なお、22aは液面計で、液化CO溜め38の
液面によつてバルブ39aを制御し、液面を一定に保つよ
うになつている。それ以外の部分は第1図の装置と実質
的に同じてあるから説明を省略する。
FIG. 2 shows another embodiment of the present invention. In this device, the raw gas passed through the heat exchanger 6 is passed through the bottom storage liquefied CO9 of the rectification tower column 13 through the low temperature liquefied gas feed pipe extension 2
The liquefied OC9 is heated and vaporized by being guided to the inside of 5a, and the vaporized CO
Is taken out from the take-out pipe 37 as the product CO gas, and the liquefied CO generated in the condenser 28 is guided into the liquefied CO reservoir 38 so that it can be taken out from the pipe 39 as the product liquefied CO. A liquid level gauge 22a controls the valve 39a by the liquid level of the liquefied CO reservoir 38 to keep the liquid level constant. The other parts are substantially the same as the device of FIG.

この装置は、液体COと気体COの双方を製品COとして供
給しうるという効果を奏する。
This device has an effect that both liquid CO and gaseous CO can be supplied as product CO.

なお、以上の実施例は液体取りおよび液体,気体の双
方取りを示しているが、塔部13内のCOガスのみを製品ガ
スとして取り出すという気体取りもできるのである。
In addition, although the above embodiment shows the liquid removal and both the liquid and the gas removal, it is also possible to perform the gas removal in which only the CO gas in the tower section 13 is taken out as the product gas.

〔発明の効果〕〔The invention's effect〕

この発明の一酸化炭素分離精製装置は、以上のように
構成されているため、超高純度の一酸化炭素を効率よく
製造することができる。しかも、この装置は、精留塔等
の寒冷源として装置外から液体窒素貯蔵手段に供給され
た液体窒素を使用するため、膨張タービン等の回転機器
を必要とせず、したがつて、回転機器の運転,保全等の
煩雑な手間が扶養となるうえ、装置全体の小形化をも実
現することができるようになる。さらに、上記精留塔内
の貯溜液化一酸化炭素に対する(上記貯溜液化一酸化水
素をそのままもしくは気体状態で製品一酸化炭素として
取り出す)取出路への取出量を制御することにより上記
貯溜液化一酸化炭素の液面を一定に制御する制御手段
と、上記精留塔内の貯溜液化一酸化炭素の液面の上層に
対応する上記精留塔の部分から延び上記貯溜液化一酸化
炭素の液面の上層に浮く炭化水素系液化ガスを系外に排
出する排出路を備えているため、上記制御手段により精
留塔内の貯溜液化一酸化炭素の液面を正確に制御するこ
とができるとともに、上記排出路から系外に上記貯溜液
化一酸化炭素の液面の上層に浮く炭化水素系液化ガスを
排出することができ、一層純度の高い製品一酸化炭素を
取り出すことができるようになる。
Since the apparatus for separating and purifying carbon monoxide of the present invention is configured as described above, it is possible to efficiently produce ultra-high-purity carbon monoxide. Moreover, since this device uses liquid nitrogen supplied to the liquid nitrogen storage means from outside the device as a cold source for the rectification column or the like, it does not require a rotating device such as an expansion turbine, and therefore, the rotating device In addition to supporting complicated labor such as operation and maintenance, it becomes possible to downsize the entire device. Further, the stored liquefied carbon monoxide in the rectification column is controlled by controlling the amount of the stored liquefied carbon monoxide taken out to the take-out path (the stored liquid liquefied hydrogen monoxide is taken out as product carbon monoxide as it is or in a gaseous state). A control means for controlling the liquid level of carbon to a constant level, and extending from the portion of the rectification column corresponding to the upper layer of the liquid level of the stored liquefied carbon monoxide in the rectification column, Since the discharge path for discharging the hydrocarbon-based liquefied gas floating in the upper layer is provided outside the system, the liquid level of the stored liquefied carbon monoxide in the rectification column can be accurately controlled by the control means, and The hydrocarbon-based liquefied gas floating above the liquid surface of the stored liquefied carbon monoxide can be discharged from the discharge path to the outside of the system, and the product carbon monoxide having a higher purity can be taken out.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例の構成図、第2図は他の実
施例の構成図、第3図は従来例の構成図である。 1……原料ガス圧縮機、4……吸着筒、6……熱交換
器。
FIG. 1 is a block diagram of one embodiment of the present invention, FIG. 2 is a block diagram of another embodiment, and FIG. 3 is a block diagram of a conventional example. 1 ... Raw material gas compressor, 4 ... Adsorption cylinder, 6 ... Heat exchanger.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一酸化炭素を含む原料ガスを圧縮する圧縮
手段と、上記原料ガス中の炭酸ガスと水分とを除去する
除去手段と、上記原料ガスを冷却するための熱交換手段
と、上記熱交換手段を経た原料ガスを精留塔内に導く原
料ガス供給路と、沸点の差により原料ガス中の一酸化炭
素を液化して内部に溜め不純ガスを分離して排出する精
留塔と、装置外から液体窒素の供給を受けこれを貯蔵す
る液体窒素貯蔵手段と、この液体窒素貯蔵手段内の液体
窒素を一酸化炭素液化の寒冷源として上記精留塔に導く
導入塔と、上記精留塔内の貯溜液化一酸化炭素をそのま
まもしくは気体状態で製品一酸化炭素として取り出す取
出路と、上記精留塔内の貯溜液化一酸化炭素に対する上
記取出路への取出量を制御することにより上記貯溜液化
一酸化炭素の液面を一定に制御する制御手段と、上記精
留路内の貯溜液化一酸化炭素の液面の上層に対応する上
記精留塔の部分から延び上記貯溜液化一酸化炭素の液面
の上層に浮く炭化水素系液化ガスを系外に排出する排出
路を備えていることを特徴とする一酸化炭素分離精製装
置。
1. A compression means for compressing a raw material gas containing carbon monoxide, a removing means for removing carbon dioxide gas and moisture in the raw material gas, a heat exchange means for cooling the raw material gas, and A raw material gas supply path for guiding the raw material gas that has passed through the heat exchange means into the rectification column, and a rectification column for liquefying carbon monoxide in the raw material gas due to the difference in boiling point and separating the impure gas that is accumulated inside and discharged. A liquid nitrogen storage means for receiving and storing liquid nitrogen supplied from outside the apparatus; an introduction tower for guiding the liquid nitrogen in the liquid nitrogen storage means to the rectification tower as a cold source for liquefying carbon monoxide; By controlling the amount of liquefied carbon monoxide stored in the distillation column as it is or in the gaseous state as product carbon monoxide, and the amount of the stored liquefied carbon monoxide in the rectification column taken out to the above-mentioned outlet line. Liquid level of stored liquefied carbon monoxide Control means for constant control and hydrocarbons extending from the portion of the rectification column corresponding to the upper layer of the liquid surface of the stored liquefied carbon monoxide in the rectification passage and floating on the upper layer of the liquid surface of the stored liquefied carbon monoxide. An apparatus for separating and purifying carbon monoxide, comprising a discharge passage for discharging a system liquefied gas to the outside of the system.
JP61189401A 1986-08-12 1986-08-12 Carbon monoxide separation and purification equipment Expired - Fee Related JPH0816581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61189401A JPH0816581B2 (en) 1986-08-12 1986-08-12 Carbon monoxide separation and purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61189401A JPH0816581B2 (en) 1986-08-12 1986-08-12 Carbon monoxide separation and purification equipment

