EP0606027B1 - Air distillation process and plant for producing at least a high pressure gaseous product and at least a liquid - Google Patents

Air distillation process and plant for producing at least a high pressure gaseous product and at least a liquid Download PDF

Info

Publication number
EP0606027B1
EP0606027B1 EP93402907A EP93402907A EP0606027B1 EP 0606027 B1 EP0606027 B1 EP 0606027B1 EP 93402907 A EP93402907 A EP 93402907A EP 93402907 A EP93402907 A EP 93402907A EP 0606027 B1 EP0606027 B1 EP 0606027B1
Authority
EP
European Patent Office
Prior art keywords
column
air
pressure
nitrogen
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP93402907A
Other languages
German (de)
French (fr)
Other versions
EP0606027A1 (en
Inventor
Norbert Rieth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9442829&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0606027(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP0606027A1 publication Critical patent/EP0606027A1/en
Application granted granted Critical
Publication of EP0606027B1 publication Critical patent/EP0606027B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/042Division of the main heat exchange line in consecutive sections having different functions having an intermediate feed connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • F25J3/04357Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/044Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/0466Producing crude argon in a crude argon column as a parallel working rectification column or auxiliary column system in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/76Refluxing the column with condensed overhead gas being cycled in a quasi-closed loop refrigeration cycle

Definitions

  • the present invention relates to a process for producing oxygen and / or nitrogen gas under pressure and at least one liquid product by means of an installation comprising a simple air distillation column provided with a cycle nitrogen refrigerator in which the air to be treated is compressed to a first pressure at least equal to the pressure of the single column, and at least part of the air is boosted up to a high pressure significantly higher than the single column pressure.
  • a process of this kind is known from GB 2,252,616A, in which only part of the air is boosted at a higher pressure than that of the single column.
  • the boosted flow does not condense and is expanded by a turbine before being sent to the column, hence an inefficient operation of the exchangers.
  • the main compressor and the nitrogen cycle compressor of this installation can in particular be constituted by a single machine.
  • FIGS. 1 and 2 schematically represent, firstly and secondly, an embodiment of the installation according to the invention.
  • the installation shown in Figure 1 is intended to produce pressurized gaseous oxygen, pressurized nitrogen gas, liquid oxygen and argon. It essentially comprises: a main air compressor 1 provided with a refrigerant 2 with atmospheric air or water; an adsorption purification device 3; a 4-turbine blower assembly 5 having the two wheels wedged on the same shaft, the blower also being provided with a coolant 6 air or water; a heat exchange line 7; a simple air distillation column 9; an impure argon production column 10 coupled to the previous one; a sub-cooler 11; storage 12 of liquid nitrogen and 13 of liquid oxygen under atmospheric pressure; pumps 14 for liquid oxygen and 15 for liquid nitrogen; and a compressor 16 of the refrigeration cycle nitrogen provided with an air or water cooler 17.
  • the simple column 9 comprises a tank vaporizer 18, while the column 10 comprises a head condenser 19.
  • the installation also includes expansion valves 20 to 24.
  • the air compressors 1 and cycle nitrogen 16 are combined in a single rotating machine.
  • the incoming air is compressed between 5 and 10 bars at 1, cooled to around room temperature at 2, purified with water and carbon dioxide at 3, and fully boosted at 4 to a high pressure of the order of 6.5 to 13 bars.
  • the pressurized air After pre-cooling in the vicinity of the ambient temperature at 6, the pressurized air enters the hot end of the heat exchange line 7 and is cooled to an intermediate temperature, where 60 to 80% of its flow has come out of the exchange line, turbinated at 5, which relaxes them substantially to the pressure of column 9, called low pressure, between 1.3 and 2 bars, then reintroduced into the exchange line, cooled to the end cold thereof, cooled again at 11, and introduced at an intermediate level into column 9 via a pipe 25.
  • the non-turbinated fraction of the pressurized air continues to cool and is liquefied in the cold part of the exchange line. It is then sub-cooled in 11. Part of this air is relaxed at the pressure of column 9 at 20 and introduced at an intermediate level thereof, while the rest of this air is expanded at 21 and feeds the head condenser 19 of column 10, to be vaporized there, then is returned to column 9 in gaseous state.
  • the installation's nitrogen refrigeration cycle is supplied with practically pure nitrogen produced at the top of column 9, partially reheated at 11 and reheated to room temperature at 7.
  • a fraction of this low pressure nitrogen can be recovered by as a product via a line 26, and the rest is compressed at a medium pressure, which is the high pressure of the cycle, by the compressor 16, then brought back to the vicinity of the ambient temperature at 17.
  • a portion of the medium pressure nitrogen can be recovered as a product via a pipe 27, and the rest is cooled to the cold end of the exchange line up to the vicinity of its dew point, then is condensed in the vaporizer 18 of column 9.
  • Part of the condensed nitrogen is pumped at 15 at a high production pressure of the order of 7 to 40 bars, and the liquid nitrogen under this high pressure is vaporized in the heat exchange line by condensation of the pressurized air, warmed to room temperature, then recovered as a product via a line 28.
  • the rest of the condensed nitrogen is sub-cooled at 11, then, partially, expanded at 22 and introduced under reflux at the top of the column 9, and, for the rest, expanded to atmospheric pressure at 23 and introduced into the liquid nitrogen storage 12.
  • the latter can be supplied with liquid nitrogen taken from the top of the column.
  • An impure nitrogen gas flow constituting the waste gas of the installation, is withdrawn from the column at a level between the injections of liquid nitrogen and liquid air, heated in 11 then in 7 to room temperature, and evacuated via a pipe 29.
  • Liquid oxygen is also withdrawn from the tank of column 9, pumped at 14 at the desired high production pressure, of the order of 2 to 40 bars, vaporized in the cold part of the heat exchange line. by condensing compressed air, warmed to room temperature, and recovered as a product via a pipe 30.
  • Liquid oxygen is also withdrawn from the tank of the column 9 and, after sub-cooling in 11 and expansion to atmospheric pressure in 24, sent to the liquid oxygen storage 13.
  • the tank of column 10 is coupled to an intermediate level of column 9 by two supply and return pipes 31, and this column 10 produces impure argon via a pipe 33.
  • the installation does not include an auxiliary column 10, so that all of the liquefied air in the heat exchange line is, after sub-cooling in 11 then expansion in 20, injected into the simple column 9.
  • the incoming air circuit comprises two blowers 4 and 4A in series, with their respective air or water coolers 6 and 6A, and two air expansion turbines 5 and 5A, respectively coupled to the two blowers .
  • the remaining 60 to 70% of the incoming air is boosted in 4 and then in 4A, to a pressure of the order of 6.5 to 13 bars, then introduced at the hot end of the exchange line. They are cooled to a second intermediate temperature T2 lower than T1, a temperature at which 60 to 70% of this flow is taken out of the exchange line and turbinated in 5A, from where they come out substantially at the pressure of the column 9 via line 32.
  • the pipes 31, 32 meet in a pipe 33.
  • the air conveyed by the latter is again cooled at 11 and then injected into the column, as before, via the pipe 25.
  • the 5A non-turbined pressurized air continues to cool in the cold part of the exchange line, where it is liquefied by vaporization of liquid oxygen and high pressure liquid nitrogen as before.
  • the presence of the two air turbines 5 and 5A improves the performance of the installation, while the nitrogen turbine 34 increases its production of liquid (liquid oxygen and / or liquid nitrogen).

Description

La présente invention est relative à un procédé de production d'oxygène et/ou d'azote gazeux sous pression et d'au moins un produit liquide au moyen d'une installation comprenant une simple colonne de distillation d'air munie d'un cycle frigorifique à azote dans lequel on comprime l'air à traiter jusqu'à une première pression au moins égale à la pression de la simple colonne, et on surpresse une partie au moins de l'air jusqu'à une haute pression nettement supérieure à la pression de la simple colonne.The present invention relates to a process for producing oxygen and / or nitrogen gas under pressure and at least one liquid product by means of an installation comprising a simple air distillation column provided with a cycle nitrogen refrigerator in which the air to be treated is compressed to a first pressure at least equal to the pressure of the single column, and at least part of the air is boosted up to a high pressure significantly higher than the single column pressure.

Un procédé de ce genre est connu de GB 2.252.616A, dans lequel seulement une partie de l'air est surpressé à une pression plus élevée que celle de la simple colonne. Or le débit surpressé ne se condense pas et est détendu par une turbine avant d'être envoyé à la colonne, d'où un fonctionnement peu efficace des échangeurs.A process of this kind is known from GB 2,252,616A, in which only part of the air is boosted at a higher pressure than that of the single column. However, the boosted flow does not condense and is expanded by a turbine before being sent to the column, hence an inefficient operation of the exchangers.

A cet effet, le procédé suivant l'invention est caractérisé en ce que:

  • on condense une fraction de l'air par vaporisation d'oxygène soutiré en cuve de colonne et/ou d'azote liquide soutiré d'un vaporiseur de cuve de colonne et porté(s) par pompage à la pression de vaporisation correspondante, et on récupère l'oxygène et/ou l'azote gazeux sous pression résultants, en tant que produit(s) ;
  • on sous-refroidit l'air ainsi condensé, on le détend au voisinage de la pression de la colonne, et on en introduit au moins une partie à un niveau intermédiaire de la colonne ;
  • on détend à la pression de la colonne, avec production de travail extérieur, l'air non utilisé pour vaporiser l'oxygène et/ou l'azote liquide, et
  • on soutire de l'installation au moins un produit liquide, que l'on écupère en tant que produit.
To this end, the method according to the invention is characterized in that:
  • a fraction of the air is condensed by vaporization of oxygen withdrawn from the column tank and / or of liquid nitrogen withdrawn from a column tank vaporizer and brought (s) by pumping to the corresponding vaporization pressure, and recovers the resulting oxygen and / or nitrogen gas under pressure, as product (s);
  • the air thus condensed is sub-cooled, it is expanded in the vicinity of the column pressure, and at least part of it is introduced at an intermediate level of the column;
  • the air not used to vaporize oxygen and / or liquid nitrogen is relaxed at the pressure of the column, with production of external work, and
  • at least one liquid product is withdrawn from the installation, which is recovered as a product.

Suivant des modes particuliers de réalisation de l'invention.

  • on utilise une partie de l'air condensé et détendu pour refroidir le condenseur de tête d'une colonne de production d'argon impur couplée à la simple colonne, et on renvoie dans cette dernière l'air gazeux issu de ce condenseur;
  • ladite détente avec production de travail extérieur comprend la détente dans une première turbine de l'air non surpressé, et la détente dans une seconde turbine d'une fraction de l'air surpressé ;
  • la seconde turbine a une température d'aspiration inférieure à celle de la première turbine ;
  • on détend en outre au voisinage de la pression de la simple colonne, avec production de travail extérieur, une partie de l'azote à la haute pression du cycle ;
  • la pression de la simple colonne est nettement supérieure à la pression atmosphérique.
According to particular embodiments of the invention.
  • part of the condensed and expanded air is used to cool the condenser at the head of an impure argon production column coupled to the simple column, and the gaseous air from this condenser is returned to the latter;
  • said expansion with production of external work comprises the expansion in a first turbine of the unpressurized air, and the expansion in a second turbine of a fraction of the compressed air;
  • the second turbine has a lower suction temperature than that of the first turbine;
  • it also expands in the vicinity of the pressure of the single column, with production of external work, part of the nitrogen at the high pressure of the cycle;
  • the pressure of the single column is significantly higher than atmospheric pressure.

L'invention a également pour objet une installation destinée à la mise en oeuvre d'un tel procédé. Cette installation comprend un compresseur principal compressant l'air à traiter jusqu'à une première pression au moins égale à la pression de la simple colonne et des moyens pour surpresser une partie au moins de l'air jusqu'à une haute pression nettement supérieure à la pression de la simple colonne, et est caractérisée en ce qu'elle comprend :

  • au moins une pompe soutirant de l'oxygène liquide de la cuve de la colonne et/ou de l'azote liquide d'un vaporiseur de cuve de la colonne et refoulant dans un échangeur de chaleur adapté pour vaporiser ce(s) liquide(s) en condensant de l'air surpressé ;
  • des moyens (30, 28) pour récupérer l'oxygène et/ou l'azote gazeux sous pression résultants, en tant que produit(s) ;
  • des moyens pour sous-refroidir l'air surpressé condensé et pour en introduire au moins une partie à un niveau intermédiaire de la colonne ;
  • au moins une turbine pour détendre au voisinage de la pression de la colonne l'air non utilisé pour vaporiser l'oxygène et/ou l'azote liquide ;
  • et des moyens pour soutirer au moins un produit liquide de l'installation et le récupérer en tant que produit.
The invention also relates to an installation intended for the implementation of such a method. This installation comprises a main compressor compressing the air to be treated to a first pressure at least equal to the pressure of the single column and means for boosting at least part of the air to a high pressure significantly higher than the pressure of the single column, and is characterized in that it comprises:
  • at least one pump drawing liquid oxygen from the column tank and / or liquid nitrogen from a column tank vaporizer and discharging into a heat exchanger suitable for vaporizing this liquid (s) ) by condensing pressurized air;
  • means (30, 28) for recovering the resulting oxygen and / or nitrogen gas under pressure, as product (s);
  • means for sub-cooling the condensed pressurized air and for introducing at least part of it at an intermediate level of the column;
  • at least one turbine for expanding in the vicinity of the pressure of the column the air not used to vaporize oxygen and / or liquid nitrogen;
  • and means for withdrawing at least one liquid product from the installation and recovering it as a product.

Le compresseur principal et le compresseur du cycle azote de cette installation peuvent notamment être constitués par une machine unique.The main compressor and the nitrogen cycle compressor of this installation can in particular be constituted by a single machine.

Des exemples de réalisation de l'invention vont maintenant être décrits en regard des dessins annexés, sur lesquels les figures 1 et 2 représentent schématiquement, respectivement, un premier et un second mode de réalisation de l'installation conforme à l'invention.Examples of embodiments of the invention will now be described with reference to the accompanying drawings, in which FIGS. 1 and 2 schematically represent, firstly and secondly, an embodiment of the installation according to the invention.

L'installation représentée à la figure 1 est destinée à produire de l'oxygène gazeux sous pression, de l'azote gazeux sous pression, de l'oxygène liquide et de l'argon. Elle comprend essentiellement : un compresseur principal d'air 1 muni d'un réfrigérant 2 à air atmosphérique ou à eau ; un appareil 3 d'épuration par adsorption ; un ensemble soufflante 4-turbine 5 ayant les deux roues calées sur le même arbre, la soufflante étant également munie d'un réfrigérant 6 à air ou à eau; une ligne d'échange thermique 7; une simple colonne de distillation d'air 9; une colonne 10 de production d'argon impur couplée à la précédente; un sous-refroidisseur 11; des stockages 12 d'azote liquide et 13 d'oxygène liquide sous la pression atmosphérique; des pompes 14 d'oxygène liquide et 15 d'azote liquide; et un compresseur 16 d'azote de cycle frigorifique muni d'un réfrigérant 17 à air ou à eau. La simple colonne 9 comporte un vaporiseur de cuve 18, tandis que la colonne 10 comporte un condenseur de tête 19. L'installation comprend également des vannes de détente 20 à 24.The installation shown in Figure 1 is intended to produce pressurized gaseous oxygen, pressurized nitrogen gas, liquid oxygen and argon. It essentially comprises: a main air compressor 1 provided with a refrigerant 2 with atmospheric air or water; an adsorption purification device 3; a 4-turbine blower assembly 5 having the two wheels wedged on the same shaft, the blower also being provided with a coolant 6 air or water; a heat exchange line 7; a simple air distillation column 9; an impure argon production column 10 coupled to the previous one; a sub-cooler 11; storage 12 of liquid nitrogen and 13 of liquid oxygen under atmospheric pressure; pumps 14 for liquid oxygen and 15 for liquid nitrogen; and a compressor 16 of the refrigeration cycle nitrogen provided with an air or water cooler 17. The simple column 9 comprises a tank vaporizer 18, while the column 10 comprises a head condenser 19. The installation also includes expansion valves 20 to 24.

Pour réduire l'investissement, les compresseurs 1 d'air et 16 d'azote de cycle sont combinés en une machine tournante unique.To reduce investment, the air compressors 1 and cycle nitrogen 16 are combined in a single rotating machine.

En fonctionnement, l'air entrant est comprimé entre 5 et 10 bars en 1, refroidi au voisinage de la température de la température ambiante en 2, épuré en eau et en anhydrique carbonique en 3, et surpressé en totalité en 4 jusqu'à une haute pression de l'ordre de 6,5 à 13 bars.In operation, the incoming air is compressed between 5 and 10 bars at 1, cooled to around room temperature at 2, purified with water and carbon dioxide at 3, and fully boosted at 4 to a high pressure of the order of 6.5 to 13 bars.

Après pré-refroidissement au voisinage de la température ambiante en 6, l'air surpressé pénètre au bout chaud de la ligne d'échange thermique 7 et est refroidi jusqu'à une température intermédiaire, où 60 à 80% de son débit sont sortis de la ligne d'échange, turbinés en 5, ce qui les détend sensiblement à la pression de la colonne 9, dite basse pression, comprise entre 1,3 et 2 bars, puis réintroduits dans la ligne d'échange, refroidis jusqu'au bout froid de celle-ci, refroidis de nouveau en 11, et introduits à un niveau intermédiaire dans la colonne 9 via une conduite 25.After pre-cooling in the vicinity of the ambient temperature at 6, the pressurized air enters the hot end of the heat exchange line 7 and is cooled to an intermediate temperature, where 60 to 80% of its flow has come out of the exchange line, turbinated at 5, which relaxes them substantially to the pressure of column 9, called low pressure, between 1.3 and 2 bars, then reintroduced into the exchange line, cooled to the end cold thereof, cooled again at 11, and introduced at an intermediate level into column 9 via a pipe 25.

La fraction non turbinée de l'air surpressé poursuit son refroidissement et est liquéfiée dans la partie froide de la ligne d'échange. Elle est ensuite sous-refroidie en 11. Une partie de cet air est détendue à la pression de la colonne 9 en 20 et introduite à un niveau intermédiaire de celle-ci, tandis que le reste de cet air est détendu en 21 et alimente le condenseur de tête 19 de la colonne 10, pour y être vaporisé, puis est renvoyé dans la colonne 9 à l'état gazeux.The non-turbinated fraction of the pressurized air continues to cool and is liquefied in the cold part of the exchange line. It is then sub-cooled in 11. Part of this air is relaxed at the pressure of column 9 at 20 and introduced at an intermediate level thereof, while the rest of this air is expanded at 21 and feeds the head condenser 19 of column 10, to be vaporized there, then is returned to column 9 in gaseous state.

Le cycle frigorifique à azote de l'installation est alimenté par de l'azote pratiquement pur produit en tête de la colonne 9, partiellement réchauffé en 11 et réchauffé à la température ambiante en 7. Une fraction de cet azote basse pression peut être récupérée en tant que produit via une conduite 26, et le reste est comprimé à une moyenne pression, qui est la haute pression du cycle, par le compresseur 16, puis ramené au voisinage de la température ambiante en 17. Une partie de l'azote moyenne pression peut être récupérée en tant que produit via une conduite 27, et le reste est refroidi jusqu'au bout froid de la ligne d'échange jusqu'au voisinage de son point de rosée, puis est condensé dans le vaporiseur 18 de la colonne 9.The installation's nitrogen refrigeration cycle is supplied with practically pure nitrogen produced at the top of column 9, partially reheated at 11 and reheated to room temperature at 7. A fraction of this low pressure nitrogen can be recovered by as a product via a line 26, and the rest is compressed at a medium pressure, which is the high pressure of the cycle, by the compressor 16, then brought back to the vicinity of the ambient temperature at 17. A portion of the medium pressure nitrogen can be recovered as a product via a pipe 27, and the rest is cooled to the cold end of the exchange line up to the vicinity of its dew point, then is condensed in the vaporizer 18 of column 9.

Une partie de l'azote condensé est pompée en 15 à une haute pression de production de l'ordre de 7 à 40 bars, et l'azote liquide sous cette haute pression est vaporisé dans la ligne d'échange thermique par condensation de l'air surpressé, réchauffé à la température ambiante, puis récupéré en tant que produit via une conduite 28. Le reste de l'azote condensé est sous-refroidi en 11, puis, pour partie, détendu en 22 et introduit en reflux au sommet de la colonne 9, et, pour le reste, détendu à la pression atmosphérique en 23 et introduit dans le stockage d'azote liquide 12. En variante, pour limiter le flash dans le stockage 12, ce dernier peut être alimenté à partir d'azote liquide prélevé en tête de la colonne.Part of the condensed nitrogen is pumped at 15 at a high production pressure of the order of 7 to 40 bars, and the liquid nitrogen under this high pressure is vaporized in the heat exchange line by condensation of the pressurized air, warmed to room temperature, then recovered as a product via a line 28. The rest of the condensed nitrogen is sub-cooled at 11, then, partially, expanded at 22 and introduced under reflux at the top of the column 9, and, for the rest, expanded to atmospheric pressure at 23 and introduced into the liquid nitrogen storage 12. As a variant, to limit the flash in the storage 12, the latter can be supplied with liquid nitrogen taken from the top of the column.

Un débit d'azote gazeux impur, constituant le gaz résiduaire de l'installation, est soutiré de la colonne à un niveau compris entre les injections d'azote liquide et d'air liquide, réchauffé en 11 puis en 7 jusqu'à la température ambiante, et évacué via une conduite 29.An impure nitrogen gas flow, constituting the waste gas of the installation, is withdrawn from the column at a level between the injections of liquid nitrogen and liquid air, heated in 11 then in 7 to room temperature, and evacuated via a pipe 29.

De l'oxygène liquide est par ailleurs soutiré de la cuve de la colonne 9, pompé en 14 à la haute pression de production désirée, de l'ordre de 2 à 40 bars, vaporisé dans la partie froide de la ligne d'échange thermique par condensation d'air surpressé, réchauffé à la température ambiante, et récupéré en tant que produit via une conduite 30.Liquid oxygen is also withdrawn from the tank of column 9, pumped at 14 at the desired high production pressure, of the order of 2 to 40 bars, vaporized in the cold part of the heat exchange line. by condensing compressed air, warmed to room temperature, and recovered as a product via a pipe 30.

De l'oxygène liquide est en outre soutiré de la cuve de la colonne 9 et, après sous-refroidissement en 11 et détente à la pression atmosphérique en 24, envoyé dans le stockage d'oxygène liquide 13.Liquid oxygen is also withdrawn from the tank of the column 9 and, after sub-cooling in 11 and expansion to atmospheric pressure in 24, sent to the liquid oxygen storage 13.

La cuve de la colonne 10 est couplée à un niveau intermédiaire de la colonne 9 par deux conduites d'alimentation 31 et de retour 32, et cette colonne 10 produit de l'argon impur via une conduite 33.The tank of column 10 is coupled to an intermediate level of column 9 by two supply and return pipes 31, and this column 10 produces impure argon via a pipe 33.

L'installation de la Figure 2 ne diffère de celle de la Figure 1 que par les points suivants.The installation in Figure 2 differs from that in Figure 1 only in the following points.

D'une part, l'installation ne comporte pas de colonne auxiliaire 10, de sorte que la totalité de l'air liquéfié dans la ligne d'échange thermique est, après sous-refroidissement en 11 puis détente en 20, injecté dans la simple colonne 9.On the one hand, the installation does not include an auxiliary column 10, so that all of the liquefied air in the heat exchange line is, after sub-cooling in 11 then expansion in 20, injected into the simple column 9.

D'autre part, le circuit d'air entrant comporte deux soufflantes 4 et 4A en série, avec leurs réfrigérants à air ou à eau respectifs 6 et 6A, et deux turbines de détente d'air 5 et 5A, couplées respectivement aux deux soufflantes.On the other hand, the incoming air circuit comprises two blowers 4 and 4A in series, with their respective air or water coolers 6 and 6A, and two air expansion turbines 5 and 5A, respectively coupled to the two blowers .

Dans cette variante, 30 à 40% du débit d'air entrant sont introduits au bout chaud de la ligne d'échange thermique 7 sans surpression, refroidis jusqu'à une première température intermédiaire T1, sortis de la ligne d'échange, turbinés en 5 sensiblement jusqu'à la pression de la colonne 9, réintroduits dans la ligne d'échange, et refroidis jusqu'au bout froid de celle-ci, d'où ils sortent via une conduite 31.In this variant, 30 to 40% of the incoming air flow is introduced at the hot end of the heat exchange line 7 without overpressure, cooled to a first intermediate temperature T1, out of the exchange line, turbinated in 5 substantially up to the pressure of column 9, reintroduced into the exchange line, and cooled to the cold end of the latter, from which they exit via a pipe 31.

Les 60 à 70% restant de l'air entrant sont surpressés en 4 puis en 4A, jusqu'à une pression de l'ordre de 6,5 à 13 bars, puis introduits au bout chaud de la ligne d'échange. Ils sont refroidis jusqu'à une seconde température intermédiaire T2 inférieure à T1, température à laquelle 60 à 70% de ce débit sont sortis de la ligne d'échange et turbinés en 5A, d'où ils sortent sensiblement à la pression de la colonne 9 via une conduite 32.The remaining 60 to 70% of the incoming air is boosted in 4 and then in 4A, to a pressure of the order of 6.5 to 13 bars, then introduced at the hot end of the exchange line. They are cooled to a second intermediate temperature T2 lower than T1, a temperature at which 60 to 70% of this flow is taken out of the exchange line and turbinated in 5A, from where they come out substantially at the pressure of the column 9 via line 32.

Les conduites 31, 32 se rejoignent en une conduite 33. L'air véhiculé par cette dernière est de nouveau refroidi en 11 puis injecté dans la colonne, comme précédemment, via la conduite 25.The pipes 31, 32 meet in a pipe 33. The air conveyed by the latter is again cooled at 11 and then injected into the column, as before, via the pipe 25.

L'air surpressé non turbiné en 5A poursuit son refroidissement dans la partie froide de la ligne d'échange, où il est liquéfié par vaporisation d'oxygène liquide et d'azote liquide haute pression comme précédemment.The 5A non-turbined pressurized air continues to cool in the cold part of the exchange line, where it is liquefied by vaporization of liquid oxygen and high pressure liquid nitrogen as before.

Enfin, un débit d'azote gazeux haute pression du cycle à azote est sorti de la ligne d'échange à une température intermédiaire, détendu à la basse pression du cycle, qui est sensiblement la pression de la colonne 9, dans une turbine 34 munie d'un frein 35, et réinjecté dans la conduite d'azote basse pression du cycle au bout froid de la ligne d'échange.Finally, a flow of high pressure nitrogen gas from the nitrogen cycle left the exchange line at an intermediate temperature, expanded at the low pressure of the cycle, which is substantially the pressure of column 9, in a turbine 34 provided a brake 35, and reinjected into the low pressure nitrogen pipe of the cycle at the cold end of the exchange line.

La présence des deux turbines d'air 5 et 5A améliore les performances de l'installation, tandis que la turbine d'azote 34 permet d'augmenter sa production de liquide (oxygène liquide et/ou azote liquide).The presence of the two air turbines 5 and 5A improves the performance of the installation, while the nitrogen turbine 34 increases its production of liquid (liquid oxygen and / or liquid nitrogen).

Claims (12)

  1. Process for producing gaseous oxygen and/or nitrogen under pressure and at least one liquid product by means of an installation comprising a single air distillation column (9) provided with a cooling cycle using nitrogen, wherein the air to be treated is compressed (in 1) to a first pressure at least equal to the pressure of the single column; at least part of the air is compressed (in 4; 4, 4A) to a high pressure markedly greater than the pressure of the single column, characterized in that :
    - a fraction of this air is condensed (in 7) by vaporizing oxygen withdrawn from the vessel of the column and/or liquid nitrogen withdrawn from a vaporizer (18) in the vessel of the column and brought by pumping (in 14, 15) to the corresponding vaporization pressure, and the resulting gaseous oxygen and/or nitrogen is/are recovered (in 30, 28) under pressure as a product or products;
    - the air thus condensed is sub-cooled (in 11), is expanded to approximately the column pressure (in 20, 21), and at least part is introduced at an intermediate level of the column;
    - the air not used to vaporize the liquid air and/or nitrogen is expanded to the column pressure, with production of external work (5, 5A) ;
    - at least one liquid product is withdrawn from the installation and is recovered as a product.
  2. Process according to claim 1, characterized in that part of the condensed air is used and expanded (in 21) to cool a head condenser (19) of a column for producing impure argon (10) coupled to the single column (9), and the gaseous air coming from this condenser is returned to the single column.
  3. Process according to either of claims 1 or 2, characterized in that the said expansion with production of external work (5, 5A) comprises expansion of the non-compressed air in a first turbine (5), and the expansion of a fraction of the compressed air in a second turbine (5A).
  4. Process according to claim 3, characterized in that the second turbine (5A) has an intake temperature less than that of the first turbine (5).
  5. Process according to any one of claims 1 to 4, characterized in that in addition part of the nitrogen at the high pressure of the cycle is expanded to approximately the pressure of the single column (9), with production of external work (in 34).
  6. Process according to any one of claims 1 to 5, characterized in that the pressure of the single column (9) is markedly greater than atmospheric pressure.
  7. Installation for the production of gaseous oxygen and/or nitrogen under pressure and at least one liquid product by means of a single air distillation column (9) provided with a cooling cycle using nitrogen with a compressor (16), comprising a principal compressor (1) compressing the air to be treated to a first pressure at least equal to the pressure of the single column; means (4; 4, 4A) for compressing at least part of the air to a high pressure markedly greater than the pressure of the single column, characterized in that it comprises :
    - at least one pump (14, 15) withdrawing liquid oxygen from the vessel of the column and/or liquid nitrogen from the vessel vaporizer (18) of the column and forcing it into a heat exchanger (7) capable of vaporizing this liquid or these liquids by condensing the compressed air;
    - means (30, 28) for recovering the resulting gaseous oxygen and/or nitrogen under pressure, as a product or products;
    - means (11) for sub-cooling the compressed condensed air and for introducing at least part at an intermediate level of the column;
    - at least one turbine (5; 5, 5A) for expanding the air not used for vaporizing the liquid air and/or nitrogen to approximately the pressure of the column; and means (12, 13) for withdrawing at least one liquid product from the installation and for recovering it as a product.
  8. Installation according to claim 7, characterized in that it comprises in addition a column (10) for producing impure argon coupled to the single column (9) and provided with a head condenser (19), means for feeding this condenser with part of the sub-cooled compressed air, and means for returning gaseous air coming from this condenser into the simple column.
  9. Installation according to claim 7 or 8, characterized in that it comprises a first turbine (5) for expanding at least a fraction of the non-compressed air, and a second turbine (5A) for expanding a fraction of the compressed air.
  10. Installation according to claim 9, characterized in that the second turbine (5A) has an intake temperature less than that of the first turbine (5).
  11. Installation according to any one of claims 7 to 10, characterized in that it comprises in addition a third turbine (34) for expanding part of the nitrogen at the high pressure of the cycle to approximately the pressure of the single column (9).
  12. Installation according to any one of claims 8 to 11, characterized in that the principal compressor (1) and the compressor (16) of the cooling cycle using nitrogen consist of a single machine.
EP93402907A 1993-01-05 1993-12-01 Air distillation process and plant for producing at least a high pressure gaseous product and at least a liquid Revoked EP0606027B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9300035 1993-01-05
FR9300035A FR2700205B1 (en) 1993-01-05 1993-01-05 Method and installation for producing at least one gaseous product under pressure and at least one liquid by air distillation.

Publications (2)

Publication Number Publication Date
EP0606027A1 EP0606027A1 (en) 1994-07-13
EP0606027B1 true EP0606027B1 (en) 1996-10-09

Family

ID=9442829

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93402907A Revoked EP0606027B1 (en) 1993-01-05 1993-12-01 Air distillation process and plant for producing at least a high pressure gaseous product and at least a liquid

Country Status (8)

Country Link
US (1) US5428962A (en)
EP (1) EP0606027B1 (en)
JP (1) JPH06241649A (en)
CN (1) CN1093797A (en)
CA (1) CA2112831A1 (en)
DE (1) DE69305317T2 (en)
ES (1) ES2093946T3 (en)
FR (1) FR2700205B1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5655388A (en) * 1995-07-27 1997-08-12 Praxair Technology, Inc. Cryogenic rectification system for producing high pressure gaseous oxygen and liquid product
GB9515907D0 (en) * 1995-08-03 1995-10-04 Boc Group Plc Air separation
US5689975A (en) * 1995-10-11 1997-11-25 The Boc Group Plc Air separation
GB9618577D0 (en) * 1996-09-05 1996-10-16 Boc Group Plc Air separation
GB9618576D0 (en) * 1996-09-05 1996-10-16 Boc Group Plc Air separation
GB9619718D0 (en) * 1996-09-20 1996-11-06 Boc Group Plc Air separation
GB9619717D0 (en) * 1996-09-20 1996-11-06 Boc Group Plc Air separation
FR2767317B1 (en) * 1997-08-14 1999-09-10 Air Liquide PROCESS FOR CONVERTING A FLOW CONTAINING HYDROCARBONS BY PARTIAL OXIDATION
GB9717349D0 (en) * 1997-08-15 1997-10-22 Boc Group Plc Air separation plant
US5987918A (en) * 1998-03-17 1999-11-23 The Boc Group, Inc. Method of separating nitrogen from air
JP4577977B2 (en) * 2000-11-14 2010-11-10 大陽日酸株式会社 Air liquefaction separation method and apparatus
JP4520668B2 (en) * 2001-07-17 2010-08-11 大陽日酸株式会社 Air separation method and apparatus
JP2004099293A (en) * 2002-09-12 2004-04-02 Matsushita Electric Ind Co Ltd Image forming device
EP2185879A1 (en) * 2007-08-10 2010-05-19 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Process and apparatus for the separation of air by cryogenic distillation
US20110197630A1 (en) * 2007-08-10 2011-08-18 L'air Liquide, Societe Anonyme Pour L'etude Et L'e Xploitation Des Procedes Georges Claude Process and Apparatus for the Separation of Air by Cryogenic Distillation
DE102009048456A1 (en) * 2009-09-21 2011-03-31 Linde Aktiengesellschaft Method and apparatus for the cryogenic separation of air
DE102011109781A1 (en) 2010-08-13 2012-03-08 Linde Aktiengesellschaft Method for obtaining compressed oxygen and compressed nitrogen for nitrogen-oxygen separation, involves reverting partially liquefied intermediate pressure-circular nitrogen flow into column-system for nitrogen-oxygen separation
US20130000352A1 (en) * 2011-06-30 2013-01-03 General Electric Company Air separation unit and systems incorporating the same
CN102322727A (en) * 2011-09-08 2012-01-18 罗良宜 Air energy air liquefaction separation device
US20220099364A1 (en) * 2020-09-29 2022-03-31 L'Air Liquide, Société Anonyme pour l'Etude et I'Exploitation des Procédés Georges Claude Offshore liquefaction process without compression

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3610973A1 (en) * 1986-04-02 1987-10-08 Linde Ag METHOD AND DEVICE FOR PRODUCING NITROGEN
DE3871220D1 (en) * 1987-04-07 1992-06-25 Boc Group Plc AIR SEPARATION.
FR2651035A1 (en) * 1989-08-18 1991-02-22 Air Liquide PROCESS FOR THE PRODUCTION OF NITROGEN BY DISTILLATION
CA2058883A1 (en) * 1991-01-15 1992-07-16 Divyanshu Rasiklal Acharya Air separation

Also Published As

Publication number Publication date
DE69305317D1 (en) 1996-11-14
CN1093797A (en) 1994-10-19
JPH06241649A (en) 1994-09-02
EP0606027A1 (en) 1994-07-13
US5428962A (en) 1995-07-04
ES2093946T3 (en) 1997-01-01
CA2112831A1 (en) 1994-07-06
FR2700205B1 (en) 1995-02-10
FR2700205A1 (en) 1994-07-08
DE69305317T2 (en) 1997-04-03

Similar Documents

Publication Publication Date Title
EP0606027B1 (en) Air distillation process and plant for producing at least a high pressure gaseous product and at least a liquid
EP0689019B1 (en) Process and apparatus for producing gaseous oxygen under pressure
EP0504029B1 (en) Process for the production of gaseous pressurised oxygen
EP0420725B1 (en) Refrigeration production process, the refrigeration cycle used and application in the distillation of air
EP0576314B1 (en) Process and installation for the production of gaseous oxygen under pressure
EP0628778B2 (en) Process and high pressure gas supply unit for an air constituent consuming installation
JP4728219B2 (en) Method and system for producing pressurized air gas by cryogenic distillation of air
US20140260422A1 (en) Low Temperature Air Separation Process for Producing Pressurized Gaseous Product
EP1014020B1 (en) Cryogenic process for separating air gases
JP2009509120A (en) Method and apparatus for separating air by cryogenic distillation.
EP0618415B1 (en) Process and installation for the production of gaseous oxygen and/or gaseous nitrogen under pressure by distillation of air
EP0694746B1 (en) Process for the production of a gas under pressure in variable quantities
FR2690982A1 (en) Impure oxygen@ large amt. prodn. avoiding large dia. low pressure column - by distn. of air using a double distn. column with medium and low pressure columns, avoiding extra distn. column mfr., utilising purificn. device, compressor and turbine
JP3256250B2 (en) Air rectification method and equipment for producing variable amounts of gaseous oxygen
FR3066809A1 (en) METHOD AND APPARATUS FOR SEPARATING AIR BY CRYOGENIC DISTILLATION
FR2711778A1 (en) Method and installation for producing oxygen and/or nitrogen under pressure
EP0641983B1 (en) Process and installation for the production of gaseous oxygen and/or nitrogen under pressure
EP0677713B1 (en) Process and installation for the production of oxygen by distillation of air
EP0641982B1 (en) Process and installation for the production of at least a gas from air under pressure
EP0612967B1 (en) Process for the production of oxygen and/or nitrogen under pressure
EP0611218B2 (en) Process and installation for producing oxygen under pressure
EP0869322A1 (en) Process and plant for air separation by cryogenic distillation
FR2685460A1 (en) Method and installation for producing gaseous oxygen under pressure by distillation of air

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19931207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 19950922

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960927

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

REF Corresponds to:

Ref document number: 69305317

Country of ref document: DE

Date of ref document: 19961114

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2093946

Country of ref document: ES

Kind code of ref document: T3

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: LINDE AKTIENGESELLSCHAFT

Effective date: 19970707

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAE Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOS REFNO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20001113

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20001120

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20001122

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20001212

Year of fee payment: 8

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20001219

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 20001219

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO