JP2939814B2 - Methane separation device and method - Google Patents

Methane separation device and method

Info

Publication number
JP2939814B2
JP2939814B2 JP5319190A JP5319190A JP2939814B2 JP 2939814 B2 JP2939814 B2 JP 2939814B2 JP 5319190 A JP5319190 A JP 5319190A JP 5319190 A JP5319190 A JP 5319190A JP 2939814 B2 JP2939814 B2 JP 2939814B2
Authority
JP
Japan
Prior art keywords
methane
gas
product
separation
natural gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5319190A
Other languages
Japanese (ja)
Other versions
JPH03255876A (en
Inventor
賢治 池田
忠 国見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sanso Corp
Original Assignee
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sanso Corp filed Critical Nippon Sanso Corp
Priority to JP5319190A priority Critical patent/JP2939814B2/en
Publication of JPH03255876A publication Critical patent/JPH03255876A/en
Application granted granted Critical
Publication of JP2939814B2 publication Critical patent/JP2939814B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0238Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/08Separating gaseous impurities from gases or gaseous mixtures or from liquefied gases or liquefied gaseous mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/72Refluxing the column with at least a part of the totally condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/66Regenerating the adsorption vessel, e.g. kind of reactivation gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/04Mixing or blending of fluids with the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/60Natural gas or synthetic natural gas [SNG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/60Methane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、天然ガスを原料として液化精留分離を行い
メタンを精製分離するメタン分離装置及び方法に関す
る。
Description: TECHNICAL FIELD The present invention relates to a methane separation apparatus and method for purifying and separating methane by performing liquefied rectification and separation using natural gas as a raw material.

〔従来の技術〕[Conventional technology]

第2図に、従来の一般的なメタン分離装置の系統を示
す。このメタン分離装置は、天然ガスを原料として該天
然ガス中に含まれる窒素,エタン,炭素数3以上の炭化
水素,二酸化炭素,水分,ごく微量のBTX(ベンゼン,
トルエン,キシレン)等を、前処理としての吸着操作と
液化精留分離操作とにより分離除去して精製し、高純度
のメタンを採取するものである。
FIG. 2 shows a system of a conventional general methane separation device. This methane separation apparatus uses natural gas as a raw material, and contains nitrogen, ethane, hydrocarbons having 3 or more carbon atoms, carbon dioxide, moisture, and trace amounts of BTX (benzene,
In this method, toluene and xylene are separated and removed by an adsorption operation as a pretreatment and a liquefaction and rectification separation operation to purify and collect high-purity methane.

あらかじめ洗浄法等により含有する炭酸ガスを除去さ
れている原料天然ガスは、原料供給管1から圧縮機2に
吸入され、約30kg/cm2Gに昇圧された後にアフタークー
ラー3,予冷器4,ドレン分離器5を経て吸着設備6に導入
される。この吸着設備6は、切替使用される複数の吸着
器(乾燥器)7a,7bを切替用の弁8a,8b,9a,9bで接続した
もので、一方の吸着器7aが原料天然ガス中の不純物を除
去する吸着工程にある間、他方の吸着器7bは再生工程に
あり、後述の再生ガスにより吸着剤に吸着した不純物成
分の脱着及び予冷からなる吸着剤の再生が行われる。
The raw natural gas from which carbon dioxide contained in advance has been removed by a washing method or the like is drawn into the compressor 2 from the raw material supply pipe 1, and after being pressurized to about 30 kg / cm 2 G, the aftercooler 3, the precooler 4, It is introduced into the adsorption equipment 6 via the drain separator 5. In this adsorption equipment 6, a plurality of adsorbers (dryers) 7a and 7b to be used for switching are connected by switching valves 8a, 8b, 9a and 9b, and one adsorber 7a is used for the raw natural gas. During the adsorption step for removing impurities, the other adsorber 7b is in the regeneration step, and the regeneration of the adsorbent is performed by desorbing the impurity component adsorbed on the adsorbent by the regeneration gas described below and pre-cooling.

入口弁8aから一方の吸着器7aに導入された原料天然ガ
スは、含有する水分,残留炭酸ガス,BTX等が除去されて
精製乾燥された後に、出口弁9a,導管10を経てコールド
ボックス内に導入され、第一熱交換器11,フロン冷却器1
2にて冷却され、気液分離器13に導入されて低沸点成分
であるメタン,エタン等と他の高沸点成分とが分離され
る。気液分離器13の頂部から導出された原料ガスは、さ
らに第二熱交換器14で冷却されて精留塔15の下部に導入
される。精留塔15で精留されて頂部から導出されたメタ
ンガスは、その一部が導管16に分岐し、弁17,過冷器18,
第二熱交換器14,第一熱交換器11を経て冷熱を回収され
た後、製品ガス導管19,導管20,予冷器4を経て予冷器4
の冷却源として使用された後、製品メタンガスとして採
取される。尚、一部の製品メタンガスは、弁21を経て上
記導管20の製品メタンガスに合流する。
The raw natural gas introduced into one of the adsorbers 7a from the inlet valve 8a is purified and dried after removing the contained water, residual carbon dioxide gas, BTX, etc., and then is discharged into the cold box via the outlet valve 9a and the conduit 10. Introduced first heat exchanger 11, Freon cooler 1
The mixture is cooled in 2 and introduced into the gas-liquid separator 13 to separate low boiling components such as methane and ethane from other high boiling components. The raw material gas derived from the top of the gas-liquid separator 13 is further cooled by the second heat exchanger 14 and introduced into the lower part of the rectification column 15. Part of the methane gas rectified in the rectification tower 15 and led out from the top is branched into a conduit 16, and a valve 17, a subcooler 18,
After the cold heat is recovered through the second heat exchanger 14 and the first heat exchanger 11, the pre-cooler 4 is passed through the product gas conduit 19, the conduit 20, and the pre-cooler 4.
After being used as a cooling source, it is collected as product methane gas. Note that some of the product methane gas joins the product methane gas in the conduit 20 via the valve 21.

一方、精留塔15の底部からは、メタンを50%程度含有
する液化ガスが導出され、過冷器18,弁22を経て凝縮器2
3に導入される。凝縮器23では、この液化ガスと前記精
留塔頂部から導出されたメタンガスの残部とが熱交換を
行い、メタンガスが液化して精留塔15の還流液となる。
液化ガスは、その一部が気化して凝縮器23から凝縮器出
口導管24に導出され、第二熱交換器14を出て前記気液分
離器13の底部から導出された液相部と合流した後、第一
熱交換器11を経てコールドボックス外に導出され、導管
25から排ガスとして回収される。この排ガスの一部は導
管25から再生ガス用の導管26に分岐し、吸着設備6の再
生ガスとして用いられる。
On the other hand, a liquefied gas containing about 50% of methane is led out from the bottom of the rectification column 15 and passed through the subcooler 18 and the valve 22 to the condenser 2.
Introduced in 3. In the condenser 23, the liquefied gas exchanges heat with the remainder of the methane gas led out from the top of the rectification column, and the methane gas is liquefied to become a reflux liquid of the rectification column 15.
The liquefied gas is partially vaporized and led out of the condenser 23 to the condenser outlet conduit 24, exits the second heat exchanger 14, and merges with the liquid phase part drawn out from the bottom of the gas-liquid separator 13. After that, it is led out of the cold box through the first heat exchanger 11 and
Collected as exhaust gas from 25. A part of this exhaust gas is branched from the conduit 25 to the conduit 26 for the regeneration gas, and is used as the regeneration gas in the adsorption equipment 6.

この再生ガスは、再生工程初期の脱着操作時には、切
替弁27により加熱器28に導入され、スチーム等により所
定温度まで加熱された後に、再生弁29a,29bの一方から
再生工程にある吸着器に逆流し、不純物を脱着同伴して
排出弁30a,30bの一方から再生ガス冷却器31に導入され
て冷却された後に前記導管25の排ガスに合流する。ま
た、再生工程後期の再生ガスは、加熱器28を通らずに切
替弁27から導管32,再生弁29a,29bを介して吸着器7a,7b
に導入され、吸着剤の予冷を行った後に前記同様排ガス
に合流する。
This regeneration gas is introduced into the heater 28 by the switching valve 27 at the time of the desorption operation at the beginning of the regeneration step, and after being heated to a predetermined temperature by steam or the like, is supplied from one of the regeneration valves 29a and 29b to the adsorber in the regeneration step. After flowing back, the impurities are introduced into the regeneration gas cooler 31 from one of the discharge valves 30a and 30b together with the exhaust gas and cooled, and then merge with the exhaust gas in the conduit 25. Further, the regeneration gas in the latter half of the regeneration step is not passed through the heater 28 but is passed from the switching valve 27 to the adsorbers 7a and 7b through the conduit 32 and the regeneration valves 29a and 29b.
And after pre-cooling of the adsorbent, merges with the exhaust gas in the same manner as described above.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、上述のメタン分離プロセスにおいて、
メタンの回収率を上げることを目指すと、例えば第1表
に示すマスバランス[体積%]で限界になり、それ以上
の回収率向上はできなくなる。
However, in the methane separation process described above,
If the aim is to increase the methane recovery rate, for example, the mass balance [% by volume] shown in Table 1 is at a limit, and it is not possible to further improve the recovery rate.

これは、精留塔15の底部から導出されるメタン含有液
化ガスの蒸発温度がメタンの濃度により変化することに
基因するもので、この蒸発温度の変化が凝縮器23の能
力、即ち凝縮器23におけるメタンガスの液化能力に影響
を与えることによる。例えば、液化ガス中のメタン濃度
が高ければ蒸発温度が低くなり、凝縮器23で多量のメタ
ンガスを液化することができるが、メタン濃度が低くな
ると蒸発温度が高くなり、凝縮器23でのメタンガスの液
化能力が減少して精留塔15の還流液が不足し、十分な精
留を行えなくなる。
This is based on the fact that the evaporation temperature of the methane-containing liquefied gas derived from the bottom of the rectification column 15 changes with the concentration of methane, and this change in the evaporation temperature changes the capacity of the condenser 23, that is, the condenser 23. Impact on the liquefaction capacity of methane gas in the sea. For example, if the methane concentration in the liquefied gas is high, the evaporation temperature will be low, and a large amount of methane gas can be liquefied in the condenser 23, but if the methane concentration is low, the evaporation temperature will be high and the methane gas in the condenser 23 will be high. The liquefaction capacity is reduced, and the reflux liquid in the rectification column 15 becomes insufficient, so that sufficient rectification cannot be performed.

従って、液化ガス中にある程度の濃度以上のメタンを
含有させることが必要であり、製品精製メタンとして採
取するメタンガスの純度と収率が圧力バランスも含めて
最適化されるため、現状では上記第1表に示す回収率が
限度であった。
Therefore, it is necessary to contain methane of a certain concentration or more in the liquefied gas, and the purity and yield of methane gas collected as product purified methane are optimized including the pressure balance. The recovery rate shown in the table was the limit.

そこで、本発明は、分離精製後の製品メタンの純度を
損うことなく、回収率を向上させることのできるメタン
分離装置及びその方法を提供することを目的としてい
る。
Therefore, an object of the present invention is to provide a methane separation apparatus and a method thereof capable of improving the recovery rate without impairing the purity of the product methane after separation and purification.

〔課題を解決するための手段〕[Means for solving the problem]

上記した目的を達成するために、本発明のメタン分離
装置は、圧縮,精製,冷却した原料天然ガスを液化精留
分離する精留塔と、該精留塔頂部から導出された分離メ
タンの一部と精留塔底部から導出された液化ガスとを熱
交換させて前記分離メタンを液化する凝縮器を備えたメ
タン分離装置において、前記凝縮器の液化ガス出口に気
液分離器を配設するとともに、該気液分離器で分離した
ガスを原料天然ガス供給系統に導入する循環系統を設け
たことを特徴としている。
In order to achieve the above object, a methane separation apparatus of the present invention comprises a rectification column for liquefying and separating compressed, purified and cooled raw material natural gas, and one of the separated methane discharged from the top of the rectification column. In a methane separation device provided with a condenser for liquefying the separated methane by exchanging heat with the liquefied gas derived from the bottom of the rectification column and a liquefied gas, a gas-liquid separator is provided at a liquefied gas outlet of the condenser. In addition, a circulation system for introducing the gas separated by the gas-liquid separator into the raw material natural gas supply system is provided.

また、本発明のメタン分離方法は、圧縮,精製,冷却
した原料天然ガスを精留塔に導入して液化精留分離し、
該天然ガス中のメタンを分離する方法において、前記精
留塔頂部から導出された分離メタンの一部を製品メタン
として採取し、該分離メタンの残部と精留塔底部から導
出された液化ガスとを凝縮器に導入し、両者を熱交換さ
せて前記分離メタンを液化して精留塔の還流液を得ると
ともに液化ガスの一部を気化させて、該一部が気化した
液化ガスを凝縮器から導出した後気液分離器に導入し、
該気液分離器の上部に分離したガスを前記原料天然ガス
に導入循環することを特徴としている。
In the methane separation method of the present invention, the compressed, purified, and cooled raw natural gas is introduced into a rectification column to perform liquefied rectification and separation.
In the method for separating methane in the natural gas, a part of the separated methane derived from the top of the rectification column is collected as product methane, and the remaining methane and the liquefied gas derived from the bottom of the rectification column are collected. Is introduced into a condenser, and the two are heat-exchanged to liquefy the separated methane to obtain a reflux liquid of the rectification column, and a part of the liquefied gas is vaporized. And then introduced into the gas-liquid separator,
The gas separated at the upper part of the gas-liquid separator is introduced and circulated to the raw natural gas.

〔作 用〕(Operation)

上記のごとく凝縮器の液化ガス出口に気液分離器を配
設し、凝縮器で一部が気化して導出された液化ガスの気
液分離を行うことにより、該液化ガスに含まれる低沸点
成分であるメタンを気相部に濃縮することができる。従
って、気液分離器で分離したガスを原料天然ガスに合流
させて循環させることにより、従来、排ガス中に同伴さ
れていたメタンの一部を製品メタンとして採取すること
ができ、収率の向上を図ることができる。
As described above, the gas-liquid separator is disposed at the liquefied gas outlet of the condenser, and the liquefied gas partially vaporized and derived by the condenser is subjected to gas-liquid separation, whereby the low boiling point contained in the liquefied gas is reduced. The component methane can be concentrated in the gas phase. Therefore, by combining the gas separated by the gas-liquid separator with the raw natural gas and circulating it, it is possible to collect a portion of the methane conventionally entrained in the exhaust gas as product methane, thereby improving the yield. Can be achieved.

〔実施例〕〔Example〕

以下、本発明を図面に示す一実施例に基づいて、さら
に詳細に説明する。尚、以下の説明において前記第2図
に示した従来例と同一要素のものには同一符号を付して
詳細な説明を省略する。
Hereinafter, the present invention will be described in more detail based on one embodiment shown in the drawings. In the following description, the same elements as those in the conventional example shown in FIG. 2 are denoted by the same reference numerals, and detailed description is omitted.

本実施例装置では、前記従来例装置に加えて、凝縮器
23の液化ガス出口部に配設した気液分離器41及び該気液
分離器41の頂部から導出したガスを原料供給管1に導入
する回収循環路42と、製品ガス導管19内の流量を検出す
る製品ガス流量計(FIC A)51と、再生ガスの流路に設
けられて前記製品ガス流量計51に連動する再生ガス流量
指示調節計52(FIC B)と、製品ガス導管19と再生ガス
用に分岐した導管26とを接続する導管61及び該導管61に
設けられて前記再生ガス流量指示調節計52により制御さ
れる自動弁62と、吸着設備7の出口側の導管10と再生ガ
ス用の導管26とを接続する導管71及び弁72と、製品ガス
導管19と原料供給管1とを接続する導管81と該導管81に
設けられて製品ガス導管19内の圧力を検出して自動弁82
を制御する圧力指示調節器83(PIC)とが設けられてお
り、さらに、吸着器7a,7bの出口側近傍には、内部に充
填された吸着剤の温度変化を計測する温度計91が設けら
れ、前記製品ガス流量計51及び/又は温度計91の検出値
により吸着器7a,7bの入口及び出口側の弁8a,8b,9a,9bの
切替え時間を制御する制御器92が設けられている。
In the apparatus of this embodiment, in addition to the above-described conventional apparatus, a condenser
A gas-liquid separator 41 disposed at the liquefied gas outlet of 23, a recovery circuit 42 for introducing gas derived from the top of the gas-liquid separator 41 into the raw material supply pipe 1, and a flow rate in the product gas conduit 19 The product gas flow meter (FIC A) 51 to be detected, the regeneration gas flow rate controller 52 (FIC B) provided in the flow path of the regeneration gas and linked to the product gas flow meter 51, A conduit 61 connecting the conduit 26 branched for gas, an automatic valve 62 provided in the conduit 61 and controlled by the regeneration gas flow rate controller 52, the conduit 10 on the outlet side of the adsorption equipment 7, and the regeneration gas And a valve 72 for connecting the product gas conduit 19 to the raw material supply pipe 1 and a conduit 81 for connecting the product gas conduit 19 and the raw material supply pipe 1 to each other. Valve 82
A pressure indicator 83 (PIC) for controlling the pressure is provided, and a thermometer 91 for measuring the temperature change of the adsorbent filled therein is provided near the outlet side of the adsorbers 7a and 7b. A controller 92 is provided for controlling the switching time of the valves 8a, 8b, 9a, 9b on the inlet and outlet sides of the adsorbers 7a, 7b based on the detection values of the product gas flow meter 51 and / or the thermometer 91. I have.

まず、原料天然ガスは、前記同様に原料供給管1から
供給されて圧縮機2で圧縮された後に、アフタークーラ
ー3,予冷器4,ドレン分離器5を経て吸着設備6に導入さ
れて不純部の除去精製が行われる。次いでコールドボッ
クス内に導入され、第一熱交換器11,フロン冷却器12,気
液分離器13,第二熱交換器14を経て精留塔15の下部に導
入される、精留塔頂部からは高純度の精製メタンガスが
導出され、その一部が製品として採取されるとともに、
残部が凝縮器23で液化して精留塔15の還流液となる。ま
た、精留塔底部から導出され、凝縮器23で一部が気化し
た液化ガスは、凝縮器出口導管24から気液分離器41に導
入され、気相部と液相部とに分離する。
First, the raw material natural gas is supplied from the raw material supply pipe 1 and compressed by the compressor 2 in the same manner as described above, and then introduced into the adsorption equipment 6 through the after cooler 3, the precooler 4, and the drain separator 5, and the impurity part is removed. Removal purification. Next, it is introduced into the cold box, and is introduced into the lower part of the rectification column 15 through the first heat exchanger 11, the CFC cooler 12, the gas-liquid separator 13, and the second heat exchanger 14, from the top of the rectification column. , High-purity purified methane gas is derived and part of it is collected as a product.
The remainder is liquefied in the condenser 23 and becomes the reflux liquid of the rectification column 15. In addition, the liquefied gas that is led out from the bottom of the rectification column and partially vaporized in the condenser 23 is introduced into the gas-liquid separator 41 from the condenser outlet conduit 24, and is separated into a gas phase and a liquid phase.

上記液化ガス成分の内、凝縮器23で気化する成分は主
として低沸点成分のメタンガスであり、気液分離器41で
分離した気相部にはメタンガスが濃縮される。例えば、
気液分離器41の気相部の組成は、メタン96.5%,エタン
3.2%,窒素0.3%となり、原料天然ガスよりもメタンを
多く含むガスとなる。従って、該気液分離器41で分離し
たガスを導出して前記回収循環路42から原料供給管1に
導入し、原料天然ガスと共に精留分離工程に循環させる
ことにより、従来排ガスとして排出されていたメタンを
製品として採取することが可能となる。このように缶出
液中のメタン濃度を上げても凝縮器23出口において気液
分離を行い、ここで分離したガス留分(メタンリッチガ
ス)を再度圧縮し、リサイクルすれば、還流液量を保つ
と同時に、メタンの収率を上げ得ることを確認した。一
方、気液分離器41の液相部は、メタン含量が減少して相
対的にエタン等の他の成分含量が増大し、排ガスとして
第二熱交換器14,第一熱交換器11を経て一部が再生ガス
に使用された後、導管25から排ガスとして回収される。
Among the liquefied gas components, the component that is vaporized in the condenser 23 is mainly methane gas having a low boiling point, and the methane gas is concentrated in the gas phase separated by the gas-liquid separator 41. For example,
The composition of the gas phase of the gas-liquid separator 41 is 96.5% methane,
The gas becomes 3.2% and nitrogen becomes 0.3%, which is a gas containing more methane than the raw material natural gas. Accordingly, the gas separated by the gas-liquid separator 41 is led out, introduced into the raw material supply pipe 1 from the recovery circulation path 42, and circulated together with the raw natural gas to the rectification separation step, whereby the gas is conventionally discharged as exhaust gas. It is possible to collect methane as a product. Thus, even if the methane concentration in the bottoms is increased, gas-liquid separation is performed at the outlet of the condenser 23, and the separated gas fraction (methane-rich gas) is compressed again and recycled to maintain the reflux liquid amount. At the same time, it was confirmed that the methane yield could be increased. On the other hand, in the liquid phase portion of the gas-liquid separator 41, the methane content decreases and the content of other components such as ethane relatively increases, and the exhaust gas passes through the second heat exchanger 14 and the first heat exchanger 11 as exhaust gas. After a part is used for the regeneration gas, it is recovered as exhaust gas from the conduit 25.

ここで、上記構成において、前記従来例と略同組成,
同量の製品メタンを採取する場合のマスバランスを第2
表に示す。
Here, in the above configuration, the composition is substantially the same as
The second is the mass balance when collecting the same amount of product methane.
It is shown in the table.

上記第2表から明らかなように、従来排出されていた
排ガスの内、気液分離器41で気相に分離した53Nm3/hを
原料天然ガスに合流させて循環させることにより、排ガ
スとして排出される量を158Nm3/hから105Nm3/hに低減す
るとともに、該排ガス中に含有されるメタンの濃度を低
減でき、さらに原料天然ガス量を減少できるため、製品
メタンの収率を大幅に向上させることができる。また、
液化ガス中のメタンを気液分離器41で回収できることか
ら、精留塔底部から導出する液化ガスのメタン濃度を上
げて液化ガスの蒸発温度を下げ、凝縮器23での液化量を
増すことにより、精留塔15内の還流液量を増加させて製
品メタンの純度を向上させることもできる。尚、気液分
離器41内の気液界面は、液面調節計43により所定の範囲
に保たれている。
As is clear from Table 2 above, 53Nm 3 / h, which has been separated into the gas phase by the gas-liquid separator 41, is mixed with the raw natural gas and circulated out of the exhaust gas that has been conventionally discharged, thereby discharging it as exhaust gas. 158 Nm 3 / h from 105 Nm 3 / h to 105 Nm 3 / h, the concentration of methane contained in the exhaust gas can be reduced, and the amount of raw natural gas can be reduced. Can be improved. Also,
Since the methane in the liquefied gas can be recovered by the gas-liquid separator 41, by increasing the methane concentration of the liquefied gas derived from the bottom of the rectification column, lowering the evaporation temperature of the liquefied gas, and increasing the amount of liquefaction in the condenser 23, Also, the purity of the product methane can be improved by increasing the amount of reflux liquid in the rectification column 15. The gas-liquid interface in the gas-liquid separator 41 is maintained in a predetermined range by a liquid level controller 43.

一方、この種の分離装置では、50%近くまでの減量運
転が行われている。この減量運転を実施する際に問題に
なるのが、吸着設備6の再生ガスの確保である。特に本
発明のごとく製品メタンの収率を高めたものでは、原料
ガス組成が一定の場合は、原料天然ガスに対する排ガス
量が少ないため、吸着設備6の再生ガスに使用できるガ
スが不足しがちである。そこで本実施例装置では、製品
ガス量と再生ガス量とを連動させて再生ガス量を確保で
きるように構成している。即ち、製品ガス流量を前記製
品ガス流量計51で検出するとともに、該流量計51の検出
値に基づいて再生ガス流量指示調節計52を作動させ、再
生ガス量を変化させて常時所定量の再生ガスを吸着設備
6に供給している。例えば、製品需要の減少により減量
運転を行い原料天然ガス量を減少させた場合、製品ガス
流量計51が製品ガス量の減少を検出し、この減少量に応
じて再生ガス流量指示調節計52を開方向に作動させて排
ガス全体量に対する再生ガス量を増加させる。これによ
り、製品メタンガス採取量の増減で排ガス量が増減して
も、所定量の再生ガスを吸着設備6に導入できるため、
吸着器7a,7bを充分に再生することができる。
On the other hand, in this type of separation device, the operation of reducing the weight to nearly 50% is performed. A problem when performing the reduction operation is securing of the regeneration gas in the adsorption equipment 6. In particular, in the case of increasing the yield of product methane as in the present invention, when the raw material gas composition is constant, the amount of exhaust gas relative to the raw natural gas is small, so that the gas that can be used as the regeneration gas in the adsorption facility 6 tends to be insufficient. is there. Therefore, the apparatus of the present embodiment is configured so that the amount of regeneration gas can be secured by linking the amount of product gas and the amount of regeneration gas. That is, the product gas flow rate is detected by the product gas flow meter 51, and the regeneration gas flow rate instruction controller 52 is operated based on the detection value of the flow meter 51, and the regeneration gas amount is changed to constantly reproduce the predetermined amount. Gas is supplied to the adsorption equipment 6. For example, when the amount of raw natural gas is reduced by performing a reduction operation due to a decrease in product demand, the product gas flow meter 51 detects a decrease in the amount of product gas, and the controller 52 controls the regeneration gas flow indication controller 52 in accordance with the decrease. Operate in the opening direction to increase the amount of regeneration gas with respect to the total amount of exhaust gas. Thereby, even if the amount of exhaust gas increases or decreases due to an increase or decrease in the amount of product methane gas collected, a predetermined amount of regenerated gas can be introduced into the adsorption equipment 6,
The adsorbers 7a and 7b can be sufficiently regenerated.

また、減量運転において、上記再生ガス量の確保とと
もに吸着器7a,7b内の吸着剤を充分に利用しているかも
問題となる。そこで本発明では、吸着器7a,7bの中間
部、好ましくは出口端と中央部との間、出口端近傍に吸
着剤の温度を計測する温度計91を設けて吸着剤の温度変
化を測定し、吸着剤が不純物(吸着物質)を吸着する際
に生じる吸着熱を検出し、この温度上昇により吸着の進
行度を求めて切替時間制御器92により吸着器7a,7bの切
替時間を調節するように構成している。これにより、減
量運転で原料天然ガス量が大幅に減少した時でも吸着剤
を有効に、かつ充分に利用することができる。さらにこ
の手段と前記製品ガス量に基づく再生ガス量の確保手段
とを合せて実施することにより、減量運転時においても
確実な吸着除去機能を発揮させることができる。
Further, in the reduction operation, there is a problem whether the adsorbent in the adsorbers 7a and 7b is sufficiently used together with securing the amount of the regeneration gas. Therefore, in the present invention, a thermometer 91 for measuring the temperature of the adsorbent is provided in the middle of the adsorbers 7a, 7b, preferably between the outlet end and the center, and near the outlet end to measure the temperature change of the adsorbent. The switching time of the adsorbers 7a and 7b is adjusted by the switching time controller 92 by detecting the heat of adsorption generated when the adsorbent adsorbs the impurities (adsorbed substances), obtaining the degree of progress of the adsorption by this temperature rise. It is composed. As a result, the adsorbent can be used effectively and sufficiently even when the amount of the raw material natural gas is significantly reduced by the reduction operation. Further, by performing this means in combination with the means for securing the amount of the regenerated gas based on the product gas amount, a reliable adsorption removal function can be exhibited even during the reduction operation.

さらに製品採取用の導管19と再生ガスの導管26とを接
続する導管61を設けるとともに、該導管61に前記再生ガ
ス流量指示調節計52に連動する自動弁62を設けたことに
より、排ガス量が再生ガス必要量に満たない場合には、
再生ガス流量指示調節計52の作動で上記自動弁62を開い
て製品ガスの一部を再生ガスとして用いることができ
る。
Further, a conduit 61 for connecting the conduit 19 for collecting the product and the conduit 26 for the regeneration gas is provided, and the conduit 61 is provided with an automatic valve 62 linked to the controller 52 for indicating the regeneration gas flow rate. If the required amount of regeneration gas is less than
The automatic valve 62 is opened by the operation of the regeneration gas flow rate controller 52, and a part of the product gas can be used as the regeneration gas.

これにより、排ガス量が大幅に減少しても充分な量の
再生ガスを確保でき、吸着器7a,7bの再生を確実に行う
ことができる。また、吸着設備出口側の導管10と再生ガ
スの導管26とを接続する導管71及び弁72を設けたことに
より、吸着設備6で精製された原料天然ガスの一部を吸
着設備6の再生ガスとして使用できる。運転状況により
再生ガスが不足する際には、前記製品メタンガスの一部
や、精製後の原料天然ガスの一部を用いて再生ガスを増
量できるので、排ガス量が減少した場合でも吸着剤を確
実に再生することができる。
As a result, a sufficient amount of regeneration gas can be secured even if the amount of exhaust gas is significantly reduced, and regeneration of the adsorbers 7a and 7b can be reliably performed. Also, by providing a conduit 71 and a valve 72 for connecting the conduit 10 on the outlet side of the adsorption facility and the conduit 26 for the regeneration gas, a part of the raw material natural gas purified in the adsorption facility 6 can be regenerated by the regeneration gas in the adsorption facility 6. Can be used as When the regeneration gas is insufficient due to the operating conditions, the regeneration gas can be increased by using a part of the product methane gas or a part of the purified raw natural gas. Can be played.

また、減量運転をより安定化するために、前記製品ガ
ス導管19と原料供給管1とを接続する減量運転用循環路
81を設け、製品ガス導管19内の圧力を圧力指示調節器83
により検出し、これに基づいて自動弁82を開閉操作する
ことにより、製品メタンガスの需要量が減少して管19内
の圧力が上昇した際に自動弁82を開き、製品メタンガス
の一部を原料天然ガスに循環合流させることができる。
これにより、製品生産量が大幅に減少した場合でも、装
置各部の流量を安定運転に必要な量以上に保つことがで
き、しかも製品メタンガスの導入により、圧縮機2にお
ける原料天然ガスの吸入量、即ち原料の供給量を自動的
に減少させることができる。
In addition, in order to further stabilize the weight reduction operation, a circulation path for the weight reduction operation connecting the product gas conduit 19 and the raw material supply pipe 1.
81, and the pressure in the product gas conduit 19 is
By opening and closing the automatic valve 82 based on this, when the demand for the product methane gas decreases and the pressure in the pipe 19 increases, the automatic valve 82 is opened and a part of the product methane gas is It can be circulated and joined to natural gas.
As a result, even when the product production volume is greatly reduced, the flow rate of each part of the apparatus can be maintained at a level higher than that required for stable operation, and the introduction of the product methane gas allows the raw material natural gas intake amount in the compressor 2 to be reduced. That is, the supply amount of the raw material can be automatically reduced.

尚、前記気液分離器41からの循環ガスも含めて、原料
天然ガス導入系統に循環させるガスは、その流量や圧力
により適宜な位置で原料に合流されることが可能であ
り、多段圧縮機の中間段で合流させることもできる。
In addition, the gas circulated to the raw material natural gas introduction system, including the circulating gas from the gas-liquid separator 41, can be combined with the raw material at an appropriate position depending on the flow rate and pressure, and the multistage compressor can be used. Can be joined at an intermediate stage.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明は、凝縮器の液化ガス出
口に気液分離器を配設し、凝縮器で一部が気化した液化
ガスのガス部を循環させるようにしたから、メタンの収
率を従来の89%から96%程度にまで向上させることがで
きる。特に、設備的には従来の装置に気液分離器を付加
するだけで良いため、設備コストや運転コストの上昇が
ほとんどなく、製品メタンのコストを大幅に低減するこ
とができる。
As described above, in the present invention, the gas-liquid separator is disposed at the liquefied gas outlet of the condenser, and the gas portion of the liquefied gas partially vaporized by the condenser is circulated. The rate can be increased from the conventional 89% to about 96%. In particular, in terms of equipment, it is only necessary to add a gas-liquid separator to the conventional apparatus, so there is almost no increase in equipment cost and operation cost, and the cost of product methane can be significantly reduced.

また、製品メタンガスの流量に応じて排ガスに対する
再生ガスの割合を変えることにより、収率の向上に伴い
排ガス量が減少し、吸着設備の再生ガスが不足するよう
な場合でも充分な再生ガス量を確保できる。さらに製品
ガス量の変化や吸着剤の温度変化に基づいて吸着器の切
替時間を制御することにより、減量運転で原料天然ガス
量が減少した場合でも吸着剤を有効に利用することがで
きる。また減量運転時に製品メタンガスの一部を原料供
給系統に循環させることにより、大幅な減量運転を安定
した状態で行うことができる。
In addition, by changing the ratio of the regeneration gas to the exhaust gas according to the flow rate of the product methane gas, the amount of the exhaust gas decreases with the improvement of the yield, and even if the regeneration gas in the adsorption equipment becomes insufficient, a sufficient amount of the regeneration gas can be obtained. Can be secured. Furthermore, by controlling the switching time of the adsorber based on a change in the product gas amount and a change in the temperature of the adsorbent, the adsorbent can be effectively used even when the amount of the raw material natural gas is reduced by the reduction operation. Further, by circulating a part of the product methane gas to the raw material supply system at the time of the weight reduction operation, the large weight reduction operation can be performed in a stable state.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す系統図、第2図は従来
例を示す系統図である。 1……原料供給管、2……圧縮機、6……吸着設備、7
a,7b……吸着器、15……精留塔、19……製品ガス導管、
23……凝縮器、24……凝縮器出口導管、41……気液分離
器、42……回収循環路、51……製品ガス流量計、52……
再生ガス流量指示調節計、91……温度計、92……切替時
間制御器
FIG. 1 is a system diagram showing one embodiment of the present invention, and FIG. 2 is a system diagram showing a conventional example. 1 ... raw material supply pipe, 2 ... compressor, 6 ... adsorption equipment, 7
a, 7b …… Adsorber, 15… Rectification tower, 19… Product gas conduit,
23… Condenser, 24… Condenser outlet conduit, 41… Gas-liquid separator, 42… Recovery circuit, 51… Product gas flow meter, 52…
Regenerative gas flow rate controller, 91: thermometer, 92: switching time controller

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) F25J 1/00 - 5/00 Continuation of front page (58) Field surveyed (Int. Cl. 6 , DB name) F25J 1/00-5/00

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】圧縮,精製,冷却した原料天然ガスを液化
精留分離する精留塔と、該精留塔頂部から導出された分
離メタンの一部と精留塔底部から導出された液化ガスと
を熱交換させて前記分離メタンを液化する凝縮器を備え
たメタン分離装置において、前記凝縮器の液化ガス出口
に気液分離器を配設するとともに、該気液分離器で分離
したガスを原料天然ガス供給系統に導入する循環系統を
設けたことを特徴とするメタン分離装置。
1. A rectification column for liquefying and separating a compressed, purified and cooled raw natural gas, a portion of the separated methane derived from the top of the rectification column and a liquefied gas derived from the bottom of the rectification column And a methane separator provided with a condenser for liquefying the separated methane by exchanging heat with a gas-liquid separator provided at a liquefied gas outlet of the condenser, and separating the gas separated by the gas-liquid separator. A methane separation device comprising a circulation system for introducing a raw natural gas supply system.
【請求項2】前記原料天然ガスの精製を吸着設備により
行う請求項1記載のメタン分離装置において、分離後に
製品として採取される製品メタンの流量を検出する流量
計を設けるとともに、該流量計の検出値に応じて前記吸
着設備の再生ガス量を調節する再生ガス量調節手段を設
けたことを特徴とするメタン分離装置。
2. The methane separation apparatus according to claim 1, wherein the raw material natural gas is purified by an adsorption facility, wherein a flow meter for detecting a flow rate of product methane collected as a product after separation is provided. A methane separation device comprising a regeneration gas amount adjusting means for adjusting a regeneration gas amount of the adsorption equipment according to a detected value.
【請求項3】前記原料天然ガスの精製を吸着設備により
行う請求項1記載のメタン分離装置において、分離後に
製品として採取される製品メタンの流量を検出する流量
計を設けるとともに、該流量計の検出値に応じて前記吸
着設備の吸着器切替時間を調節する吸着器切替時間制御
手段を設けたことを特徴とするメタン分離装置。
3. The methane separation device according to claim 1, wherein the raw material natural gas is purified by an adsorption facility, wherein a flow meter for detecting a flow rate of product methane collected as a product after separation is provided. A methane separation device comprising an adsorber switching time control means for adjusting an adsorber switching time of the adsorption equipment according to a detected value.
【請求項4】前記原料天然ガスの精製を吸着設備により
行う請求項1記載のメタン分離装置において、前記吸着
設備の吸着器に温度検出器を設けるとともに、該温度検
出器の検出値に応じて吸着器の切替時間を調節する吸着
器切替時間制御手段を設けたことを特徴とするメタン分
離装置。
4. The methane separation apparatus according to claim 1, wherein the raw material natural gas is purified by an adsorption facility, wherein a temperature detector is provided in an adsorber of the adsorption facility, and a temperature detector is provided in accordance with a detection value of the temperature detector. A methane separation device comprising an adsorber switching time control means for adjusting a switching time of an adsorber.
【請求項5】請求項1記載のメタン分離装置において、
分離後に製品として採取される製品メタンの一部を、原
料天然ガス供給系統に導入する循環系統を設けたことを
特徴とするメタン分離装置。
5. The methane separation device according to claim 1, wherein
A methane separation apparatus comprising a circulation system for introducing a part of product methane collected as a product after separation into a raw material natural gas supply system.
【請求項6】圧縮,精製,冷却した原料天然ガスを精留
塔に導入して液化精留分離し、該天然ガス中のメタンを
分離する方法において、前記精留塔頂部から導出された
分離メタンの一部を製品メタンとして採取し、該分離メ
タンの残部と精留塔底部から導出された液化ガスとを凝
縮器に導入し、両者を熱交換させて前記分離メタンを液
化して精留塔の還流液を得るとともに液化ガスの一部を
気化させ、該一部が気化した液化ガスを凝縮器から導出
した後気液分離し、分離したガスを前記原料天然ガスに
導入循環することを特徴とするメタン分離方法。
6. A method for introducing a compressed, purified and cooled raw natural gas into a rectification column for liquefied rectification and separation of methane in the natural gas, wherein the separation derived from the top of the rectification column is performed. Part of the methane is collected as product methane, the remainder of the separated methane and the liquefied gas derived from the bottom of the rectification column are introduced into a condenser, and the two are heat-exchanged to liquefy the separated methane and rectify. Obtaining the reflux liquid of the column and vaporizing a part of the liquefied gas, deriving the partially vaporized liquefied gas from the condenser, performing gas-liquid separation, and introducing and circulating the separated gas into the raw material natural gas. Characteristic methane separation method.
【請求項7】前記原料天然ガスの精製を吸着設備により
行う請求項6記載のメタン分離方法において、分離後に
製品として採取される製品メタンの流量を検出するとと
もに、該製品メタンの流量に応じて前記吸着設備の再生
ガス量を調節することを特徴とするメタン分離方法。
7. The methane separation method according to claim 6, wherein the purification of the raw material natural gas is performed by an adsorption facility, wherein the flow rate of the product methane collected as a product after the separation is detected and the flow rate of the product methane is determined according to the flow rate of the product methane. A method for separating methane, comprising adjusting a regeneration gas amount of the adsorption equipment.
【請求項8】前記原料天然ガスの精製を吸着設備により
行う請求項6記載のメタン分離方法において、分離後に
製品として採取される製品メタンの流量を検出するとと
もに、該製品メタンの流量に応じて前記吸着設備の吸着
器の切替時間を制御することを特徴とするメタン分離方
法。
8. The methane separation method according to claim 6, wherein the raw material natural gas is purified by an adsorption facility, wherein the flow rate of the product methane collected as a product after the separation is detected and the flow rate of the product methane is determined in accordance with the flow rate of the product methane. A method for separating methane, comprising controlling a switching time of an adsorber of the adsorption equipment.
【請求項9】前記原料天然ガスの精製を吸着設備により
行う請求項6記載のメタン分離方法において、前記吸着
設備の吸着器の中間部の温度を検出するとともに、該温
度に応じて吸着器の切替時間を制御することを特徴とす
るメタン分離方法。
9. The method for separating methane according to claim 6, wherein the raw material natural gas is purified by an adsorption facility, wherein a temperature of an intermediate portion of the adsorber of the adsorption facility is detected, and the temperature of the adsorber is determined in accordance with the detected temperature. A methane separation method characterized by controlling a switching time.
【請求項10】請求項6記載のメタン分離方法におい
て、製品メタンの採取量を減量する際に、分離後に製品
として採取される製品メタンの一部を、前記原料天然ガ
スに導入循環することを特徴とするメタン分離方法。
10. The method for separating methane according to claim 6, wherein when reducing the amount of product methane collected, a part of the product methane collected as a product after separation is introduced and circulated to the raw natural gas. Characteristic methane separation method.
JP5319190A 1990-03-05 1990-03-05 Methane separation device and method Expired - Lifetime JP2939814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5319190A JP2939814B2 (en) 1990-03-05 1990-03-05 Methane separation device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5319190A JP2939814B2 (en) 1990-03-05 1990-03-05 Methane separation device and method

Publications (2)

Publication Number Publication Date
JPH03255876A JPH03255876A (en) 1991-11-14
JP2939814B2 true JP2939814B2 (en) 1999-08-25

Family

ID=12935985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5319190A Expired - Lifetime JP2939814B2 (en) 1990-03-05 1990-03-05 Methane separation device and method

Country Status (1)

Country Link
JP (1) JP2939814B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020021633A1 (en) * 2018-07-24 2020-01-30 日揮グローバル株式会社 Natural gas treatment device and natural gas treatment method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7155931B2 (en) * 2003-09-30 2007-01-02 Ortloff Engineers, Ltd. Liquefied natural gas processing
FR2917489A1 (en) * 2007-06-14 2008-12-19 Air Liquide METHOD AND APPARATUS FOR CRYOGENIC SEPARATION OF METHANE RICH FLOW
ES2653705T3 (en) * 2014-01-07 2018-02-08 Linde Ag Procedure for the separation of a mixture of hydrocarbons containing hydrogen, separation facility and olefin plant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020021633A1 (en) * 2018-07-24 2020-01-30 日揮グローバル株式会社 Natural gas treatment device and natural gas treatment method
KR20210031632A (en) * 2018-07-24 2021-03-22 닛키 글로벌 가부시키가이샤 Natural gas treatment device and natural gas treatment method
KR102642311B1 (en) * 2018-07-24 2024-03-05 닛키 글로벌 가부시키가이샤 Natural gas processing device and natural gas processing method

Also Published As

Publication number Publication date
JPH03255876A (en) 1991-11-14

Similar Documents

Publication Publication Date Title
US5125934A (en) Argon recovery from argon-oxygen-decarburization process waste gases
US5220797A (en) Argon recovery from argon-oxygen-decarburization process waste gases
US4566886A (en) Process and apparatus for obtaining pure CO
US5100447A (en) Argon recovery from partial oxidation based ammonia plant purge gases
CA3054908C (en) Helium extraction from natural gas
JPH06304432A (en) Manufacture of various types of gas for semi-conductor manufacture plant and device therefor
EP2880134A2 (en) Heavy hydrocarbon removal from a natural gas stream
WO2014021900A1 (en) Heavy hydrocarbon removal from a natural gas stream
US3062016A (en) Maintaining high purity argon atmosphere
JP2000088455A (en) Method and apparatus for recovering and refining argon
US2975606A (en) Procedure for the vaporization of liquid oxygen which contains hydrocarbons
JPH0789012B2 (en) Carbon monoxide separation and purification equipment
JP2939814B2 (en) Methane separation device and method
JPH07133982A (en) Method and apparatus for preparing high purity argon
US3719053A (en) Liquefaction and purification system
JP4024347B2 (en) Argon recovery method and apparatus
JP3532465B2 (en) Air separation device
CN105066585A (en) Purifying and separating device and method for synthesis gas
JPH0816583B2 (en) Carbon monoxide separation and purification equipment
GB1579553A (en) Process for separation of a feed gas mixture containing hydrogen carbon monoxide and methane
JP2574270B2 (en) Carbon monoxide separation and purification equipment
TW449495B (en) Ultra high purity gas production method and producing unit therefor
JP3969874B2 (en) Air liquefaction separator
JPH07324858A (en) Method and apparatus for liquefying and separating air
JPH10259989A (en) Air separation method and device

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 11