Publications (2)

Publication Number Publication Date
JPS6346367A JPS6346367A (en) 1988-02-27
JPH0816581B2 true JPH0816581B2 (en) 1996-02-21

Family

ID=16240669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61189401A Expired - Fee Related JPH0816581B2 (en) 1986-08-12 1986-08-12 Carbon monoxide separation and purification equipment

Country Status (1)

Country Link
JP (1) JPH0816581B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114368752A (en) * 2021-12-16 2022-04-19 中煤陕西榆林能源化工有限公司 Hydrogen energy storage method and system suitable for large-scale industrialization

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215577A (en) * 1983-05-19 1984-12-05 株式会社神戸製鋼所 Method of recovering co gas from converter gas
JPS6119902A (en) * 1984-07-09 1986-01-28 Mitsubishi Heavy Ind Ltd Steam turbine

Also Published As

Publication number Publication date
JPS6346367A (en) 1988-02-27

Similar Documents

Publication Publication Date Title
US4270938A (en) Processes for decontaminating nuclear process off-gas streams
CA1233109A (en) Process and apparatus for obtaining pure co
JPH0313505B2 (en)
CS145292A3 (en) Process for preparing extremely pure argon
US5783162A (en) Argon purification process
JPH0789012B2 (en) Carbon monoxide separation and purification equipment
JPH09264667A (en) Manufacturing device for extra-high purity nitrogen and oxygen
JP2585955B2 (en) Air separation equipment
JPS6158747B2 (en)
JPH09184681A (en) Method for manufacturing super high-purity oxygen and nitrogen
JP2574270B2 (en) Carbon monoxide separation and purification equipment
JPH0816583B2 (en) Carbon monoxide separation and purification equipment
JPH0816581B2 (en) Carbon monoxide separation and purification equipment
US5787730A (en) Thermal swing helium purifier and process
JP3532465B2 (en) Air separation device
JPH0789011B2 (en) Carbon monoxide separation and purification equipment
JPH0789007B2 (en) Carbon monoxide separation and purification equipment
JPH0942831A (en) Highly pure nitrogen gas producing apparatus
JP2939814B2 (en) Methane separation device and method
JP3256811B2 (en) Method for purifying krypton and xenon
JPH0816582B2 (en) Carbon monoxide separation and purification equipment
JPH0579754A (en) Manufacturing method of high purity nitrogen
JPH11325720A (en) Manufacture of ultra-high-purity nitrogen gas and device therefor
JP4242507B2 (en) Method and apparatus for producing ultra high purity gas
JP3385410B2 (en) Noble gas purification method and apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees