EP0420725B1 - Refrigeration production process, the refrigeration cycle used and application in the distillation of air - Google Patents

Refrigeration production process, the refrigeration cycle used and application in the distillation of air Download PDF

Info

Publication number
EP0420725B1
EP0420725B1 EP90402594A EP90402594A EP0420725B1 EP 0420725 B1 EP0420725 B1 EP 0420725B1 EP 90402594 A EP90402594 A EP 90402594A EP 90402594 A EP90402594 A EP 90402594A EP 0420725 B1 EP0420725 B1 EP 0420725B1
Authority
EP
European Patent Office
Prior art keywords
pressure
air
turbine
pressure turbine
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90402594A
Other languages
German (de)
French (fr)
Other versions
EP0420725A1 (en
Inventor
Odile Guilleminot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP0420725A1 publication Critical patent/EP0420725A1/en
Application granted granted Critical
Publication of EP0420725B1 publication Critical patent/EP0420725B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • F25J1/0015Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/004Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/10Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point with several cooling stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • F25J1/0037Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • F25J1/0202Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration in a quasi-closed internal refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0288Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04175Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04181Regenerating the adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/40Air or oxygen enriched air, i.e. generally less than 30mol% of O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/40Processes or apparatus involving steps for recycling of process streams the recycled stream being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • F25J2270/06Internal refrigeration with work-producing gas expansion loop with multiple gas expansion loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/34Details about subcooling of liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/939Partial feed stream expansion, air
    • Y10S62/94High pressure column

Definitions

  • the present invention relates to refrigeration production. It applies in particular to the liquefaction of air gases and to air distillation installations, and it relates in the first place to a method of refrigeration production by expansion of a pressurized fluid at a first temperature in a first turbine known as high pressure turbine, then expansion of part of the fluid from this high pressure turbine in a second turbine known as low pressure turbine. Such a method is described, for example, in document US-A-4522636.
  • the object of the invention is to provide a method making it possible to improve the heat exchange relationships and to better adapt the refrigeration production to requirements.
  • the invention relates to a method of the aforementioned type, characterized in that the part of the fluid from the high pressure turbine is heated to a second temperature above the first temperature before being admitted to the low pressure turbine.
  • This refrigeration cycle intended for the implementation of such a process.
  • This refrigeration cycle of the type comprising a circuit for circulating a cycle fluid, a cycle compressor, a first turbine called a high pressure turbine, and a second turbine called a low pressure turbine, the circuit comprising means for passing at least part of the cycle fluid compressed by the compressor, after cooling to a first temperature in the high pressure turbine, and means for passing at least part of the fluid leaving this turbine in the low pressure turbine, is characterized in that it comprises means for heating said part leaving the high pressure turbine to a second temperature higher than the first temperature before its admission into the low pressure turbine.
  • the document EP-A-0.316.768 describes a refrigeration production process for the distillation of air in which a working fluid, compressed at medium pressure by a main compressor, part of the medium pressure fluid is expanded in a first turbine , another part of the medium-pressure fluid is supercharged by two compressors in series and expanded in a high-pressure turbine, the two turbines serving to actuate the compressors of the double-stage overpressure line, the fluid leaving the turbine low pressure and a part of the expanded fluid leaving the high pressure turbine being recycled to the main compressor.
  • the air distillation installation shown in FIG. 1 is intended to produce oxygen and nitrogen in liquid form. It comprises a double distillation column 1 itself comprising a medium pressure column 2 operating at around 6 bar absolute, surmounted by a low pressure column 3 operating slightly above atmospheric pressure.
  • the overhead gas (nitrogen) from column 2 is in an indirect heat exchange relationship with the tank liquid (oxygen) from column 3 by means of a vaporizer-condenser 4.
  • the installation also includes a heat exchange line 5 with countercurrent circulation of the fluids placed in heat exchange relationship, and two turbine-booster assemblies 6 and 7.
  • the assembly 6 includes a booster or booster 8 and a "hot" low pressure turbine 9 mounted on the same shaft 10
  • the assembly 7 includes a booster or booster 11 and a cold high pressure turbine 12 mounted on the same shaft 13.
  • the two boosters 8 and 11 are mounted in series.
  • the air to be separated, compressed to 20 bars and purified of water and CO2 is boosted to 30 bars by the assembly of the first booster 8 and the second booster 11, then is cooled to a temperature T1, for example of around - 125 ° C, in passages 14 of the exchange line 5.
  • a part, for example about a quarter, of this air continues to cool down to the cold end of the exchange line, in the same passages 14, from which it emerges liquefied, then, via a line 15, is expanded to 6 bars in an expansion valve 16 and is injected into the bottom of the column 2.
  • all or part of this liquid can be expanded at low pressure and injected into column 3.
  • the rest of the air at 30 bars is exited from the exchange line 5 by a pipe 17 and expanded to 6 bars in the turbine 12, from which it emerges near its dew point.
  • This temperature T2 can for example be between ambient temperature and approximately -30 ° C.
  • the air thus heated is taken out of the exchange line via a line 20 and expanded to the vicinity of atmospheric pressure in the turbine 9, from which it leaves at a temperature close to T1. It is then reintroduced into the exchange line via a line 21, warmed up to room temperature in passages 22 and discharged from the installation, after having possibly served for the regeneration of the adsorbent used for purifying the incoming air and / or for cooling the air leaving the main compressor (not shown) of the 'installation.
  • all or part of the air from the turbine 9 can be cooled to the cold end of the exchange line in passages 23 and then blown into the low pressure column 3, or even be mixed with impure nitrogen , constituting the residual of the double column, being reheated in passages 24 of the exchange line.
  • the rich liquid LR oxygen-enriched air collected in the tank of column 2 is sent to column 3, after sub-cooling in a sub-cooler 25 by vaporization of liquid oxygen withdrawn from the tank of column 3, filtered into 25A and returned to column 3, then expanded in an expansion valve 26, and lean liquid LP consisting essentially of nitrogen, drawn off at the top of column 2, is also sent to column 3 after sub-cooling in a sub-cooler 27 then expanded in an expansion valve 28.
  • the installation produces on the one hand liquid nitrogen, taken off at the top of column 2 via a pipe 29, sub-cooled in the sub-cooler 27, expanded in the vicinity of atmospheric pressure in an expansion valve 30 and stored in a tank 31, and on the other hand liquid oxygen, taken from the tank of column 3 via a driving 32 and so us-cooled in the sub-cooler 27.
  • the latter is cooled by the impure nitrogen drawn off at the head of column 3 via a line 33 and then sent to passages 24 of the exchange line.
  • the nitrogen gas formed in the reservoir 31 is returned to the pipe 33 via a pipe 34.
  • FIG. 1 It follows from the above considerations that the installation of FIG. 1 leads to a specific reduced liquefaction energy. It is also noted that the medium-pressure air conveyed through line 18 can without drawback be in the vicinity of its dew point, which is favorable for distillation in the double column.
  • the cycle nitrogen discharged by the compressor 37 is boosted to 50 bars by all of the boosters 8A and 11A and introduced into passages 14A of the exchange line. Part of this nitrogen continues to cool down to the cold end of the exchange line, is expanded to medium pressure (6 bars) in an expansion valve 16A and separated into two liquid and vapor phases in a separator pot 38.
  • the vapor phase is warmed up to room temperature in passages 19A of the exchange line, and the liquid phase is sub-cooled in a sub-cooler 39.
  • a part of this sub-cooled liquid is expanded to about 1 bar in an expansion valve 40, vaporized in the sub-cooler 39 against the flow of the liquid, then warmed up to room temperature in passages 24A of the exchange line.
  • the rest of the sub-cooled liquid constitutes the production of liquid nitrogen, drawn off via a pipe 41.
  • the order of magnitude of the difference T2 - T1 is at least equal to half of the temperature drop supplied by a turbine.
  • the hot part of the exchange line 5 or 5A can optionally be cooled down to approximately -40 ° C. by an auxiliary ammonia or "Freon" refrigeration unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

La présente invention est relative à la production frigorifique. Elle s'applique en particulier à la liquéfaction des gaz de l'air et aux installations de distillation d'air, et elle concerne en premier lieu un procédé de production frigorifique par détente d'un fluide sous pression à une première température dans une première turbine dite turbine haute pression, puis détente d'une partie du fluide issu de cette turbine haute pression dans une seconde turbine dite turbine basse pression. Un tel procédé est décrit p.ex. dans le document US-A-4522636.The present invention relates to refrigeration production. It applies in particular to the liquefaction of air gases and to air distillation installations, and it relates in the first place to a method of refrigeration production by expansion of a pressurized fluid at a first temperature in a first turbine known as high pressure turbine, then expansion of part of the fluid from this high pressure turbine in a second turbine known as low pressure turbine. Such a method is described, for example, in document US-A-4522636.

Dans les procédés connus de ce type, la turbine haute pression est la turbine "chaude", c'est-à-dire que sa température d'admission est supérieure à celle de la turbine basse pression. Un tel agencement présente certains inconvénients :

  • le fait de limiter à la température d'admission de la turbine chaude le refroidissement de la totalité du fluide entrant est défavorable à l'échange thermique ;
  • la turbine "froide" traite un débit de fluide réduit, alors qu'elle produit encore moins de froid par unité de débit de fluide et que c'est dans la zone froide que la quantité de froid la plus importante est nécessaire lorsqu'il s'agit de liquéfier un gaz de plus, c'est également dans cette zone froide que les pertes thermiques sont les plus importantes.
In known methods of this type, the high pressure turbine is the "hot" turbine, that is to say that its inlet temperature is higher than that of the low pressure turbine. Such an arrangement has certain drawbacks:
  • limiting the cooling of the entire incoming fluid to the inlet temperature of the hot turbine is unfavorable to heat exchange;
  • the "cold" turbine processes a reduced fluid flow, while it produces even less cold per unit of fluid flow and it is in the cold zone that the greatest amount of cold is required when 'is to liquefy one more gas, it is also in this cold zone that heat losses are greatest.

L'invention a pour but de fournir un procédé permettant d'améliorer les relations d'échange thermique et de mieux adapter la production frigorifique aux besoins.The object of the invention is to provide a method making it possible to improve the heat exchange relationships and to better adapt the refrigeration production to requirements.

A cet effet, l'invention a pour objet un procédé du type précité, caractérisé en ce que la partie du fluide issu de la turbine haute pression est réchauffée à une seconde température supérieure à la première température avant son admission dans la turbine basse pression.To this end, the invention relates to a method of the aforementioned type, characterized in that the part of the fluid from the high pressure turbine is heated to a second temperature above the first temperature before being admitted to the low pressure turbine.

Un autre objet de l'invention est un cycle frigorifique destiné à la mise en oeuvre d'un tel procédé. Ce cycle frigorifique, du type comprenant un circuit de circulation d'un fluide de cycle, un compresseur de cycle, une première turbine dite turbine haute pression, et une seconde turbine dite turbine basse pression, le circuit comprenant des moyens pour faire passer au moins une partie du fluide de cycle comprimé par le compresseur, après refroidissement jusqu'à une première température dans la turbine haute pression, et des moyens pour faire passer au moins une partie du fluide sortant de cette turbine dans la turbine basse pression, est caractérisé en ce qu'il comporte des moyens pour réchauffer ladite partie sortant de la turbine haute pression à une deuxième température supérieure à la première température avant son admission dans la turbine basse pression.Another object of the invention is a refrigeration cycle intended for the implementation of such a process. This refrigeration cycle, of the type comprising a circuit for circulating a cycle fluid, a cycle compressor, a first turbine called a high pressure turbine, and a second turbine called a low pressure turbine, the circuit comprising means for passing at least part of the cycle fluid compressed by the compressor, after cooling to a first temperature in the high pressure turbine, and means for passing at least part of the fluid leaving this turbine in the low pressure turbine, is characterized in that it comprises means for heating said part leaving the high pressure turbine to a second temperature higher than the first temperature before its admission into the low pressure turbine.

Dans ses applications à la distillation d'air, l'invention a également pour objet :

  • un procédé de distillation d'air, du type dans lequel de l'air comprimé est refroidi et détendu à une moyenne pression dans une première turbine dite turbine haute pression, et une partie de l'air ainsi détendu est envoyée dans une double colonne de distillation tandis que le reste de l'air ainsi détendu est de nouveau détendu jusqu'au voisinage de la pression atmosphérique dans une seconde turbine dite turbine basse pression, caractérisée en ce que ledit reste de l'air issu de la turbine haute pression est réchauffé à une seconde température supérieure à la première température avant son admission dans la turbine basse pression ; et
  • une installation de distillation d'air, du type comprenant une double colonne de distillation d'air et un cycle frigorifique, caractérisée en ce que le cycle frigorifique est tel que défini ci-dessus, le fluide de cycle étant l'air à séparer, l'installation comprenant des moyens pour refroidir une partie de l'air entrant jusqu'au voisinage de son point de rosée, le détendre dans une vanne de détente et l'envoyer à la double colonne, et des moyens pour envoyer à cette double colonne une partie de l'air issu de la turbine haute pression.
In its applications for air distillation, the invention also relates to:
  • an air distillation process, of the type in which compressed air is cooled and expanded to a medium pressure in a first turbine called a high pressure turbine, and a part of the air thus expanded is sent to a double column of distillation while the rest of the air thus expanded is again expanded to near atmospheric pressure in a second turbine called a low pressure turbine, characterized in that said rest of the air from the high pressure turbine is heated at a second temperature higher than the first temperature before being admitted to the low pressure turbine; and
  • an air distillation installation, of the type comprising a double air distillation column and a refrigeration cycle, characterized in that the refrigeration cycle is as defined above, the cycle fluid being the air to be separated, the installation comprising means for cooling part of the air entering to the vicinity of its dew point, relaxing it in an expansion valve and sending it to the double column, and means for sending to this double column part of the air from the high pressure turbine.

Le document EP-A-0.316.768 décrit un procédé de production frigorifique pour la distillation d'air dans lequel un fluide de travail, comprimé à moyenne pression par un compresseur principal, une partie du fluide à moyenne pression est détendue dans une première turbine, une autre partie du fluide à moyenne pression est surpressée par deux compresseurs en série et détendue dans une turbine haute pression, les deux turbines servant à l'actionnement des compresseurs de la ligne de surpression à double étage, le fluide en sortie de la turbine basse pression et une partie du fluide détendue en sortie de la turbine haute pression étant recyclés vers le compresseur principal.The document EP-A-0.316.768 describes a refrigeration production process for the distillation of air in which a working fluid, compressed at medium pressure by a main compressor, part of the medium pressure fluid is expanded in a first turbine , another part of the medium-pressure fluid is supercharged by two compressors in series and expanded in a high-pressure turbine, the two turbines serving to actuate the compressors of the double-stage overpressure line, the fluid leaving the turbine low pressure and a part of the expanded fluid leaving the high pressure turbine being recycled to the main compressor.

Des exemples de mise en oeuvre de l'invention vont maintenant être décrits en regard des dessins annexés, sur lesquels :

  • la Fig. 1 est une vue schématique d'une installation de distillation d'air conforme à l'invention ;
  • la Fig. 2 est un diagramme d'échange thermique correspondant à cette installation ; et
  • la Fig. 3 est une vue schématique d'un cycle de liquéfaction conforme à l'invention.
Examples of implementation of the invention will now be described with reference to the accompanying drawings, in which:
  • Fig. 1 is a schematic view of an air distillation installation according to the invention;
  • Fig. 2 is a heat exchange diagram corresponding to this installation; and
  • Fig. 3 is a schematic view of a liquefaction cycle according to the invention.

L'installation de distillation d'air représentée à la Fig. 1 est destinée à produire de l'oxygène et de l'azote sous forme liquide. Elle comprend une double colonne de distillation 1 comprenant elle-même une colonne moyenne pression 2 fonctionnant vers 6 bars absolus, surmontée d'une colonne basse pression 3 fonctionnant un peu au-dessus de la pression atmosphérique. Le gaz de tête (azote) de la colonne 2 est en relation d'échange thermique indirect avec le liquide de cuve (oxygène) de la colonne 3 au moyen d'un vaporiseur-condenseur 4.The air distillation installation shown in FIG. 1 is intended to produce oxygen and nitrogen in liquid form. It comprises a double distillation column 1 itself comprising a medium pressure column 2 operating at around 6 bar absolute, surmounted by a low pressure column 3 operating slightly above atmospheric pressure. The overhead gas (nitrogen) from column 2 is in an indirect heat exchange relationship with the tank liquid (oxygen) from column 3 by means of a vaporizer-condenser 4.

L'installation comprend également une ligne d'échange thermique 5 à circulation à contre-courant des fluides mis en relation d'échange thermique, et deux ensembles turbine-booster 6 et 7. L'ensemble 6 comprend un booster ou surpresseur 8 et une turbine basse pression "chaude" 9 montée sur le même arbre 10, et l'ensemble 7 comprend un booster ou surpresseur 11 et une turbine hauts pression froide 12 montée sur le même arbre 13. Les deux boosters 8 et 11 sont montés en série.The installation also includes a heat exchange line 5 with countercurrent circulation of the fluids placed in heat exchange relationship, and two turbine-booster assemblies 6 and 7. The assembly 6 includes a booster or booster 8 and a "hot" low pressure turbine 9 mounted on the same shaft 10, and the assembly 7 includes a booster or booster 11 and a cold high pressure turbine 12 mounted on the same shaft 13. The two boosters 8 and 11 are mounted in series.

