JPH03255876A - Methane separation apparatus and method - Google Patents

Methane separation apparatus and method

Info

Publication number
JPH03255876A
JPH03255876A JP5319190A JP5319190A JPH03255876A JP H03255876 A JPH03255876 A JP H03255876A JP 5319190 A JP5319190 A JP 5319190A JP 5319190 A JP5319190 A JP 5319190A JP H03255876 A JPH03255876 A JP H03255876A
Authority
JP
Japan
Prior art keywords
gas
methane
product
raw material
natural gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5319190A
Other languages
Japanese (ja)
Other versions
JP2939814B2 (en
Inventor
Kenji Ikeda
賢治 池田
Tadashi Kunimi
国見 忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP5319190A priority Critical patent/JP2939814B2/en
Publication of JPH03255876A publication Critical patent/JPH03255876A/en
Application granted granted Critical
Publication of JP2939814B2 publication Critical patent/JP2939814B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0238Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/08Separating gaseous impurities from gases or gaseous mixtures or from liquefied gases or liquefied gaseous mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/72Refluxing the column with at least a part of the totally condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/66Regenerating the adsorption vessel, e.g. kind of reactivation gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/04Mixing or blending of fluids with the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/60Natural gas or synthetic natural gas [SNG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/60Methane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration

Abstract

PURPOSE:To recover a product methane after separation and refining without impairing the purity by arranging a gas-liquid separator at a liquefied gas outlet of a condenser to circulate a gas separated with the gas-liquid separator being converged into a stock natural gas. CONSTITUTION:A component which is evaporated with a condenser 23 among liquefied gas components is a methane gas as low boiling point component mainly and the methane gas is concentrated at a gaseous phase part separated with a gas-liquid separator 41. Therefore, the gas separated with the gas-liquid separator 41 is led out to be introduced into a material supply pipe 1 from a recovery circulation path 42 and circulated to a fraction separating process together with a stock natural gas, which enables the collection of methane discharged as exhaust gas traditionally. This also allows the recovery of the methane in the liquefied gas with the gas-liquid separator 41. Thus, a methane concentration of the liquefied gas being led out of the bottom of a fraction column is raised to lower an evaporation temperature of the liquefied gas, causing an increase in level of liquefaction of the condenser 23 thereby achieving higher purity of a product methane with an increase in amount of reflux liquid within the fraction column 15.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、天然ガスを原料として液化精留分離を行いメ
タンを精製分離するメタン分離装置及び方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a methane separation apparatus and method for purifying and separating methane by performing liquefaction rectification separation using natural gas as a raw material.

〔従来の技術〕[Conventional technology]

第2図に、従来の一般的なメタン分離装置の系統を示す
。このメタン分離装置は、天然ガスを原料として該天然
ガス中に含まれる窒素、エタン。
FIG. 2 shows the system of a conventional general methane separation device. This methane separation device uses natural gas as a raw material to separate nitrogen and ethane contained in the natural gas.

炭素数3以上の炭化水素、二酸化炭素、水分、ご<微量
のBTX(ベンゼン、トルエン、キシレン)等を、前処
理としての吸着操作と液化精留分離操作とにより分離除
去して精製し、高純度のメタンを採取するものである。
Hydrocarbons with a carbon number of 3 or more, carbon dioxide, moisture, trace amounts of BTX (benzene, toluene, xylene), etc. are separated and removed by pre-treatment adsorption and liquefaction rectification separation, and purified. It is used to collect pure methane.

あらかじめ洗浄法等により含有する炭酸ガスを除去され
ている原料天然ガスは、原料供給管1から圧縮機2に吸
入され、約30kg/c4Gに昇圧された後にアフター
クーラー3.予冷器4.ドレン分離器5を経て吸着設備
6に導入される。この吸着設備6は、切替使用される複
数の吸着器(乾燥器)7a、7bを切替用の弁8a、8
b、9a。
The raw material natural gas, from which the carbon dioxide contained in it has been removed in advance by a cleaning method or the like, is sucked into the compressor 2 from the raw material supply pipe 1, and after being pressurized to about 30 kg/c4G, it is sent to the aftercooler 3. Precooler 4. The water is introduced into the adsorption equipment 6 through the drain separator 5. This adsorption equipment 6 has valves 8a and 8 for switching a plurality of adsorbers (dryers) 7a and 7b that are used in a selective manner.
b, 9a.

9bで接続したもので、一方の吸着器7aが原料天然ガ
ス中の不純物を除去する吸着工程にある間、他方の吸着
器7bは再生工程にあり、後述の再生ガスにより吸着剤
に吸着した不純物成分の脱着及び予冷からなる吸着剤の
再生が行われる。
9b, and while one adsorber 7a is in the adsorption process to remove impurities from the raw natural gas, the other adsorber 7b is in the regeneration process, and the impurities adsorbed to the adsorbent by the regeneration gas, which will be described later, are removed. Regeneration of the adsorbent is performed, consisting of desorption of components and pre-cooling.

大口弁8aから一方の吸着器7aに導入された原料天然
ガスは、含有する水分、残留炭酸ガス。
The raw natural gas introduced from the large mouth valve 8a into one of the adsorbers 7a contains moisture and residual carbon dioxide.

