JP2920392B2 - Supercooling method of liquefied nitrogen in air liquefaction separator - Google Patents

Supercooling method of liquefied nitrogen in air liquefaction separator

Info

Publication number
JP2920392B2
JP2920392B2 JP30121389A JP30121389A JP2920392B2 JP 2920392 B2 JP2920392 B2 JP 2920392B2 JP 30121389 A JP30121389 A JP 30121389A JP 30121389 A JP30121389 A JP 30121389A JP 2920392 B2 JP2920392 B2 JP 2920392B2
Authority
JP
Japan
Prior art keywords
liquefied
liquefied nitrogen
nitrogen
air
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30121389A
Other languages
Japanese (ja)
Other versions
JPH03160294A (en
Inventor
桂 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sanso Corp
Original Assignee
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sanso Corp filed Critical Nippon Sanso Corp
Priority to JP30121389A priority Critical patent/JP2920392B2/en
Publication of JPH03160294A publication Critical patent/JPH03160294A/en
Application granted granted Critical
Publication of JP2920392B2 publication Critical patent/JP2920392B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/0423Subcooling of liquid process streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/044Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、原料空気を液化精留分離する空気液化分離
装置の精留塔から導出して液化窒素貯槽に貯留する液化
窒素の過冷却方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for supercooling liquefied nitrogen which is derived from a rectification tower of an air liquefaction separator for liquefying and separating raw air and stored in a liquefied nitrogen storage tank. About.

〔従来の技術〕[Conventional technology]

従来から、原料となる空気を圧縮,精製,冷却して精
留塔に導入し、液化精留分離を行い、酸素ガス,窒素ガ
ス等のガス製品や液化酸素,液化窒素等の液化ガス製品
を採取することが行われている。
Conventionally, air as raw material has been compressed, refined, cooled and introduced into a rectification column to perform liquefied rectification and separation, and to produce gas products such as oxygen gas and nitrogen gas and liquefied gas products such as liquefied oxygen and liquefied nitrogen. Harvesting is being done.

第3図は、単精留塔を用いて窒素ガス及び液化窒素を
採取する空気液化分離装置の主要部を示している。
FIG. 3 shows a main part of an air liquefaction separator for collecting nitrogen gas and liquefied nitrogen using a single rectification column.

原料空気Aは、周知の前処理装置を経て導管1から主
熱交換器2に導入され、製品窒素ガスPGN,排ガスWと熱
交換を行い、液化点付近まで冷却されて単精留3の下部
に導入される。この原料空気Aは、精留操作により塔頂
部の窒素ガスGNと塔底部の酸素富化液化空気(以下、液
化空気という)LAとに分離する。塔頂部の窒素ガスGN
は、単精留塔3頂部から導管4に導出され、その一部が
製品窒素ガスPGNとして、導管5,主熱交換器2を経て採
取される。残部の窒素ガスGNは、導管6から凝縮器7に
導入され、液化して液化窒素LNとなる。この液化窒素LN
は、一部が管8から弁9を経て製品液化窒素PLNとして
液化窒素貯槽10に採取される。また残部の液化窒素LN
は、単精留塔3頂部に導入されて、単精留塔3の還流液
になる。
The raw material air A is introduced into the main heat exchanger 2 from the conduit 1 through a well-known pretreatment device, and exchanges heat with the product nitrogen gas PGN and the exhaust gas W, and is cooled to near the liquefaction point, and the lower part of the single rectification 3 Will be introduced. This raw material air A is separated into nitrogen gas GN at the top of the column and oxygen-enriched liquefied air (hereinafter, liquefied air) LA at the bottom of the column by a rectification operation. Nitrogen gas GN at the top of the tower
Is led out from the top of the single rectification column 3 to a conduit 4, and a part thereof is collected as a product nitrogen gas PGN via a conduit 5 and a main heat exchanger 2. The remaining nitrogen gas GN is introduced from the conduit 6 into the condenser 7 and liquefied into liquefied nitrogen LN. This liquefied nitrogen LN
Is partially collected from a pipe 8 through a valve 9 as a product liquefied nitrogen PLN in a liquefied nitrogen storage tank 10. The remaining liquid nitrogen LN
Is introduced into the top of the single rectification column 3 and becomes a reflux liquid of the single rectification column 3.

一方、塔底部の液化空気LAは、塔底の液溜部3aから導
管11に導出され、減圧弁12で減圧した後に前記凝縮器7
に導入される。液化空気LAは、凝縮器7で前記窒素ガス
GNを液化させて自身は気化し、排ガスWとなって導管13
から主熱交換器2の再熱回路2aで加温された後に膨張タ
ービン14に導入される。膨張タービン14で膨張して寒冷
を発生した排ガスWは、再び主熱交換器2を経て常温に
温度回復した後に導管15から系外に排出される。
On the other hand, the liquefied air LA at the bottom of the tower is led out of the sump 3a at the bottom of the tower to the conduit 11, and after the pressure of the condenser 7
Will be introduced. The liquefied air LA is supplied to the condenser 7 by the nitrogen gas.
The GN is liquefied and the gas itself is vaporized to become exhaust gas W and the conduit 13
After being heated in the reheat circuit 2 a of the main heat exchanger 2, it is introduced into the expansion turbine 14. The exhaust gas W that has been cooled by expansion in the expansion turbine 14 is returned to room temperature again through the main heat exchanger 2 and then discharged out of the system from the conduit 15.

このような構成の空気液化分離装置における液化窒素
貯槽10に採取された製品液化窒素PLNは、凝縮器7で液
化した飽和状態、例えば8kg/cm2G,−172℃で貯留される
ため、いわゆるフラッシュロスを生じて得られた液化窒
素の一部が気化して失われてしまう。
The product liquefied nitrogen PLN collected in the liquefied nitrogen storage tank 10 in the air liquefaction / separation apparatus having such a configuration is stored in a saturated state liquefied in the condenser 7, for example, 8 kg / cm 2 G, at −172 ° C. Part of the liquefied nitrogen obtained by flash loss is vaporized and lost.

そのため、第4図に示すように、凝縮器7で液化して
採取される製品液化窒素PLNを過冷器20に導入し、過冷
状態として液化窒素貯槽10に導入することが行われてい
る。即ち、上記第3図に示す空気液化分離装置の製品液
化窒素採取用の導管8に過冷器20を配設するとともに、
該過冷器20の出口で製品液化窒素PLNの一部を導管21に
分岐し、この分岐液化窒素BLNを減圧弁22で減圧膨張さ
せて、例えば8kg/cm2Gから0.1kg/cm2Gに膨張させて−19
5℃とし、これを前記過冷器20の冷却流体としている。
これにより、導管8から過冷器20に導入される製品液化
窒素PLNを約−192℃の過冷却状態とすることができ、前
述のフラッシュロスを防止することができる。過冷却源
として用いられた分岐液化窒素BLNは気化して窒素ガスB
GNとなり、前記膨張タービン14を導出した後の、導管15
の排ガスWに合流して排出される。尚、他の構成要素
は、前記第3図に示した空気液化分離装置と同様である
ので、それぞれ同一符号を付して詳細な説明を省略す
る。
For this reason, as shown in FIG. 4, product liquefied nitrogen PLN liquefied and collected in the condenser 7 is introduced into the subcooler 20, and is introduced into the liquefied nitrogen storage tank 10 in a supercooled state. . That is, the supercooler 20 is arranged in the conduit 8 for collecting product liquefied nitrogen of the air liquefaction separation device shown in FIG.
At the outlet of the subcooler 20, a part of the product liquefied nitrogen PLN is branched to a conduit 21, and the branched liquefied nitrogen BLN is expanded under reduced pressure by a pressure reducing valve 22, for example, from 8 kg / cm 2 G to 0.1 kg / cm 2 G. Inflated to -19
The temperature is set to 5 ° C., and this is used as a cooling fluid for the subcooler 20.
As a result, the product liquefied nitrogen PLN introduced into the subcooler 20 from the conduit 8 can be brought into a supercooled state of about -192 ° C, and the above-mentioned flash loss can be prevented. The branched liquefied nitrogen BLN used as a subcooling source is vaporized into nitrogen gas B
GN, the conduit 15 after the expansion turbine 14 is led out
And the exhaust gas W is discharged. The other components are the same as those of the air liquefaction / separation device shown in FIG. 3, and therefore, are denoted by the same reference numerals, and detailed description thereof will be omitted.

また、複精留塔を用いた空気液化分離装置において
も、複精留塔下部塔もしくは主凝縮器から導出した液化
窒素を、上記同様に分岐液化窒素を過冷却源とした過冷
器で過冷却し、貯槽に貯留することが行われている。
Also, in an air liquefaction / separation apparatus using a double rectification column, liquefied nitrogen derived from the lower column of the double rectification column or the main condenser is cooled by a subcooler using branched liquefied nitrogen as a subcooling source as described above. Cooling and storage in storage tanks are performed.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、上述のごとく構成した過冷器では、精
留塔から導出して採取する製品液化窒素の一部を膨張降
圧させて過冷却源としているため、低圧貯槽、例えば大
型の平底貯槽のように低圧で運転する貯槽に送液する場
合には特に問題はないが、中圧貯槽、例えば7kg/cm2Gで
窒素ガスを送出する運転を行う小,中型の貯槽に液化窒
素を貯留する場合には、該貯槽の運転圧力で過冷却状態
となっているため、窒素送出のために蒸発させた貯槽内
の窒素ガスが再液化して貯槽内の圧力が低下し、送出窒
素の圧力低下を生じることがあった。
However, in the supercooler configured as described above, since a part of the product liquefied nitrogen to be taken out from the rectification column is expanded and depressurized and used as a supercooling source, a low-pressure storage tank such as a large flat bottom storage tank is used. There is no particular problem when transferring liquid to a storage tank operated at low pressure, but when storing liquefied nitrogen in a medium-pressure storage tank, for example, a small or medium-sized storage tank that operates to send nitrogen gas at 7 kg / cm 2 G Is in a supercooled state due to the operating pressure of the storage tank, the nitrogen gas in the storage tank evaporated for nitrogen delivery is reliquefied, the pressure in the storage tank is reduced, and the pressure of the delivered nitrogen is reduced. There was something.

また、これに対処するために、製品液化窒素の過冷却
温度を貯槽の運転圧力の飽和温度に合わせるとすれば、
過冷器の冷端温度差を大きくしなければならず、エネル
ギーロスの大きな運転になってしまう。さらにこれを避
けるために過冷却源となる分岐液化窒素の減圧度を中圧
とした場合には、過冷却に必要な量の液化窒素を精留塔
から余分に導出しなければならなかった。
To cope with this, if the supercooling temperature of the product liquefied nitrogen is adjusted to the saturation temperature of the operating pressure of the storage tank,
The difference in the cold end temperature of the subcooler must be increased, resulting in an operation with a large energy loss. Further, in order to avoid this, when the degree of pressure reduction of the branched liquefied nitrogen, which is a supercooling source, is set to an intermediate pressure, an amount of liquefied nitrogen required for supercooling must be extraly extracted from the rectification column.

このように、製品液化窒素を採取する系統から分岐し
た分岐液化窒素を減圧して過冷却源とするものにあって
は、上述のごとき様々な不都合に加えて、製品として採
取する量以上の液化窒素を精留塔から導出しなければな
らなかった。
As described above, in the case where the branched liquefied nitrogen branched from the system for collecting the product liquefied nitrogen is decompressed and used as a supercooling source, in addition to the various inconveniences described above, the liquefaction exceeding the amount collected as the product is performed. Nitrogen had to be withdrawn from the rectification column.

そこで、本発明は、液化窒素を必要十分な過冷却温度
にでき、しかも精留塔から導出する液化窒素を無駄なく
製品として採取することのできる過冷却方法を提供する
ことを目的としている。
Therefore, an object of the present invention is to provide a subcooling method capable of setting liquefied nitrogen to a necessary and sufficient supercooling temperature and collecting liquefied nitrogen derived from the rectification column as a product without waste.

〔課題を解決するための手段〕[Means for solving the problem]

上記した目的を達成するために、本発明の空気液化分
離装置における液化窒素の過冷却方法は、単精留塔の場
合は、単精留塔から導出される液化窒素を、該液化窒素
の導出段より低い位置の精留段又は精留塔底部の液溜部
から抜出して常圧以上の圧力に減圧した液化ガスで過冷
却するとともに、過冷却源とした後の気化した液化ガス
を膨張タービンに導入して寒冷を発生させることを特徴
とし、複精留塔の場合は、複精留塔の下部塔から液化窒
素を導出するとともに、該液化窒素の導出段より低い位
置の精留段又は下部塔底部の液溜部から液化ガスを抜出
し、該液化ガスを上部塔から導出したガスで冷却して過
冷却状態にし、この過冷却状態となった液化ガスの一部
を減圧して下部塔から導出した前記液化窒素を過冷却す
ることを特徴としている。
In order to achieve the above object, the method for supercooling liquefied nitrogen in the air liquefaction and separation apparatus of the present invention, in the case of a single rectification column, liquefied nitrogen derived from the single rectification column, derivation of the liquefied nitrogen The liquefied gas withdrawn from the rectification stage at a position lower than the rectification stage or the liquid reservoir at the bottom of the rectification tower and decompressed to a pressure equal to or higher than normal pressure is supercooled. In the case of a double rectification column, liquefied nitrogen is derived from the lower tower of the double rectification column, and a rectification stage at a position lower than the liquefied nitrogen extraction stage or The liquefied gas is extracted from the liquid reservoir at the bottom of the lower tower, and the liquefied gas is cooled by a gas derived from the upper tower to a supercooled state. Characterized by supercooling the liquefied nitrogen derived from That.

〔作 用〕(Operation)

上記のごとく、精留塔内の適当な液化ガスを抜出して
減圧し、これを液化窒素の過冷却源とすることにより、
液化窒素の過冷却に適当な温度及び量の過冷却用流体を
得ることができ、必要十分な冷却を行えるとともに、過
冷器冷端の温度差を小さくしてエネルギーロスを少なく
することができる。
As described above, by extracting an appropriate liquefied gas in the rectification column and reducing the pressure, and using this as a supercooling source of liquefied nitrogen,
It is possible to obtain a supercooling fluid having a temperature and an amount appropriate for the supercooling of liquefied nitrogen, to perform necessary and sufficient cooling, and to reduce a temperature difference at a cold end of the subcooler to reduce energy loss. .

〔実施例〕〔Example〕

以下、本発明を図面に示す実施例に基づいて、さらに
詳細に説明する。
Hereinafter, the present invention will be described in more detail based on embodiments shown in the drawings.

まず第1図は、本発明を前記第3図,第4図と同様の
単精留塔を用いた空気液化分離装置に適用した一実施例
を示すものである。尚、以下の説明において前記第3図
に示した従来例と同一要素のものには同一符号を付して
説明する。
First, FIG. 1 shows an embodiment in which the present invention is applied to an air liquefaction / separation apparatus using the same single rectification column as in FIGS. 3 and 4. In the following description, the same elements as those in the conventional example shown in FIG.

前記従来例と同様に、凝縮器7で液化して導管8に導
出された製品液化窒素PLNは、過冷器30に導入されて過
冷却される。この過冷器30には、精留塔3底部の液溜部
3aから導管11に導出した液化空気LAの一部を導管31に分
岐し、この分岐液化空気BLAを減圧弁32で常圧以上の圧
力に減圧して過冷却に必要な温度に降温させ、製品液化
窒素PLNの過冷却源として導入している。
Similarly to the conventional example, the product liquefied nitrogen PLN liquefied in the condenser 7 and led out to the conduit 8 is introduced into the subcooler 30 and subcooled. The subcooler 30 has a liquid reservoir at the bottom of the rectification tower 3.
Part of the liquefied air LA led out from 3a to the conduit 11 is branched into a conduit 31, and the branched liquefied air BLA is reduced to a pressure equal to or higher than normal pressure by a pressure reducing valve 32 to lower the temperature to a temperature required for supercooling, and It has been introduced as a subcooling source for liquefied nitrogen PLN.

ここで、このように分岐液化空気BLAで製品液化窒素P
LNの過冷却を行うように構成した第1図に示す空気液化
分離装置と、製品液化窒素の過冷却を行わない第3図に
示した空気液化分離装置と、分岐液化窒素で製品液化窒
素の過冷却を行う第4図に示した空気液化分離装置とに
ついて、圧力8kg/cm2G,6200Nm3/hの原料空気を用いて略
同一の条件で運転を行った際の気液の状態を本発明者が
試算した結果に基づいて説明する。
Here, the product liquefied nitrogen P
An air liquefaction / separation device shown in FIG. 1 configured to supercool LN, an air liquefaction / separation device shown in FIG. 3 without supercooling product liquefied nitrogen, and a product liquefied nitrogen With respect to the air liquefaction / separation apparatus shown in FIG. 4 which performs supercooling, the gas-liquid state when operating under substantially the same conditions using raw material air at a pressure of 8 kg / cm 2 G and 6200 Nm 3 / h is shown. A description will be given based on the results calculated by the inventor.

まず、本実施例の空気液化分離装置では、圧力8kg/cm
2G,6200Nm3/hの原料空気Aを導管1,主熱交換器2を介し
て単精留塔3に導入するとともに、精留塔3塔頂から導
管4により6141Nm3/hの窒素ガスGNを、塔底の液溜部3a
から導管11により5099Nm3/hの液化空気LAを導出する。
この液化空気LAは、その大部分5090.5Nm3/hが減圧弁12
で4kg/cm2Gに減圧されて凝縮器7に導入され、気化して
排ガスWとなる。また導管31に分岐した分岐液化空気BL
A8.5Nm3/hは、減圧弁32で4kg/cm2Gに膨張し、−178℃に
降温して過冷器30に導入される。凝縮器7及び過冷器30
に導入された液化空気LA,分岐液化空気BLAは、それぞれ
気化して排ガスWとなり、導管13,導管33を経て導管34
に合流し、主熱交換器2の再熱回路2aに導入される。再
熱回路2aで適度に昇温した排ガスWは、膨張タービン14
に導入されて膨張し、寒冷を発生した後に主熱交換器2
で原料空気Aを冷却して温度回復し、導管15から排出さ
れる。
First, in the air liquefaction / separation apparatus of this embodiment, the pressure is 8 kg / cm.
2 G, 6200 Nm 3 / h of raw air A is introduced into the single rectification column 3 via the conduit 1 and the main heat exchanger 2, and 6141 Nm 3 / h nitrogen gas is supplied from the top of the rectification column 3 via the conduit 4. GN into the reservoir 3a at the bottom of the tower
Liquefied air LA of 5099 Nm 3 / h is led out from the pipe 11 by a conduit 11.
Most of this liquefied air LA is 5090.5 Nm 3 / h
The pressure is reduced to 4 kg / cm 2 G and introduced into the condenser 7, where it is vaporized to become exhaust gas W. The liquefied air BL branched to the conduit 31
A8.5 Nm 3 / h is expanded to 4 kg / cm 2 G by the pressure reducing valve 32, cooled to −178 ° C., and introduced into the subcooler 30. Condenser 7 and subcooler 30
The liquefied air LA and the branched liquefied air BLA introduced into the pipes are respectively vaporized to become exhaust gas W, and are passed through the pipes 13 and 33 to the pipe 34.
And is introduced into the reheat circuit 2a of the main heat exchanger 2. The exhaust gas W which has been appropriately heated in the reheating circuit 2a is supplied to the expansion turbine 14
The main heat exchanger 2 is expanded after being introduced into the
The raw material air A is cooled to recover the temperature and discharged from the conduit 15.

また、前記塔頂から導出された窒素ガスGNの一部795N
m3/hは、導管5から製品窒素ガスPGNとして導出され、
残りの5346Nm3/hの窒素ガスGNが導管6から凝縮器7に
導入される。この窒素ガスGNは、前記減圧弁12で減圧し
た液化空気LAと熱交換を行い液化され、−172℃の液化
窒素LNとなる。この液化窒素LNの大部分5040Nm3/hは、
単精留塔3の還流液として塔頂に戻され、一部の306Nm3
/hが製品液化窒素PLNとして導管8に分岐し、過冷器30
に導入される。
In addition, part of the nitrogen gas GN derived from the top 795N
m 3 / h is derived from the conduit 5 as product nitrogen gas PGN,
The remaining 5346 Nm 3 / h of nitrogen gas GN is introduced into the condenser 7 through the conduit 6. The nitrogen gas GN is liquefied by heat exchange with the liquefied air LA depressurized by the pressure reducing valve 12, and becomes liquefied nitrogen LN at -172 ° C. Most of this liquefied nitrogen LN is 5040Nm 3 / h,
It is returned to the top of the single rectification column 3 as a reflux liquid, and a part of 306 Nm 3
/ h branches to conduit 8 as product liquefied nitrogen PLN,
Will be introduced.

この製品液化窒素PLNは、過冷器30で前記分岐液化空
気BLAと熱交換を行い、液化窒素貯槽10の運転圧力7kg/c
m2Gにおける飽和温度−174℃に冷却され、弁9を介して
液化窒素貯槽10に送液される。
This product liquefied nitrogen PLN exchanges heat with the branch liquefied air BLA in the subcooler 30, and the operating pressure of the liquefied nitrogen storage tank 10 is 7 kg / c.
The liquid is cooled to the saturation temperature of −174 ° C. at m 2 G and sent to the liquefied nitrogen storage tank 10 via the valve 9.

尚、本実施例において、前記過冷器30で製品液化窒素
PLNを過冷状態とすることにより気化した液化空気(排
ガスW)を膨張タービン14に導入して得られる寒冷量
は、液化窒素1Nm3/hに相当する。
In the present embodiment, the product liquefied nitrogen was
The amount of refrigeration obtained by introducing liquefied air (exhaust gas W) vaporized by bringing the PLN into a supercooled state into the expansion turbine 14 corresponds to 1 Nm 3 / h of liquefied nitrogen.

一方、前記第3図に示した従来の空気液化分離装置で
は、同量の原料空気Aで同量の製品窒素ガスPGNを採取
するとすれば、精留塔3の頂部から導出する窒素ガスGN
が6147Nm3/h,塔底部から凝縮器7に導入される液化空気
LAが5096Nm3/h,凝縮器7で液化した液化窒素LNの内、精
留塔3に還流液として戻される分が5043Nm3/h,製品液化
窒素PLNとして採取される分が309Nm3/h(−172℃)とな
る。しかしながら、液化窒素貯槽10において、約9Nm3/h
がフラッシュロスのために失われ、実際に液化窒素貯槽
に貯留される製品液化窒素量は、300Nm3/hとなる。
On the other hand, in the conventional air liquefaction and separation apparatus shown in FIG. 3, if the same amount of product nitrogen gas PGN is collected with the same amount of raw material air A, the nitrogen gas GN derived from the top of the rectification column 3
Is 6147 Nm 3 / h, liquefied air introduced into the condenser 7 from the bottom of the tower
LA is 5096Nm 3 / h, of the liquid nitrogen LN liquefied in the condenser 7, min 309 nm 3 / h of amount that is returned to the fractionator 3 as a reflux liquid is collected 5043Nm 3 / h, as a product liquid nitrogen PLN (-172 ° C). However, in the liquefied nitrogen storage tank 10, about 9 Nm 3 / h
Is lost due to flash loss, and the amount of product liquefied nitrogen actually stored in the liquefied nitrogen storage tank is 300 Nm 3 / h.

さらに、前記第4図に示した分岐液化窒素BLNによる
過冷器20を備えた従来の空気液化分離装置では、同量の
原料空気Aで同量の製品窒素ガスPGNを採取するとすれ
ば、精留塔3の頂部から導出する窒素ガスGNが6150Nm3/
h,塔底部から凝縮器7に導入される液化空気LAが5090Nm
3/h,凝縮器7で液化した液化窒素LNの内、精留塔3に還
流液として戻される分が5040Nm3/h,過冷器20に導入され
る製品液化窒素PLNが315Nm3/h,この内9Nm3/hが過冷器20
の過冷却源として分岐液化窒素BLNとなり、製品液化窒
素PLNとして液化窒素貯槽10に採取される分が306Nm3/h
となる。しかしながら、液化窒素貯槽10に貯留される製
品液化窒素PLNは、−192℃の過冷状態であり、窒素送出
の際に前述の不都合を生じる。
Further, in the conventional air liquefaction / separation apparatus provided with the subcooler 20 using the branched liquefied nitrogen BLN shown in FIG. 4, if the same amount of product nitrogen gas PGN is collected with the same amount of raw air A, The nitrogen gas GN derived from the top of the distillation tower 3 is 6150 Nm 3 /
h, the liquefied air LA introduced into the condenser 7 from the bottom of the column is 5090 Nm
3 / h, of the liquid nitrogen LN liquefied in the condenser 7, minute 5040Nm 3 / h returned to the fractionator 3 as a reflux liquid, the product liquid nitrogen PLN introduced into the subcooler 20 is 315 nm 3 / h , 9Nm 3 / h of which is a subcooler 20
It becomes a branched liquefied nitrogen BLN as a supercooling source of 306 Nm 3 / h, which is collected in the liquefied nitrogen storage tank 10 as product liquefied nitrogen PLN
Becomes However, the product liquefied nitrogen PLN stored in the liquefied nitrogen storage tank 10 is in a supercooled state at −192 ° C., which causes the above-described inconvenience when nitrogen is delivered.

上記結果を下表に纒めて示す。 The results are summarized in the table below.

次に第2図は、本発明を複精留塔を用いた空気液化分
離装置に適用した一実施例を示すものである。
Next, FIG. 2 shows an embodiment in which the present invention is applied to an air liquefaction / separation apparatus using a double rectification column.

原料空気Aは、従来と同様に圧縮,精製,冷却されて
下部塔40の底部に導入され、塔頂部の窒素ガスGNと塔底
部の液化空気LAとに分離する。この液化空気LAは、下部
塔底部の液溜部40aから導管41に導出されて第1過冷器4
2に導入され、僅かに過冷状態とされた後に分岐し、そ
の大部分が減圧弁43で減圧して上部塔44の中段に導入さ
れる。分岐した残りの液化空気BLAは、減圧弁45で減圧
して製品液化窒素PLAの過冷却に適当な温度まで降温し
て導管46から第2過冷器47に導入される。この分岐液化
空気BLAは、第2過冷器47から導管48に導出した後に、
上部塔中段から導出される導管49の排ガスWに合流し、
第1過冷器42,主熱交換器(図示せず)を経て排出され
る。
The raw material air A is compressed, refined, cooled and introduced into the bottom of the lower tower 40 as in the prior art, and separated into nitrogen gas GN at the top of the tower and liquefied air LA at the bottom of the tower. The liquefied air LA is led out from a liquid reservoir 40a at the bottom of the lower tower to a conduit 41, and is supplied to the first subcooler 4
After being introduced into 2 and slightly branched into a supercooled state, it branches off, and most of the pressure is reduced by the pressure reducing valve 43 and introduced into the middle stage of the upper tower 44. The remaining branched liquefied air BLA is depressurized by the pressure reducing valve 45, cooled down to a temperature suitable for supercooling the product liquefied nitrogen PLA, and introduced into the second subcooler 47 from the conduit 46. After branching liquefied air BLA is led from the second subcooler 47 to the conduit 48,
Merges with the exhaust gas W of the conduit 49 derived from the middle stage of the upper tower,
It is discharged through a first subcooler 42 and a main heat exchanger (not shown).

また、下部塔頂部の窒素ガスGNは、上部塔底部に配設
された主凝縮蒸発器50で液化酸素LOと熱交換を行い液化
窒素LNとなり、その一部が導管51から製品液化窒素PLN
として導出される。この製品液化窒素PLNは、第1過冷
器42から導管52を経て第2過冷器47に導入され、前記分
岐液化空気BLAにより液化窒素貯槽53の運転圧力に応じ
た温度に冷却された後に、導管54及び弁55を介して液化
窒素貯槽53に貯留される。
Further, the nitrogen gas GN at the top of the lower tower exchanges heat with liquefied oxygen LO in the main condensing evaporator 50 disposed at the bottom of the upper tower to become liquefied nitrogen LN, and a part of the liquefied nitrogen PLN is supplied from the conduit 51 to the product liquefied nitrogen PLN.
Is derived as The product liquefied nitrogen PLN is introduced from the first subcooler 42 to the second subcooler 47 via the conduit 52, and after being cooled to a temperature corresponding to the operating pressure of the liquefied nitrogen storage tank 53 by the branched liquefied air BLA, Is stored in a liquefied nitrogen storage tank 53 via a conduit 54 and a valve 55.

一方、上部塔44における精留により、上部塔44の頂部
には高純度窒素ガスHNが分離し、底部には液化酸素LOが
分離する。上部塔頂部の高純度窒素ガスHNは、導管56に
導出され、第1過冷器42,主熱交換器で温度回復した後
に採取される。また、上部塔底部の液化酸素LOは、図示
しないが、従来と同様に液化酸素や酸素ガスとして採取
される。
On the other hand, due to the rectification in the upper tower 44, high-purity nitrogen gas HN is separated at the top of the upper tower 44, and liquefied oxygen LO is separated at the bottom. The high-purity nitrogen gas HN at the top of the upper tower is led out to a conduit 56, and is collected after the temperature has been recovered by the first subcooler 42 and the main heat exchanger. Although not shown, the liquefied oxygen LO at the bottom of the upper tower is collected as liquefied oxygen or oxygen gas as in the related art.

このように、複精留塔を用いて液化窒素を採取する場
合にも、前記実施例と同様に液化窒素の導出部より下方
の塔内の液化ガス、例えば上記のごとく液化空気LAを抜
出して減圧し、製品液化窒素PLNの過冷却源とすること
により、同様の効果を得ることができる。
In this way, even when liquefied nitrogen is collected using a double rectification column, the liquefied gas in the column below the liquefied nitrogen outlet, for example, liquefied air LA is extracted as described above, as in the previous example. The same effect can be obtained by reducing the pressure and using it as a supercooling source of the product liquefied nitrogen PLN.

即ち、複精留塔下部塔の液化窒素の導出部より下方か
ら適当量の液化ガスを抜出し、所望の温度になるように
減圧して液化窒素の過冷却源とすることにより、液化窒
素貯留でのフラッシュロスを防止できるとともに、液化
窒素を貯留圧力における飽和温度以下まで過剰に冷却し
てしまうことを防止でき、最適な状態で液化窒素を貯留
することができる。さらに、精留塔で得られた液化窒素
を無駄なく製品液化窒素として貯留することができるか
ら、精留塔における窒素収率を特に高める必要もない。
That is, by extracting an appropriate amount of liquefied gas from below the liquefied nitrogen outlet of the double rectification column lower column, decompressing it to a desired temperature and using it as a supercooling source for liquefied nitrogen, Can be prevented, and the liquefied nitrogen can be prevented from being excessively cooled to a temperature not higher than the saturation temperature at the storage pressure, and the liquefied nitrogen can be stored in an optimal state. Further, the liquefied nitrogen obtained in the rectification column can be stored as product liquefied nitrogen without waste, so that it is not necessary to particularly increase the nitrogen yield in the rectification column.

尚、両実施例では、過冷却源として精製塔底部の酸素
富化液化空気を用いたが、他の液化ガスであっても、減
圧により所定の温度にでき、かつ所定の流量を得られる
ものならば、精留塔各部の液化ガスを用いることが可能
であり、過冷器導入前に低圧まで減圧してそのまま主熱
交換器を介して排出することもできる。
In both examples, the oxygen-enriched liquefied air at the bottom of the purification tower was used as a supercooling source. However, other liquefied gases can be brought to a predetermined temperature by decompression and obtain a predetermined flow rate. Then, it is possible to use the liquefied gas of each part of the rectification column, and it is also possible to reduce the pressure to a low pressure before introducing the supercooler and discharge the same through the main heat exchanger as it is.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明の液化窒素の過冷却方法
は、液化窒素の導出段より低い位置の精留段、もしくは
精留塔底部の液溜部から抜出して減圧した液化ガスを過
冷却源とするから、液化窒素を貯留圧力に応じた最適な
温度に冷却することができ、フラッシュロスや、過剰冷
却を無くして最適な状態で液化窒素を貯留することがで
きる。また、過冷器の冷端温度差を縮めることでエネル
ギーロスを低減でき、効率のよい運転ができる。さら
に、精留塔で得られた液化窒素を無駄なく製品液化窒素
として貯留することができるから、精留塔における窒素
収率を特に高める必要もない。
As described above, the method for supercooling liquefied nitrogen of the present invention comprises the steps of: Therefore, liquefied nitrogen can be cooled to an optimum temperature according to the storage pressure, and liquefied nitrogen can be stored in an optimum state without flash loss or excessive cooling. Moreover, energy loss can be reduced by reducing the difference in cold end temperature of the subcooler, and efficient operation can be performed. Further, the liquefied nitrogen obtained in the rectification column can be stored as product liquefied nitrogen without waste, so that it is not necessary to particularly increase the nitrogen yield in the rectification column.

また、単精留塔の場合は、過冷却源となる液化ガスの
減圧後の圧力を常圧以上にしているから、膨張タービン
に導入して寒冷を発生させることができ、発生寒冷を増
すことができる。加えて、減圧後の圧力を膨張タービン
処理流体の圧力に応じた一定圧以上とすれば、過冷器で
蒸発後に膨張タービン処理流体に合流させることができ
るから、膨張タービンを増設せずに、発生寒冷を増すこ
とができる。
In addition, in the case of a single rectification column, since the pressure after decompression of the liquefied gas serving as a supercooling source is set to be equal to or higher than normal pressure, it can be introduced into an expansion turbine to generate cold, and the generated cold can be increased. Can be. In addition, if the pressure after the pressure reduction is equal to or higher than a certain pressure corresponding to the pressure of the expansion turbine processing fluid, it can be combined with the expansion turbine processing fluid after evaporation in the subcooler, so that the expansion turbine is not added, Cold generated can be increased.

さらに、複精留塔の場合は、過冷却源となる液化ガス
を上部塔から導出したガスで先に過冷却状態にして用い
るので、液化窒素を過冷却するために消費する液化ガス
量を少なくできる。
Furthermore, in the case of a double rectification column, the liquefied gas serving as a supercooling source is used in a supercooled state with a gas derived from the upper tower first, so that the amount of liquefied gas consumed for subcooling the liquefied nitrogen is reduced. it can.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明を単精留塔を用いた空気液化分離装置に
適用した一実施例を示す要部の系統図、第2図は本発明
を複精留塔を用いた空気液化分離装置に適用した一実施
例を示す要部の系統図、第3図は及び第4図は従来例を
示すもので、第3図は過冷器を有しない空気液化分離装
置を示す要部の系統図、第4図は過冷器を有する空気液
化分離装置を示す要部の系統図である。 3……単精留塔、7……凝縮器、10……液化窒素貯槽、
14……膨張タービン、30……過冷器、32……減圧弁、40
……下部塔、42……第1過冷器、45……減圧弁、47……
第2過冷器、A……原料空気、BLA……分岐液化空気、L
A……液化空気、LN……液化窒素、PLN……製品液化窒
素、W……排ガス
FIG. 1 is a system diagram of an essential part showing an embodiment in which the present invention is applied to an air liquefaction and separation apparatus using a single rectification column, and FIG. 2 is an air liquefaction and separation apparatus using a double rectification column according to the present invention. FIG. 3 and FIG. 4 show a conventional example, and FIG. 3 is a system diagram of an essential part showing an air liquefaction / separation apparatus having no supercooler. FIG. 4 is a system diagram of a main part showing an air liquefaction / separation apparatus having a subcooler. 3 ... single rectification column, 7 ... condenser, 10 ... liquefied nitrogen storage tank,
14 ... Expansion turbine, 30 ... Supercooler, 32 ... Reducing valve, 40
... lower tower, 42 ... first subcooler, 45 ... pressure reducing valve, 47 ...
2nd subcooler, A ... raw air, BLA ... branched liquefied air, L
A: Liquefied air, LN: Liquefied nitrogen, PLN: Liquefied nitrogen, W: Exhaust gas

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】原料空気を圧縮,精製,冷却して単精留塔
に導入し、液化精留分離して少なくとも液化窒素を採取
する空気液化分離装置における液化窒素の過冷却方法に
おいて、前記単精留塔から導出される液化窒素を、該液
化窒素の導出段より低い位置の精留段又は精留塔底部の
液溜部から抜出して常圧以上の圧力に減圧した液化ガス
で過冷却するとともに、過冷却源とした後の気化した液
化ガスを膨張タービンに導入して寒冷を発生させること
を特徴とする空気液化分離装置における液化窒素の過冷
却方法。
1. A method for supercooling liquefied nitrogen in an air liquefaction / separation apparatus for compressing, purifying, cooling and introducing a raw material air into a single rectification column, and liquefying and separating to collect at least liquefied nitrogen. The liquefied nitrogen discharged from the rectification tower is extracted from the rectification stage at a position lower than the liquefied nitrogen discharge stage or the liquid storage portion at the bottom of the rectification column, and is supercooled by a liquefied gas depressurized to a pressure equal to or higher than normal pressure. A method for supercooling liquefied nitrogen in an air liquefaction / separation apparatus, wherein a liquefied gas vaporized as a supercooling source is introduced into an expansion turbine to generate cold.
【請求項2】原料空気を圧縮,精製,冷却して複精留塔
に導入し、液化精留分離して少なくとも液化窒素を採取
する空気液化分離装置における液化窒素の過冷却方法に
おいて、前記複精留塔の下部塔から液化窒素を導出する
とともに、該液化窒素の導出段より低い位置の精留段又
は下部塔底部の液溜部から液化ガスを抜出し、該液化ガ
スを上部塔から導出したガスで冷却して過冷却状態に
し、この過冷却状態となった液化ガスの一部を減圧して
下部塔から導出した前記液化窒素を過冷却することを特
徴とする空気液化分離装置における液化窒素の過冷却方
法。
2. A method for supercooling liquefied nitrogen in an air liquefaction / separation apparatus for compressing, purifying, cooling and introducing a raw material air into a double rectification column, and liquefying and separating to collect at least liquefied nitrogen. While liquefied nitrogen was led out from the lower tower of the rectification tower, liquefied gas was extracted from the rectification stage at a position lower than the liquefied nitrogen outlet stage or the liquid reservoir at the bottom of the lower tower, and the liquefied gas was led out from the upper tower. Liquefied nitrogen in an air liquefaction / separation apparatus, wherein the liquefied nitrogen is cooled by a gas to a supercooled state, and a part of the liquefied gas in the supercooled state is decompressed to supercool the liquefied nitrogen derived from the lower tower. Super cooling method.
JP30121389A 1989-11-20 1989-11-20 Supercooling method of liquefied nitrogen in air liquefaction separator Expired - Fee Related JP2920392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30121389A JP2920392B2 (en) 1989-11-20 1989-11-20 Supercooling method of liquefied nitrogen in air liquefaction separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30121389A JP2920392B2 (en) 1989-11-20 1989-11-20 Supercooling method of liquefied nitrogen in air liquefaction separator

Publications (2)

Publication Number Publication Date
JPH03160294A JPH03160294A (en) 1991-07-10
JP2920392B2 true JP2920392B2 (en) 1999-07-19

Family

ID=17894149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30121389A Expired - Fee Related JP2920392B2 (en) 1989-11-20 1989-11-20 Supercooling method of liquefied nitrogen in air liquefaction separator

Country Status (1)

Country Link
JP (1) JP2920392B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3277340B2 (en) * 1993-04-22 2002-04-22 日本酸素株式会社 Method and apparatus for producing various gases for semiconductor manufacturing plants
JP4515225B2 (en) * 2004-11-08 2010-07-28 大陽日酸株式会社 Nitrogen production method and apparatus
US7824725B2 (en) 2007-03-30 2010-11-02 The Coca-Cola Company Methods for extending the shelf life of partially solidified flowable compositions
JP4841591B2 (en) * 2008-06-23 2011-12-21 大陽日酸株式会社 Nitrogen production method and apparatus

Also Published As

Publication number Publication date
JPH03160294A (en) 1991-07-10

Similar Documents

Publication Publication Date Title
KR100874680B1 (en) System to increase the production capacity of LNB-based liquefaction equipment in air separation process
US4704148A (en) Cycle to produce low purity oxygen
JP2865274B2 (en) Cryogenic distillation of air for the simultaneous production of oxygen and nitrogen as gaseous and / or liquid products
US6336345B1 (en) Process and apparatus for low temperature fractionation of air
AU690295B2 (en) Method and apparatus for producing oxygen
CN100592013C (en) Air separation method using cool extracted from liquefied natural gas for producing liquid oxygen
JPH0579753A (en) Method and device to manufacture gas-state oxygen under pressure
US5735142A (en) Process and installation for producing high pressure oxygen
JPH06117753A (en) High-pressure low-temperature distilling method of air
JPS63279085A (en) Separation of air
CN110307694B (en) Nitrogen production method and nitrogen production apparatus
CA2206649C (en) Method and apparatus for producing liquid products from air in various proportions
JPH06241649A (en) Method and device for manufacturing gaseous product under at least one pressure and at least one liquid by air rectification
MXPA97008225A (en) A cryogenic cycle of three columns for the production of impure oxygen and nitrogen p
JPH09269189A (en) Preparation of nitrogen and nitrogen generator
JPH06257939A (en) Distilling method at low temperature of air
CA2000595A1 (en) Process for the production of crude argon
TW536615B (en) Air separation method to produce gaseous product
JP2920392B2 (en) Supercooling method of liquefied nitrogen in air liquefaction separator
JP3737611B2 (en) Method and apparatus for producing low purity oxygen
JP2000329456A (en) Method and device for separating air
JP2001165566A (en) Air separation
JP4230213B2 (en) Air liquefaction separation apparatus and method
JPH08170876A (en) Method and equipment for manufacturing oxygen by cooling distribution
JPH06241650A (en) Method and equipment for manufacturing oxygen under pressure

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090430

LAPS Cancellation because of no payment of annual fees