JPH0789007B2 - Carbon monoxide separation and purification equipment - Google Patents

Carbon monoxide separation and purification equipment

Info

Publication number
JPH0789007B2
JPH0789007B2 JP61189402A JP18940286A JPH0789007B2 JP H0789007 B2 JPH0789007 B2 JP H0789007B2 JP 61189402 A JP61189402 A JP 61189402A JP 18940286 A JP18940286 A JP 18940286A JP H0789007 B2 JPH0789007 B2 JP H0789007B2
Authority
JP
Japan
Prior art keywords
gas
raw material
carbon monoxide
material gas
liquid nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61189402A
Other languages
Japanese (ja)
Other versions
JPS6346368A (en
Inventor
明 吉野
Original Assignee
大同ほくさん株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大同ほくさん株式会社 filed Critical 大同ほくさん株式会社
Priority to JP61189402A priority Critical patent/JPH0789007B2/en
Publication of JPS6346368A publication Critical patent/JPS6346368A/en
Publication of JPH0789007B2 publication Critical patent/JPH0789007B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0223H2/CO mixtures, i.e. synthesis gas; Water gas or shifted synthesis gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0252Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0261Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0266Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/80Processes or apparatus using separation by rectification using integrated mass and heat exchange, i.e. non-adiabatic rectification in a reflux exchanger or dephlegmator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/04Recovery of liquid products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/904External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by liquid or gaseous cryogen in an open loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/34Details about subcooling of liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、プロパン,ブタン等を酸化させて製造され
た一酸化炭素製造用ガスや製鉄所の副生ガス等から一酸
化炭素を分離する一酸化炭素分離精製装置に関するもの
である。
TECHNICAL FIELD The present invention separates carbon monoxide from a carbon monoxide-producing gas produced by oxidizing propane, butane, or the like, a byproduct gas of a steel mill, or the like. The present invention relates to a carbon monoxide separation / purification device.

〔従来の技術〕[Conventional technology]

一酸化炭素(CO)は反応性に富んでいるため、合成化学
の原料として使用されており、特に近年では、C1化学の
中でも最も重要な炭素源と考えられている。上記COは、
製鉄所をはじめ工場の副生ガス中に多量に含まれている
ものであり、従来は、せいぜい燃料として熱エネルギー
が回収されているにすぎない。しかし、近年のCOに対す
る需要の高まりから上記工場副生ガスからCOを分離回収
する装置が開発されている。また、最近では、上記のよ
うなCOの重要性に鑑み、プロパン,ブタン等を酸化して
つくられたCO原料ガスからCOを分離回収する装置も提案
されている。これらの装置には主として、ゼオライト等
の吸着剤を使用し、この吸着剤によつてCOを濃縮して回
収する装置と、COを選択的に吸収するコソーブ(COSOR
B)液を使用する装置の2種類の装置が用いられてい
る。しかしながら、上記吸着剤を使用する吸着分離装置
(PSA法に基づく)は、装置自体に多数の弁を必要とす
ると同時に、吸着剤を弁操作によつて切り換え、再生使
用する必要があり、装置全体が複雑になるうえ、煩雑な
弁操作を必要とするという難点がある。また、原料ガス
からのCOの回収率が低いため、廃ガスを再度原料ガスに
混合してCOの分離回収を図らなければならず、ランニン
グコストが高くなり製品COが高くなるという欠点も有し
ている。そのうえ、純度が99.5%程度の製品COしか得ら
れず、高純度品が得られないという難点がある。
Carbon monoxide (CO) is used as a raw material for synthetic chemistry because of its high reactivity, and in recent years, it has been considered to be the most important carbon source in C 1 chemistry. The above CO is
It is contained in a large amount in the by-product gas of steelworks and other factories, and conventionally, at most, thermal energy is recovered as fuel. However, due to the increasing demand for CO in recent years, a device for separating and recovering CO from the above factory by-product gas has been developed. Further, in recent years, in view of the importance of CO as described above, an apparatus for separating and recovering CO from a CO source gas produced by oxidizing propane, butane, etc. has been proposed. An adsorbent such as zeolite is mainly used for these devices, and CO adsorbent concentrates and collects CO and COSORB (COSOR) that selectively absorbs CO.
B) Two types of equipment are used, one that uses liquid. However, the adsorption-separation device (based on the PSA method) that uses the above-mentioned adsorbent requires a large number of valves in the device itself, and at the same time, it is necessary to switch the adsorbent by valve operation and recycle it. Is complicated, and complicated valve operation is required. In addition, since the recovery rate of CO from the raw material gas is low, it is necessary to mix the waste gas with the raw material gas again to separate and collect CO, which results in high running costs and high product CO. ing. In addition, there is a problem that only high purity CO can be obtained, and high purity products cannot be obtained.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