L'air à séparer, comprimé vers 20 bars et épuré en eau et en CO₂, est surpressé vers 30 bars par l'ensemble du premier booster 8 et du deuxième booster 11, puis est refroidi jusqu'à une température T1, par exemple de l'ordre de - 125°C, dans des passages 14 de la ligne d'échange 5. Une partie, par exemple environ le quart, de cet air poursuit son refroidissement jusqu'au bout froid de la ligne d'échange, dans les mêmes passages 14, d'où il ressort liquéfié, puis, via une conduite 15, est détendu à 6 bars dans une vanne de détente 16 et est injecté dans le bas de la colonne 2. En variante, tout ou partie de ce liquide peut être détendu à la basse pression et injecté dans la colonne 3. Le reste de l'air à 30 bars est sorti de la ligne d'échange 5 par une conduite 17 et détendu à 6 bars dans la turbine 12, d'où il ressort au voisinage de son point de rosée.The air to be separated, compressed to 20 bars and purified of water and CO₂, is boosted to 30 bars by the assembly of the first booster 8 and the second booster 11, then is cooled to a temperature T1, for example of around - 125 ° C, in passages 14 of the exchange line 5. A part, for example about a quarter, of this air continues to cool down to the cold end of the exchange line, in the same passages 14, from which it emerges liquefied, then, via a line 15, is expanded to 6 bars in an expansion valve 16 and is injected into the bottom of the column 2. As a variant, all or part of this liquid can be expanded at low pressure and injected into column 3. The rest of the air at 30 bars is exited from the exchange line 5 by a pipe 17 and expanded to 6 bars in the turbine 12, from which it emerges near its dew point.

Une partie de l'air issu de la turbine 12, correspondant par exemple à la moitié environ du débit d'air initial, est envoyé en cuve de la colonne 2, via une conduite 18, et le reste est réchauffé dans des passages 19 de la ligne d'échange, du bout froid de celle-ci à une températures T2 nettement supérieure à T1. Cette température T2 peut par exemple être comprise entre la température ambiante et - 30°C environ.Part of the air from the turbine 12, corresponding for example to about half of the initial air flow, is sent to the tank of the column 2, via a pipe 18, and the rest is heated in passages 19 of the exchange line, from the cold end of the latter at a temperature T2 significantly higher than T1. This temperature T2 can for example be between ambient temperature and approximately -30 ° C.

L'air ainsi réchauffé est sorti de la ligne d'échange via une conduite 20 et détendu jusqu'au voisinage de la pression atmosphérique dans la turbine 9, d'où il sort à une température voisine de T1. Il est alors réintroduit dans la ligne d'échange via une conduite 21, réchauffé jusqu'à la température ambiante dans des passages 22 et évacué de l'installation, après avoir éventuellement servi à la régénération de l'adsorbant utilisé pour l'épuration de l'air entrant et/ou à refroidir l'air sortant du compresseur principal (non représenté) de l'installation.The air thus heated is taken out of the exchange line via a line 20 and expanded to the vicinity of atmospheric pressure in the turbine 9, from which it leaves at a temperature close to T1. It is then reintroduced into the exchange line via a line 21, warmed up to room temperature in passages 22 and discharged from the installation, after having possibly served for the regeneration of the adsorbent used for purifying the incoming air and / or for cooling the air leaving the main compressor (not shown) of the 'installation.

En variante, comme représenté en trait mixte à la Fig. 1, tout ou partie de l'air issu de la turbine 9 peut être refroidi jusqu'au bout froid de la ligne d'échange dans des passages 23 puis insufflé dans la colonne basse pression 3, ou encore être mélangé à l'azote impur, constituant le résiduaire de la double colonne, en cours de réchauffement dans des passages 24 de la ligne d'échange.Alternatively, as shown in phantom in FIG. 1, all or part of the air from the turbine 9 can be cooled to the cold end of the exchange line in passages 23 and then blown into the low pressure column 3, or even be mixed with impure nitrogen , constituting the residual of the double column, being reheated in passages 24 of the exchange line.

Le reste de l'installation est classique : le liquide riche LR (air enrichi en oxygène) recueilli en cuve de la colonne 2 est envoyé dans la colonne 3, après sous-refroidissement dans un sous-refroidisseur 25 par vaporisation d'oxygène liquide soutiré de la cuve de la colonne 3, filtré en 25A et renvoyé dans la colonne 3, puis détendu dans une vanne de détente 26, et du liquide pauvre LP constitué essentiellement d'azote, soutiré à la partie supérieure de la colonne 2, est également envoyé dans la colonne 3 après sous-refroidissement dans un sous-refroidisseur 27 puis détendu dans une vanne de détente 28. L'installation produit d'une part de l'azote liquide, prélevé en tête de la colonne 2 via une conduite 29, sous-refroidi dans le sous-refroidisseur 27, détendu au voisinage de la pression atmosphérique dans une vanne de détente 30 et stocké dans un réservoir 31, et d'autre part de l'oxygène liquide, prélevé en cuve de la colonne 3 via une conduite 32 et sous-refroidi dans le sous-refroidisseur 27. Ce dernier est refroidi par l'azote impur soutiré en tête de la colonne 3 via une conduite 33 et envoyé ensuite dans les passages 24 de la ligne d'échange. L'azote gazeux formé dans le réservoir 31 est renvoyé dans la conduite 33 via une conduite 34.The rest of the installation is conventional: the rich liquid LR (oxygen-enriched air) collected in the tank of column 2 is sent to column 3, after sub-cooling in a sub-cooler 25 by vaporization of liquid oxygen withdrawn from the tank of column 3, filtered into 25A and returned to column 3, then expanded in an expansion valve 26, and lean liquid LP consisting essentially of nitrogen, drawn off at the top of column 2, is also sent to column 3 after sub-cooling in a sub-cooler 27 then expanded in an expansion valve 28. The installation produces on the one hand liquid nitrogen, taken off at the top of column 2 via a pipe 29, sub-cooled in the sub-cooler 27, expanded in the vicinity of atmospheric pressure in an expansion valve 30 and stored in a tank 31, and on the other hand liquid oxygen, taken from the tank of column 3 via a driving 32 and so us-cooled in the sub-cooler 27. The latter is cooled by the impure nitrogen drawn off at the head of column 3 via a line 33 and then sent to passages 24 of the exchange line. The nitrogen gas formed in the reservoir 31 is returned to the pipe 33 via a pipe 34.

Grâce à la disposition des deux turbines décrite plus haut, la totalité de l'air surpressé est refroidie jusqu'à la température d'admission de la turbine froide, soit jusqu'à - 125°C dans cet exemple. Par rapport à la disposition inverse classique des deux turbines, ceci accroît l'apport frigorifique de l'air sous pression par effet Joule - Thompson dans la zone de température qui s'étend de l'admission de la turbine chaude à celle de la turbine froide.Thanks to the arrangement of the two turbines described above, all of the supercharged air is cooled to the inlet temperature of the cold turbine, that is to say -125 ° C. in this example. Compared to the conventional reverse arrangement of the two turbines, this increases the refrigeration supply of pressurized air by the Joule - Thompson effect in the temperature zone which extends from the inlet of the hot turbine to that of the turbine. cold.

Par ailleurs, en considérant la Fig. 2, où on a porté en abscisses la température en degrés C et en ordonnées l'enthalpie H, la courbe inférieure C1 représente la variation d'enthalpie de l'air en cours de refroidissement et de liquéfaction, et la courbe supérieure C2 représente la variation d'enthalpie des gaz en cours de réchauffement. On voit que :

  • la turbine froide 12 traite un fort débit d'air avec des températures d'admission et d'échappement qui encadrent la zone de liquéfaction de l'air 35, c'est-à-dire qu'elle produit beaucoup de froid malgré son fonctionnement à basse température, et de plus elle produit ce froid dans la zone de température où, précisément, beaucoup de froid est nécessaire pour liquéfier l'air et où, par ailleurs, les pertes thermiques sont maximales ; et
  • la turbine chaude 9 traite un faible débit d'air et peut recouvrir, en assurant une détente de 6 bars à 1 bar, l'essentiel de la zone de température située au-dessus de la précédente et dans laquelle le refroidissement est assuré par les turbines ;

ainsi, la turbine 9 produit peu de froid dans une zone de température étendue où, précisément, peu de froid est nécessaire, les produits en relation d'échange thermique étant gazeux, et où, par ailleurs, les pertes thermiques sont faibles.Furthermore, considering FIG. 2, where the temperature in degrees C is plotted on the abscissa and the enthalpy H is plotted on the ordinate, the lower curve C1 represents the change in enthalpy of the air during cooling and liquefaction, and the upper curve C2 represents the variation in enthalpy of gases during heating. We see that :
  • the cold turbine 12 treats a high air flow with inlet and exhaust temperatures which surround the air liquefaction zone 35, that is to say that it produces a lot of cold despite its operation at low temperature, and moreover it produces this cold in the temperature zone where, precisely, a lot of cold is necessary to liquefy the air and where, moreover, the thermal losses are maximum; and
  • the hot turbine 9 treats a low air flow and can cover, by ensuring a relaxation of 6 bars to 1 bar, most of the temperature zone located above the previous one and in which the cooling is ensured by turbines;

thus, the turbine 9 produces little cold in an extended temperature zone where, precisely, little cold is necessary, the products in heat exchange relationship being gaseous, and where, moreover, the heat losses are low.

Il résulte des considérations ci-dessus que l'installation de la Fig. 1 conduit à une énergie spécifique de liquéfaction réduite. On remarque également que l'air à moyenne pression véhiculé par la conduite 18 peut sans inconvénient se trouver au voisinage de son point de rosée, ce qui est favorable à la distillation dans la double colonne.It follows from the above considerations that the installation of FIG. 1 leads to a specific reduced liquefaction energy. It is also noted that the medium-pressure air conveyed through line 18 can without drawback be in the vicinity of its dew point, which is favorable for distillation in the double column.

L'avantage concernant l'énergie spécifique de liquéfaction se retrouve dans le cycle de liquéfaction d'azote représenté à la Fig. 3. Sur cette figure, les éléments correspondant à la Fig. 1 portent les mêmes références, affectées du suffixe A. On retrouve ainsi une ligne d'échange thermique 5A, un premier surpresseur 8A couplé à une turbine chaude basse pression 9A, et un second surpresseur 11A couplé à une turbine froide haute pression 12A, et le cycle comprend en outre deux compresseurs de cycle 36 (1 bar à 6 bars) et 37 (6 bars à 30 bars) disposés en série.The advantage concerning the specific liquefaction energy is found in the nitrogen liquefaction cycle shown in FIG. 3. In this figure, the elements corresponding to FIG. 1 bear the same references, assigned the suffix A. There is thus a heat exchange line 5A, a first booster 8A coupled to a low pressure hot turbine 9A, and a second booster 11A coupled to a high pressure cold turbine 12A, and the cycle also includes two cycle compressors 36 (1 bar to 6 bar) and 37 (6 bar to 30 bar) arranged in series.

L'azote de cycle refoulé par le compresseur 37 est surpressé à 50 bars par l'ensemble des surpresseurs 8A et 11A et introduit dans des passages 14A de la ligne d'échange. Une partie de cet azote poursuit son refroidissement jusqu'au bout froid de la ligne d'échange, est détendue à la moyenne pression (6 bars) dans une vanne de détente 16A et séparée en deux phases liquide et vapeur dans un pot séparateur 38. La phase vapeur est réchauffée jusqu'à la température ambiante dans des passages 19A de la ligne d'échange, et la phase liquide est sous-refroidie dans un sous-refroidisseur 39. Une partie de ce liquide sous-refroidi est détendue à 1 bar environ dans une vanne de détente 40, vaporisée dans le sous-refroidisseur 39 à contre-courant du liquide, puis réchauffée jusqu'à la température ambiante dans des passages 24A de la ligne d'échange. Le reste du liquide sous-refroidi constitue la production d'azote liquide, soutirée via une conduite 41.The cycle nitrogen discharged by the compressor 37 is boosted to 50 bars by all of the boosters 8A and 11A and introduced into passages 14A of the exchange line. Part of this nitrogen continues to cool down to the cold end of the exchange line, is expanded to medium pressure (6 bars) in an expansion valve 16A and separated into two liquid and vapor phases in a separator pot 38. The vapor phase is warmed up to room temperature in passages 19A of the exchange line, and the liquid phase is sub-cooled in a sub-cooler 39. A part of this sub-cooled liquid is expanded to about 1 bar in an expansion valve 40, vaporized in the sub-cooler 39 against the flow of the liquid, then warmed up to room temperature in passages 24A of the exchange line. The rest of the sub-cooled liquid constitutes the production of liquid nitrogen, drawn off via a pipe 41.

La partie non liquéfiée de l'azote haute pression est sortie de la ligne d'échange à une température T1, via une conduite 17A, détendue à la moyenne pression dans la turbine 12A et injectée dans le séparateur 38. Une partie du débit véhiculé par les passages 19A est sortie de la ligne d'échange, via une conduite 20A, à une température T2 nettement supérieure à T1, détendue à 1 bar environ dans la turbine 9A et injectée dans les passages 24A, via une conduite 21A, à une température voisine de T1. Des conduites 42 et 43 relient respectivement la sortie des passages 19A et 24A à l'aspiration des compresseurs 37 et 36. Une conduite 44 amène à l'aspiration du compresseur 36 un débit d'azote gazeux égal au débit d'azote liquide produit par la conduite 41.The non-liquefied part of the high pressure nitrogen left the exchange line at a temperature T1, via a line 17A, expanded at medium pressure in the turbine 12A and injected into the separator 38. Part of the flow conveyed by the passages 19A left the exchange line, via a line 20A, at a temperature T2 much higher than T1, expanded to around 1 bar in the turbine 9A and injected into the passages 24A, via a line 21A, at a temperature close to T1. Pipes 42 and 43 respectively connect the outlet of passages 19A and 24A to the suction of compressors 37 and 36. A pipe 44 leads to the suction of compressor 36 a flow of nitrogen gas equal to the flow of liquid nitrogen produced by driving 41.

De préférence, dans un cycle frigorifique conforme à l'invention, l'ordre de grandeur de l'écart T2 - T1 est au moins égal à la moitié de la chute de température fournie par une turbine.Preferably, in a refrigeration cycle in accordance with the invention, the order of magnitude of the difference T2 - T1 is at least equal to half of the temperature drop supplied by a turbine.

Il est à noter que la partie chaude de la ligne d'échange 5 ou 5A peut éventuellement être refroidie, jusqu'à environ - 40°C, par un groupe frigorifique auxiliaire à ammoniac ou à "Fréon".It should be noted that the hot part of the exchange line 5 or 5A can optionally be cooled down to approximately -40 ° C. by an auxiliary ammonia or "Freon" refrigeration unit.

Claims (10)

  1. A process for refrigeration production by reducing to a mean pressure a fluid under high pressure at a first temperature (T1) in a first turbine (12; 12A) known as a high-pressure turbine, then reducing to a low pressure part of the mean-pressure fluid leaving this high-pressure turbine in a second turbine (9; 9A) known as a low-pressure turbine, characterised in that said part of the mean-pressure fluid leaving the high-pressure turbine (12; 12A) is heated to a second temperature (T2), higher than the first temperature (T1) before admission into the low-pressure turbine (9, 9A).
  2. A process according to Claim 1, intended for the liquefaction of a gas, characterised in that the admission (T1) and escape temperatures of the high-pressure turbine (12; 12A) surround the temperature zone (35) in which the fluid liquefies.
  3. A process according to Claim 2, characterised in that the admission (T2) and escape temperatures of the low-pressure turbine (9; 9A) surround the main part of the temperature zone located between the temperature at the start of refrigeration provided by the turbines and the admission temperature (T1) of the high-pressure turbine (12; 12A).
  4. A process of air distillation, of the type in which air compressed at high pressure is cooled and reduced to a mean pressure in a first turbine (12) known as a high-pressure turbine, part of the air thus reduced to mean pressure is sent to a double distillation column, while the rest of this air reduced to mean pressure is further reduced to the vicinity of atmospheric pressure in a second turbine (9) known as a low-pressure turbine, characterised in that said remaining air at mean pressure leaving the high-pressure turbine (12; 12A) is reheated to a second temperature (T2) higher than the first temperature (T1) before its admission to the low-pressure turbine (9, 9A).
  5. A process according to Claim 4, characterised in that the air leaving the low-pressure turbine (9) is heated then evacuated, if appropriate after having served to cool the compressed air to be separated and/or to regenerate an adsorbent for filtering this air.
  6. A process according to Claim 4, characterised in that the air leaving the low-pressure turbine (9) is at least in part cooled then insufflated (21) into the low-pressure column (3) of the double column (1).
  7. A refrigeration cycle, of the type comprising a circulation circuit for a cycle fluid, at least one cycle compressor (36, 37), a first turbine (12; 12A) known as a high-pressure turbine and a second turbine (9; 9A) known as a low-pressure turbine, the circuit comprising means to cause at least part of the cycle fluid compressed at a high pressure by the compressor, after cooling to a first temperature (T1), to pass to the high-pressure turbine, and a circuit (19, 20) to convey at least part of the fluid, reduced to a mean pressure when leaving the high-pressure turbine, to the inlet to the low-pressure turbine, characterised in that it comprises means (5) cooperating with the mean-pressure fluid circuit (19) in order to heat said part of the mean-pressure fluid leaving the high-pressure turbine (12, 12A) to a second temperature (T2) higher than the first temperature (T1) before its admission into the low-pressure turbine (9; 9A).
  8. An air distillation installation, of the type comprising a double air distillation column (1) and a refrigeration cycle, characterised in that the refrigeration cycle is in accordance with Claim 7, the cycle fluid being the air to be separated, the installation comprising means (5) for cooling part of the incoming air to the vicinity of its dew point, for reducing its pressure in a pressure-reducing valve (16) and sending it to the double column, and means (18) for sending to this double column part of the air leaving the high-pressure turbine (12).
  9. An installation according to Claim 8, characterised in that it comprises means (5; 22), for heating the air leaving the low-pressure turbine (9) then evacuating this air from the installation, if appropriate after the incoming compressed air has passed through a cooler and/or through an apparatus for filtering by adsorption.
  10. An installation according to Claim 8, characterised in that it comprises means (5, 23) for cooling the air leaving the low-pressure turbine (9) then insufflating it into the low-pressure column (3) of the double column.
EP90402594A 1989-09-25 1990-09-20 Refrigeration production process, the refrigeration cycle used and application in the distillation of air Expired - Lifetime EP0420725B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8912517A FR2652409A1 (en) 1989-09-25 1989-09-25 REFRIGERANT PRODUCTION PROCESS, CORRESPONDING REFRIGERANT CYCLE AND THEIR APPLICATION TO AIR DISTILLATION.
FR8912517 1989-09-25

Publications (2)

Publication Number Publication Date
EP0420725A1 EP0420725A1 (en) 1991-04-03
EP0420725B1 true EP0420725B1 (en) 1993-11-24

Family

ID=9385789

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90402594A Expired - Lifetime EP0420725B1 (en) 1989-09-25 1990-09-20 Refrigeration production process, the refrigeration cycle used and application in the distillation of air

Country Status (8)

Country Link
US (1) US5157926A (en)
EP (1) EP0420725B1 (en)
JP (1) JP3086857B2 (en)
AU (1) AU637141B2 (en)
CA (1) CA2025918C (en)
DE (1) DE69004773T2 (en)
ES (1) ES2046742T3 (en)
FR (1) FR2652409A1 (en)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2909678B2 (en) * 1991-03-11 1999-06-23 レール・リキード・ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method and apparatus for producing gaseous oxygen under pressure
GB9124242D0 (en) * 1991-11-14 1992-01-08 Boc Group Plc Air separation
JPH05187767A (en) * 1992-01-14 1993-07-27 Teisan Kk Method and apparatus for manufacturing ultrahigh purity nitrogen
US5345773A (en) * 1992-01-14 1994-09-13 Teisan Kabushiki Kaisha Method and apparatus for the production of ultra-high purity nitrogen
FR2688052B1 (en) * 1992-03-02 1994-05-20 Maurice Grenier PROCESS AND PLANT FOR THE PRODUCTION OF OXYGEN AND / OR GAS NITROGEN UNDER PRESSURE BY AIR DISTILLATION.
FR2692664A1 (en) * 1992-06-23 1993-12-24 Lair Liquide Process and installation for producing gaseous oxygen under pressure.
FR2701553B1 (en) 1993-02-12 1995-04-28 Maurice Grenier Method and installation for producing oxygen under pressure.
FR2702040B1 (en) * 1993-02-25 1995-05-19 Air Liquide Process and installation for the production of oxygen and / or nitrogen under pressure.
US5365741A (en) * 1993-05-13 1994-11-22 Praxair Technology, Inc. Cryogenic rectification system with liquid oxygen boiler
FR2706195B1 (en) * 1993-06-07 1995-07-28 Air Liquide Method and unit for supplying pressurized gas to an installation consuming an air component.
US5337570A (en) * 1993-07-22 1994-08-16 Praxair Technology, Inc. Cryogenic rectification system for producing lower purity oxygen
US5379598A (en) * 1993-08-23 1995-01-10 The Boc Group, Inc. Cryogenic rectification process and apparatus for vaporizing a pumped liquid product
FR2709537B1 (en) * 1993-09-01 1995-10-13 Air Liquide Process and installation for producing oxygen and / or nitrogen gas under pressure.
FR2709538B1 (en) * 1993-09-01 1995-10-06 Air Liquide Method and installation for producing at least one pressurized air gas.
FR2711778B1 (en) * 1993-10-26 1995-12-08 Air Liquide Process and installation for the production of oxygen and / or nitrogen under pressure.
US5398514A (en) * 1993-12-08 1995-03-21 Praxair Technology, Inc. Cryogenic rectification system with intermediate temperature turboexpansion
US5475980A (en) * 1993-12-30 1995-12-19 L'air Liquide, Societe Anonyme Pour L'etude L'exploitation Des Procedes Georges Claude Process and installation for production of high pressure gaseous fluid
FR2714721B1 (en) * 1993-12-31 1996-02-16 Air Liquide Method and installation for liquefying a gas.
US5467601A (en) * 1994-05-10 1995-11-21 Praxair Technology, Inc. Air boiling cryogenic rectification system with lower power requirements
US5467602A (en) * 1994-05-10 1995-11-21 Praxair Technology, Inc. Air boiling cryogenic rectification system for producing elevated pressure oxygen
FR2721383B1 (en) * 1994-06-20 1996-07-19 Maurice Grenier Process and installation for producing gaseous oxygen under pressure.
FR2726046B1 (en) * 1994-10-25 1996-12-20 Air Liquide METHOD AND INSTALLATION FOR EXPANSION AND COMPRESSION OF AT LEAST ONE GAS STREAM
US5586440A (en) * 1994-12-06 1996-12-24 Vincent; David M. Pneumatic refrigeration system and method
US5551258A (en) * 1994-12-15 1996-09-03 The Boc Group Plc Air separation
US5634356A (en) * 1995-11-28 1997-06-03 Air Products And Chemicals, Inc. Process for introducing a multicomponent liquid feed stream at pressure P2 into a distillation column operating at lower pressure P1
FR2744795B1 (en) * 1996-02-12 1998-06-05 Grenier Maurice PROCESS AND PLANT FOR THE PRODUCTION OF HIGH-PRESSURE GASEOUS OXYGEN
US5758515A (en) * 1997-05-08 1998-06-02 Praxair Technology, Inc. Cryogenic air separation with warm turbine recycle
US5802873A (en) * 1997-05-08 1998-09-08 Praxair Technology, Inc. Cryogenic rectification system with dual feed air turboexpansion
US5887445A (en) * 1997-11-11 1999-03-30 Alliedsignal Inc. Two spool environmental control system
US6070418A (en) * 1997-12-23 2000-06-06 Alliedsignal Inc. Single package cascaded turbine environmental control system
FR2776760B1 (en) * 1998-03-31 2000-05-05 Air Liquide METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
US6006545A (en) * 1998-08-14 1999-12-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Liquefier process
US6925818B1 (en) * 2003-07-07 2005-08-09 Cryogenic Group, Inc. Air cycle pre-cooling system for air separation unit
EP1726900A1 (en) * 2005-05-20 2006-11-29 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for the separation of air by cryogenic distillation
US7533540B2 (en) * 2006-03-10 2009-05-19 Praxair Technology, Inc. Cryogenic air separation system for enhanced liquid production
FR2913760B1 (en) * 2007-03-13 2013-08-16 Air Liquide METHOD AND APPARATUS FOR PRODUCING GAS-LIKE AIR AND HIGH-FLEXIBILITY LIQUID AIR GASES BY CRYOGENIC DISTILLATION
FR2913759B1 (en) * 2007-03-13 2013-08-16 Air Liquide METHOD AND APPARATUS FOR GENERATING GAS AIR FROM THE AIR IN A GAS FORM AND LIQUID WITH HIGH FLEXIBILITY BY CRYOGENIC DISTILLATION
FR2928446A1 (en) * 2008-03-10 2009-09-11 Air Liquide METHOD FOR MODIFYING AN AIR SEPARATION APPARATUS BY CRYOGENIC DISTILLATION
DE102009048456A1 (en) * 2009-09-21 2011-03-31 Linde Aktiengesellschaft Method and apparatus for the cryogenic separation of air
DE102010052545A1 (en) * 2010-11-25 2012-05-31 Linde Aktiengesellschaft Method and apparatus for recovering a gaseous product by cryogenic separation of air
DE102010052544A1 (en) * 2010-11-25 2012-05-31 Linde Ag Process for obtaining a gaseous product by cryogenic separation of air
US10295252B2 (en) 2015-10-27 2019-05-21 Praxair Technology, Inc. System and method for providing refrigeration to a cryogenic separation unit
CN112855343B (en) * 2019-11-28 2022-05-06 中国航发商用航空发动机有限责任公司 Aviation power system, liquid nitrogen expansion assembly, aircraft and driving method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3559417A (en) * 1967-10-12 1971-02-02 Mc Donnell Douglas Corp Separation of low boiling hydrocarbons and nitrogen by fractionation with product stream heat exchange
US3605422A (en) * 1968-02-28 1971-09-20 Air Prod & Chem Low temperature frocess for the separation of gaseous mixtures
CH501321A (en) * 1968-12-19 1970-12-31 Sulzer Ag Method for cooling a load consisting of a partially stabilized superconducting magnet
IL36741A (en) * 1971-04-30 1974-11-29 Zakon T Method for the separation of gaseous mixtures with recuperation of mechanical energy and apparatus for carrying out this method
DE2544340A1 (en) * 1975-10-03 1977-04-14 Linde Ag PROCEDURE FOR AIR SEPARATION
FR2461906A1 (en) * 1979-07-20 1981-02-06 Air Liquide CRYOGENIC AIR SEPARATION METHOD AND INSTALLATION WITH OXYGEN PRODUCTION AT HIGH PRESSURE
US4357153A (en) * 1981-03-30 1982-11-02 Erickson Donald C Internally heat pumped single pressure distillative separations
JPS6060463A (en) * 1983-09-14 1985-04-08 株式会社日立製作所 Liquefied gas generator
US4522636A (en) * 1984-02-08 1985-06-11 Kryos Energy Inc. Pipeline gas pressure reduction with refrigeration generation
US4715873A (en) * 1986-04-24 1987-12-29 Air Products And Chemicals, Inc. Liquefied gases using an air recycle liquefier
DE3738559A1 (en) * 1987-11-13 1989-05-24 Linde Ag METHOD FOR AIR DISASSEMBLY BY DEEP TEMPERATURE RECTIFICATION

Also Published As

Publication number Publication date
US5157926A (en) 1992-10-27
EP0420725A1 (en) 1991-04-03
DE69004773D1 (en) 1994-01-05
CA2025918C (en) 2001-05-29
FR2652409A1 (en) 1991-03-29
CA2025918A1 (en) 1991-03-26
FR2652409B1 (en) 1994-12-23
JPH03170784A (en) 1991-07-24
DE69004773T2 (en) 1994-03-17
ES2046742T3 (en) 1994-02-01
AU637141B2 (en) 1993-05-20
AU6305990A (en) 1991-03-28
JP3086857B2 (en) 2000-09-11

Similar Documents

Publication Publication Date Title
EP0420725B1 (en) Refrigeration production process, the refrigeration cycle used and application in the distillation of air
EP0689019B1 (en) Process and apparatus for producing gaseous oxygen under pressure
EP0576314B1 (en) Process and installation for the production of gaseous oxygen under pressure
EP0628778B2 (en) Process and high pressure gas supply unit for an air constituent consuming installation
CA2146736C (en) Process and facility for the production of carbon monoxide
EP0789208B1 (en) Process and installation for the production of gaseous oxygen under high pressure
EP0605262B1 (en) Process and apparatus for the production of gaseous oxygen under pressure
FR2895068A1 (en) AIR SEPARATION METHOD BY CRYOGENIC DISTILLATION
EP0606027B1 (en) Air distillation process and plant for producing at least a high pressure gaseous product and at least a liquid
WO2005073651A1 (en) Cryogenic distillation method and installation for air separation
EP2712419B1 (en) Method for separating air by means of cryogenic distillation
EP0611936B1 (en) Process and installation for producing ultrapure nitrogen by air distillation
CA2154984A1 (en) Method and apparatus for producing gaseous oxygen under pressure and variable flow
EP1446620B1 (en) Method and installation for helium production
EP0641982B1 (en) Process and installation for the production of at least a gas from air under pressure
EP0611218B2 (en) Process and installation for producing oxygen under pressure
FR2837564A1 (en) Distillation of air to produce oxygen, nitrogen and pure argon, extracts oxygen of specified purity and subjects argon to catalytic de-oxygenation
FR2971044A1 (en) Method for separating gas containing carbon dioxide to produce carbon dioxide enriched liquid flow in agro-food industry, involves sending part of liquid flow to exchanger, where part of flow is vaporized before being sent to lower part
FR2761762A1 (en) METHOD AND INSTALLATION FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
FR3128776A3 (en) Process and apparatus for air separation by cryogenic distillation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900924

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE DK ES FR GB IT LU NL SE

17Q First examination report despatched

Effective date: 19920210

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK ES FR GB IT LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Effective date: 19931124

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931130

REF Corresponds to:

Ref document number: 69004773

Country of ref document: DE

Date of ref document: 19940105

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2046742

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940930

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 90402594.7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960814

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960830

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980401

EUG Se: european patent has lapsed

Ref document number: 90402594.7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20010913

Year of fee payment: 12

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020921

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20031011

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050815

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050817

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050818

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060930

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070403

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060920

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070920