EP2400249A1 - Air separation method and facility for cryogenic distilling - Google Patents

Air separation method and facility for cryogenic distilling Download PDF

Info

Publication number
EP2400249A1
EP2400249A1 EP11169713A EP11169713A EP2400249A1 EP 2400249 A1 EP2400249 A1 EP 2400249A1 EP 11169713 A EP11169713 A EP 11169713A EP 11169713 A EP11169713 A EP 11169713A EP 2400249 A1 EP2400249 A1 EP 2400249A1
Authority
EP
European Patent Office
Prior art keywords
gas
drum
exchanger
air
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11169713A
Other languages
German (de)
French (fr)
Inventor
David Bednarski
Benoit Davidian
Guillaume Rodrigues
Marc Wagner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP2400249A1 publication Critical patent/EP2400249A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D19/00Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium
    • F28D19/04Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium using rigid bodies, e.g. mounted on a movable carrier
    • F28D19/045Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium using rigid bodies, e.g. mounted on a movable carrier with radial flow through the intermediate heat-transfer medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D19/00Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium
    • F28D19/04Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium using rigid bodies, e.g. mounted on a movable carrier
    • F28D19/047Sealing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/24Processes or apparatus using other separation and/or other processing means using regenerators, cold accumulators or reversible heat exchangers

Definitions

  • the present invention relates to a method and an air separation installation by cryogenic distillation incorporating a rotary regenerative heat exchanger allowing an exchange between at least two gases of the installation.
  • Air separation plants particularly in the field of CO 2 capture, lead to low pressure processes and very high flow rates.
  • the cooling of some process gases against the gases produced by the distillation results in multiple and numerous exchange body devices.
  • Regenerative exchangers are known to US 4513807 , GB-A-2065856 , AU-A-1108066 , DE-A-2910423 and are manufactured by the companies Ljungstrom, Rothemuhle, Alstom, Howden, Wilson among others. They are used, for example in the field of thermal power plants, in particular as air heaters by countercurrent exchange with fumes.
  • heat of one of the fluids is deposited by conduction, convection and / or radiation on a material part of the exchanger having a certain heat capacity and being able to undergo temperature fluctuations.
  • a change in the fluid flow regime (for example by operating a set of valves) or in the structure of the heat exchanger means that heat accumulated in this part is transferred to another fluid by the same phenomena. .
  • the regenerative heat exchanger therefore generally has a discontinuous character, "alternative". It may therefore be necessary to use at least two exchangers to treat continuous flows. These discontinuities can pose problems of mechanical resistance, related to the movements and the expansion-contraction cycles of the elements subjected to temperature fluctuations.
  • the problem to solve is therefore to remedy all or some of the disadvantages mentioned above, that is to say in particular to design a heat exchange process between at least two gases, reducing the possible need for heat insulation , improving the compactness of the devices used and can withstand significant pressure or temperature differences between the gases involved.
  • an air separation method by cryogenic distillation in which to achieve a heat exchange between at least a first gas at a first temperature and a second gas at a second higher temperature.
  • at least one regenerative type heat exchanger comprising an outer shell and a drum in relative rotation with respect to said outer shell, for a given duration, said first gas passes through said drum from the inside to the outside and, simultaneously, said second gas passes through said drum from outside to inside, said first gas is rich in nitrogen, said first temperature is less than 200K, preferably less than 100K and the second gas is compressed air and the second temperature is between 270K and 330K, the second gas being separated by cryogenic distillation to form the first gas.
  • the first temperature is less than 100K.
  • the heat exchange takes place between a first gas which receives heat from a second, hotter gas.
  • the exchanger is of regenerative type, that is to say that this heat transferred from the second gas to some parts of the exchanger intended, by increasing their temperature, to store this heat.
  • the second gas cools. Then this heat is transferred by these parts to the first gas, which is heated.
  • the rest of the exchanger that rotates around the fixed drum in this local coordinate system.
  • the drum and the rest of the exchanger are rotated at different angular velocities.
  • the drum is a piece in relative rotation relative to the rest of the exchanger.
  • the typical rotational speed is between 0.1 (1 tenth) and 100 rpm.
  • Parts of the drum have a symmetry of revolution relative to the axis of rotation, including a portion of its outer or inner surfaces.
  • the drum has a hollow cylindrical portion which is traversed by the gases.
  • the coldest gas is passed through the drum, from the inside (where the axis of rotation is) to the outside. Simultaneously, the hottest gas is passed from the outside to the inside of the drum, in a zone different from that concerned by the passage of the coldest gas.
  • the gas circuit is substantially fixed relative to the outer shell and the rest of the exchanger.
  • the area of the drum affected by the passage of the cold gas cools, while the area concerned by the passage of the hot gas heats up.
  • the relative rotation of the drum causes the region of the drum presented to the passage of the cold gas to move to be then presented to the passage of hot gas. Thus heat is conveyed from the hottest gas to the coldest gas.
  • certain angular sectors are reserved for the hottest gas and the others are reserved for the coldest gas.
  • the sectors reserved for the coldest gas are complementary to those reserved for the hottest gas, so as to maximize the volume of drum used for the exchange and to minimize the partition walls between the gases. This means that the drum is either traversed by the coldest gas or is traversed by the hottest gas.
  • the ratio of the dimensions of the sectors, or the gas injection / recovery zones at the drum, can be adapted according to the flow rates of each of the gases and their thermal properties (inlet and outlet temperature of the exchanger , heat capacity in particular).
  • the number of sectors is at least two. According to particular modes, one can have several sectors for the same gas. These sectors alternate.
  • the circulation of the gases in the active part of the exchanger is essentially radial, that is to say centrifugal or centripetal with respect to the relative rotation axis of the drum. This makes it possible to obtain greater compactness of the exchanger. It is estimated that the radial rotary exchanger is 1.5 to 2 times more compact than the axial exchanger processing the same flow rates. Taking into account the connectors (collectors, boxes ...), we arrive at a reduction of the volume by a factor of at least about 6 with reference to a non-rotating heat exchanger.
  • the ultra-cold gas is in the center of the exchanger. Near the edges is only the hottest gas, which is at a temperature rather close to the ambient temperature, or the coldest gas initially, after its heating by passage through the drum. Thus, the need to insulate the heat exchanger is less or nonexistent, as well as having complex load bearing structures.
  • the nitrogen concentration in the fluid in question is at least 50% by volume.
  • the second gas is compressed air, generally at a pressure of between 3 bar and 8 bar absolute. This case typically corresponds to that of an air separation plant.
  • the nitrogen comes from the air separation unit and the compressed air comes from an air compressor or compressed air system.
  • the drum comprises a porous material for gases. Materials favoring low pressure losses and favoring heat exchange are preferred.
  • the porosity may be isotropic, for example using aluminum foams or copper foams.
  • the porosity may be anisotropic, in particular to prevent the "circumferential" diffusion of the gases (in the direction of rotation) and to favor an essentially centrifugal or centripetal flow of gases. Circumferential diffusion creates a mixture of gases.
  • Anisotropic porosity can be implemented to channel the gases from one point of the internal surface of the drum to the other point of the outer surface, and vice versa, and thus to minimize or eliminate the mixing of the gases.
  • the drum is normally used in rotation relative to the outer shell and the fixed parts of the exchanger. According to a particular mode, it is the drum which is fixed and the rest which turns. Or else the drum and the rest of the exchanger turn at different speeds.
  • the drum comprises blades, slats or strips for channeling the flow of gases.
  • These blades or lamellae may be arranged approximately radially, so as to prevent circumferential flows in the drum and instead favor the centripetal or centrifugal flows.
  • anisotropic porosity can again be implemented on a smaller scale.
  • metal foam can be installed between radial metal blades.
  • the number of micro-sectors defined by these blades or lamellae is chosen according to the acceptable mixing ratio between the gases. The smaller the sectors, the less mixing.
  • sealing members are placed where the gas intake and recovery systems are in contact with the drum. Due to the relative rotation of the drum relative to the remainder of the exchanger, these bodies may in particular be of the "brush” or “brush” type, resting on the outer or inner surfaces of the drum. On both sides of the brushes, it is possible to have intermediate chambers intended to reinforce the tightness sometimes called labyrinths. Suddenly, the contact between these systems and the drum is usually through the sealing members.
  • the distribution systems of the same gas may be symmetrical with respect to the axis of rotation and must in all cases be of dimensions adapted to the volume flow rate of the gas and to the permissible head losses.
  • the symmetry allows a more favorable distribution of constraints related to thermal expansion.
  • the sealing members of the dispensing systems may be equipped with single or multiple vent channels for recovering medium pressure gas from one or more chambers of the labyrinth and returning it to an intermediate stage of an air compressor. the separation unit.
  • the drum may comprise a stack of strips and free spacers in an annular space, the spacers allow the flow of gas in the radial direction and may be wavelets, grids, porous metal whose hydraulic diameter is lower at 2 millimeters.
  • the curvature of the strips is such that their outer edges are substantially tangent to the inner or outer surfaces of the drum. Thus they have some flexibility and can be "brushed” in a certain sense.
  • the drum rotates in the "easy” direction, that is to say that the edges of the strips do not prevent rotation. This produces a cooperation between the strips and the sealing members so as to reduce leaks at the junction between the gas intake or recovery systems and the drum.
  • the dynamic seal (that is to say that obtained when there is rotation) can be reinforced by a system of labyrinths and brushes, the latter pressing on the edges of the strips to improve the sealing.
  • a heat exchanger 3 positioned vertically, comprising a drum 5 rotatably mounted along the vertical axis 8.
  • the drum is a hollow cylinder having an inner surface 5a and an outer surface 5b.
  • a first gas 1 consisting of residual nitrogen at atmospheric pressure and about 90K from an air separation unit (not shown) enters the bottom of the exchanger and exits at the top at an outer shell 4, or outer shell.
  • the drum is made of a porous material for these two gases.
  • the first gas 1 passes through the drum 5 in the centrifugal direction (see arrow 6), while the second gas 2 passes through the drum in the centripetal direction (see arrow 7).
  • the first gas is admitted by an intake system 1a comprising the vertical pipe for supplying the gas. It enters the drum 5 through a portion 5c of the inner surface 5a. He crosses the drum and warms himself to his touch. Indeed, this part of the drum was shortly before in contact with the second gas, warmer. The first gas exits through a portion 5d of the outer surface 5b. We can see that it crosses the drum in two sectors that are complementary to those borrowed by the second gas. It is recovered by a recovery system 1b which notably comprises the outer shell 4.
  • the second gas is admitted by an intake system 2a constituted for example by an enlargement of the pipe used to bring this second gas. It enters the drum 5 through a portion 5e of the outer surface 5b. It passes through the drum and cools on contact, as this part of the drum was shortly before contact with the first gas. The second gas exits through a portion 5f of the outer surface 5a. It is collected by a recovery system 2b and directed to a vertical drain pipe from below.
  • two sectors are reserved for the passage of nitrogen and two sectors are reserved for the passage of air.
  • the two sectors are symmetrical with respect to the axis 8. The sectors alternate.
  • the drum while rotating, therefore alternately faces a passage of the residual nitrogen and thus allows the latter to heat up by releasing its frigories and alternately face the passage of the medium pressure air, where it allows the latter to to cool down by releasing his calories.
  • This arrangement of radial exchanger makes it possible to calibrate the distribution systems (admission, recovery) as a function of the volume flow rates and the corresponding pressure losses.
  • the distribution systems of the medium pressure air are of reduced section compared to that of the distribution systems of the waste nitrogen.
  • the drum 5 is isolated from the rest of the exchanger. It consists of a porous material 9. On the right, a part of the drum is shown with strips 10.
  • the figure 4 is an enlargement of this part, where the curvature of the drum has been "canceled" to facilitate the representation. It shows the strips 10, which are curved metal blades each occupying the entire height of the drum. These blades fit into each other. They are taken between two grids 5a and 5b which materialize the outer and inner surfaces of the drum. These strips channel the gaseous flows as previously described.
  • the first gas passes through the drum in the direction 6 from the portion 5c of the surface 5a to the portion 5d of the surface 5b.
  • the second gas passes through the drum in the direction 7 from the 5th part of the surface 5b to the portion 5f of the surface 5a.
  • the rotation of the drum causes the strips 10 to move to the right.
  • the members 5g are in contact between the gas intake and recovery systems and the drum. Here they improve the seal between, on the one hand, the admission system of the first gas and the second gas recovery system and, on the other hand, between the first gas recovery system and the intake system. second gas.
  • the sealing members press on the grids 5a or 5b and, through these grids, on some strips 10.
  • the strips are bent at least in their outer portions 10a and 10b which are in contact with the grids 5a and 5b. This confers a particular elasticity to the strips. They can retract slightly under the force of pressure, exerted by the organs 5g.
  • the grids 5a and 5b are themselves elastic.
  • a Another advantage of the elasticity of the strips 10 is to absorb the stresses associated with the thermal expansions.
  • FIG. 5 one of the sealing members 5g has been detailed. It includes in the center at least one broom. On either side of this broom are rooms (or labyrinth) with different tiered pressures. This reduces the pressure gradient and thus minimizes leakage. Some chambers of the labyrinth, being at intermediate pressure between the low pressure and the high pressure, can be connected externally to the corresponding intermediate stages of the compressor.
  • the rotating drum may comprise a material having adsorptive properties, such as silica gel or zeolite, which makes it possible to associate the drying function with the heat exchange function.
  • a material having adsorptive properties such as silica gel or zeolite, which makes it possible to associate the drying function with the heat exchange function.
  • the regenerator bed constituting a drum is composed of a stack of strips of stainless steel, aluminum or copper, or a material having relevant characteristics in specific heat at low temperature, separated by spacers.
  • the strips extend over the entire height of the drum and over the entire section, they are semi-elliptical or equivalent, to have edges approximately tangent to the inner and outer surface of the drum. In this way, the brushes which scroll on the surface will slide and will tighten in their path the edges of the strips thus improving the seal between the two gases.
  • one or more brushes may be provided on each dynamic sealing member.
  • the intermediate elements which only partially cover the strips so as to allow their edges to move, the intermediate elements having the whole height of the drum.
  • They may consist of a corrugated wave mat or a piece of wire whose intertwined son release channels for the passage of gas or isotropic porous communicating porosities and small dimensions.
  • the minimization of the interlayer height leads, for a given circumference, to multiply the number of strips, thus to increase the thermal inertia of the system, thus to increase the overall heat capacity of the regenerator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

The installation has a regenerative heat exchanger (3) comprising sealing members for sealing a gas intake system (2a) and a recuperation system (2b) in contact with parts of inner and outer surfaces (5a, 5b) of drum (5) including interlayer. A sending unit sends air at a temperature ranging between 270 and 330 Kelvin to the exchanger as a gas and another sending unit sends nitrogen at a temperature less than 200 Kelvin to the exchanger as another gas. Sending units send the latter gas and the former gas from the exchanger to air separation apparatus and from the apparatus to the exchanger. An independent claim is also included for a method of separation of air by cryogenic distillation.

Description

La présente invention est relative à un procédé et à une installation de séparation d'air par distillation cryogénique incorporant un échangeur de chaleur régénératif rotatif permettant un échange entre au moins deux gaz de l'installation.The present invention relates to a method and an air separation installation by cryogenic distillation incorporating a rotary regenerative heat exchanger allowing an exchange between at least two gases of the installation.

Les installations de séparation d'air, notamment dans le domaine de la capture du CO2, conduisent à des procédés à faible pression et très gros débits. Le refroidissement de certains gaz du procédé contre les gaz produits par la distillation conduit à des dispositifs à corps d'échange multiples et nombreux.Air separation plants, particularly in the field of CO 2 capture, lead to low pressure processes and very high flow rates. The cooling of some process gases against the gases produced by the distillation results in multiple and numerous exchange body devices.

Ces boites froides contiennent donc de nombreux échangeurs traditionnellement du type en aluminium brasé, lesquels nécessitent, d'une part, de coûteux et complexes systèmes de collecteurs afin d'alimenter tous les corps d'échange et, d'autre part, des investissements lourds en calorifugeage et en structure portante pour limiter les pertes thermiques. Du coup, ces échangeurs sont plus onéreux que des échangeurs tubulaires.These cold boxes therefore contain many exchangers traditionally brazed type aluminum, which require, on the one hand, expensive and complex systems of collectors to supply all the exchange bodies and, on the other hand, heavy investments thermal insulation and load-bearing structure to limit thermal losses. As a result, these exchangers are more expensive than tubular exchangers.

Les échangeurs régénératifs sont connus de US-4513807 , GB-A-2065856 , AU-A-1108066 , DE-A-2910423 et sont fabriqués par les sociétés Ljungstrom, Rothemuhle, Alstom, Howden, Wilson entre autres. Ils sont utilisés, par exemple dans le domaine des centrales thermiques, en particulier en guise de réchauffeurs d'air par échange à contre courant avec des fumées.Regenerative exchangers are known to US 4513807 , GB-A-2065856 , AU-A-1108066 , DE-A-2910423 and are manufactured by the companies Ljungstrom, Rothemuhle, Alstom, Howden, Wilson among others. They are used, for example in the field of thermal power plants, in particular as air heaters by countercurrent exchange with fumes.

Dans les échangeurs régénératifs, de la chaleur d'un des fluides est déposée par conduction, convection et/ou rayonnement sur une partie matérielle de l'échangeur possédant une certaine capacité thermique et pouvant subir des fluctuations de température. Un changement, soit du régime d'écoulement des fluides (en actionnant par exemple un jeu de vannes), soit de la structure de l'échangeur, fait que de la chaleur accumulée dans cette partie se transfère à un autre fluide par les mêmes phénomènes. L'échangeur régénératif a donc en général un caractère discontinu, «alternatif». On peut donc être amené à utiliser au moins deux échangeurs pour traiter des flux continus. Ces discontinuités peuvent poser des problèmes de tenue mécanique, liés aux mouvements et aux cycles de dilatation-contraction des éléments soumis à des fluctuations de température.In regenerative exchangers, heat of one of the fluids is deposited by conduction, convection and / or radiation on a material part of the exchanger having a certain heat capacity and being able to undergo temperature fluctuations. A change in the fluid flow regime (for example by operating a set of valves) or in the structure of the heat exchanger means that heat accumulated in this part is transferred to another fluid by the same phenomena. . The regenerative heat exchanger therefore generally has a discontinuous character, "alternative". It may therefore be necessary to use at least two exchangers to treat continuous flows. These discontinuities can pose problems of mechanical resistance, related to the movements and the expansion-contraction cycles of the elements subjected to temperature fluctuations.

Certaines solutions ont été proposées où une partie de l'échangeur, la partie où se produit la respiration thermique, est en rotation, les gaz traversant cette partie selon une direction sensiblement parallèle à l'axe de rotation. Ceci permet une répartition simple des flux gazeux, mais ne permet pas de traiter des différences de pression importantes entre fluides, ni de gros écarts de température. De plus, ces échangeurs sont de très grandes dimensions dans le cas de forts débits.Some solutions have been proposed where part of the heat exchanger, the part where the thermal respiration occurs, is in rotation, the gases passing through this part in a direction substantially parallel to the axis of rotation. This allows a breakdown simple flow of gas, but does not handle large pressure differences between fluids, nor large temperature differences. In addition, these exchangers are very large in the case of high flow rates.

Le problème à résoudre est dès lors de remédier à tout ou partie des inconvénients mentionnés ci-dessus, c'est-à-dire en particulier de concevoir un procédé d'échange de chaleur entre au moins deux gaz, réduisant le besoin éventuel de calorifugeage, améliorant la compacité des dispositifs mis en oeuvre et pouvant supporter des différences de pression ou de température importantes entre les gaz impliqués.The problem to solve is therefore to remedy all or some of the disadvantages mentioned above, that is to say in particular to design a heat exchange process between at least two gases, reducing the possible need for heat insulation , improving the compactness of the devices used and can withstand significant pressure or temperature differences between the gases involved.

A cette fin, la solution de l'invention porte sur une installation de séparation d'air comprenant un échangeur de chaleur régénératif, rotatif et radial, l'échangeur comprenant :

  • une coque externe et un tambour monté en rotation selon un axe donné par rapport à cette dite coque externe, ledit tambour comprenant une partie poreuse pour les gaz possédant une surface interne et une surface externe, toutes deux de révolution autour dudit axe donné ;
  • un système d'admission d'un premier gaz, en contact avec une première partie de ladite surface interne ;
  • un système de récupération dudit premier gaz, en contact avec une première partie de ladite surface externe ;
  • un système d'admission d'un second gaz en contact avec une seconde partie de ladite surface externe ;
  • un système de récupération dudit second gaz en contact avec une seconde partie de ladite surface interne ; et
  • des organes assurant une étanchéité, au moins relative, desdits systèmes d'admission et de récupération au niveau du contact avec lesdites parties des surfaces interne et externe ;
  • ladite partie poreuse comportant, entre lesdites surfaces interne et externe, des feuillards aptes, d'une part, à canaliser l'écoulement dudit premier gaz depuis la première partie de ladite surface interne vers la première partie de ladite surface externe et, d'autre part, à canaliser l'écoulement dudit second gaz depuis la seconde partie de ladite surface externe vers la seconde partie de ladite surface interne, lesdits organes venant appuyer sur certains desdits feuillards ;
  • l'installation comprenant des moyens pour envoyer de l'air à une température entre 270 et 330K à l'échangeur comme premier gaz et des moyens pour de l'azote à une température inférieure à 200K à l'échangeur comme second gaz, un appareil de séparation d'air par distillation cryogénique, des moyens pour envoyer le second gaz de l'échangeur à l'appareil de séparation d'air et des moyens pour envoyer le premier gaz de l'appareil de séparation d'air à l'échangeur.
To this end, the solution of the invention relates to an air separation installation comprising a regenerative, rotary and radial heat exchanger, the exchanger comprising:
  • an outer shell and a drum rotatably mounted along a given axis relative to said outer shell, said drum comprising a porous portion for gases having an inner surface and an outer surface, both of revolution about said given axis;
  • an intake system of a first gas, in contact with a first portion of said inner surface;
  • a recovery system of said first gas, in contact with a first portion of said outer surface;
  • an intake system of a second gas in contact with a second portion of said outer surface;
  • a system for recovering said second gas in contact with a second portion of said inner surface; and
  • members providing a seal, at least relative, said intake and recovery systems at the contact with said portions of the inner and outer surfaces;
  • said porous portion having, between said inner and outer surfaces, strips capable, on the one hand, of channeling the flow of said first gas from the first part of said inner surface to the first part of said outer surface and, on the other hand on the other hand, channeling the flow of said second gas from the second portion of said outer surface to the second portion of said inner surface, said members pressing against some of said strips;
  • the plant comprising means for sending air at a temperature between 270 and 330K to the exchanger as the first gas and means for nitrogen at a temperature below 200K to the exchanger as a second gas, a device cryogenic distillation air separation means means for supplying the second gas from the exchanger to the air separation apparatus and means for supplying the first gas from the air separation apparatus to the exchanger .

Selon d'autres aspects facultatifs :

  • un élément exhibant une porosité anisotrope est disposé entre les feuillards.
  • l'installation comprend un compresseur d'air relié à l'échangeur pour y fournir le second gaz.
  • le système d'admission ou de récupération de gaz est constitué par un ensemble d'éléments comprenant des canalisations et des parois permettant d'amener les gaz jusqu'au tambour de l'échangeur et de les collecter après leur passage à travers la partie poreuse du tambour de l'échangeur.
  • le système d'admission ou de récupération de gaz comprend des moyens de mise en mouvement des gaz, tels que des pompes ou des compresseurs.
According to other optional aspects:
  • an element exhibiting anisotropic porosity is disposed between the strips.
  • the installation comprises an air compressor connected to the exchanger to supply the second gas.
  • the gas intake or recovery system is constituted by a set of elements comprising pipes and walls making it possible to bring the gases to the drum of the exchanger and to collect them after their passage through the porous part the drum of the exchanger.
  • the gas intake or recovery system comprises means for moving gases, such as pumps or compressors.

Selon un autre objet de l'invention, il est prévu un procédé de séparation d'air par distillation cryogénique dans lequel pour réaliser un échange de chaleur entre au moins un premier gaz à une première température et un second gaz à une seconde température plus élevée, mettant en oeuvre au moins un échangeur de chaleur de type régénératif, comprenant une coque externe et un tambour en rotation relative par rapport à ladite coque externe, pendant une durée donnée, ledit premier gaz traverse ledit tambour de l'intérieur vers l'extérieur et, simultanément, ledit second gaz traverse ledit tambour de l'extérieur vers l'intérieur, ledit premier gaz est riche en azote, ladite première température est inférieure à 200K, de préférence inférieure à 100K et le second gaz est de l'air comprimé et la second température est entre 270K et 330K, le second gaz étant séparé par distillation cryogénique pour former le premier gaz.According to another object of the invention, there is provided an air separation method by cryogenic distillation in which to achieve a heat exchange between at least a first gas at a first temperature and a second gas at a second higher temperature. employing at least one regenerative type heat exchanger, comprising an outer shell and a drum in relative rotation with respect to said outer shell, for a given duration, said first gas passes through said drum from the inside to the outside and, simultaneously, said second gas passes through said drum from outside to inside, said first gas is rich in nitrogen, said first temperature is less than 200K, preferably less than 100K and the second gas is compressed air and the second temperature is between 270K and 330K, the second gas being separated by cryogenic distillation to form the first gas.

Eventuellement la première température est inférieure à 100K.Optionally the first temperature is less than 100K.

La coque externe peut être fixe et ledit tambour animé d'un mouvement de rotation selon un axe sensiblement vertical.The outer shell may be fixed and said drum rotated about a substantially vertical axis.

L'échange de chaleur a lieu entre un premier gaz qui reçoit de la chaleur provenant d'un second gaz plus chaud. L'échangeur est de type régénératif, c'est-à-dire que cette chaleur transférée passe du second gaz vers certaines parties de l'échangeur destinées, par une augmentation de leur température, à emmagasiner cette chaleur. Le second gaz se refroidit. Puis cette chaleur est cédée par ces parties au premier gaz, qui se réchauffe.The heat exchange takes place between a first gas which receives heat from a second, hotter gas. The exchanger is of regenerative type, that is to say that this heat transferred from the second gas to some parts of the exchanger intended, by increasing their temperature, to store this heat. The second gas cools. Then this heat is transferred by these parts to the first gas, which is heated.

Le tambour joue ce rôle d'accumulation puis de restitution de la chaleur. Il est en mouvement relatif de rotation par rapport à une coque externe qui enveloppe l'échangeur. Selon un mode de réalisation particulier, il tourne par rapport au repère local du lieu dans lequel se trouve l'échangeur et le reste de l'échangeur est fixe.The drum plays this role of accumulation and then restitution of the heat. It is in relative rotational movement with respect to an outer shell which envelops the exchanger. According to a particular embodiment, it rotates relative to the local coordinate system of the place where the exchanger is located and the rest of the exchanger is fixed.

Selon un autre mode, c'est le reste de l'échangeur qui tourne autour du tambour fixe dans ce repère local. Selon un mode plus général, le tambour et le reste de l'échangeur sont en rotation à des vitesses angulaires différentes.According to another mode, it is the rest of the exchanger that rotates around the fixed drum in this local coordinate system. In a more general mode, the drum and the rest of the exchanger are rotated at different angular velocities.

Le tambour est donc une pièce en rotation relative par rapport au reste de l'échangeur. La vitesse de rotation typique est entre 0.1 (1 dixième) et 100 tours par minute.The drum is a piece in relative rotation relative to the rest of the exchanger. The typical rotational speed is between 0.1 (1 tenth) and 100 rpm.

Certaines parties du tambour présentent une symétrie de révolution par rapport à l'axe de rotation, notamment une partie de ses surfaces externes ou internes. Selon un mode particulier, le tambour présente une partie cylindrique creuse qui est traversée par les gaz.Parts of the drum have a symmetry of revolution relative to the axis of rotation, including a portion of its outer or inner surfaces. In a particular embodiment, the drum has a hollow cylindrical portion which is traversed by the gases.

Pendant une durée donnée, qui est en général d'au moins quelques minutes, on fait passer le gaz le plus froid au travers du tambour, de l'intérieur (où se trouve l'axe de rotation) vers l'extérieur. Simultanément, on fait passer le gaz le plus chaud de l'extérieur vers l'intérieur du tambour, dans une zone différente de celle concernée par le passage du gaz le plus froid. Le circuit des gaz est sensiblement fixe par rapport à la coque externe et au reste de l'échangeur. La zone du tambour concernée par le passage du gaz froid se refroidit, tandis que celle concernée par le passage du gaz chaud se réchauffe. La rotation relative du tambour fait que la zone du tambour présentée au passage du gaz froid se déplace pour être ensuite présentée au passage du gaz chaud. Ainsi de la chaleur est véhiculée du gaz le plus chaud vers le gaz le plus froid.During a given time, which is usually at least a few minutes, the coldest gas is passed through the drum, from the inside (where the axis of rotation is) to the outside. Simultaneously, the hottest gas is passed from the outside to the inside of the drum, in a zone different from that concerned by the passage of the coldest gas. The gas circuit is substantially fixed relative to the outer shell and the rest of the exchanger. The area of the drum affected by the passage of the cold gas cools, while the area concerned by the passage of the hot gas heats up. The relative rotation of the drum causes the region of the drum presented to the passage of the cold gas to move to be then presented to the passage of hot gas. Thus heat is conveyed from the hottest gas to the coldest gas.

Selon un mode particulier, certains secteurs angulaires, définis à partir de l'axe de rotation, sont réservés au gaz le plus chaud et les autres sont réservés au gaz le plus froid. En général les secteurs réservés au gaz le plus froid sont les complémentaires de ceux réservés au gaz le plus chaud, de façon à maximiser le volume de tambour utilisé pour l'échange et à minimiser les cloisons de séparation entre les gaz. On veut dire par là que le tambour est soit traversé par le gaz le plus froid, soit traversé par le gaz le plus chaud.In a particular embodiment, certain angular sectors, defined from the axis of rotation, are reserved for the hottest gas and the others are reserved for the coldest gas. In general, the sectors reserved for the coldest gas are complementary to those reserved for the hottest gas, so as to maximize the volume of drum used for the exchange and to minimize the partition walls between the gases. This means that the drum is either traversed by the coldest gas or is traversed by the hottest gas.

Le rapport des dimensions des secteurs, ou des zones d'injection/récupération des gaz au niveau du tambour, peuvent être adaptés en fonction des débits de chacun des gaz et de leurs propriétés thermiques (température d'entrée et de sortie de l'échangeur, capacité calorifique notamment).The ratio of the dimensions of the sectors, or the gas injection / recovery zones at the drum, can be adapted according to the flow rates of each of the gases and their thermal properties (inlet and outlet temperature of the exchanger , heat capacity in particular).

Le nombre de secteurs est au minimum de deux. Selon des modes particuliers, on peut avoir plusieurs secteurs pour un même gaz. Ces secteurs alternent.The number of sectors is at least two. According to particular modes, one can have several sectors for the same gas. These sectors alternate.

La circulation des gaz dans la partie active de l'échangeur est essentiellement radiale, c'est-à-dire centrifuge ou centripète par rapport à l'axe de rotation relative du tambour. Ceci permet d'obtenir une plus grande compacité de l'échangeur. On estime que l'échangeur rotatif radial est 1,5 à 2 fois plus compact que l'échangeur axial traitant les mêmes débits. En prenant en compte la connectique (collecteurs, boîtes...), on arrive à une réduction du volume d'un facteur au moins environ 6 avec comme référence un échangeur non rotatif.The circulation of the gases in the active part of the exchanger is essentially radial, that is to say centrifugal or centripetal with respect to the relative rotation axis of the drum. This makes it possible to obtain greater compactness of the exchanger. It is estimated that the radial rotary exchanger is 1.5 to 2 times more compact than the axial exchanger processing the same flow rates. Taking into account the connectors (collectors, boxes ...), we arrive at a reduction of the volume by a factor of at least about 6 with reference to a non-rotating heat exchanger.

Dans le cas d'un échangeur cryogénique, le gaz ultra froid se trouve au centre de l'échangeur. Près des bords ne se trouve que le gaz le plus chaud, qui est à une température assez proche de la température ambiante, ou bien le gaz le plus froid initialement, après son réchauffement par passage à travers le tambour. Ainsi, le besoin de calorifuger l'échangeur est moindre, voire inexistant, de même que celui d'avoir des structures porteuses complexes.In the case of a cryogenic exchanger, the ultra-cold gas is in the center of the exchanger. Near the edges is only the hottest gas, which is at a temperature rather close to the ambient temperature, or the coldest gas initially, after its heating by passage through the drum. Thus, the need to insulate the heat exchanger is less or nonexistent, as well as having complex load bearing structures.

Du fait de sa compacité et de son efficacité, en général un seul échangeur rotatif radial peut être utilisé. Il n'est pas nécessaire d'utiliser plusieurs échangeurs en parallèle comme souvent avec des échangeurs classiques non rotatifs.Because of its compactness and efficiency, in general only one radial rotary exchanger can be used. It is not necessary to use several exchangers in parallel as often with conventional non-rotating exchangers.

Par riche en azote, on veut dire que la concentration en azote dans le fluide concerné est d'au moins 50% en volume. Le second gaz est de l'air comprimé, en général à une pression comprise entre 3 bars et 8 bars absolus. Ce cas correspond typiquement à celui d'une usine de séparation d'air. L'azote provient de l'unité de séparation d'air et l'air comprimé provient d'un compresseur d'air ou d'un réseau d'air comprimé.By rich in nitrogen, it is meant that the nitrogen concentration in the fluid in question is at least 50% by volume. The second gas is compressed air, generally at a pressure of between 3 bar and 8 bar absolute. This case typically corresponds to that of an air separation plant. The nitrogen comes from the air separation unit and the compressed air comes from an air compressor or compressed air system.

Selon un mode particulier, l'axe de rotation du système est vertical afin que l'élément mobile soit suspendu. Un deuxième palier n'est alors plus nécessaire. Du fait du sens des fluides, il se trouverait dans les gaz froids et constituerait ainsi non seulement une fuite thermique, mais encore une difficulté technologique, dans la mesure où il est très difficile d'assurer une lubrification économique à basse température. Par ailleurs, un montage vertical sans palier en position basse facilite la maintenance, car on extrait aisément par le haut tout l'élément mobile qui ne n'est que guidé radialement en position basse (on trouve une articulation mécanique au niveau palier haut). On peut aussi rajouter qu'un appareil installé horizontalement avec un seul palier nécessiterait un palier beaucoup plus résistant pour la tenue aux moments de flexion et une fabrication beaucoup plus précise (impossibilité d'avoir une articulation).According to a particular mode, the axis of rotation of the system is vertical so that the mobile element is suspended. A second landing is no longer necessary. Because of the direction of the fluids, it would be in the cold gases and thus constitute not only a thermal leak, but also a technological difficulty, insofar as it is very difficult to provide cheap low temperature lubrication. Furthermore, a vertical mounting without bearing in low position facilitates maintenance, because extract easily from above all the movable element which is only guided radially in the low position (there is a mechanical articulation at the top bearing level). We can also add that a device installed horizontally with a single bearing would require a much more resistant bearing for holding bending moments and a much more precise manufacturing (impossibility of having a joint).

Le tambour comprend une matière poreuse pour les gaz. On privilégie des matériaux créant peu de pertes de charge et favorisant l'échange thermique. La porosité peut être isotrope, par exemple en utilisant des mousses métalliques en aluminium ou en cuivre.The drum comprises a porous material for gases. Materials favoring low pressure losses and favoring heat exchange are preferred. The porosity may be isotropic, for example using aluminum foams or copper foams.

Selon un mode particulier, la porosité peut être anisotrope, notamment pour empêcher la diffusion « circonférentielle » des gaz (dans la direction de la rotation) et privilégier une circulation des gaz essentiellement centrifuge ou centripète. La diffusion circonférentielle crée un mélange des gaz. Une porosité anisotrope peut être mise en oeuvre pour canaliser les gaz d'un point de la surface interne du tambour, vers au autre point de la surface externe, et inversement, et ainsi minimiser ou supprimer le mélange des gaz.According to one particular embodiment, the porosity may be anisotropic, in particular to prevent the "circumferential" diffusion of the gases (in the direction of rotation) and to favor an essentially centrifugal or centripetal flow of gases. Circumferential diffusion creates a mixture of gases. Anisotropic porosity can be implemented to channel the gases from one point of the internal surface of the drum to the other point of the outer surface, and vice versa, and thus to minimize or eliminate the mixing of the gases.

Le procédé objet de l'invention peut par ailleurs être mis en oeuvre en recourant à un échangeur tel que décrit ci-dessous.The method which is the subject of the invention can moreover be implemented by resorting to an exchanger as described below.

Le tambour est normalement utilisé en rotation par rapport à la coque externe et aux parties fixes de l'échangeur. Selon un mode particulier, c'est le tambour qui est fixe et le reste qui tourne. Ou bien encore le tambour et le reste de l'échangeur tournent à des vitesses différentes.The drum is normally used in rotation relative to the outer shell and the fixed parts of the exchanger. According to a particular mode, it is the drum which is fixed and the rest which turns. Or else the drum and the rest of the exchanger turn at different speeds.

Le tambour comprend des lames, lamelles ou feuillards permettant de canaliser l'écoulement des gaz. Ces lames ou lamelles peuvent être disposées à peu près radialement, de façon à empêcher les écoulements circonférentiels dans le tambour et à privilégier au contraire les écoulements centripètes ou centrifuges. Entre les lames ou lamelles, une porosité anisotrope peut à nouveau être mise en oeuvre, à une échelle plus petite. Par exemple, on peut installer de la mousse métallique entre des lames métalliques radiales. Le nombre de micro-secteurs définis par ces lames ou lamelles est choisi en fonction du taux de mélange acceptable entre les gaz. Plus les secteurs sont petits, moins il y a de mélange.The drum comprises blades, slats or strips for channeling the flow of gases. These blades or lamellae may be arranged approximately radially, so as to prevent circumferential flows in the drum and instead favor the centripetal or centrifugal flows. Between the blades or lamellae, anisotropic porosity can again be implemented on a smaller scale. For example, metal foam can be installed between radial metal blades. The number of micro-sectors defined by these blades or lamellae is chosen according to the acceptable mixing ratio between the gases. The smaller the sectors, the less mixing.

Par système d'admission ou de récupération des gaz, on entend un ensemble d'éléments comprenant des canalisations et des parois permettant d'amener les gaz jusqu'au tambour de l'échangeur et de les collecter après leur passage à travers la partie poreuse du tambour de l'échangeur. Ces systèmes peuvent aussi comprendre des moyens de mise en mouvement des gaz, tels que des pompes ou des compresseurs. La quantité de gaz collecté et sa composition sont normalement très proches de la quantité et de la composition du gaz admis dans l'échangeur. Il peut néanmoins se produire un mélange dont nous avons parlé plus haut.By gas intake or recovery system is meant a set of elements comprising pipes and walls for bringing the gases to the drum of the exchanger and collect them after their passage through the part porous drum exchanger. These systems may also include means for moving gases, such as pumps or compressors. The quantity of gas collected and its composition are normally very close to the quantity and composition of the gas admitted into the exchanger. There may, however, be a mixture of which we have spoken above.

Afin de minimiser ce mélange, des organes d'étanchéité sont placés aux endroits où les systèmes d'admission et de récupération des gaz sont en contact avec le tambour. Du fait de la rotation relative du tambour par rapport au reste de l'échangeur, ces organes peuvent notamment être de type « balai » ou « brosse », en appui sur les surfaces externe ou interne du tambour. De part et d'autre des balais, on peut disposer des chambres intermédiaires destinées à renforcer l'étanchéité qu'on appelle parfois labyrinthes. Du coup, le contact entre ces systèmes et le tambour se fait en général par l'intermédiaire des organes d'étanchéité.In order to minimize this mixing, sealing members are placed where the gas intake and recovery systems are in contact with the drum. Due to the relative rotation of the drum relative to the remainder of the exchanger, these bodies may in particular be of the "brush" or "brush" type, resting on the outer or inner surfaces of the drum. On both sides of the brushes, it is possible to have intermediate chambers intended to reinforce the tightness sometimes called labyrinths. Suddenly, the contact between these systems and the drum is usually through the sealing members.

Les surfaces externe et/ou interne du tambour peuvent être constituées de grilles ou de surfaces percées de trous, servant notamment à contenir les éléments constitutifs de tambour, en particulier les éléments poreux pour les gaz. Dans ce cas, le tambour possède une surface physique sur laquelle les organes d'étanchéité viennent s'appuyer. Selon un autre mode de réalisation particulier, il n'y a pas de grilles et les constituants du tambour ont leur propre cohésion. Dans ce cas, les organes d'étanchéité viennent s'appuyer directement sur eux. Les surfaces interne et externe du tambour peuvent alors être définies par les éléments constituant le tambour. Dans le cas de feuillards non jointifs, ces surfaces joignent entre eux les bords saillants de feuillards consécutifs.The external and / or internal surfaces of the drum may consist of grids or surfaces pierced with holes, serving in particular to contain the constituent elements of the drum, in particular the porous elements for the gases. In this case, the drum has a physical surface on which the sealing members come to rest. According to another particular embodiment, there are no grids and the constituents of the drum have their own cohesion. In this case, the sealing members come to bear directly on them. The inner and outer surfaces of the drum can then be defined by the elements constituting the drum. In the case of non-joined strips, these surfaces join together the projecting edges of consecutive strip.

Les systèmes de distribution d'un même gaz peuvent être symétriques par rapport à l'axe de rotation et doivent dans tous les cas être de dimensions adaptées au débit volume du gaz et aux pertes de charges admissibles. La symétrie permet notamment une répartition plus favorable des contraintes liées aux dilatations thermiques.The distribution systems of the same gas may be symmetrical with respect to the axis of rotation and must in all cases be of dimensions adapted to the volume flow rate of the gas and to the permissible head losses. The symmetry allows a more favorable distribution of constraints related to thermal expansion.

Les organes d'étanchéité des systèmes de distributions peuvent être équipés de canaux d'évent simples ou multiples permettant de récupérer du gaz moyenne pression dans une ou plusieurs chambres du labyrinthe et de le renvoyer à un étage intermédiaire d'un compresseur d'air de l'unité de séparation.The sealing members of the dispensing systems may be equipped with single or multiple vent channels for recovering medium pressure gas from one or more chambers of the labyrinth and returning it to an intermediate stage of an air compressor. the separation unit.

Par ailleurs, selon des modes de réalisation particuliers, l'échangeur selon l'invention peut comporter l'une ou plusieurs des caractéristiques suivantes :

  • au moins 80% desdits feuillards comprennent des parties déformables élastiquement du fait de la pression exercée par lesdits organes assurant une étanchéité.
  • lesdites parties déformables élastiquement sont incurvées et sensiblement tangentes auxdites surfaces interne ou externe.
Moreover, according to particular embodiments, the exchanger according to the invention may comprise one or more of the following characteristics:
  • at least 80% of said strips comprise elastically deformable parts due to the pressure exerted by said members providing a seal.
  • said elastically deformable portions are curved and substantially tangent to said inner or outer surfaces.

Le tambour peut comprendre un empilement de feuillards et d'intercalaires libres dans un espace annulaire, les intercalaires permettent la circulation du gaz dans le sens radial et peuvent être des tapis d'ondes, des grilles, des poreux métalliques dont le diamètre hydraulique est inférieur à 2 millimètres. Selon un mode particulier, la courbure des feuillards est telle que leurs bords externes sont sensiblement tangents aux surfaces interne ou externe du tambour. Ainsi ils présentent une certaine flexibilité et peuvent être « brossés » dans un certain sens. Le tambour tourne dans le sens « facile », c'est-à-dire que les arrêtes des feuillards ne font pas obstacle à la rotation. On obtient alors une coopération entre les feuillards et les organes d'étanchéité de façon à réduire les fuites au niveau de la jonction entre les systèmes d'admission ou de récupération des gaz et le tambour.The drum may comprise a stack of strips and free spacers in an annular space, the spacers allow the flow of gas in the radial direction and may be wavelets, grids, porous metal whose hydraulic diameter is lower at 2 millimeters. In a particular embodiment, the curvature of the strips is such that their outer edges are substantially tangent to the inner or outer surfaces of the drum. Thus they have some flexibility and can be "brushed" in a certain sense. The drum rotates in the "easy" direction, that is to say that the edges of the strips do not prevent rotation. This produces a cooperation between the strips and the sealing members so as to reduce leaks at the junction between the gas intake or recovery systems and the drum.

Dans les organes d'étanchéité, l'étanchéité dynamique (c'est-à-dire celle obtenue quand il y a rotation) peut être renforcée par un système de labyrinthes et de brosses, ces dernières appuyant sur les bords des feuillards pour améliorer l'étanchéité.In the sealing members, the dynamic seal (that is to say that obtained when there is rotation) can be reinforced by a system of labyrinths and brushes, the latter pressing on the edges of the strips to improve the sealing.

D'autres particularités et avantages apparaîtront à la lecture de la description ci-après, faite en référence aux figures, parmi lesquelles :

  • la figure 1 représente une vue de face d'un échangeur selon l'invention,
  • la figure 2 représente une coupe horizontale selon le plan AA de l'échangeur représenté en figure 1,
  • la figure 3 montre en perspective le tambour d'un échangeur selon l'invention (partie gauche), ainsi qu'un morceau de ce tambour (partie droite),
  • la figure 4 montre ce morceau du tambour avec plus de détails et d'une manière développée, c'est-à-dire en annulant la courbure de ce morceau, afin de faciliter la représentation,
  • la figure 5 illustre un organe permettant d'assurer l'étanchéité des écoulements gazeux au niveau du contact entre le tambour et les systèmes d'admission ou de récupération des gaz.
Other particularities and advantages will become apparent on reading the description below, made with reference to the figures, among which:
  • the figure 1 represents a front view of an exchanger according to the invention,
  • the figure 2 represents a horizontal section along the plane AA of the exchanger represented in figure 1 ,
  • the figure 3 shows in perspective the drum of an exchanger according to the invention (left part), as well as a piece of this drum (right part),
  • the figure 4 shows this piece of the drum with more details and in a developed way, that is to say by canceling the curvature of this piece, in order to facilitate the representation,
  • the figure 5 illustrates a member for sealing the gaseous flows at the contact between the drum and the gas intake or recovery systems.

Sur les figures 1 et 2, on a représenté un échangeur 3 positionné verticalement, comprenant un tambour 5 monté en rotation selon l'axe vertical 8. Le tambour est un cylindre creux présentant une surface interne 5a et une surface externe 5b. Durant l'utilisation, il est entraîné en rotation un moteur (non-représenté), à une vitesse de 1 tour par minute. Un premier gaz 1 constitué d'azote résiduaire à la pression atmosphérique et à environ 90K, provenant d'une unité de séparation d'air (non-représentée) entre par le bas de l'échangeur et en sort en haut au niveau d'une virole extérieure 4, ou coque externe. Un second gaz 2, constitué par de l'air moyenne pression, par exemple de 3 à 6 bars et à environ 300K, provenant de l'unité de séparation d'air, entre au milieu de la virole extérieure et sort dans une conduite concentrique à celle de l'azote résiduaire rentrant. Le tambour est constitué d'une matière poreuse pour ces deux gaz. Le premier gaz 1 traverse le tambour 5 dans le sens centrifuge (voir flèche 6), tandis que le second gaz 2 traverse le tambour dans le sens centripète (voir flèche 7).On the Figures 1 and 2 , there is shown a heat exchanger 3 positioned vertically, comprising a drum 5 rotatably mounted along the vertical axis 8. The drum is a hollow cylinder having an inner surface 5a and an outer surface 5b. During In use, it is rotated a motor (not shown) at a speed of 1 revolution per minute. A first gas 1 consisting of residual nitrogen at atmospheric pressure and about 90K from an air separation unit (not shown) enters the bottom of the exchanger and exits at the top at an outer shell 4, or outer shell. A second gas 2, constituted by medium pressure air, for example from 3 to 6 bar and at approximately 300 K, originating from the air separation unit, enters the middle of the outer shell and exits in a concentric pipe. to that of the returning waste nitrogen. The drum is made of a porous material for these two gases. The first gas 1 passes through the drum 5 in the centrifugal direction (see arrow 6), while the second gas 2 passes through the drum in the centripetal direction (see arrow 7).

Le premier gaz est admis par un système d'admission 1a comprenant la conduite verticale d'amenée du gaz. Il pénètre dans le tambour 5 en traversant une partie 5c de la surface interne 5a. Il traverse le tambour et se réchauffe à son contact. En effet, cette partie du tambour était peu avant en contact avec le second gaz, plus chaud. Le premier gaz sort par une partie 5d de la surface externe 5b. On voit donc qu'il traverse le tambour selon deux secteurs qui sont complémentaires de ceux empruntés par le second gaz. Il est récupéré par un système de récupération 1b qui comprend notamment la virole externe 4.The first gas is admitted by an intake system 1a comprising the vertical pipe for supplying the gas. It enters the drum 5 through a portion 5c of the inner surface 5a. He crosses the drum and warms himself to his touch. Indeed, this part of the drum was shortly before in contact with the second gas, warmer. The first gas exits through a portion 5d of the outer surface 5b. We can see that it crosses the drum in two sectors that are complementary to those borrowed by the second gas. It is recovered by a recovery system 1b which notably comprises the outer shell 4.

Le second gaz est admis par un système d'admission 2a constitué par exemple par un élargissement de la canalisation servant à amener ce second gaz. Il pénètre dans le tambour 5 en traversant une partie 5e de la surface externe 5b. Il traverse le tambour et se refroidit à son contact, car cette partie du tambour était peu avant en contact avec le premier gaz. Le second gaz sort par une partie 5f de la surface externe 5a. Il est collecté par un système de récupération 2b et dirigé vers une canalisation verticale d'évacuation par le bas.The second gas is admitted by an intake system 2a constituted for example by an enlargement of the pipe used to bring this second gas. It enters the drum 5 through a portion 5e of the outer surface 5b. It passes through the drum and cools on contact, as this part of the drum was shortly before contact with the first gas. The second gas exits through a portion 5f of the outer surface 5a. It is collected by a recovery system 2b and directed to a vertical drain pipe from below.

Les systèmes d'admission ou de récupération des gaz sont ici des canalisations et des tôles séparatrices permettant d'amener les gaz en face d'un secteur donné du tambour et de les reprendre une fois qu'ils ont traversé radialement le tambour. Pour un gaz donné, le système d'amission et celui de récupération se font face de part et d'autre du tambour. Ces systèmes peuvent aussi comporter des moyens de mise en mouvement des gaz (non représentés) tels que des pompes, compresseurs ou ventilateurs.Here the gas intake or recovery systems are pipelines and separating plates making it possible to bring the gases in front of a given sector of the drum and to take them back once they have traversed the drum radially. For a given gas, the delivery system and the recovery system face each other on both sides of the drum. These systems can also include means for moving gases (not shown) such as pumps, compressors or fans.

Plus précisément, deux secteurs sont réservés au passage de l'azote et deux secteurs sont réservés au passage de l'air. Pour un même gaz, les deux secteurs sont symétriques par rapport à l'axe 8. Les secteurs alternent.More specifically, two sectors are reserved for the passage of nitrogen and two sectors are reserved for the passage of air. For the same gas, the two sectors are symmetrical with respect to the axis 8. The sectors alternate.

Le tambour, en tournant, passe donc alternativement face à un passage de l'azote résiduaire et donc permet à ce dernier de se réchauffer en libérant ses frigories et alternativement face au passage de l'air moyenne pression, où il permet à ce dernier de se refroidir en libérant ses calories. Cette disposition d'échangeur radial permet de calibrer les systèmes distribution (admission, récupération) en fonction des débits volumes et des pertes de charges correspondantes. Ainsi les systèmes de distribution de l'air moyenne pression sont de section réduite par rapport à celle des systèmes de distribution de l'azote résiduaire.The drum, while rotating, therefore alternately faces a passage of the residual nitrogen and thus allows the latter to heat up by releasing its frigories and alternately face the passage of the medium pressure air, where it allows the latter to to cool down by releasing his calories. This arrangement of radial exchanger makes it possible to calibrate the distribution systems (admission, recovery) as a function of the volume flow rates and the corresponding pressure losses. Thus the distribution systems of the medium pressure air are of reduced section compared to that of the distribution systems of the waste nitrogen.

Sur la figure 3, on a représenté à gauche, en perspective, le tambour 5 isolé du reste de l'échangeur. Il est constitué d'une matière poreuse 9. A droite, on a représenté une partie du tambour avec des feuillards 10.On the figure 3 , on the left, in perspective, the drum 5 is isolated from the rest of the exchanger. It consists of a porous material 9. On the right, a part of the drum is shown with strips 10.

La figure 4 est un agrandissement de cette partie, où l'on a « annulé » la courbure du tambour pour faciliter la représentation. On y voit les feuillards 10, qui sont des lames métalliques courbées occupant chacune toute la hauteur du tambour. Ces lames s'emboîtent les unes dans les autres. Elles sont prises entre deux grilles 5a et 5b qui matérialisent les surfaces externe et interne du tambour. Ces feuillards canalisent les écoulements gazeux comme décrit précédemment. Le premier gaz traverse le tambour selon la direction 6 depuis la partie 5c de la surface 5a jusqu'à la partie 5d de la surface 5b. Le second gaz traverse le tambour selon la direction 7 depuis la partie 5e de la surface 5b vers la partie 5f de la surface 5a. La rotation du tambour fait que les feuillards 10 progressent vers la droite.The figure 4 is an enlargement of this part, where the curvature of the drum has been "canceled" to facilitate the representation. It shows the strips 10, which are curved metal blades each occupying the entire height of the drum. These blades fit into each other. They are taken between two grids 5a and 5b which materialize the outer and inner surfaces of the drum. These strips channel the gaseous flows as previously described. The first gas passes through the drum in the direction 6 from the portion 5c of the surface 5a to the portion 5d of the surface 5b. The second gas passes through the drum in the direction 7 from the 5th part of the surface 5b to the portion 5f of the surface 5a. The rotation of the drum causes the strips 10 to move to the right.

Les organes 5g sont au contact entre les systèmes d'admission et de récupération des gaz et le tambour. Ici ils améliorent l'étanchéité entre, d'une part, le système d'admission du premier gaz et le système de récupération du second gaz et, d'autre part, entre le système de récupération du premier gaz et le système d'admission du second gaz. Les organes d'étanchéité appuient sur les grilles 5 a ou 5b et, à travers ces grilles, sur certains feuillards 10. Les feuillards sont courbés au moins dans leurs parties externes 10 a et 10b qui sont en contact avec les grilles 5a et 5b. Ceci confère une élasticité particulière aux feuillards. Ils peuvent se rétracter légèrement sous la force de pression, exercée par les organes 5g. Les grilles 5a et 5b sont elles même élastiques. Un autre avantage de l'élasticité des feuillards 10 est d'absorber les contraintes liées aux dilatations thermiques.The members 5g are in contact between the gas intake and recovery systems and the drum. Here they improve the seal between, on the one hand, the admission system of the first gas and the second gas recovery system and, on the other hand, between the first gas recovery system and the intake system. second gas. The sealing members press on the grids 5a or 5b and, through these grids, on some strips 10. The strips are bent at least in their outer portions 10a and 10b which are in contact with the grids 5a and 5b. This confers a particular elasticity to the strips. They can retract slightly under the force of pressure, exerted by the organs 5g. The grids 5a and 5b are themselves elastic. A Another advantage of the elasticity of the strips 10 is to absorb the stresses associated with the thermal expansions.

Figure 5, on a détaillé un des organes 5g d'étanchéité. Il comprend au centre au moins un balai. De part et d'autre de ce balai se trouve des chambres (ou labyrinthe) à différentes pressions étagées. Ceci permet de réduire le gradient de pression et donc de minimiser les fuites. Certaines chambres du labyrinthe, étant à pression intermédiaire entre la basse pression et la haute pression, peuvent être reliées à l'extérieur aux étages intermédiaires correspondant du compresseur. Figure 5 one of the sealing members 5g has been detailed. It includes in the center at least one broom. On either side of this broom are rooms (or labyrinth) with different tiered pressures. This reduces the pressure gradient and thus minimizes leakage. Some chambers of the labyrinth, being at intermediate pressure between the low pressure and the high pressure, can be connected externally to the corresponding intermediate stages of the compressor.

On peut mette en oeuvre plusieurs particularités pour leur intérêt mécanique :

  • le roulement assurant la reprise des efforts de poids est positionné en bas de l'appareil permettant une meilleure stabilité. Réciproquement le guidage axial est positionné en haut de l'appareil. Le moteur assurant l'entraînement est situé extérieurement à l'appareil et l'arbre tournant traverse la virole côté basse pression.
  • l'étanchéité entre l'azote froid et l'azote chaud est assurée grâce à des chicanes éventuellement pourvues de balayettes en haut et en bas au niveau des roulements, lesquels sont situés en zone chaude.
  • on a deux chambres de distribution d'air moyenne pression à l'opposé de l'axe, ce qui permet de garantir la stabilité radiale et gérer les « effets de fonds ».
  • les tuyauteries d'alimentation du système d'admission de l'air moyenne pression sont pourvues de soufflets calculés afin d'exercer la pression sur le tambour requise pour l'étanchéité des systèmes d'admission / récupération.
  • les systèmes de distribution d'air moyenne pression sont pourvus de joints d'étanchéités qui limitent les fuites de gaz vers le résiduaire. De plus, au centre de ces joints on trouve une « chambre de décharge » récupérant le gaz fuyard qui retourne en fonction de la pression à l'étage correspondant du compresseur d'air. On peut ainsi trouver plusieurs chambres successives.
  • en guise d'alternative, on peut n'avoir qu'une seule chambre de distribution d'air moyenne pression, l'effet de fond est repris par un bras mécanique en appui via des rouleaux sur la face opposée du tambour tournant.
  • en alternative, on peut n'avoir qu'un seul palier (roulement au haut de l'appareil), l'appui horizontal inférieur étant assuré par des patins glissants.
Several features can be implemented for their mechanical interest:
  • the bearing ensuring the recovery of the weight forces is positioned at the bottom of the apparatus allowing a better stability. Reciprocally the axial guidance is positioned at the top of the device. The drive motor is located outside the device and the rotating shaft passes through the low pressure side shell.
  • the sealing between the cold nitrogen and the hot nitrogen is ensured by means of baffles possibly equipped with brushes at the top and bottom at the bearings, which are located in hot zone.
  • there are two medium pressure air distribution chambers opposite the axis, which ensures the radial stability and manage the "bottom effects".
  • the supply lines of the medium pressure air intake system are provided with bellows calculated to exert the pressure on the drum required for the sealing of the intake / recovery systems.
  • Medium pressure air distribution systems are provided with seals that limit gas leakage to the waste. In addition, in the center of these joints there is a "discharge chamber" recovering the flue gas which returns depending on the pressure on the corresponding stage of the air compressor. We can thus find several successive rooms.
  • as an alternative, one can have only one medium pressure air distribution chamber, the bottom effect is taken up by a mechanical arm supported by rollers on the opposite side of the rotating drum.
  • alternatively, one can have only one bearing (bearing at the top of the device), the lower horizontal support being provided by slippery pads.

Par ailleurs, le tambour tournant peut comporter un matériau possédant des propriétés adsorptives, comme du silicagel ou de la zéolite, ce qui permet d'associer la fonction de dessiccation à la fonction échange thermique.Furthermore, the rotating drum may comprise a material having adsorptive properties, such as silica gel or zeolite, which makes it possible to associate the drying function with the heat exchange function.

Le lit du régénérateur constituant un tambour est composé d'un empilement de feuillards d'inox, d'aluminium ou de cuivre, ou d'un matériau présentant des caractéristiques pertinentes en chaleur spécifique à basse température, séparés par des intercalaires. Les feuillards s'étendent sur toute la hauteur du tambour et sur toute la section, ils sont de forme semi-elliptique ou équivalente, afin de présenter des bords approximativement tangents à la surface intérieure et extérieure du tambour. De cette manière, les brosses qui défilent à la surface vont glisser et vont resserrer sur leur passage les bords des feuillards améliorant ainsi l'étanchéité entre les deux gaz. On peut, selon l'effet désiré de serrage, avoir une ou plusieurs brosses sur chaque organe d'étanchéité dynamique.The regenerator bed constituting a drum is composed of a stack of strips of stainless steel, aluminum or copper, or a material having relevant characteristics in specific heat at low temperature, separated by spacers. The strips extend over the entire height of the drum and over the entire section, they are semi-elliptical or equivalent, to have edges approximately tangent to the inner and outer surface of the drum. In this way, the brushes which scroll on the surface will slide and will tighten in their path the edges of the strips thus improving the seal between the two gases. Depending on the desired tightening effect, one or more brushes may be provided on each dynamic sealing member.

Entre les feuillards, on peut disposer des éléments intercalaires qui ne couvrent que partiellement les feuillards de manière à laisser bouger leurs bords, les éléments intercalaires ayant toute la hauteur du tambour. Ils peuvent être constitués d'un tapis d'ondes corruguées ou d'un morceau de grillage dont les fils entremêlés libèrent des canaux pour le passage du gaz ou d'un poreux isotrope à porosités communicantes et de faibles dimensions.Between the strips, it is possible to arrange the intermediate elements which only partially cover the strips so as to allow their edges to move, the intermediate elements having the whole height of the drum. They may consist of a corrugated wave mat or a piece of wire whose intertwined son release channels for the passage of gas or isotropic porous communicating porosities and small dimensions.

Afin de maximiser l'efficacité de l'échange thermique et du régénérateur, on a intérêt à avoir des intercalaires de la plus faible hauteur possible, de manière à offrir le diamètre hydraulique (dh) le plus faible et donc à maximiser l'échange thermique par convection. Par exemple la corrélation de Dittus Boelter, caractérisant l'échange par convection dans un tube en régime turbulent, s'écrit H = 0.0243*(k/dh)*Re0.8 *Pr0.3 où k représente la conductivité du gaz, Re le nombre de Reynolds et Pr le nombre Prandtl, et dh le diamètre hydraulique. Ainsi plus le dh est faible, plus H est élevé. En général une réduction trop importante du dh conduit à une forte augmentation des pertes de charges (qui dépendent du carré de la vitesse, c'est-à-dire de l'inverse du carré du diamètre hydraulique), mais dans le cas des régénérateurs rotatifs les longueurs de transfert thermique sont très courtes et la perte de charge est aussi proportionnelle à la longueur.In order to maximize the efficiency of the heat exchange and the regenerator, it is advantageous to have spacers of the lowest possible height, so as to offer the lowest hydraulic diameter (dh) and thus maximize heat exchange by convection. For example the correlation of Dittus Boelter, characterizing the convective exchange in a tube in turbulent regime, is written H = 0.0243 * (k / dh) * Re 0.8 * Pr 0.3 where k represents the conductivity of the gas, Re the number Reynolds and Pr the number Prandtl, and dh the hydraulic diameter. Thus, the lower the dh, the higher H is. In general, an excessive reduction of the dh leads to a large increase in the pressure losses (which depend on the square of the speed, that is to say the inverse of the square of the hydraulic diameter), but in the case of the regenerators rotary heat transfer lengths are very short and the pressure drop is also proportional to the length.

Par ailleurs la minimisation de la hauteur d'intercalaire conduit, pour une circonférence donnée, à multiplier le nombre de feuillards, donc à augmenter l'inertie thermique du système, donc à augmenter la capacité calorifique globale du régénérateur.Moreover, the minimization of the interlayer height leads, for a given circumference, to multiply the number of strips, thus to increase the thermal inertia of the system, thus to increase the overall heat capacity of the regenerator.

Claims (8)

Installation de séparation d'air comprenant un échangeur de chaleur (3) régénératif, rotatif et radial, l'échangeur comprenant : - une coque externe (4) et un tambour (5) monté en rotation selon un axe donné par rapport à cette dite coque externe, ledit tambour comprenant une partie poreuse (9) pour les gaz possédant une surface interne (5a) et une surface externe (5b), toutes deux de révolution autour dudit axe donné ; - un système d'admission (1a) d'un premier gaz, en contact avec une première partie (5c) de ladite surface interne ; - un système de récupération (1b) dudit premier gaz, en contact avec une première partie (5d) de ladite surface externe ; - un système d'admission (2a) d'un second gaz en contact avec une seconde partie (5 e) de ladite surface externe ; - un système de récupération (2b) dudit second gaz en contact avec une seconde partie (5f) de ladite surface interne ; et - des organes (5g) assurant une étanchéité, au moins relative, desdits systèmes d'admission et de récupération au niveau du contact avec lesdites parties des surfaces interne et externe ; - ladite partie poreuse comportant, entre lesdites surfaces interne et externe, des feuillards (10) aptes, d'une part, à canaliser l'écoulement dudit premier gaz depuis la première partie de ladite surface interne vers la première partie de ladite surface externe et, d'autre part, à canaliser l'écoulement dudit second gaz depuis la seconde partie de ladite surface externe vers la seconde partie de ladite surface interne, lesdits organes venant appuyer sur certains desdits feuillards, - l'installation comprenant des moyens pour envoyer de l'air à une température entre 270 et 330K à l'échangeur comme premier gaz et des moyens pour de l'azote à une température inférieure à 200K à l'échangeur comme second gaz, un appareil de séparation d'air par distillation cryogénique, des moyens pour envoyer le second gaz de l'échangeur à l'appareil de séparation d'air et des moyens pour envoyer le premier gaz de l'appareil de séparation d'air à l'échangeur. Air separation plant comprising a regenerative, rotary and radial heat exchanger (3), the exchanger comprising: an outer shell (4) and a drum (5) rotatably mounted along a given axis with respect to said outer shell, said drum comprising a porous part (9) for gases having an inner surface (5a) and a surface external (5b), both of revolution about said given axis; an intake system (1a) of a first gas, in contact with a first portion (5c) of said inner surface; - a recovery system (1b) of said first gas, in contact with a first portion (5d) of said outer surface; an intake system (2a) for a second gas in contact with a second portion (5 e) of said outer surface; - a recovery system (2b) of said second gas in contact with a second portion (5f) of said inner surface; and - members (5g) providing a seal, at least relative, said intake and recovery systems at the contact with said portions of the inner and outer surfaces; said porous part comprising, between said inner and outer surfaces, strips (10) able, on the one hand, to channel the flow of said first gas from the first part of said inner surface to the first part of said outer surface and on the other hand, channeling the flow of said second gas from the second portion of said outer surface to the second portion of said inner surface, said members pressing against some of said strips, the installation comprising means for sending air at a temperature between 270 and 330 K to the exchanger as the first gas and means for nitrogen at a temperature of less than 200 K to the exchanger as the second gas; apparatus for separating air by cryogenic distillation, means for supplying the second gas from the exchanger to the air separation apparatus and means for supplying the first gas from the air separation apparatus to the air separation apparatus; exchanger. Installation selon dans la revendication 1 dans laquelle un élément exhibant une porosité anisotrope est disposé entre les feuillards.Installation according to claim 1 wherein an element exhibiting anisotropic porosity is disposed between the strips. Installation selon la revendication 1 ou 2 comprenant un compresseur d'air relié à l'échangeur pour y fournir le second gaz.Installation according to claim 1 or 2 comprising an air compressor connected to the exchanger to supply the second gas. Installation selon l'une des revendications précédentes dans lequel le système d'admission ou de récupération de gaz (la, 1b, 2a, 2b) est constitué par un ensemble d'éléments comprenant des canalisations et des parois permettant d'amener les gaz jusqu'au tambour (5) de l'échangeur (3) et de les collecter après leur passage à travers la partie poreuse du tambour de l'échangeur.Installation according to one of the preceding claims wherein the gas intake or recovery system (la, 1b, 2a, 2b) is constituted by a set of elements comprising ducts and walls for bringing the gases up to the drum (5) of the exchanger (3) and to collect them after their passage through the porous part of the drum of the exchanger. Installation selon l'une des revendications précédentes dans lequel le système d'admission ou de récupération de gaz (1a, 1b, 2a, 2b) comprend des moyens de mise en mouvement des gaz, tels que des pompes ou des compresseurs.Installation according to one of the preceding claims wherein the gas admission or recovery system (1a, 1b, 2a, 2b) comprises means for moving gases, such as pumps or compressors. Procédé de séparation d'air par distillation cryogénique dans lequel pour réaliser un échange de chaleur entre au moins un premier gaz (1) à une première température et un second gaz (2) à une seconde température plus élevée, mettant en oeuvre au moins un échangeur de chaleur (3) de type régénératif, comprenant une coque externe (4) et un tambour (5) en rotation relative par rapport à ladite coque externe, pendant une durée donnée, ledit premier gaz traverse ledit tambour de l'intérieur vers l'extérieur et, simultanément, ledit second gaz traverse ledit tambour de l'extérieur vers l'intérieur, ledit premier gaz (1) est riche en azote, ladite première température est inférieure à 200K, de préférence inférieure à 100K et le second gaz est de l'air comprimé et la second température est entre 270K et 330K, le second gaz étant séparé par distillation cryogénique pour former le premier gaz.A method of separating air by cryogenic distillation in which to effect a heat exchange between at least a first gas (1) at a first temperature and a second gas (2) at a second higher temperature, employing at least one heat exchanger (3) of the regenerative type, comprising an outer shell (4) and a drum (5) in relative rotation with respect to said outer shell, for a given duration, said first gas passes through said drum from the inside to the outside, and simultaneously, said second gas passes through said drum from outside to inside, said first gas (1) is rich in nitrogen, said first temperature is less than 200K, preferably less than 100K, and the second gas is compressed air and the second temperature is between 270K and 330K, the second gas being separated by cryogenic distillation to form the first gas. Procédé selon la revendication 6 dans lequel la première température est inférieure à 100K.The method of claim 6 wherein the first temperature is less than 100K. Procédé selon l'une quelconque des revendications 6 ou 7, caractérisé en ce que ladite coque externe (4) est fixe et ledit tambour (5) est animé d'un mouvement de rotation selon un axe sensiblement vertical (8).Method according to any one of claims 6 or 7, characterized in that said outer shell (4) is fixed and said drum (5) is rotated about a substantially vertical axis (8).
EP11169713A 2010-06-25 2011-06-14 Air separation method and facility for cryogenic distilling Withdrawn EP2400249A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1055117A FR2961893B1 (en) 2010-06-25 2010-06-25 ROTARY REGENERATIVE HEAT EXCHANGER

Publications (1)

Publication Number Publication Date
EP2400249A1 true EP2400249A1 (en) 2011-12-28

Family

ID=43533393

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11169713A Withdrawn EP2400249A1 (en) 2010-06-25 2011-06-14 Air separation method and facility for cryogenic distilling

Country Status (2)

Country Link
EP (1) EP2400249A1 (en)
FR (1) FR2961893B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108286394A (en) * 2018-03-05 2018-07-17 应芝娣 It is a kind of that there is the heat-insulated exterior window with dimming function

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1108066A (en) 1966-09-14 1968-03-14 Caterpillar Tractor Co Rotary regenerator
DE2910423A1 (en) 1979-03-16 1980-09-25 Maico Elektroapparate Rotary air storage heat exchanger - has both end faces open to inner chambers for fresh and stale air
GB2065856A (en) 1979-12-20 1981-07-01 Steinmueller Gmbh L & C Regenerative heat exchanger
US4513807A (en) 1983-04-29 1985-04-30 The United States Of America As Represented By The Secretary Of The Army Method for making a radial flow ceramic rotor for rotary type regenerator heat exchange apparatus: and attendant ceramic rotor constructions
JPH02293575A (en) * 1989-05-08 1990-12-04 Kobe Steel Ltd Air separation device
EP0684427A1 (en) * 1994-05-24 1995-11-29 Institut Français du Pétrole Rotating heat transfer and thermal purification device for gaseous effluents
EP1026464A1 (en) * 1999-02-01 2000-08-09 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Air separation process by cryogenic distillation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1108066A (en) 1966-09-14 1968-03-14 Caterpillar Tractor Co Rotary regenerator
DE2910423A1 (en) 1979-03-16 1980-09-25 Maico Elektroapparate Rotary air storage heat exchanger - has both end faces open to inner chambers for fresh and stale air
GB2065856A (en) 1979-12-20 1981-07-01 Steinmueller Gmbh L & C Regenerative heat exchanger
US4513807A (en) 1983-04-29 1985-04-30 The United States Of America As Represented By The Secretary Of The Army Method for making a radial flow ceramic rotor for rotary type regenerator heat exchange apparatus: and attendant ceramic rotor constructions
JPH02293575A (en) * 1989-05-08 1990-12-04 Kobe Steel Ltd Air separation device
EP0684427A1 (en) * 1994-05-24 1995-11-29 Institut Français du Pétrole Rotating heat transfer and thermal purification device for gaseous effluents
EP1026464A1 (en) * 1999-02-01 2000-08-09 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Air separation process by cryogenic distillation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108286394A (en) * 2018-03-05 2018-07-17 应芝娣 It is a kind of that there is the heat-insulated exterior window with dimming function

Also Published As

Publication number Publication date
FR2961893A1 (en) 2011-12-30
FR2961893B1 (en) 2014-12-12

Similar Documents

Publication Publication Date Title
US20080314550A1 (en) Periodic Regenerative Heat Exchanger
FR2512881A1 (en) VOLUMETRIC THERMODYNAMIC MACHINE WITH ISOTHERMIC CYCLE
FR2505932A1 (en) IMPROVED GAS POWER TURBINE "WHOSE ROTOR IS SUPPORTED IN FALSE DOOR BY AN INDEPENDENT STRUCTURE, USING FIXED AMOUNTS OUTSIDE THE SPACE OF THE TURBINE
WO2015150104A1 (en) System for heat storage using a fluidised bed
WO2011033243A1 (en) Thermodynamic machine with stirling cycle
BE539440A (en)
WO2016001000A1 (en) System and method for storing and recovering energy using compressed gas, with heat storage by means of a radial heat exchanger
FR3009862A1 (en) HEAT EXCHANGER BETWEEN TWO FLUIDS, USE OF THE EXCHANGER WITH LIQUID METAL AND GAS, APPLICATION TO A QUICK-NEUTRON NUCLEAR REACTOR COOLED WITH LIQUID METAL
FR2982936A1 (en) Cooling device i.e. dry cooler for use in air conditioning system of e.g. building, has parallelepiped panel configured to be moved in translation and/or rotation to vary section of application surface applying gas flow on panel
FR3038966A1 (en) THERMODYNAMIC WATER HEATER USING REDUCED QUANTITY OF REFRIGERANT FLUID
CA2659181A1 (en) Heat exchanger
EP2400249A1 (en) Air separation method and facility for cryogenic distilling
EP0001732B1 (en) Energy conversion process and device
FR2963416A1 (en) Water-heater i.e. thermodynamic water-heater, for use in domestic heating installation to heat domestic water, has envelope comprising plates superimposed and fixed with respect to each other, where space between plates forms circuit
KR20110014152A (en) A device and method for transporting heat
EP2353374B1 (en) Facility for transferring milk from a milking machine to a storage tank, provided with at least one heat exchanger
FR2987672A1 (en) METHOD FOR TRANSPORTING SMALL VEHICLE THERMOSENSITIVE PRODUCTS
FR2963418A1 (en) Thermal installation for use in building i.e. dwelling, has fins formed by folded plates and fixed at walls on level of fold crests, and heat pump comprising heat exchanger that is provided with refrigerant duct
EP0462903B1 (en) Tube-like heat-exchanger for hot and cold fluids, with great differences of temperature and pressure
WO2017182285A1 (en) Method for cooling or heating a fluid in a thermal enclosure by means of a magnetocaloric thermal generator and thermal apparatus implementing said method
WO2015052203A1 (en) Heat exchanger and heat recovery system comprising such an exchanger
EP3177879A1 (en) Heat engine comprising magnetocaloric material of the refrigerating machine or heat pump type
FR2995668A1 (en) Heat pump installation for use in e.g. thermodynamic water-heater in dwelling house, has evaporator arranged upstream of container, where fluid is directed to evaporator for removing calories during circulation of fluid in circulation path
BE570543A (en)
EP3832225A1 (en) Solar thermal collector, solar thermal panel and method for heating a building with integrated heat storage

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120628

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170303

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RODRIGUES, GUILLAUME

Inventor name: WAGNER, MARC

Inventor name: DAVIDIAN, BENOIT

Inventor name: BEDNARSKI, DAVID

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20170607