コソーブ法を実施する場合は、上記PSA装置のような多
数の弁を要しないという利点を備えており、例えば、転
炉ガス等の製鉄所副生ガスを対象としてCOの分離回収を
実現する。上記転炉ガスの組成はCO;68〜72vol%,CO2:1
3〜17vol%,N2;11〜16vol%,H2;0.8〜1.3vol%,O2;0.1v
ol%以下であり、それ以外に、アンモニア,硫化水素,
二酸化硫黄等の微量成分と、ダストならびに7%程度の
水分を含んでいる。このようなガスを対象とするコソー
ブ装置の一例を第3図に示す。図において、40は転炉ガ
スからなる原料ガス、41は圧縮機で、上記炭酸ガスを圧
縮し昇圧させる。この圧縮機41において、ダストは圧縮
機41の油に捕集され、この油を冷却するための油循環系
に設置されているフイルタによつて除去される。42はブ
ライン冷却器で、昇圧された原料ガスを予備脱湿する。
43は活性炭を充填した吸着筒で原料ガス中の硫黄,アン
モニアを吸着除去する。44は合成ゼオライトを充填した
2個1組の吸着筒で、水分および炭酸ガス等を吸着除去
する。この2個1組の吸着筒44は交互に切り換え使用さ
れる。45は吸収塔で、上記不純物除去および脱湿された
原料ガスを、塔上部から流下するコソーブ液と向流接触
させて原料ガス中のCOをコソーブ液に選択的に吸収させ
るようになつている。上記コソーブ液はトルエンにCuAl
Cl4を溶解したもので、つぎのような反応により、低温
下でCOを選択的に吸収し、高温下においてCOを放散す
る。
When the Cossorb method is carried out, it has an advantage that a large number of valves as in the PSA device described above are not required, and for example, separation and recovery of CO is realized for steelworks by-product gas such as converter gas. The composition of the converter gas is CO; 68~72vol%, CO 2: 1
3 to 17vol%, N 2 ; 11 to 16vol%, H 2 ; 0.8 to 1.3vol%, O 2 ; 0.1v
ol% or less, other than that, ammonia, hydrogen sulfide,
It contains trace components such as sulfur dioxide, dust and about 7% water. FIG. 3 shows an example of a co-sorbing device for such a gas. In the figure, 40 is a raw material gas composed of a converter gas, and 41 is a compressor, which compresses the carbon dioxide gas to raise the pressure. In this compressor 41, dust is collected in the oil of the compressor 41 and removed by a filter installed in an oil circulation system for cooling this oil. A brine cooler 42 preliminarily dehumidifies the pressurized raw material gas.
43 is an adsorption column filled with activated carbon that adsorbs and removes sulfur and ammonia in the raw material gas. Reference numeral 44 is a set of two adsorption columns filled with synthetic zeolite for adsorbing and removing water and carbon dioxide. The pair of suction cylinders 44 are alternately switched and used. Reference numeral 45 denotes an absorption tower, in which the raw material gas from which the above impurities have been removed and dehumidified is brought into countercurrent contact with the cosorb liquid flowing down from the upper part of the tower so that CO in the raw material gas is selectively absorbed by the cosorb liquid. . The above cosoave liquid is toluene and CuAl.
It is a solution of Cl 4 and selectively absorbs CO at low temperature and emits CO at high temperature by the following reaction.

47は熱交換器で、上記吸収塔45内でCOを選択吸収し塔45
の底部から送出されたコソーブ液を、放散塔46の底部か
ら送出される液と熱交換させて加熱する。46は放散塔で
あつて塔頂から上記CO吸収コソーブ液を流下させ、リボ
イラ49の加熱により発生したトルエン蒸気と接触させ、
CO吸収コソーブ液中のCOを放散させる。ここで、COを放
散したコソーブ液は、放散塔46の底部から熱交換器およ
び冷却塔48を経て冷却され再生されて吸収塔45の塔頂へ
戻される。吸収塔45の上部からは廃ガスが送出され、ブ
ライン冷却器42′で−10℃まで冷却されてトルエンが回
収され、高炉ガス等の配管系へ送出される。そして、上
記放散塔46の上部からは製品CO(ガス)が取り出され
る。この場合、コソーブ液中には少量のCO2,N2,H2,O2
溶解されるため、上記放散塔46から得られる製品COに
は、これらが混入されている。50は水冷却塔であり、上
記製品COを冷却しトルエンを回収する。51はコンプレツ
サーで、上記製品COを昇圧させる。52はブライン冷却器
で、上記製品COを−10℃まで冷却してトルエンを回収す
る。53は製品COの貯槽であり、適宜に製品COを送出す
る。しかしながら、上記の装置では、必然的に微量の不
純分が製品CO中に混入するため、超高純度の一酸化炭素
の回収は実質的に不可能であり99.5%程度のものしか得
られない。また、この装置も製品COの回収率が低いとい
う欠点を有している。
47 is a heat exchanger, which selectively absorbs CO in the absorption tower 45
The cossorb liquid delivered from the bottom of the is heated by exchanging heat with the liquid delivered from the bottom of the stripping tower 46. 46 is a stripping tower, in which the CO-absorbing COSORB liquid is flown down from the top of the tower, and brought into contact with the toluene vapor generated by heating the reboiler 49,
CO Absorbs CO in COSORB solution. Here, the COSORB liquid that has diffused CO is cooled and regenerated from the bottom of the diffusion tower 46 via the heat exchanger and the cooling tower 48, and is returned to the top of the absorption tower 45. Waste gas is sent from the upper part of the absorption tower 45, cooled to −10 ° C. by the brine cooler 42 ′ to recover toluene, and sent to a piping system for blast furnace gas or the like. Then, the product CO (gas) is taken out from the upper part of the stripping tower 46. In this case, a small amount of CO 2 , N 2 , H 2 , and O 2 is dissolved in the cossorb liquid, so that the product CO obtained from the stripping tower 46 contains these. 50 is a water cooling tower, which cools the above product CO and recovers toluene. 51 is a compressor, which boosts the pressure of the product CO. 52 is a brine cooler which cools the above product CO to -10 ° C and recovers toluene. Reference numeral 53 is a product CO storage tank, which appropriately sends the product CO. However, in the above-mentioned apparatus, trace amounts of impurities are inevitably mixed in the product CO, so that it is practically impossible to recover ultra-high purity carbon monoxide, and only about 99.5% is obtained. In addition, this device also has a drawback that the recovery rate of product CO is low.

この発明は、このような事情に鑑みなされたもので、超
高純度の一酸化炭素を高回収率で回収しうる一酸化炭素
分離精製装置の提供をその目的とする。
The present invention has been made in view of such circumstances, and an object thereof is to provide a carbon monoxide separation / purification device capable of recovering ultrahigh-purity carbon monoxide at a high recovery rate.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するため、この発明の一酸化炭素分離
精製装置は、一酸化炭素を含む原料ガスを圧縮する圧縮
手段と、上記原料ガス中の炭酸ガスと水分とを除去する
除去手段と、上記原料ガスを冷却するための熱交換手段
と、炭化水素系不純ガスを冷却凝縮させ液化除去するた
めの炭化水素系不純ガス液化除去器と、上記熱交換手段
を経た原料ガスを上記凝縮器内蔵冷却器の凝縮器内に導
く原料ガス供給路と、沸点の差により原料ガス中の一酸
化炭素を液化して内部に溜め不純ガスを分離して排出す
る精留塔と、装置外から液体窒素の供給を受けこれを貯
蔵する液体窒素貯蔵手段と、この液体窒素貯蔵手段内の
液体窒素を一酸化炭素液化の寒冷源として上記精留塔に
導く第1の導入路と、上記液体窒素貯蔵手段内の液体窒
素を炭化水素系不純ガス液化の寒冷源として上記炭化水
素系不純ガス液化除去器に導く第2の導入路と、上記精
留塔内の貯溜液化一酸化炭素をそのままもしくは気体状
態で製品一酸化炭素として取り出す取出路を備えるとい
う構成をとる。
In order to achieve the above object, the apparatus for separating and purifying carbon monoxide of the present invention is a compression unit for compressing a raw material gas containing carbon monoxide, a removing unit for removing carbon dioxide gas and water in the raw material gas, A heat exchange means for cooling the raw material gas, a hydrocarbon-based impure gas liquefaction remover for cooling and condensing the hydrocarbon-based impure gas to liquefy, and a raw material gas passed through the heat exchange means built in the condenser. A raw material gas supply path leading to the condenser of the cooler, a rectification tower that liquefies carbon monoxide in the raw material gas due to the difference in boiling points and stores it inside to separate and discharge the impure gas, and liquid nitrogen from outside the device. Liquid nitrogen storage means for receiving and storing the liquid nitrogen, a first introduction path for guiding the liquid nitrogen in the liquid nitrogen storage means to the rectification column as a cold source for liquefying carbon monoxide, and the liquid nitrogen storage means. Liquid nitrogen in the A second introduction path leading to the hydrocarbon-based impure gas liquefaction remover as a cold source for gas liquefaction and an extraction path for taking out the stored liquefied carbon monoxide in the rectification tower as a product carbon monoxide as it is or in a gaseous state. Take the configuration to prepare.

すなわち、この装置は、深冷液化分離法であり、圧縮手
段,除去手段,熱交換手段を得た原料ガスを、炭化水素
系不純ガス液化除去器に導入して、炭化水素系不純ガス
を液化除去すると同時に、原料ガスを超低温に冷却し、
これを精留塔に導き、その内部においてさらに液体窒素
貯蔵手段から供給される液体窒素の冷熱で冷却して、原
料ガス中のCOを液化するとともに、不純ガスを気体のま
ま除去し、これを精留塔から排出すると同時に、液化CO
をそのままもしくは気化して取り出すようにするため、
超高純度の一酸化炭素を回収することが可能になる。す
なわち、この装置は、上記コソーブ装置のようなコソー
ブ液の加熱,冷却によるCOの吸収,放散を利用したり、
PSA装置のような吸着剤による吸収を利用するものでは
ないため、コソーブ液中にCO2,N2等の微量不純ガスが溶
解したり、吸着剤の吸着不良に起因する不純ガスの混入
等を生じず、したがつて、それら不純溶解分に起因する
製品一酸化炭素の純度阻害現象を生じない。
That is, this apparatus is a cryogenic liquefaction separation method, and the raw material gas obtained by the compression means, the removal means, and the heat exchange means is introduced into a hydrocarbon-based impure gas liquefaction remover to liquefy the hydrocarbon-based impure gas. At the same time as removing it, the raw material gas is cooled to an ultra low temperature,
This is led to a rectification column, and further cooled by the cold heat of liquid nitrogen supplied from the liquid nitrogen storage means to liquefy CO in the raw material gas and remove the impure gas as a gas. At the same time as discharging from the rectification tower, liquefied CO
In order to take out as it is or vaporized,
It becomes possible to recover ultrahigh-purity carbon monoxide. That is, this device utilizes CO absorption and desorption by heating and cooling the cosorb liquid as in the above cosorb device,
Since it does not utilize the absorption by the adsorbent unlike the PSA device, it may dissolve trace amounts of impure gas such as CO 2 and N 2 in the cossorb liquid, or may contain impurities such as impure gas due to poor adsorption of the adsorbent. Therefore, the phenomenon of impairing the purity of the product carbon monoxide due to these impure dissolved components does not occur.