BTX等が除去されて精製乾燥された後に、出口弁9a
、導管10を経てコールドボックス内に導入され、第一
熱交換器11.フロン冷却器12にて冷却され、気液分
離器13に導入されて低沸点成分であるメタン、エタン
等と他の高沸点成分とが分離される。気液分離器13の
頂部から導出された原料ガスは、さらに第二熱交換器1
4て冷却されて精留塔15の下部に導入される。精留塔
15で精留されて頂部から導出されたメタンガスは、そ
の一部か導管16に分岐し、弁17.過冷器18、第二
熱交換器14.第一熱交換器11を経て冷熱を回収され
た後、製品ガス導管19.導管20、予冷器4を経て予
冷器4の冷却源として使用された後、製品メタンガスと
して採取される。尚、一部の製品メタンガスは、弁21
を経て上記導管20の製品メタンガスに合流する。
After BTX etc. are removed and purified and dried, the outlet valve 9a
, into the cold box via conduit 10 and into the first heat exchanger 11 . It is cooled in a freon cooler 12 and introduced into a gas-liquid separator 13 where low-boiling components such as methane and ethane are separated from other high-boiling components. The raw material gas led out from the top of the gas-liquid separator 13 is further passed through the second heat exchanger 1
4 and then cooled and introduced into the lower part of the rectification column 15. A portion of the methane gas that has been rectified in the rectification column 15 and led out from the top is branched into a conduit 16, and a valve 17. Supercooler 18, second heat exchanger 14. After the cold heat is recovered through the first heat exchanger 11, the product gas conduit 19. After passing through the conduit 20 and the precooler 4 and being used as a cooling source for the precooler 4, it is collected as a product methane gas. In addition, some product methane gas is
It joins the product methane gas in the conduit 20.

一方、精留塔]5の底部からは、メタンを50%程度含
有する液化ガスか導出され、適冷器18゜弁22を経て
凝縮器23に導入される。凝縮器23では、この液化ガ
スと前記精留塔頂部から導出されたメタンガスの残部と
が熱交換を行い、メタンガスか液化して精留塔15の還
流液となる。液化ガスは、その一部が気化して凝縮器2
3から凝縮器出口導管24に導出され、第二熱交換器1
4を出て前記気液分離器13の底部から導出された液相
部と合流した後、第一熱交換器11を経てコルドボック
ス外に導出され、導管25から排ガスとして回収される
。この排ガスの一部は導管25から再生ガス用の導管2
6に分岐し、吸着設備6の再生ガスとして用いられる。
On the other hand, a liquefied gas containing approximately 50% methane is drawn out from the bottom of the rectification column 5, and is introduced into a condenser 23 through an appropriate cooler 18° valve 22. In the condenser 23, this liquefied gas and the remainder of the methane gas drawn out from the top of the rectification column exchange heat, and the methane gas is liquefied and becomes the reflux liquid of the rectification column 15. A part of the liquefied gas is vaporized and sent to the condenser 2.
3 to the condenser outlet conduit 24 and connected to the second heat exchanger 1
4 and joins with the liquid phase led out from the bottom of the gas-liquid separator 13, then led out of the cold box via the first heat exchanger 11, and recovered as exhaust gas through the conduit 25. A part of this exhaust gas is transferred from the conduit 25 to the conduit 2 for regeneration gas.
6 and is used as regeneration gas for the adsorption equipment 6.

この再生ガスは、再生工程初期の脱着操作時には、切替
弁27により加熱器28に導入され、スチーム等により
所定温度まで加熱された後に、再生弁29a、29bの
一方から再生工程にある吸着器に逆流し、不純物を脱着
同伴して排出弁30a、30bの一方から再生ガス冷却
器31に導入されて冷却された後に前記導管25の排ガ
スに合流する。また、再生工程後期の再生ガスは、加熱
器28を通らずに切替弁27から導管32.再生弁29
a、29bを介して吸着器7a、7bに導入され、吸着
剤の予冷を行った後に前記同様排ガスに合流する。
During the desorption operation at the beginning of the regeneration process, this regeneration gas is introduced into the heater 28 by the switching valve 27, heated to a predetermined temperature by steam or the like, and then passed through one of the regeneration valves 29a and 29b to the adsorber in the regeneration process. The gas flows backward, desorbs and entrains impurities, and is introduced into the regeneration gas cooler 31 through one of the discharge valves 30a and 30b, where it is cooled and then joins the exhaust gas in the conduit 25. In addition, the regeneration gas in the latter half of the regeneration process does not pass through the heater 28, but flows from the switching valve 27 to the conduit 32. Regeneration valve 29
The adsorbent is introduced into the adsorbers 7a and 7b via a and 29b, and after precooling the adsorbent, it joins the exhaust gas as described above.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上述のメタン分離プロセスにおいて、メ
タンの回収率を上げることを目指すと、例えば第1表に
示すマスバランス[体積%]で限界になり、それ以上の
回収率向上はできなくなる。
However, in the above-mentioned methane separation process, when aiming to increase the methane recovery rate, a limit is reached at, for example, the mass balance [volume %] shown in Table 1, and the recovery rate cannot be improved any further.

これは、精留塔15の底部から導出されるメタン含有液
化ガスの蒸発温度がメタンの濃度により変化することに
基因するもので、この蒸発温度の変化が凝縮器23の能
力、即ち凝縮器23におけるメタンガスの液化能力に影
響を与えることによる。例えば、液化ガス中のメタン濃
度が高ければ蒸発温度が低くなり、凝縮器23て多量の
メタンガスを液化することができるが、メタン濃度が低
くなると蒸発温度が高くなり、凝縮器23でのメタンガ
スの液化能力が減少して精留塔15の還流液が不足し、
十分な精留を行えなくなる。
This is because the evaporation temperature of the methane-containing liquefied gas led out from the bottom of the rectification column 15 changes depending on the methane concentration. By affecting the liquefaction ability of methane gas in For example, if the methane concentration in the liquefied gas is high, the evaporation temperature will be low, and a large amount of methane gas can be liquefied in the condenser 23. However, if the methane concentration is low, the evaporation temperature will be high, and the methane gas in the condenser 23 will be liquefied. The liquefaction capacity decreases and the reflux liquid in the rectification column 15 becomes insufficient,
It becomes impossible to perform sufficient rectification.

従って、液化ガス中にある程度の濃度以上のメタンを含
有させることが必要であり、製品精製メタンとして採取
するメタンガスの純度と収率か圧力バランスも含めて最
適化されるため、現状では上記第1表に示す回収率が限
度であった。
Therefore, it is necessary to contain methane at a certain concentration in the liquefied gas, and the purity and yield of the methane gas to be collected as product purified methane is optimized, including the pressure balance. The recovery rate shown in the table was the limit.

そこで、本発明は、分離精製後の製品メタンの純度を損
うことなく、回収率を向上させることのできるメタン分
離装置及びその方法を提供することを目的としている。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a methane separation device and method that can improve the recovery rate without impairing the purity of product methane after separation and purification.

〔課題を解決するための手段〕[Means to solve the problem]

上記した目的を達成するために、本発明のメタン分離装
置は、圧縮、精製、冷却した原料天然ガスを液化精留分
離する精留塔と、該精留塔頂部から導出された分離メタ
ンの一部と精留塔底部から導出された液化ガスとを熱交
換させて前記分離メタンを液化する凝縮器を備えたメタ
ン分離装置において、前記凝縮器の液化ガス出口に気液
分離器を配設するとともに、該気液分離器で分離したガ
スを原料天然ガス供給系統に導入する循環系統を設けた
ことを特徴としている。
In order to achieve the above-mentioned object, the methane separation apparatus of the present invention includes a rectification column that liquefies and rectifies compressed, purified, and cooled raw material natural gas, and a part of the separated methane derived from the top of the rectification column. In a methane separation apparatus equipped with a condenser that liquefies the separated methane by exchanging heat between the separated methane and the liquefied gas led out from the bottom of the rectification column, a gas-liquid separator is disposed at the liquefied gas outlet of the condenser. In addition, a circulation system is provided for introducing the gas separated by the gas-liquid separator into the raw natural gas supply system.

また、本発明のメタン分離方法は、圧縮、精製冷却した
原料天然ガスを精留塔に導入して液化精留分離し、該天
然ガス中のメタンを分離する方法において、前記精留塔
頂部から導出された分離メタンの一部を製品メタンとし
て採取し、該分離メタンの残部と精留塔底部から導出さ
れた液化ガスとを凝縮器に導入し、両者を熱交換させて
前記分離メタンを液化して精留塔の還流液を得るととも
に液化ガスの一部を気化させ、該一部が気化した液化ガ
スを凝縮器から導出した後気液分離器に導入し、該気液
分離器の上部に分離したガスを前記原料天然ガスに導入
循環することを特徴としている。
In addition, the methane separation method of the present invention is a method in which compressed, purified and cooled raw natural gas is introduced into a rectification column to undergo liquefaction rectification separation, and methane in the natural gas is separated, from the top of the rectification column. A part of the separated methane separated is collected as product methane, and the remaining part of the separated methane and the liquefied gas drawn out from the bottom of the rectification column are introduced into a condenser, and the two are exchanged with heat to liquefy the separated methane. The reflux liquid of the rectification column is obtained, and a part of the liquefied gas is vaporized, and the partially vaporized liquefied gas is led out from the condenser and then introduced into the gas-liquid separator, and the upper part of the vapor-liquid separator is The method is characterized in that the separated gas is introduced and circulated into the raw material natural gas.

〔作 用〕[For production]

上記のごとく凝縮器の液化ガス出口に気液分離器を配設
し、凝縮器で一部が気化して導出された液化ガスの気液
分離を行うことにより、該液化ガスに含まれる低沸点成
分であるメタンを気相部に濃縮することがきる。従って
、気液分離器で分離したガスを原料天然ガスに合流させ
て循環させることにより、従来、排ガス中に同伴されて
いたメタンの一部を製品メタンとして採取することがで
き、収率の向上を図ることができる。
As mentioned above, by installing a gas-liquid separator at the liquefied gas outlet of the condenser and performing gas-liquid separation of the liquefied gas that is partially vaporized and led out in the condenser, it is possible to reduce the boiling point contained in the liquefied gas. The component methane can be concentrated in the gas phase. Therefore, by combining the gas separated by the gas-liquid separator with the raw natural gas and circulating it, a part of the methane that was conventionally entrained in the exhaust gas can be collected as product methane, improving the yield. can be achieved.

〔実施例〕〔Example〕

以下、本発明を図面に示す一実施例に基づいて、さらに
詳細に説明する。尚、以下の説明において前記第2図に
示した従来例と同一要素のものには同一符号を付して詳
細な説明を省略する。
Hereinafter, the present invention will be explained in more detail based on an embodiment shown in the drawings. In the following description, the same elements as those in the conventional example shown in FIG.

本実施例装置は、前記従来例装置に加えて、凝縮器23
の液化ガス出口部に配設した気液分離器41及び該気液
分離器41の頂部から導出したガスを原料供給管1に導
入する回収循環路42と、製品ガス導管19内の流量を
検出する製品ガス流量計(FICA)51と、再生ガス
の流路に設けられて前記製品ガス流量計51に連動する
再生ガス流量指示調節計52(FICB)と、製品ガス
導管19と再生ガス用に分岐した導管26とを接続する
導管61及び該導管61に設けられて前記再生ガス流量
指示調節計52により制御される自動弁62と、吸着設
置7の出口側の導管10と再生ガス用の導管26とを接
続する導管71及び弁72と、製品ガス導管19と原料
供給管1とを接続する導管81と該導管81に設けられ
て製品ガス導管19内の圧力を検出して自動弁82を制
御する圧力指示調節器83(PIC)とが設jすられて
おり、さらに、吸着器7a、7bの出口側近傍には、内
部に充填された吸着剤の温度変化を計測する温度計91
が設けられ、前記製品ガス流量計51及び/又は温度計
91の検出値により吸着器7a、7bの入口及び出口側
の弁8a、8b。
In addition to the conventional device, the device of this embodiment has a condenser 23.
Detecting the flow rate in the gas-liquid separator 41 disposed at the liquefied gas outlet of the gas-liquid separator 41, the recovery circulation path 42 that introduces the gas discharged from the top of the gas-liquid separator 41 into the raw material supply pipe 1, and the product gas conduit 19. a product gas flow meter (FICA) 51 for the regeneration gas, a regeneration gas flow rate indicator controller 52 (FICB) provided in the regeneration gas flow path and linked to the product gas flowmeter 51, a product gas conduit 19 and a regeneration gas flow meter 52 for the regeneration gas. A conduit 61 connecting the branched conduit 26, an automatic valve 62 provided in the conduit 61 and controlled by the regeneration gas flow rate indicating controller 52, a conduit 10 on the outlet side of the adsorption installation 7, and a regeneration gas conduit. 26, a conduit 81 that connects the product gas conduit 19 and the raw material supply pipe 1, and an automatic valve 82 provided in the conduit 81 to detect the pressure inside the product gas conduit 19. A pressure indicating regulator 83 (PIC) is installed to control the pressure, and a thermometer 91 is installed near the outlet side of the adsorbers 7a and 7b to measure the temperature change of the adsorbent filled inside.
Valves 8a and 8b are provided at the inlet and outlet sides of the adsorbers 7a and 7b according to the detected values of the product gas flowmeter 51 and/or thermometer 91.

9a、9bの切替え時間を制御する制御器92が設けら
れている。
A controller 92 is provided to control the switching time of 9a and 9b.

まず、原料天然ガスは、前記同様に原料供給管1から供
給されて圧縮機2て圧縮された後に、アフタークーラー
3.予冷器4.ドレン分離器5を経て吸着設備6に導入
されて不純部の除去精製が行われる。次いでコールドボ
ックス内に導入され、第一熱交換器11.フロン冷却器
12.気液分離器13.第二熱交換器14を経て精留塔
15の下部に導入される。精留塔頂部からは高純度の精
製メタンガスが導出され、その一部が製品として採取さ
れるとともに、残部が凝縮器23で液化して精留塔15
の還流液となる。また、精留塔底部から導出され、凝縮
器23で一部が気化した液化ガスは、凝縮器出口導管2
4から気液分離器41に導入され、気相部と液相部とに
分離する。
First, the raw material natural gas is supplied from the raw material supply pipe 1 and compressed by the compressor 2 in the same manner as described above, and is then compressed by the aftercooler 3. Precooler 4. The water is introduced into an adsorption facility 6 through a drain separator 5 and purified to remove impurities. Then introduced into the cold box and the first heat exchanger 11. Freon cooler 12. Gas-liquid separator 13. It is introduced into the lower part of the rectification column 15 via the second heat exchanger 14. Highly purified methane gas is led out from the top of the rectification column, a part of which is collected as a product, and the remainder is liquefied in the condenser 23 and sent to the rectification column 15.
becomes the reflux liquid. In addition, the liquefied gas led out from the bottom of the rectification column and partially vaporized in the condenser 23 is transferred to the condenser outlet conduit 2
4 into a gas-liquid separator 41, where it is separated into a gas phase and a liquid phase.

上記液化ガス成分の内、凝縮器23で気化する成分は主
として低沸点成分のメタンガスであり、気液分離器41
で分離した気相部にはメタンガスが濃縮される。例えば
、気液分離器41の気相部の組成は、メタン96.5%
、エタン3.2%。
Among the liquefied gas components, the component vaporized in the condenser 23 is mainly methane gas, which is a low boiling point component, and the gas-liquid separator 41
Methane gas is concentrated in the gas phase separated by . For example, the composition of the gas phase of the gas-liquid separator 41 is 96.5% methane.
, ethane 3.2%.

窒素0.3%となり、原料天然ガスよりもメタンを多く
含むガスとなる。従って、該気液分離器41て分離した
ガスを導出して前記回収循環路42から原料供給管1に
導入し、原料天然ガスと共に精留分離工程に循環させる
ことにより、従来排ガスとして排出されていたメタンを
製品として採取することが可能となる。このように缶出
液中のメタン濃度を上げても凝縮器23出口において気
液分離を行い、ここで分離したガス留分(メタンリッチ
ガス)を再度圧縮し、リサイクルすれば、還流液量を保
つと同時に、メタンの収率を上げ得ることを確認した。
The nitrogen content is 0.3%, resulting in a gas containing more methane than the raw natural gas. Therefore, the gas separated by the gas-liquid separator 41 is led out, introduced into the raw material supply pipe 1 from the recovery circulation path 42, and circulated together with the raw material natural gas to the rectification separation process, which would otherwise be discharged as exhaust gas. This makes it possible to extract methane as a product. Even if the methane concentration in the bottoms is increased in this way, the amount of reflux liquid can be maintained by performing gas-liquid separation at the outlet of the condenser 23, compressing the separated gas fraction (methane-rich gas) again, and recycling it. At the same time, it was confirmed that the yield of methane could be increased.

一方、気液分離器41の液相部は、メタン含量が減少し
て相対的にエタン等の他の成分含量が増大し、排ガスと
して第二熱交換器14、第一熱交換器11を経て一部が
再生ガスに使用された後、導管25から排ガスとして回
収される。
On the other hand, in the liquid phase part of the gas-liquid separator 41, the methane content decreases and the content of other components such as ethane relatively increases, and the liquid phase part passes through the second heat exchanger 14 and the first heat exchanger 11 as exhaust gas. After a portion is used as regeneration gas, it is recovered as exhaust gas through conduit 25.

ここで、上記構成において、前記従来例と路間組成、同
量の製品メタンを採取する場合のマスバランスを第2表
に示す。
Here, in the above configuration, the mass balance when collecting the same amount of product methane with the road composition and the same amount as the conventional example is shown in Table 2.

上記第2表から明らかなように、従来排出されていた排
ガスの内、気液分離器41で気相に分離した53Nrr
r/hを原料天然ガスに合流させて循環させることによ
り、排ガスとして排出される量を158 N耐/hから
105Nrrl’/hに低減するとともに、該排ガス中
に含有されるメタンの濃度を低減でき、さらに原料天然
ガス量を減少できるため、製品メタンの収率を大幅に向
上させることができる。また、液化ガス中のメタンを気
液分離器41で回収できることから、精留塔底部から導
出する液化ガスのメタン濃度を上げて液化ガスの蒸発温
度を下げ、凝縮器23での液化量を増すことにより、精
留塔15内の還流液量を増加させて製品メタンの純度を
向上させることもできる。尚、気液分離器41内の気液
界面は、液面調節計43により所定の範囲に保たれてい
る。
As is clear from Table 2 above, 53Nrr of the conventionally discharged exhaust gas was separated into the gas phase by the gas-liquid separator 41.
By combining r/h with raw natural gas and circulating it, the amount emitted as exhaust gas is reduced from 158 N/h to 105 Nrrl'/h, and the concentration of methane contained in the exhaust gas is reduced. Furthermore, since the amount of raw natural gas can be reduced, the yield of the product methane can be significantly improved. In addition, since methane in the liquefied gas can be recovered by the gas-liquid separator 41, the methane concentration of the liquefied gas derived from the bottom of the rectification column is increased, the evaporation temperature of the liquefied gas is lowered, and the amount of liquefied in the condenser 23 is increased. By doing so, it is also possible to increase the amount of reflux liquid in the rectification column 15 and improve the purity of the product methane. Note that the gas-liquid interface in the gas-liquid separator 41 is maintained within a predetermined range by a liquid level controller 43.

一方、この種の分離装置では、50%近くまでの減量運
転が行われている。この減量運転を実施する際に問題に
なるのが、吸着設備6の再生ガスの確保である。特に本
発明のごとく製品メタンの収率を高めたものでは、原料
ガス組成が一定の場合は、原料天然ガスに対する排ガス
量が少ないため、吸着設備6の再生ガスに使用できるガ
スが不足しがちである。そこで本実施例装置では、製品
ガス量と再生ガス量とを連動させて再生ガス量を確保て
きるように構成している。 即ち、製品ガス流量を前記
製品ガス流量計51で検出するとともに、該流量計51
の検出値に基づいて再生ガス流量指示調節計52を作動
させ、再生ガス量を変化させて常時所定量の再生ガスを
吸着設備6に供給している。例えば、製品需要の減少に
より減量運転を行い原料天然ガス量を減少させた場合、
製品ガス流量計51が製品ガス量の減少を検出し、この
減少量に応じて再生ガス流量指示調節計52を開方向に
作動させて排ガス全体量に対する再生ガス量を増加させ
る。これにより、製品メタンガス採取量の増減で排ガス
量が増減しても、所定量の再生ガスを吸着段*6に導入
できるため、吸着器7a、7bを充分に再生することが
できる。
On the other hand, this type of separator is operated with a reduction of nearly 50%. A problem that arises when carrying out this reduction operation is securing regeneration gas for the adsorption equipment 6. In particular, in the case of the product with a high yield of methane as in the present invention, if the raw gas composition is constant, the amount of exhaust gas relative to the raw natural gas is small, so there is a tendency for there to be a shortage of gas that can be used as regeneration gas for the adsorption equipment 6. be. Therefore, the apparatus of this embodiment is configured to ensure the amount of regenerated gas by linking the amount of product gas and the amount of regenerated gas. That is, the product gas flow rate is detected by the product gas flow meter 51, and the flow meter 51
Based on the detected value, the regeneration gas flow rate indicator controller 52 is operated to change the amount of regeneration gas to constantly supply a predetermined amount of regeneration gas to the adsorption equipment 6. For example, if the amount of raw natural gas is reduced by reducing the amount of operation due to a decrease in product demand,
The product gas flow meter 51 detects a decrease in the amount of product gas, and the regeneration gas flow rate indicator controller 52 is operated in the opening direction in accordance with this decrease amount to increase the amount of regeneration gas relative to the total amount of exhaust gas. Thereby, even if the amount of exhaust gas increases or decreases due to an increase or decrease in the amount of product methane gas collected, a predetermined amount of regeneration gas can be introduced into the adsorption stage *6, so that the adsorbers 7a and 7b can be sufficiently regenerated.

また、減量運転において、上記再生ガス量の確保ととも
に吸着器7a、7b内の吸着剤を充分に利用しているか
も問題となる。そこで本発明では、吸着器7a、7bの
中間部、好ましくは出口端と中央部との間、出口端近傍
に吸着剤の温度を計測する温度計91を設けて吸着剤の
温度変化を測定し、吸着剤が不純物(吸着物質)を吸着
する際に生じる吸着熱を検出し、この温度上昇により吸
着の進行度を求めて切替時間制御器92により吸着器7
a、7bの切替時間を調節するように構成している。こ
れにより、減量運転で原料天然ガス量が大幅に減少した
時でも吸着剤を有効に、かつ充分に利用することができ
る。さらにこの手段と前記製品ガス量に基づく再生ガス
量の確保手段とを合せて実施することにより、減量運転
時においても確実な吸着除去機能を発揮させることがで
きる。
In addition, in the reduction operation, it is a problem whether the amount of regeneration gas is secured and whether the adsorbent in the adsorbers 7a and 7b is sufficiently utilized. Therefore, in the present invention, a thermometer 91 for measuring the temperature of the adsorbent is provided in the middle part of the adsorbers 7a and 7b, preferably between the outlet end and the center part, and near the outlet end to measure the temperature change of the adsorbent. , detects the adsorption heat generated when the adsorbent adsorbs impurities (adsorbed substances), determines the progress of adsorption based on this temperature rise, and controls the adsorption unit 7 by the switching time controller 92.
It is configured to adjust the switching time of a and 7b. This allows the adsorbent to be effectively and fully utilized even when the amount of raw natural gas is significantly reduced due to the reduction operation. Furthermore, by combining this means with the means for ensuring the amount of regeneration gas based on the amount of product gas, a reliable adsorption and removal function can be exhibited even during the reduction operation.

さらに製品採取用の導管19と再生ガスの導管26とを
接続する導管61を設けるとともに、該導管61に前記
再生ガス流量指示調節計52に連動する自動弁62を設
けたことにより、排ガス量が再生ガス必要量に満たない
場合には、再生ガス流量指示調節計52の作動で上記自
動弁62を開いて製品ガスの一部を再生ガスとして用い
ることができる。
Further, by providing a conduit 61 that connects the product collection conduit 19 and the regeneration gas conduit 26, and providing the conduit 61 with an automatic valve 62 that is linked to the regeneration gas flow rate indicator 52, the amount of exhaust gas can be reduced. If the required amount of regeneration gas is not reached, the regeneration gas flow rate indicating controller 52 is operated to open the automatic valve 62 to use a portion of the product gas as regeneration gas.

これにより、排ガス量が大幅に減少しても充分な量の再
生ガスを確保でき、吸着器7a、7bの再生を確実に行
うことができる。また、吸着設備出口側の導管10と再
生ガスの導管26とを接続する導管71及び弁72を設
けたことにより、吸着設備6で精製された原料天然ガス
の一部を吸着設備6の再生ガスとして使用できる。運転
状況により再生ガスが不足する際には、前記製品メタン
ガスの一部や、精製後の原料天然ガスの一部を用いて再
生ガスを増量できるので、排ガス量が減少した場合でも
吸着剤を確実に再生することができる。
Thereby, even if the amount of exhaust gas decreases significantly, a sufficient amount of regeneration gas can be secured, and the adsorber 7a, 7b can be regenerated reliably. In addition, by providing a conduit 71 and a valve 72 that connect the conduit 10 on the outlet side of the adsorption equipment and the regeneration gas conduit 26, a part of the raw natural gas purified in the adsorption equipment 6 is transferred to the regeneration gas of the adsorption equipment 6. Can be used as When there is a shortage of regenerated gas due to operating conditions, the amount of regenerated gas can be increased using part of the product methane gas or part of the raw material natural gas after refinement, so even if the amount of exhaust gas decreases, the adsorbent can be reliably used. can be played.

また、減量運転をより安定化するために、前記製品ガス
導管19と原料供給管1とを接続する減量運転用循環路
81を設け、製品ガス導管19内の圧力を圧力指示調整
器83により検出し、これに基づいて自動弁82を開閉
操作することにより、製品メタンガスの需要量が減少し
て管19内の圧力が上昇した際に自動弁82を開き、製
品メタンガスの一部を原料天然ガスに循環合流させるこ
とができる。これにより、製品生産量が大幅に減少した
場合でも、装置各部の流量を安定運転に必要な量以上に
保つことができ、しかも製品メタンガスの導入により、
圧縮機2における原料天然ガスの吸入量、即ち原料の供
給量を自動的に減少させることができる。
In addition, in order to further stabilize the reduction operation, a reduction operation circulation path 81 is provided that connects the product gas conduit 19 and the raw material supply pipe 1, and the pressure inside the product gas conduit 19 is detected by a pressure indicating regulator 83. By opening and closing the automatic valve 82 based on this, when the demand for product methane gas decreases and the pressure inside the pipe 19 increases, the automatic valve 82 is opened and a part of the product methane gas is converted into raw material natural gas. It is possible to merge the circulation. As a result, even if the product production volume decreases significantly, the flow rate of each part of the equipment can be maintained above the amount required for stable operation.Moreover, by introducing product methane gas,
The amount of natural gas sucked into the compressor 2, that is, the amount of raw material supplied can be automatically reduced.

尚、前記気液分離器41からの循環ガスも含めて、原料
天然ガス導入系統に循環させるガスは、その流量や圧力
により適宜な位置で原料に合流させることが可能であり
、多段圧縮機の中間段で合流させることもできる。
In addition, the gas to be circulated to the raw material natural gas introduction system, including the circulating gas from the gas-liquid separator 41, can be made to join the raw material at an appropriate position depending on its flow rate and pressure, and They can also be merged at an intermediate stage.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、凝縮器の液化ガス出口
に気液分離器を配設し、凝縮器で一部が気化した液化ガ
スのガス部を循環させるようにしたから、メタンの収率
を従来の89%から96%程度にまで向上させることが
できる。特に、設備的には従来の装置に気液分離器を付
加するだけて良いため、設備コストや運転コストの上昇
がほとんどなく、製品メタンのコストを大幅に低減する
ことができる。
As explained above, in the present invention, a gas-liquid separator is disposed at the liquefied gas outlet of the condenser, and the gas part of the liquefied gas, which is partially vaporized in the condenser, is circulated. The ratio can be improved from the conventional 89% to about 96%. In particular, in terms of equipment, it is only necessary to add a gas-liquid separator to the conventional equipment, so there is almost no increase in equipment cost or operating cost, and the cost of product methane can be significantly reduced.

また、製品メタンガスの流量に応じて排ガスに対する再
生ガスの割合を変えることにより、収率の向上に伴い排
ガス量が減少し、吸着設備の再生ガスが不足するような
場合でも充分な再生ガス量を確保できる。さらに製品ガ
ス量の変化や吸着剤の温度変化に基づいて吸着器の切替
時間を制御することにより、減量運転で原料天然ガス量
か減少した場合でも吸着剤を有効に利用することができ
る。また減量運転時に製品メタンガスの一部を原料供給
系統に循環させることにより、大幅な減量運転を安定し
た状態で行うことができる。
In addition, by changing the ratio of regeneration gas to exhaust gas according to the flow rate of product methane gas, the amount of exhaust gas decreases as the yield improves, and even when there is a shortage of regeneration gas in the adsorption equipment, a sufficient amount of regeneration gas can be maintained. Can be secured. Furthermore, by controlling the switching time of the adsorber based on changes in the amount of product gas and changes in the temperature of the adsorbent, the adsorbent can be used effectively even when the amount of raw natural gas decreases in the reduction operation. Further, by circulating a part of the product methane gas to the raw material supply system during the reduction operation, it is possible to perform a large reduction operation in a stable state.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す系統図、第2図は従来
例を示す系統図である。 1・・・原料供給管  2・・・圧縮機  6・・・吸
着設備  7a、7b・・・吸着器  15・・・精留
塔19・・・製品ガス導管  23・・・凝縮器  2
4・・・凝縮器出口導管  41・・・気液分離器  
42・・・回収循環路  51・・・製品ガス流量計 
 52・・・再生ガス流量指示調節計  91・・・温
度計92・・・切替時間制御器
FIG. 1 is a system diagram showing one embodiment of the present invention, and FIG. 2 is a system diagram showing a conventional example. 1... Raw material supply pipe 2... Compressor 6... Adsorption equipment 7a, 7b... Adsorber 15... Fractionation column 19... Product gas conduit 23... Condenser 2
4... Condenser outlet conduit 41... Gas-liquid separator
42... Recovery circulation path 51... Product gas flow meter
52...Regeneration gas flow rate indicator controller 91...Thermometer 92...Switching time controller

Claims (1)

【特許請求の範囲】 1、圧縮、精製、冷却した原料天然ガスを液化精留分離
する精留塔と、該精留塔頂部から導出された分離メタン
の一部と精留塔底部から導出された液化ガスとを熱交換
させて前記分離メタンを液化する凝縮器を備えたメタン
分離装置において、前記凝縮器の液化ガス出口に気液分
離器を配設するとともに、該気液分離器で分離したガス
を原料天然ガス供給系統に導入する循環系統を設けたこ
とを特徴とするメタン分離装置。 2、前記原料天然ガスの精製を吸着設備により行う請求
項1記載のメタン分離装置において、分離後に製品とし
て採取される製品メタンの流量を検出する流量計を設け
るとともに、該流量計の検出値に応じて前記吸着設備の
再生ガス量を調節する再生ガス量調節手段を設けたこと
を特徴とするメタン分離装置。 3、前記原料天然ガスの精製を吸着設備により行う請求
項1記載のメタン分離装置において、分離後に製品とし
て採取される製品メタンの流量を検出する流量計を設け
るとともに、該流量計の検出値に応じて前記吸着設備の
吸着器切替時間を調節する吸着器切替時間制御手段を設
けたことを特徴とするメタン分離装置。 4、前記原料天然ガスの精製を吸着設備により行う請求
項1記載のメタン分離装置において、前記吸着設備の吸
着器に温度検出器を設けるとともに、該温度検出器の検
出値に応じて吸着器の切替時間を調節する吸着器切替時
間制御手段を設けたことを特徴とするメタン分離装置。 5、請求項1記載のメタン分離装置において、分離後に
製品として採取される製品メタンの一部を、原料天然ガ
ス供給系統に導入する循環系統を設けたことを特徴とす
るメタン分離装置。 6、圧縮、精製、冷却した原料天然ガスを精留塔に導入
して液化精留分離し、該天然ガス中のメタンを分離する
方法において、前記精留塔頂部から導出された分離メタ
ンの一部を製品メタンとして採取し、該分離メタンの残
部と精留塔底部から導出された液化ガスとを凝縮器に導
入し、両者を熱交換させて前記分離メタンを液化して精
留塔の還流液を得るとともに液化ガスの一部を気化させ
、該一部が気化した液化ガスを凝縮器から導出した後気
液分離し、分離したガスを前記原料天然ガスに導入循環
することを特徴とするメタン分離方法。 7、前記原料天然ガスの精製を吸着設備により行う請求
項6記載のメタン分離方法において、分離後に製品とし
て採取される製品メタンの流量を検出するとともに、該
製品メタンの流量に応じて前記吸着設備の再生ガス量を
調節することを特徴とするメタン分離方法。8、前記原
料天然ガスの精製を吸着設備により行う請求項6記載の
メタン分離方法において、分離後に製品として採取され
る製品メタンの流量を検出するとともに、該製品メタン
の流量に応じて前記吸着設備の吸着器の切替時間を制御
することを特徴とするメタン分離方法。 9、前記原料天然ガスの精製を吸着設備により行う請求
項6記載のメタン分離方法において、前記吸着設備の吸
着器の中間部の温度を検出するとともに、該温度に応じ
て吸着器の切替時間を制御することを特徴とするメタン
分離方法。 10、請求項6記載のメタン分離方法において、製品メ
タンの採取量を減量する際に、分離後に製品として採取
される製品メタンの一部を、前記原料天然ガスに導入循
環することを特徴とするメタン分離方法。
[Claims] 1. A rectification column for liquefying and rectifying compressed, purified, and cooled raw material natural gas, and a part of the separated methane extracted from the top of the rectification column and a part of the separated methane extracted from the bottom of the rectification column. In the methane separation apparatus equipped with a condenser that liquefies the separated methane by heat exchange with the liquefied gas, a gas-liquid separator is disposed at the liquefied gas outlet of the condenser, and the gas-liquid separator separates the separated methane. A methane separation device characterized by having a circulation system for introducing the extracted gas into a raw material natural gas supply system. 2. The methane separation apparatus according to claim 1, wherein the raw material natural gas is purified by adsorption equipment, wherein a flow meter is provided to detect the flow rate of product methane collected as a product after separation, and the detected value of the flow meter is A methane separation apparatus characterized in that a regeneration gas amount adjusting means is provided for adjusting the amount of regeneration gas in the adsorption equipment accordingly. 3. The methane separation apparatus according to claim 1, wherein the raw material natural gas is purified by adsorption equipment, wherein a flow meter is provided to detect the flow rate of the product methane collected as a product after separation, and the detected value of the flow meter is A methane separation apparatus characterized in that an adsorption device switching time control means is provided for adjusting an adsorption device switching time of the adsorption equipment accordingly. 4. In the methane separation apparatus according to claim 1, wherein the raw material natural gas is purified by an adsorption facility, a temperature detector is provided in the adsorber of the adsorption facility, and the temperature of the adsorber is adjusted according to the detected value of the temperature detector. A methane separator characterized in that it is provided with an adsorber switching time control means for adjusting the switching time. 5. The methane separator according to claim 1, further comprising a circulation system for introducing a part of the product methane collected as a product after separation into the raw material natural gas supply system. 6. In a method of introducing compressed, purified, and cooled raw material natural gas into a rectification column and separating it by liquefaction rectification to separate methane from the natural gas, part of the separated methane derived from the top of the rectification column is The remainder of the separated methane and the liquefied gas drawn out from the bottom of the rectification tower are introduced into a condenser, and the two are exchanged with heat to liquefy the separated methane and reflux it in the rectification tower. The method is characterized in that while obtaining a liquid, a part of the liquefied gas is vaporized, the partially vaporized liquefied gas is led out from a condenser and then separated into gas and liquid, and the separated gas is introduced into the raw material natural gas and circulated. Methane separation method. 7. The methane separation method according to claim 6, wherein the raw material natural gas is purified by adsorption equipment, in which the flow rate of the product methane collected as a product after separation is detected, and the adsorption equipment is adjusted according to the flow rate of the product methane. A methane separation method characterized by adjusting the amount of regeneration gas. 8. The methane separation method according to claim 6, wherein the raw material natural gas is purified by adsorption equipment, in which the flow rate of the product methane collected as a product after separation is detected, and the adsorption equipment is adjusted according to the flow rate of the product methane. A methane separation method characterized by controlling the switching time of an adsorber. 9. The methane separation method according to claim 6, wherein the raw material natural gas is purified by an adsorption facility, in which the temperature at an intermediate portion of the adsorber of the adsorption facility is detected, and the adsorption device switching time is adjusted according to the temperature. A methane separation method characterized by controlling. 10. The methane separation method according to claim 6, characterized in that when reducing the amount of product methane to be collected, a part of the product methane collected as a product after separation is introduced and recycled into the raw material natural gas. Methane separation method.
JP5319190A 1990-03-05 1990-03-05 Methane separation device and method Expired - Lifetime JP2939814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5319190A JP2939814B2 (en) 1990-03-05 1990-03-05 Methane separation device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5319190A JP2939814B2 (en) 1990-03-05 1990-03-05 Methane separation device and method

Publications (2)

Publication Number Publication Date
JPH03255876A true JPH03255876A (en) 1991-11-14
JP2939814B2 JP2939814B2 (en) 1999-08-25

Family

ID=12935985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5319190A Expired - Lifetime JP2939814B2 (en) 1990-03-05 1990-03-05 Methane separation device and method

Country Status (1)

Country Link
JP (1) JP2939814B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007508516A (en) * 2003-09-30 2007-04-05 オートロフ・エンジニアーズ・リミテッド Treatment of liquefied natural gas
JP2010538234A (en) * 2007-06-14 2010-12-09 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method and apparatus for cryogenic separation of methane-rich flow
CN105873659A (en) * 2014-01-07 2016-08-17 林德股份公司 Method for separating a hydrocarbon mixture containing hydrogen, separating device, and olefin plant

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111433329A (en) * 2018-07-24 2020-07-17 日挥环球株式会社 Natural gas processing device and natural gas processing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007508516A (en) * 2003-09-30 2007-04-05 オートロフ・エンジニアーズ・リミテッド Treatment of liquefied natural gas
JP2010538234A (en) * 2007-06-14 2010-12-09 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method and apparatus for cryogenic separation of methane-rich flow
CN105873659A (en) * 2014-01-07 2016-08-17 林德股份公司 Method for separating a hydrocarbon mixture containing hydrogen, separating device, and olefin plant

Also Published As

Publication number Publication date
JP2939814B2 (en) 1999-08-25

Similar Documents

Publication Publication Date Title
US5220797A (en) Argon recovery from argon-oxygen-decarburization process waste gases
JPH0639230A (en) Method for recovering argon from waste gas produced in argon-oxygen-carbon removing process
JPH06304432A (en) Manufacture of various types of gas for semi-conductor manufacture plant and device therefor
EP2880134B1 (en) Heavy hydrocarbon removal from a natural gas stream
WO2014021900A1 (en) Heavy hydrocarbon removal from a natural gas stream
WO1986000693A1 (en) Apparatus for producing high-frequency nitrogen gas
AU2022215201A1 (en) Temperature swing adsorption process for heavy hydrocarbon removal
JPS63163771A (en) Carbon monoxide separating purifier
JPH03255876A (en) Methane separation apparatus and method
US3098107A (en) Method for producing ethylene
JPS6158747B2 (en)
US3719053A (en) Liquefaction and purification system
US2240925A (en) Rectification of gaseous mixtures
JP3532465B2 (en) Air separation device
CN105066585A (en) Purifying and separating device and method for synthesis gas
JP4024347B2 (en) Argon recovery method and apparatus
JPH0816583B2 (en) Carbon monoxide separation and purification equipment
JP2574270B2 (en) Carbon monoxide separation and purification equipment
GB1579553A (en) Process for separation of a feed gas mixture containing hydrogen carbon monoxide and methane
JP3969874B2 (en) Air liquefaction separator
JP3072563B2 (en) Method and apparatus for collecting high-purity liquefied nitrogen
JPH1163809A (en) Device and method for liquefying separation of air
JPH0486474A (en) Method and device for refining nitrogen
CN205002520U (en) Purification and separation device of synthetic gas
JPH07324858A (en) Method and apparatus for liquefying and separating air

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 11