つぎに、この発明の実施例にもとづいて詳しく説明す
る。
Next, a detailed description will be given based on an embodiment of the present invention.

〔実施例〕〔Example〕

第1図はこの発明の一実施例の構成図である。図におい
て、1は原料ガス圧縮機、2はドレン分離器、3はフロ
ン冷却器、4は2個1組の吸着筒である。上記吸着筒4
は内部に合成ゼオライトもしくは活性炭または両者の混
合物が充填されていて、原料ガス圧縮機1により圧縮さ
れた原料ガス中のH2OおよびCO2等を吸着除去する。5は
H2O,CO2等が吸着除去された原料ガスを送る原料ガス供
給パイプである。6は熱交換器であり、吸着筒4により
H2O,CO2等が吸着除去された圧縮原料ガスが送り込まれ
る。7はCH4等の炭化水素系不純ガスを内蔵凝縮器8内
で冷却凝縮させ、液化除去する炭化水素系不純ガス液化
除去器である。9は上記炭化水素系不純ガス液化除去器
7の凝縮器8中に、上記熱交換器6により冷却された圧
縮原料ガスを送り込むパイプである。10は上記凝縮器8
から下方へ延びる排出パイプで、上記凝縮器8で冷却凝
縮液化された炭化水素系不純ガスを廃棄する。25はその
中間部に設けられた熱交換器である。上記熱交換器25
は、上記パイプ9から分岐する分岐パイプ26によつて送
入される圧縮原料ガスの一部を、排出パイプ10を通る流
体(液化炭化水素系不純ガス)の冷熱で冷却し、戻しパ
イプ27で矢印のようにパイプ9に戻すようになつてい
る。11は精留塔であり、凝縮器28内蔵の分縮器部12と中
圧の塔部13とからなり、中圧の塔部13内には多数の精留
棚14が配設されている。この塔部13に、上記炭化水素系
不純ガス液化除去器7の凝縮器8から延びる低温原料ガ
ス送入パイプ29が開口しており、炭化水素系不純ガスが
液化除去され、超低温に冷却された原料ガスが送入され
るようになつている。この塔部13内において、原料ガス
中におけるCOの一部が液化されて下方に流下し、H2,N2
等の不純ガスとCOの残部が気体状態で塔部13の上方に上
昇する。15は上記塔部13の上部と分縮器部12内の凝縮器
28とを接続する第1の還流液パイプであり、上記塔部13
の上方に上昇した混合ガスを凝縮器28内に送入するよう
になつている。15aは遮蔽板であり、上記混合気体を第
1の還流液パイプ15に導く流路を形成し、この流路を流
れる混合ガスの移動により塔頂に溜る不純ガス(H2,
N2)を混合ガスに随伴させ不純ガスの塔頂滞留を防止す
る。上記凝縮器28内においては、沸点の差によりCOが液
化され、N2,H2等が気体状態で、凝縮器28から上方に延
びる廃ガスパイプ30を経て除去されるようになつてい
る。16は上記凝縮器28の下部から塔部13の上部内に延び
る第2の還流液パイプであり、上記凝縮器28の底部に溜
る液化COを塔部13内の受け皿17内に還流液として流下さ
せるようになつている。この受け皿17内に流下した液化
COは溢流して塔部13内を下方に流れ、低温原料ガス送入
パイプ29から塔部13内に送入された原料ガスと向流的に
接触し、その蒸発熱により上記のように原料ガス中のCO
ガスを液化するようになつている。18は装置外から液体
窒素の供給を受け、これを貯蔵する液体窒素貯槽であ
り、内部の液体窒素を第1の導入路パイプ32を経由させ
て精留塔11の分縮器部12内に送入し、分縮器部12内にお
ける凝縮器28の寒冷源とする。また、第2の導入路パイ
プ33を介して内部の液体窒素を前記炭化水素系不純ガス
液化除去器7内に送入し、除去器7内における凝縮器8
の寒冷源とする。31は精留塔11の分縮器部12内において
寒冷としての作用を終え、気化した液体窒素を送出する
送出パイプであつて、N2ガス取出パイプ32aと連通して
おり、気化した液体窒素を、熱交換器6を経由させて熱
交換させたのちN2ガス取出パイプ32aから外部に送出し
使用に供するようになつている。19は上記精留塔11の塔
部13における底部に溜まつた液化COを製品COとして取り
出す取出パイプである。36は製品COの貯蔵タンクであ
り、このタンク36から製品COが適宜取り出される。上記
取出パイプ19には、調節弁20が設けられている。21は液
面調節計であり、上記精留塔塔部13における底部の貯溜
液化COの液面が一定レベルを保つよう、その液面に応じ
て調節弁20を制御するようになつている。また、上記第
1の導入路パイプ32に設けられた調節弁34も、上記精留
塔11の分縮器部12内の液体窒素の液面が一定レベルを保
つよう、液面調節計22で制御されるようになつている。
さらに、第2の導入路パイプ33に設けられた調節弁35も
低温原料ガス送入パイプ29に設けられたガス温度調節計
35aにより、低温原料ガス送入パイプ29内の原料ガスの
温度が一定になるよう制御されるようになつている。な
お、上記熱交換器6,炭化水素系不純ガス液化除去器7お
よび精留塔11は、図示の一点鎖線で示すように、真空断
熱容器36a内に収容されている。
FIG. 1 is a block diagram of an embodiment of the present invention. In the figure, 1 is a raw material gas compressor, 2 is a drain separator, 3 is a Freon cooler, and 4 is a set of two adsorption tubes. The adsorption cylinder 4
Is filled with synthetic zeolite or activated carbon or a mixture of both, and adsorbs and removes H 2 O, CO 2 and the like in the raw material gas compressed by the raw material gas compressor 1. 5 is
This is a raw material gas supply pipe for sending a raw material gas from which H 2 O, CO 2, etc. have been adsorbed and removed. 6 is a heat exchanger,
The compressed raw material gas from which H 2 O, CO 2, etc. have been adsorbed and removed is fed. Reference numeral 7 denotes a hydrocarbon-based impure gas liquefaction remover that liquefies and removes a hydrocarbon-based impure gas such as CH 4 by cooling and condensing in the built-in condenser 8. Reference numeral 9 is a pipe for feeding the compressed raw material gas cooled by the heat exchanger 6 into the condenser 8 of the hydrocarbon-based impure gas liquefaction remover 7. 10 is the condenser 8
The hydrocarbon-impurity gas that has been condensed and liquefied by cooling in the condenser 8 is discarded by a discharge pipe that extends downward from. Reference numeral 25 is a heat exchanger provided in the middle portion. Above heat exchanger 25
Is a part of the compressed raw material gas sent by the branch pipe 26 branched from the pipe 9 is cooled by the cold heat of the fluid (liquefied hydrocarbon-based impure gas) passing through the discharge pipe 10, and is returned by the return pipe 27. It returns to the pipe 9 as shown by the arrow. Reference numeral 11 denotes a rectification column, which is composed of a condenser section 12 having a built-in condenser 28 and a medium pressure column section 13, and a large number of rectification shelves 14 are arranged in the medium pressure column section 13. . A low-temperature raw material gas feed pipe 29 extending from the condenser 8 of the hydrocarbon-based impure gas liquefaction remover 7 is opened in the tower portion 13, and the hydrocarbon-based impure gas is liquefied and removed and cooled to an ultralow temperature. The raw material gas is being sent in. In this tower section 13, a part of CO in the raw material gas is liquefied and flows downward, and H 2 , N 2
The remaining impure gas such as CO and the rest of CO rise in the gaseous state above the tower section 13. 15 is a condenser in the upper part of the tower section 13 and in the partial condenser section 12
28 is the first reflux liquid pipe that connects with
The mixed gas, which has risen upwards, is fed into the condenser 28. A shielding plate 15a forms a flow path for guiding the mixed gas to the first reflux liquid pipe 15, and the impure gas (H 2 ,
N 2 ) is mixed with the mixed gas to prevent impure gas from staying at the top of the column. In the condenser 28, CO is liquefied due to the difference in boiling points, and N 2 , H 2 and the like are removed in a gaseous state through a waste gas pipe 30 extending upward from the condenser 28. Reference numeral 16 denotes a second reflux liquid pipe extending from the lower portion of the condenser 28 into the upper portion of the tower portion 13, and the liquefied CO accumulated at the bottom portion of the condenser 28 flows down as a reflux liquid into a tray 17 in the tower portion 13. It is getting to let you. Liquefaction that has flowed down into this pan 17
The CO overflows and flows downward in the tower section 13, comes into countercurrent contact with the raw material gas fed into the tower section 13 through the low temperature raw material gas feed pipe 29, and the heat of vaporization causes the raw material gas to flow as described above. CO in gas
It is designed to liquefy gas. Reference numeral 18 denotes a liquid nitrogen storage tank which receives supply of liquid nitrogen from the outside of the apparatus and stores the liquid nitrogen, and the liquid nitrogen in the inside is passed through the first introduction path pipe 32 into the dephlegmator section 12 of the rectification column 11. It is fed and used as a cold source for the condenser 28 in the dephlegmator section 12. Further, the liquid nitrogen in the inside is sent into the hydrocarbon-based impure gas liquefaction remover 7 through the second introduction path pipe 33, and the condenser 8 in the remover 7 is introduced.
As a cold source. Reference numeral 31 denotes a delivery pipe that finishes the action as cold in the dephlegmator section 12 of the rectification tower 11 and delivers vaporized liquid nitrogen, which is in communication with the N 2 gas extraction pipe 32a, and vaporized liquid nitrogen. Is heat-exchanged via the heat exchanger 6 and then sent out from the N 2 gas extraction pipe 32a to be used. Reference numeral 19 is a take-out pipe for taking out liquefied CO accumulated in the bottom of the tower section 13 of the rectification tower 11 as product CO. 36 is a storage tank for the product CO, and the product CO is appropriately extracted from this tank 36. The take-out pipe 19 is provided with a control valve 20. A liquid level controller 21 controls the control valve 20 according to the liquid level so that the liquid level of the stored liquefied CO at the bottom of the rectification column section 13 is maintained at a constant level. Further, the control valve 34 provided in the first introduction pipe 32 is also controlled by the liquid level controller 22 so that the liquid level of the liquid nitrogen in the condenser 12 of the rectification column 11 is kept at a constant level. It's getting controlled.
Further, the control valve 35 provided in the second introduction path pipe 33 is also a gas temperature controller provided in the low temperature raw material gas inlet pipe 29.
The temperature of the raw material gas in the low temperature raw material gas supply pipe 29 is controlled to be constant by 35a. The heat exchanger 6, the hydrocarbon-based impure gas liquefaction remover 7 and the rectification column 11 are housed in a vacuum heat insulation container 36a as shown by the one-dot chain line in the figure.

この装置は、例えば、CO:69.93vol%,H2;30vol%,CH4:
0.03vol%,CO2;0.03vol%,N2;0.01vol%の組成の、CO原
料ガス(プロパン,ブタンの酸化により製造)を対象と
してつぎのようにして製品COを製造する。すなわち、原
料ガス圧縮機1により原料ガスを圧縮し、ドレン分離器
2により、圧縮された原料ガス中の水分を除去してフロ
ン冷却器3によりさらに冷却し、その状態で吸着筒4に
送り込み原料ガス中のH2OおよびCO2を吸着除去する。つ
いで、H2O,CO2が吸着除去された原料ガスを、精留塔11
からの窒素ガスおよび廃ガスによって冷却されている熱
交換器6に送り込んで冷却し、その状態で炭化水素系不
純ガス液化除去器7内に送入し、原料ガス中におけるCH
4等の炭化水素系不純ガスを液化し、ついで排出パイプ1
0から外部に常温気化ガスとして放出する。この際、冷
熱は排出パイプ10に設けられた熱交換器25によつて回収
される。そして、炭化水素系不純ガスが液化除去され、
超低温に冷却された原料ガスを、精留塔11の塔部13内に
送入し、受け皿17からの溢流液化COと向流的に接触させ
て、原料ガス中のCOを液化し塔部13の底部に液化COとし
て溜める。この時、原料ガス中のH2,N2ガス等は、塔部1
3を上方に上昇する。また、原料ガス中のCOの一部も液
化されずに、気体のまま上記H2,N2ガス等に随伴して上
昇する。上記上昇H2,N2,COの混合ガスは、第1の還流液
パイプ15から精留塔11の凝縮器28に送入され、ここで、
COガスのみが沸点の差によつて液化され、還流液として
第2の還流液パイプ16を介して精留塔11における塔部13
の受け皿17内に戻る。他方、H2,N2ガスは凝縮器28の上
部から廃ガスパイプ30によつて取り出され、熱交換器6
内で原料ガスと熱交換し大気中に放出される。そして、
精留塔11における塔部13の底部に溜まつた液化COは、製
品液化CO取出パイプ19から液化製品として取り出され、
貯蔵タンク36内に一旦貯蔵されて適宜使用に供される。
This device is, for example, CO: 69.93vol%, H 2 ; 30vol%, CH 4 :
0.03vol%, CO 2; 0.03vol% , N 2; the 0.01 vol% of the composition, CO feed gas as follows to produce a product CO as target (propane, prepared by the oxidation of butane). That is, the raw material gas compressor 1 compresses the raw material gas, the drain separator 2 removes the water content in the compressed raw material gas, and the CFC cooler 3 further cools the raw material gas. Adsorbs and removes H 2 O and CO 2 in gas. Then, the raw material gas from which H 2 O and CO 2 have been adsorbed and removed is passed through the rectification column 11
Is sent to the heat exchanger 6 which is being cooled by the nitrogen gas and waste gas from the tank, and is cooled in that state, and then is sent into the hydrocarbon-based impure gas liquefaction remover 7, where CH
Liquefaction of hydrocarbon impure gas such as 4 and then exhaust pipe 1
It is emitted as a room temperature vaporized gas from 0. At this time, the cold heat is recovered by the heat exchanger 25 provided in the discharge pipe 10. Then, the hydrocarbon impure gas is liquefied and removed,
The raw material gas cooled to an ultra-low temperature is fed into the tower portion 13 of the rectification tower 11 and countercurrently brought into contact with the overflow liquefied CO from the tray 17 to liquefy the CO in the raw material gas and the tower portion. Store as liquefied CO at the bottom of 13. At this time, the H 2 and N 2 gases in the raw material gas are
Ascend 3 upwards. Further, a part of CO in the raw material gas is not liquefied but rises as it is along with the H 2 and N 2 gases as it is. The mixed gas of the ascending H 2 , N 2 and CO is fed from the first reflux liquid pipe 15 to the condenser 28 of the rectification column 11, where:
Only the CO gas is liquefied due to the difference in boiling points, and as the reflux liquid, the column portion 13 in the rectification column 11 is passed through the second reflux liquid pipe 16.
Return to the saucer 17 of. On the other hand, the H 2 and N 2 gases are taken out from the upper part of the condenser 28 by the waste gas pipe 30, and the heat exchanger 6
It exchanges heat with the source gas inside and is released into the atmosphere. And
The liquefied CO collected at the bottom of the tower section 13 in the rectification column 11 is taken out as a liquefied product from the product liquefied CO take-out pipe 19,
It is temporarily stored in the storage tank 36 and used as appropriate.

このように、この装置は、上記吸着塔4,炭化水素系不純
ガス液化除去器7で不純分が除去された原料ガスを精留
塔11で深冷液化分離して液化COを製造するため、得られ
る液化CO製品の純度が超高純度となる。しかも、製品液
化COの需要量の変動が生じても、上記精留塔11の分縮器
部12における液面調節計22および炭化水素系不純ガス液
化除去器7に設けられた原料ガス温度調節計35aの制御
作用によつて、液体窒素貯槽18から、精留塔11の分縮器
部12および炭化水素系不純ガス液化除去器7に供給され
る液体窒素の供給量が自動的に制御される。したがつ
て、需要量の変動に自動的に、かつ迅速に対応できるの
であり、しかも、このときに純度ばらつきを生じない。
特に、この装置は、精留塔11における分縮器部12の凝縮
器28内に、精留塔11内の原料ガスの一部を常時案内して
液化するため、凝縮器28内へ液化COが所定量溜まつたの
ちは、それ以降生成する液化COが還流液として常時精留
塔11の塔部13内に戻るようになる。したがつて、凝縮器
28からの還流液の流下供給の断続に起因する製品純度の
ばらつき(還流液の流下の中断により精留棚では還流液
がなくなりガスの吹き抜け現象を招いて製品純度が下が
り、流下の再開時には純度が回復する)を生じず、常時
安定した純度の製品液化COを供給することができる。
As described above, in this apparatus, the raw material gas from which the impurities have been removed by the adsorption tower 4 and the hydrocarbon-based impure gas liquefaction remover 7 is subjected to deep liquefaction separation in the rectification tower 11 to produce liquefied CO. The liquefied CO product obtained has a very high purity. Moreover, even if the demand amount of the product liquefied CO fluctuates, the raw gas temperature control provided in the liquid level controller 22 and the hydrocarbon-based impure gas liquefaction remover 7 in the dephlegmator section 12 of the rectification tower 11 is controlled. With the control action of the total 35a, the amount of liquid nitrogen supplied from the liquid nitrogen storage tank 18 to the dephlegmator section 12 of the rectification column 11 and the hydrocarbon-based impure gas liquefaction remover 7 is automatically controlled. It Therefore, it is possible to automatically and promptly respond to the fluctuation of the demand amount, and at the same time, there is no variation in purity.
In particular, this device constantly guides a part of the raw material gas in the rectification tower 11 into the condenser 28 of the dephlegmator section 12 in the rectification tower 11 and liquefies it. After a predetermined amount has accumulated, the liquefied CO that is generated thereafter will always return to the inside of the tower section 13 of the rectification tower 11 as a reflux liquid. Therefore, the condenser
Variation in product purity due to intermittent supply of reflux liquid from 28 However, the product liquefied CO of stable purity can always be supplied.

第2図はこの発明の他の実施例を示している。この装置
は、炭化水素系不純ガス液化除去器7を経た原料ガス
を、精留塔塔部13の底部貯溜液化CO中を通る低温液化ガ
ス送入パイプ延長部25a内に案内して液化COを加熱し気
化させ、その気化COを製品COガスとして取出パイプ37か
ら取り出すとともに、凝縮器28で生成した液化COを、液
化CO溜め38内に案内し、パイプ39から製品液化COとして
取り出しうるようになつている。なお、22aは液面計
で、液化CO溜め38の液面によつてバルブ39aを開閉制御
し、液面を一定に保つようになつている。それ以外の部
分は第1図の装置と実質的に同じであるから説明を省略
する。
FIG. 2 shows another embodiment of the present invention. This apparatus guides the raw material gas that has passed through the hydrocarbon-based impure gas liquefaction remover 7 into the low temperature liquefied gas feed pipe extension 25a that passes through the bottom storage liquefied CO of the rectification column section 13 to produce liquefied CO. It is heated and vaporized, and the vaporized CO is taken out as the product CO gas from the extraction pipe 37, and the liquefied CO generated in the condenser 28 is guided into the liquefied CO reservoir 38 so that it can be taken out as the product liquefied CO from the pipe 39. I'm running. Reference numeral 22a is a liquid level gauge, which controls the opening and closing of the valve 39a by the liquid level of the liquefied CO reservoir 38 to keep the liquid level constant. The other parts are substantially the same as the device of FIG.

この装置は、液化COと気体COの双方を製品COとして供給
しうるという効果を奏する。
This device has an effect that both liquefied CO and gaseous CO can be supplied as product CO.

なお、以上の実施例は液体取りおよび液体,気体の双方
取りを示しているが、塔部13内のCOガスのみを製品ガス
として取り出すようにするという気体取りもできるので
ある。
In addition, although the above-mentioned embodiment shows the liquid removal and both the liquid and the gas extraction, it is also possible to perform the gas extraction in which only the CO gas in the tower section 13 is taken out as the product gas.

〔発明の効果〕〔The invention's effect〕

この発明の一酸化炭素分離精製装置は、以下のように構
成されているため、超高純度の一酸化炭素を効率よく製
造することができる。しかも、この装置は、精留塔等の
寒冷源として装置外から液体窒素貯蔵手段に供給された
液体窒素を使用するため、膨脹タービン等の回転機器を
必要とせず、したがつて、回転機器の運転,保全等の煩
雑な手間が不要となるうえ、装置全体の小形化をも実現
することができるようになる。
Since the carbon monoxide separation / purification device of the present invention is configured as follows, it is possible to efficiently produce ultra-high purity carbon monoxide. Moreover, since this device uses liquid nitrogen supplied to the liquid nitrogen storage means from outside the device as a cold source for the rectification column or the like, it does not require a rotating device such as an expansion turbine, and therefore, the rotating device This eliminates the need for troublesome operations such as operation and maintenance, and also enables downsizing of the entire device.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例の構成図、第2図は他の実
施例の構成図、第3図は従来例の構成図である。 1……原料ガス圧縮機、4……吸着筒、6……熱交換
器、7……炭化水素系不純ガス液化除去器
FIG. 1 is a block diagram of an embodiment of the present invention, FIG. 2 is a block diagram of another embodiment, and FIG. 3 is a block diagram of a conventional example. 1 ... Raw material gas compressor, 4 ... Adsorption cylinder, 6 ... Heat exchanger, 7 ... Hydrocarbon-based impure gas liquefaction remover

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一酸化炭素を含む原料ガスを圧縮する圧縮
手段と、上記原料ガス中の炭酸ガスと水分とを除去する
除去手段と、上記原料ガスを冷却するための熱交換手段
と、炭化水素系不純ガスを冷却凝縮させ液化除去するた
めの炭化水素系不純ガス液化除去器と、上記熱交換手段
を経た原料ガスを精留塔内に導く原料ガス供給路と、沸
点の差により原料ガス中の一酸化炭素を液化して内部に
溜め不純ガスを分離して排出する精留塔と、装置外から
液体窒素の供給を受けこれを貯蔵する液体窒素貯蔵手段
と、この液体窒素貯蔵手段内の液体窒素を一酸化炭素液
化の寒冷源として上記精留塔に導く第1の導入路と、上
記液体窒素貯蔵手段内の液体窒素を炭化水素系不純ガス
液化の寒冷源として上記炭化水素系不純ガス液化除去器
に導く第2の導入路と、上記精留塔内の貯溜液化一酸化
炭素をそのままもしくは気体状態で製品一酸化炭素とし
て取り出す取出路を備えていることを特徴とする一酸化
炭素分離精製装置。
1. A compression means for compressing a raw material gas containing carbon monoxide, a removing means for removing carbon dioxide gas and moisture in the raw material gas, a heat exchange means for cooling the raw material gas, and a carbonization method. A hydrocarbon-based impure gas liquefaction remover for cooling and condensing the hydrogen-based impure gas to liquefy it, a raw material gas supply path for guiding the raw material gas through the heat exchange means into the rectification column, and a raw material gas due to a difference in boiling point A rectification column that liquefies carbon monoxide in the liquid and stores it inside to separate and discharge the impure gas, liquid nitrogen storage means that receives supply of liquid nitrogen from the outside of the device and stores it, and inside this liquid nitrogen storage means Of the liquid nitrogen in the liquid nitrogen storage means as a cold source for liquefying carbon monoxide and the liquid nitrogen in the liquid nitrogen storage means as a cold source for liquefying hydrocarbon impure gas. Second introduction leading to gas liquefaction remover When carbon monoxide separation and purification apparatus characterized by comprising a takeout path taken out as product carbon monoxide as or gaseous state reservoir liquefied carbon monoxide in the rectification column.
JP61189402A 1986-08-12 1986-08-12 Carbon monoxide separation and purification equipment Expired - Fee Related JPH0789007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61189402A JPH0789007B2 (en) 1986-08-12 1986-08-12 Carbon monoxide separation and purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61189402A JPH0789007B2 (en) 1986-08-12 1986-08-12 Carbon monoxide separation and purification equipment

Publications (2)

Publication Number Publication Date
JPS6346368A JPS6346368A (en) 1988-02-27
JPH0789007B2 true JPH0789007B2 (en) 1995-09-27

Family

ID=16240685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61189402A Expired - Fee Related JPH0789007B2 (en) 1986-08-12 1986-08-12 Carbon monoxide separation and purification equipment

Country Status (1)

Country Link
JP (1) JPH0789007B2 (en)

Also Published As

Publication number Publication date
JPS6346368A (en) 1988-02-27

Similar Documents

Publication Publication Date Title
JPH0313505B2 (en)
JPH06304432A (en) Manufacture of various types of gas for semi-conductor manufacture plant and device therefor
JPS6124968A (en) Production unit for high-purity nitrogen gas
WO1986000693A1 (en) Apparatus for producing high-frequency nitrogen gas
JPH0789012B2 (en) Carbon monoxide separation and purification equipment
JP2000088455A (en) Method and apparatus for recovering and refining argon
JP2585955B2 (en) Air separation equipment
JPS6158747B2 (en)
JPH0816583B2 (en) Carbon monoxide separation and purification equipment
JP2574270B2 (en) Carbon monoxide separation and purification equipment
JPH0789007B2 (en) Carbon monoxide separation and purification equipment
JP3532465B2 (en) Air separation device
JPH0816581B2 (en) Carbon monoxide separation and purification equipment
JPH0789011B2 (en) Carbon monoxide separation and purification equipment
JP2939814B2 (en) Methane separation device and method
JPH0816582B2 (en) Carbon monoxide separation and purification equipment
JPH06281322A (en) Manufacturing apparatus for high purity nitrogen and oxygen gas
JPH11325720A (en) Manufacture of ultra-high-purity nitrogen gas and device therefor
JP3532466B2 (en) Air separation device
CN111439733A (en) Argon recovery method and device for removing carbon monoxide by rectification method
JPS6115070A (en) Production unit for high-purity nitrogen gas
JPS6124969A (en) Production unit for high-purity nitrogen gas
JP2004020161A (en) High-purity nitrogen gas manufacturing device
JPS6115068A (en) Production unit for high-purity nitrogen gas
JPH04297780A (en) High purity nitrogen gas manufacturing equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees