EP0789208A1 - Process and installation for the production of gaseous oxygen under high pressure - Google Patents

Process and installation for the production of gaseous oxygen under high pressure Download PDF

Info

Publication number
EP0789208A1
EP0789208A1 EP97400222A EP97400222A EP0789208A1 EP 0789208 A1 EP0789208 A1 EP 0789208A1 EP 97400222 A EP97400222 A EP 97400222A EP 97400222 A EP97400222 A EP 97400222A EP 0789208 A1 EP0789208 A1 EP 0789208A1
Authority
EP
European Patent Office
Prior art keywords
air
column
pressure
liquid
installation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97400222A
Other languages
German (de)
French (fr)
Other versions
EP0789208B1 (en
Inventor
Maurice Grenier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP0789208A1 publication Critical patent/EP0789208A1/en
Application granted granted Critical
Publication of EP0789208B1 publication Critical patent/EP0789208B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/0423Subcooling of liquid process streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04727Producing pure argon, e.g. recovered from a crude argon column using an auxiliary pure argon column for nitrogen rejection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04733Producing pure argon, e.g. recovered from a crude argon column using a hybrid system, e.g. using adsorption, permeation or catalytic reaction
    • F25J3/04739Producing pure argon, e.g. recovered from a crude argon column using a hybrid system, e.g. using adsorption, permeation or catalytic reaction in combination with an auxiliary pure argon column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04781Pressure changing devices, e.g. for compression, expansion, liquid pumping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/10Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/50One fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/52One fluid being oxygen enriched compared to air, e.g. "crude oxygen"
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/939Partial feed stream expansion, air
    • Y10S62/94High pressure column

Definitions

  • the present invention relates to a process for producing a gas at a high pressure of at least about 30 bars, of the type in which: air is distilled in a double column installation comprising a distillation column which operates under low pressure and a column which operates under medium pressure; pumping a liquid withdrawn from a column of the installation; the compressed liquid is vaporized, by heat exchange, in a heat exchanger of the brazed plate type, with the air being cooled and / or liquefied; and at least one liquid product is withdrawn from the installation.
  • the invention applies in particular to the production of large quantities, typically of the order of at least 500 tonnes per day, of gaseous oxygen under high pressure.
  • the pressures in question are absolute pressures.
  • the invention also relates to an installation intended for the implementation of a method as defined above.
  • This installation for producing gaseous oxygen under a high oxygen pressure of at least about 30 bars, of the type comprising: a double air distillation column comprising a column operating under a low pressure and a column operating under an average pressure; a liquid compression pump withdrawn from a column of the installation; means for compressing the incoming air; a heat exchanger of the brazed plate type for bringing the air to be distilled into a heat exchange relationship with the compressed liquid; and a line for withdrawing at least one liquid product from the installation, is characterized in that the compression means comprise means for creating three air flows, respectively at medium pressure, at intermediate pressure and at high air pressure; in that the heat exchanger comprises passages for cooling the medium-pressure air from its hot end to its cold end, passages for partially cooling the air under the intermediate pressure, and passages for cooling the high pressure air from its hot end to its cold outlet; and in that the installation comprises an expansion turbine at medium pressure of at least part of the air under
  • the installation includes an additional heat exchanger for sub-cooling the liquid withdrawn from the bottom of the medium pressure column by vaporization of liquid oxygen withdrawn from the bottom of the low pressure column.
  • the installation shown in Figure 1 is intended to produce gaseous oxygen at a pressure at least equal to around 30 bars. It essentially comprises a double distillation column 1, a main heat exchange line 2 consisting of at least one exchanger body of the brazed plate type, a sub-cooler 3, an air compressor 4, an apparatus 5 purification by adsorption of air into water and CO2, a first air booster 6 a second air booster 7, an expansion turbine 8 and a liquid oxygen pump 9.
  • the double column is made up, conventionally, a medium pressure column 10 operating at about 5 to 6 bars and surmounted by a low pressure column 11 operating slightly above atmospheric pressure, with, in the tank of the latter, a vaporizer-condenser 12 which puts in relation of heat exchange liquid oxygen from the bottom of the low pressure column with nitrogen from the top of the medium pressure column.
  • the air to be distilled, fully compressed by the compressor 4 at medium pressure and purified at 5, is divided into two streams.
  • the first stream is cooled under this medium pressure in passages 13 of the exchange line 20 which extend from the hot end to the cold end of the latter.
  • This medium pressure air emerges from the exchange line near its dew point and is introduced at the base of the medium pressure column 10.
  • the rest of the air leaving the device 5 is boosted at 6 to an intermediate pressure and is in turn divided into two streams.
  • the first flow, at this intermediate pressure, is cooled in passages 14 of the exchange line to an intermediate temperature T1. Part of this flow eventually continues to cool, and is liquefied, until the cold end of the exchange line, then is expanded at medium pressure in an expansion valve 15 and divided into two streams: a first stream sent to the base of the column 10, and a second sub-cooled stream at 3, expanded at low pressure in an expansion valve 16 and sent to the column 11. The rest of the first stream left the exchange line at the intermediate temperature T1, expanded in the turbine 6 at medium pressure and introduced at the base of the column 10.
  • the second flow of supercharged air is again supercharged, up to a second high pressure of the order of 60 to 80 bars, by the supercharger 7, then cooled and liquefied in passages 17 of the exchange line, until 'at the cold end of it.
  • the liquid thus obtained is expanded in an expansion valve 18 and combined with the liquefied current coming from the expansion valve 15.
  • Liquid oxygen withdrawn from the tank of column 11 is brought by pump 9 to the desired high production pressure, then vaporized and heated in passages 18 of the exchange line before being evacuated from the installation via a production line 19.
  • This impure nitrogen is heated in the sub-cooler 3 then in passages 28 of the exchange line before being evacuated via a pipe 29.
  • the liquid air coming from the valves 15 and 18, the lean liquid and the rich liquid are sub-cooled, by about 2 ° C. for the rich liquid.
  • the exchange diagram must be heat exchange line 2 is as tight as possible, this in order to approach reversible heat exchange conditions.
  • the specific energy is the energy necessary to produce a unit quantity of gaseous oxygen under high pressure
  • the exchange diagram must be heat exchange line 2 is as tight as possible, this in order to approach reversible heat exchange conditions.
  • the temperature differences between the air being cooled (curve C1) and the products being heating (curve C2) are as low as possible at the hot end and at the cold end of the exchange line as well as at the start of the oxygen vaporization level 30.
  • cryogenic turbines have an inlet distributor followed by a wheel.
  • the distributor produces a first enthalpy expansion or fall, which is a characteristic of the turbine.
  • the third condition above therefore makes it easy to determine the intermediate pressure, which is the pressure at which air must enter the turbine to be at the near its dew point at the entrance of the wheel. This intermediate pressure is between 30 and 40 bars approximately.
  • this flow rate D L could be canceled if it were possible to choose a high air pressure clearly greater than 80 bars and, according to the calculation, of the order of 100 bars.
  • the mechanical energy produced by the turbine 8 is recovered to contribute to the drive of the booster 7, but the latter also has an external source of drive energy. If one wishes, as a variant, to couple the turbine 8 and this booster, to simplify the installation, it is necessary to increase the intermediate pressure as well as the temperature T1, and the calculation shows that this leads to an increase in the flow rate D L as well as specific energy.
  • the air flows at the intermediate pressure and at the high pressure may represent approximately 20% and approximately 25%, respectively, of the flow of treated air.
  • the tank of the column 31 is connected to the "argon tapping" of the column 11 via two supply and return lines 32, while its head is equipped with a condenser 34 in which rich liquid, expanded at 35 to near atmospheric pressure, is vaporized and then returned to column 11 via a line 36.
  • the impure gaseous argon withdrawn at the top of the column 31 via a line 37 is purified in 31A then 31B, and the pure argon is withdrawn from the installation in liquid form via a production pipe 37A.
  • the sub-cooling of the rich liquid before its expansion in 21 and possibly in 35 can be produced in an additional heat exchanger 38 vaporizing liquid oxygen withdrawn from the tank of column 11.
  • the installation can also produce nitrogen gas under pressure, this nitrogen being taken in the liquid state in line 22, pumped at the desired pressure by a pump 39, vaporized and then reheated in passages 40 of the exchange line 2, and withdrawn via a production line 41.
  • all or part of the liquid withdrawn can also consist of liquid nitrogen (line 25).
  • the liquid vaporized after pumping can be oxygen, nitrogen or argon.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

A process for producing a gas at a high pressure of at least 30 bars, using an air distillation unit (1) comprising a low pressure column (11) and a medium pressure column (10) where fractions of the air are delivered to the columns at different pressures after cooling, comprises dividing the air to be distillated into three streams: (i) a first medium pressure stream cooled to its dew point and delivered in the medium pressure column; (ii) a high pressure stream above at least 60 bars, being cooled and liquified (in 17), and after expansion (in 18), delivered in the double column (1); and (iii) an intermediate pressure stream, at least part of that stream being at an intermediate cooling temperature, expanded to medium pressure in a turbine (6) before being directed to the medium pressure column (10). The intermediate pressure is chosen such that the air is near its dew point before entering the turbine. Also claimed is apparatus for producing purified and pressurised gas.

Description

La présente invention est relative à un procédé de production d'un gaz sous une haute pression d'au moins 30 bars environ, du type dans lequel : on distille de l'air dans une installation à double colonne comprenant une colonne de distillation qui fonctionne sous une basse pression et une colonne qui fonctionne sous une moyenne pression; on pompe un liquide soutiré d'une colonne de l'installation; on vaporise le liquide comprimé, par échange de chaleur, dans un échangeur de chaleur du type à plaques brasées, avec l'air en cours de refroidissement et/ou de liquéfaction; et on soutire au moins un produit liquide de l'installation.The present invention relates to a process for producing a gas at a high pressure of at least about 30 bars, of the type in which: air is distilled in a double column installation comprising a distillation column which operates under low pressure and a column which operates under medium pressure; pumping a liquid withdrawn from a column of the installation; the compressed liquid is vaporized, by heat exchange, in a heat exchanger of the brazed plate type, with the air being cooled and / or liquefied; and at least one liquid product is withdrawn from the installation.

L'invention s'applique en particulier à la production de grandes quantités, typiquement de l'ordre d'au moins 500 tonnes par jour, d'oxygène gazeux sous haute pression.The invention applies in particular to the production of large quantities, typically of the order of at least 500 tonnes per day, of gaseous oxygen under high pressure.

Les pressions dont il est question sont des pressions absolues.The pressures in question are absolute pressures.

De nombreux procédés du type précité, dits "procédés à pompe", ont été proposés, et l'invention a pour but de fournir un procédé du même type qui soit particulièrement avantageux du point de vue de la dépense d'énergie spécifique.Many methods of the aforementioned type, called "pump methods", have been proposed, and the invention aims to provide a method of the same type which is particularly advantageous from the point of view of the specific energy expenditure.

A cet effet l'invention a pour objet un procédé du type précité, caractérisé en ce que l'air à distiller est divisé en trois flux :

  • un premier flux d'air sous la moyenne pression, qui est refroidi jusqu'au voisinage de son point de rosée puis introduit dans la colonne moyenne pression;
  • un deuxième flux d'air sous une haute pression supérieure à 60 bars environ, ce deuxième flux d'air étant refroidi et liquéfié puis, après détente, introduit dans la double colonne; et
  • un troisième flux d'air sous une pression intermédiaire, une partie au moins de ce troisième flux d'air étant, à une température intermédiaire de refroidissement, détendu à la moyenne pression dans une turbine avant d'être introduit dans la colonne moyenne pression, la pression intermédiaire étant choisie de façon que l'air se trouve au voisinage de son point de rosée à l'entrée de la roue de la turbine.
To this end, the subject of the invention is a process of the aforementioned type, characterized in that the air to be distilled is divided into three streams:
  • a first air flow under medium pressure, which is cooled to the vicinity of its dew point and then introduced into the medium pressure column;
  • a second air flow under high pressure greater than approximately 60 bars, this second air flow being cooled and liquefied then, after expansion, introduced into the double column; and
  • a third air flow under an intermediate pressure, at least part of this third air flow being, at an intermediate cooling temperature, expanded at medium pressure in a turbine before being introduced into the medium pressure column, the intermediate pressure being chosen so that the air is in the vicinity of its dew point at the inlet of the turbine wheel.

Ce procédé peut comporter une ou plusieurs des caractéristiques suivantes :

  • ledit produit liquide est au moins en partie de l'argon liquide produit à partir d'une colonne additionnelle de séparation oxygène/argon couplée à la double colonne;
  • la totalité dudit produit liquide est constituée d'argon liquide;
  • on assure la compression dudit deuxième flux d'air de la pression intermédiaire à la haute pression uniquement au moyen de l'énergie mécanique fournie par la turbine;
  • ladite température intermédiaire est voisine de la température de vaporisation de l'oxygène sous la haute pression d'oxygène;
  • la haute pression d'oxygène est voisine de 40 bars, et le débit de produit liquide soutiré de l'installation est sensiblement défini par : D L = -0,22 P + 22,
    Figure imgb0001
    où DL est, en %, le rapport du débit de produit liquide soutiré au débit total d'oxygène produit, et où P est la haute pression d'air en bars absolus;
  • le débit de produit liquide soutiré est compris entre 2 et 12% environ du débit total d'oxygène produit;
  • lesdits deuxième et troisième flux d'air représentent respectivement environ 20 à 25% et environ 10 à 30% du débit total d'air à distiller.
This process can include one or more of the following characteristics:
  • said liquid product is at least in part liquid argon produced from an additional oxygen / argon separation column coupled to the double column;
  • all of said liquid product consists of liquid argon;
  • compressing said second air flow from intermediate pressure to high pressure only by means of mechanical energy supplied by the turbine;
  • said intermediate temperature is close to the vaporization temperature of oxygen under the high oxygen pressure;
  • the high oxygen pressure is close to 40 bars, and the flow rate of liquid product withdrawn from the installation is substantially defined by: D L = -0.22 P + 22,
    Figure imgb0001
    where D L is, in%, the ratio of the flow rate of liquid product withdrawn to the total flow rate of oxygen produced, and where P is the high air pressure in absolute bars;
  • the flow rate of liquid product withdrawn is between 2 and 12% approximately of the total flow rate of oxygen produced;
  • said second and third air flows represent respectively about 20 to 25% and about 10 to 30% of the total air flow to be distilled.

L'invention a également pour objet une installation destinée à la mise en oeuvre d'un procédé tel que défini ci-dessus. Cette installation de production d'oxygène gazeux sous une haute pression d'oxygène d'au moins 30 bars environ, du type comprenant : une double colonne de distillation d'air comprenant une colonne fonctionnant sous une basse pression et une colonne fonctionnant sous une moyenne pression; une pompe de compression de liquide soutiré d'une colonne de l'installation; des moyens de compression de l'air entrant; un échangeur de chaleur du type à plaques brasées pour mettre en relation d'échange thermique l'air à distiller et le liquide comprimé; et une conduite de soutirage d'au moins un produit liquide de l'installation, est caractérisée en ce que les moyens de compression comprennent des moyens pour créer trois flux d'air, respectivement à la moyenne pression, à une pression intermédiaire et à une haute pression d'air; en ce que l'échangeur de chaleur comporte des passages de refroidissement de l'air moyenne pression de son bout chaud à son bout froid, des passages de refroidissement partiel de l'air sous la pression intermédiaire, et des passages de refroidissement de l'air haute pression de son bout chaud à son bou-t froid; et en ce que l'installation comprend une turbine de détente à la moyenne pression d'une partie au moins de l'air sous la pression intermédiaire partiellement refroidi, ainsi qu'une colonne de production d'argon liquide couplée à la double colonne.The invention also relates to an installation intended for the implementation of a method as defined above. This installation for producing gaseous oxygen under a high oxygen pressure of at least about 30 bars, of the type comprising: a double air distillation column comprising a column operating under a low pressure and a column operating under an average pressure; a liquid compression pump withdrawn from a column of the installation; means for compressing the incoming air; a heat exchanger of the brazed plate type for bringing the air to be distilled into a heat exchange relationship with the compressed liquid; and a line for withdrawing at least one liquid product from the installation, is characterized in that the compression means comprise means for creating three air flows, respectively at medium pressure, at intermediate pressure and at high air pressure; in that the heat exchanger comprises passages for cooling the medium-pressure air from its hot end to its cold end, passages for partially cooling the air under the intermediate pressure, and passages for cooling the high pressure air from its hot end to its cold outlet; and in that the installation comprises an expansion turbine at medium pressure of at least part of the air under the partially cooled intermediate pressure, as well as a column for producing liquid argon coupled to the double column.

Dans un mode de réalisation de cette installation, l'installation comprend un échangeur de chaleur additionnel pour sous-refroidir le liquide soutiré en cuve de la colonne moyenne pression par vaporisation d'oxygène liquide soutiré en cuve de la colonne basse pression.In one embodiment of this installation, the installation includes an additional heat exchanger for sub-cooling the liquid withdrawn from the bottom of the medium pressure column by vaporization of liquid oxygen withdrawn from the bottom of the low pressure column.

Des exemples de mise en oeuvre de l'invention vont maintenant être décrits en regard des dessins annexés, sur lesquels :

  • la Figure 1 représente schématiquement une installation de production d'oxygène gazeux conforme à l'invention;
  • la Figure 2 est un diagramme d'échange thermique correspondant;
  • la Figure 3 est un diagramme qui montre la variation de la production d'oxygène liquide de l'installation en fonction de la haute pression d'oxygène, à l'optimum économique; et
  • la Figure 4 représente schématiquement une variante de l'installation de la Figure 1.
Examples of implementation of the invention will now be described with reference to the accompanying drawings, in which:
  • Figure 1 schematically shows an installation for producing gaseous oxygen according to the invention;
  • Figure 2 is a corresponding heat exchange diagram;
  • FIG. 3 is a diagram which shows the variation in the production of liquid oxygen of the installation as a function of the high oxygen pressure, at the economic optimum; and
  • Figure 4 schematically represents a variant of the installation of Figure 1.

L'installation représentée à la Figure 1 est destinée à produire de l'oxygène gazeux sous une pression au moins égale à 30 bars environ. Elle comprend essentiellement une double colonne de distillation 1, une ligne d'échange thermique principale 2 constituée d'au moins un corps d'échangeur du type à plaques brasées, un sous-refroidisseur 3, un compresseur d'air 4, un appareil 5 d'épuration par adsorption de l'air en eau et en CO2, un premier surpresseur d'air 6 un second surpresseur d'air 7, une turbine de détente 8 et une pompe d'oxygène liquide 9. La double colonne est constituée, de manière classique, d'une colonne moyenne pression 10 fonctionnant sous environ 5 à 6 bars et surmontée d'une colonne basse pression 11 fonctionnant légèrement au-dessus de la pression atmosphérique, avec, en cuve de cette dernière, un vaporiseur-condenseur 12 qui met en relation d'échange thermique l'oxygène liquide de cuve de la colonne basse pression avec l'azote de tête de la colonne moyenne pression.The installation shown in Figure 1 is intended to produce gaseous oxygen at a pressure at least equal to around 30 bars. It essentially comprises a double distillation column 1, a main heat exchange line 2 consisting of at least one exchanger body of the brazed plate type, a sub-cooler 3, an air compressor 4, an apparatus 5 purification by adsorption of air into water and CO2, a first air booster 6 a second air booster 7, an expansion turbine 8 and a liquid oxygen pump 9. The double column is made up, conventionally, a medium pressure column 10 operating at about 5 to 6 bars and surmounted by a low pressure column 11 operating slightly above atmospheric pressure, with, in the tank of the latter, a vaporizer-condenser 12 which puts in relation of heat exchange liquid oxygen from the bottom of the low pressure column with nitrogen from the top of the medium pressure column.

En fonctionnement, l'air à distiller, comprimé en totalité par le compresseur 4 à la moyenne pression et épuré en 5, est divisé en deux courants.In operation, the air to be distilled, fully compressed by the compressor 4 at medium pressure and purified at 5, is divided into two streams.

Le premier courant est refroidi sous cette moyenne pression dans des passages 13 de la ligne d'échange 20 qui s'étendent du bout chaud au bout froid de celle-ci. Cet air moyenne pression ressort de la ligne d'échange au voisinage de son point de rosée et est introduit à la base de la colonne moyenne pression 10.The first stream is cooled under this medium pressure in passages 13 of the exchange line 20 which extend from the hot end to the cold end of the latter. This medium pressure air emerges from the exchange line near its dew point and is introduced at the base of the medium pressure column 10.

Le reste de l'air qui sort de l'appareil 5 est surpressé en 6 à une pression intermédiaire et est divisé à son tour en deux flux.The rest of the air leaving the device 5 is boosted at 6 to an intermediate pressure and is in turn divided into two streams.

Le premier flux, à cette pression intermédiaire, est refroidi dans des passages 14 de la ligne d'échange jusqu'à une température intermédiaire T1. Une partie de ce flux poursuit éventuellement son refroidissement, et est liquéfié, jusqu'au bout froid de la ligne d'échange, puis est détendu à la moyenne pression dans une vanne de détente 15 et réparti en deux courants : un premier courant envoyé à la base de la colonne 10, et un second courant sous-refroidi en 3, détendu à la basse pression dans une vanne de détente 16 et envoyé dans la colonne 11. Le reste du premier flux est sorti de la ligne d'échange à la température intermédiaire T1, détendu dans la turbine 6 à la moyenne pression et introduit à la base de la colonne 10.The first flow, at this intermediate pressure, is cooled in passages 14 of the exchange line to an intermediate temperature T1. Part of this flow eventually continues to cool, and is liquefied, until the cold end of the exchange line, then is expanded at medium pressure in an expansion valve 15 and divided into two streams: a first stream sent to the base of the column 10, and a second sub-cooled stream at 3, expanded at low pressure in an expansion valve 16 and sent to the column 11. The rest of the first stream left the exchange line at the intermediate temperature T1, expanded in the turbine 6 at medium pressure and introduced at the base of the column 10.

Le second flux d'air surpressé est à nouveau surpressé, jusqu'à une seconde haute pression de l'ordre de 60 à 80 bars, par le surpresseur 7, puis refroidi et liquéfié dans des passages 17 de la ligne d'échange, jusqu'au bout froid de celle-ci. Le liquide ainsi obtenu est détendu dans une vanne de détente 18 et réuni au courant liquéfié issu de la vanne de détente 15.The second flow of supercharged air is again supercharged, up to a second high pressure of the order of 60 to 80 bars, by the supercharger 7, then cooled and liquefied in passages 17 of the exchange line, until 'at the cold end of it. The liquid thus obtained is expanded in an expansion valve 18 and combined with the liquefied current coming from the expansion valve 15.

L'oxygène liquide soutiré en cuve de la colonne 11 est amené par la pompe 9 à la haute pression de production désirée, puis vaporisé et réchauffé dans des passages 18 de la ligne d'échange avant d'être évacué de l'installation via une conduite de production 19.Liquid oxygen withdrawn from the tank of column 11 is brought by pump 9 to the desired high production pressure, then vaporized and heated in passages 18 of the exchange line before being evacuated from the installation via a production line 19.

On retrouve par ailleurs dans l'installation de la Figure 1 les conduites et accessoires habituels des installations à double colonne : une conduite 20 de remontée dans la colonne 11 du "liquide riche" (air enrichi en oxygène) recueilli en cuve de la colonne 10, avec sa vanne de détente 21, une conduite 22 de remontée en tête de la colonne 11 du "liquide pauvre" (azote à peu près pur) soutiré en tête de la colonne 10, avec sa vanne de détente 23, ainsi que les conduites suivantes : une conduite 24 de production d'oxygène liquide, piquée en cuve de la colonne 11, une conduite 25 de production d'azote liquide, piquée sur la conduite 22 et munie d'une vanne de détente 26, et une conduite 27 de soutirage d'azote impur, constituant le gaz résiduaire de l'installation, piquée en tête de la colonne 11. Cet azote impur est réchauffé dans le sous-refroidisseur 3 puis dans des passages 28 de la ligne d'échange avant d'être évacué via une conduite 29. Dans le sous-refroidisseur 3, l'air liquide issu des vannes 15 et 18, le liquide pauvre et le liquide riche sont sous-refroidis, d'environ 2°C pour le liquide riche.In the installation in FIG. 1, we also find the usual pipes and accessories for double column installations: a pipe 20 for raising in column 11 of the "rich liquid" (oxygen-enriched air) collected in the tank of column 10 , with its expansion valve 21, a pipe 22 for raising to the top of column 11 of the "lean liquid" (almost pure nitrogen) withdrawn at the top of column 10, with its expansion valve 23, as well as the pipes following: a line 24 for producing liquid oxygen, inserted in the bottom of the column 11, a line 25 for producing liquid nitrogen, inserted in the line 22 and provided with an expansion valve 26, and a line 27 of drawing off impure nitrogen, constituting the waste gas from the installation, tapped at the head of column 11. This impure nitrogen is heated in the sub-cooler 3 then in passages 28 of the exchange line before being evacuated via a pipe 29. In the sub-cooled sseur 3, the liquid air coming from the valves 15 and 18, the lean liquid and the rich liquid are sub-cooled, by about 2 ° C. for the rich liquid.

Pour obtenir une dépense d'énergie spécifique (l'énergie spécifique est l'énergie nécessaire pour produire une quantité unitaire d'oxygène gazeux sous la haute pression) aussi faible que possible, il faut que le diagramme d'échange thermique de la ligne d'échange 2 soit aussi resserré que possible, ceci afin de s'approcher de conditions d'échange thermique réversible. En particulier, il faut, sur le diagramme de la Figure 2, où les enthalpies H sont portées en abscisses et les températures en ordonnées, que les écarts de température entre l'air en cours de refroidissement (courbe C1) et les produits en cours de réchauffement (courbe C2) soient aussi faibles que possible au bout chaud et au bout froid de la ligne d'échange ainsi qu'au début du palier 30 de vaporisation de l'oxygène.To obtain a specific energy expenditure (the specific energy is the energy necessary to produce a unit quantity of gaseous oxygen under high pressure) as low as possible, the exchange diagram must be heat exchange line 2 is as tight as possible, this in order to approach reversible heat exchange conditions. In particular, it is necessary, on the diagram of Figure 2, where the enthalpies H are plotted on the abscissa and the temperatures on the ordinate, that the temperature differences between the air being cooled (curve C1) and the products being heating (curve C2) are as low as possible at the hot end and at the cold end of the exchange line as well as at the start of the oxygen vaporization level 30.

On a pu obtenir un écart de température moyen voisin de 5°C, avec un écart de température minimal de 1,5°C au début du palier 30, à partir de calculs de simulation, dans les conditions suivantes :

  • La haute pression d'air est choisie aussi élevée que possible compte-tenu de la technologie de réalisation de l'échangeur 2 à plaques brasées. Cette haute pression est typiquement comprise entre 60 et 80 bars environ.
  • La température intermédiaire T1, qui est la température d'admission de la turbine 8, est voisine de la température de vaporisation de l'oxygène, et de préférence supérieure de 1°C à cette température de vaporisation.
  • La pression intermédiaire est choisie de façon que l'air turbiné soit au voisinage de son point de rosée à l'entrée de la roue de la turbine.
We were able to obtain an average temperature difference close to 5 ° C, with a minimum temperature difference of 1.5 ° C at the start of stage 30, from simulation calculations, under the following conditions:
  • The high air pressure is chosen to be as high as possible, taking into account the technology for producing the heat exchanger 2 with brazed plates. This high pressure is typically between approximately 60 and 80 bars.
  • The intermediate temperature T1, which is the inlet temperature of the turbine 8, is close to the vaporization temperature of the oxygen, and preferably 1 ° C. above this vaporization temperature.
  • The intermediate pressure is chosen so that the turbined air is in the vicinity of its dew point at the inlet of the turbine wheel.

Comme il est bien connu, les turbines cryogéniques possèdent un distributeur d'entrée suivi d'une roue. Le distributeur produit une première détente ou chute enthalpique, qui est une caractéristique de la turbine. La troisième condition ci-dessus permet donc facilement de déterminer la pression intermédiaire, qui est la pression à laquelle l'air doit pénétrer dans la turbine pour se trouver au voisinage de son point de rosée à l'entrée de la roue. Cette pression intermédiaire est comprise entre 30 et 40 bars environ.As is well known, cryogenic turbines have an inlet distributor followed by a wheel. The distributor produces a first enthalpy expansion or fall, which is a characteristic of the turbine. The third condition above therefore makes it easy to determine the intermediate pressure, which is the pressure at which air must enter the turbine to be at the near its dew point at the entrance of the wheel. This intermediate pressure is between 30 and 40 bars approximately.

De plus, un certain débit de liquide doit être soutiré en 24. Ce liquide réduit d'autant la quantité de produits à réchauffer dans la ligne d'échange thermique, et son débit est fonction à la fois de la haute pression d'oxygène et de la haute pression d'air. La Figure 3, établie pour une haute pression d'oxygène de 40 bars, montre que le débit de liquide conduisant à l'optimum économique décroît sensiblement linéairement lorsque la haute pression d'air P varie d'une valeur légèrement supérieur à 60 bars jusqu'à 80 bars, suivant une loi du type : D L = -0,22 P + 22,

Figure imgb0002
DL étant, en %, le rapport du débit d'oxygène liquide soutiré au débit total d'oxygène produit.In addition, a certain flow of liquid must be drawn off at 24. This liquid reduces the quantity of products to be heated in the heat exchange line all the more, and its flow is a function of both the high oxygen pressure and high air pressure. Figure 3, established for a high oxygen pressure of 40 bars, shows that the liquid flow rate leading to the economic optimum decreases appreciably linearly when the high air pressure P varies by a value slightly greater than 60 bars up to '' at 80 bars, according to a law of the type: D L = -0.22 P + 22,
Figure imgb0002
D L being, in%, the ratio of the flow of liquid oxygen withdrawn to the total flow of oxygen produced.

Comme on le voit, ce débit DL pourrait s'annuler si l'on pouvait choisir une haute pression d'air nettement supérieure à 80 bars et, d'après le calcul, de l'ordre de 100 bars.As can be seen, this flow rate D L could be canceled if it were possible to choose a high air pressure clearly greater than 80 bars and, according to the calculation, of the order of 100 bars.

Dans l'exemple décrit ci-dessus, l'énergie mécanique produite par la turbine 8 est récupérée pour contribuer à l'entraînement du surpresseur 7, mais ce dernier possède également une source d'énergie extérieure d'entraînement. Si l'on veut, en variante, coupler la turbine 8 et ce surpresseur, pour simplifier l'installation, il est nécessaire d'augmenter la pression intermédiaire ainsi que la température T1, et le calcul montre que ceci conduit à une augmentation du débit DL ainsi que de l'énergie spécifique.In the example described above, the mechanical energy produced by the turbine 8 is recovered to contribute to the drive of the booster 7, but the latter also has an external source of drive energy. If one wishes, as a variant, to couple the turbine 8 and this booster, to simplify the installation, it is necessary to increase the intermediate pressure as well as the temperature T1, and the calculation shows that this leads to an increase in the flow rate D L as well as specific energy.

A titre d'exemple, les flux d'air à la pression intermédiaire et à la haute pression peuvent représenter environ 20% et environ 25%, respectivement, du débit d'air traité.By way of example, the air flows at the intermediate pressure and at the high pressure may represent approximately 20% and approximately 25%, respectively, of the flow of treated air.

En revenant à la Figure 3, on constate que, lorsqu'on produit de l'oxygène à 40 bars, le débit DL est d'ordre de 4,5% lorsque la haute pression d'air avoisine 80 bars. Or, ce pourcentage est le rapport de l'argon à l'oxygène dans l'air atmosphérique. Par conséquent, en adjoignant à la double colonne une colonne additionnelle 31 de séparation argon/oxygène suivie de moyens 31A d'élimination des dernières traces d'oxygène puis de moyens 31B de déazotation, comme représenté à la Figure 4, le soutirage de produit liquide nécessaire pour atteindre l'optimum économique peut être constitué uniquement par la production d'argon liquide pur de l'installation.Returning to FIG. 3, it can be seen that, when oxygen is produced at 40 bars, the flow rate D L is of the order of 4.5% when the high air pressure is around 80 bars. However, this percentage is the ratio of argon to oxygen in atmospheric air. Consequently, by adding to the double column an additional column 31 of argon / oxygen separation followed by means 31A for elimination of the last traces of oxygen then by means 31B for denitrogenation, as represented in FIG. 4, the withdrawal of liquid product. necessary to reach the economic optimum can be constituted solely by the production of pure liquid argon from the installation.

Ceci présente un intérêt particulier puisque le procédé décrit ci-dessus, du fait de la relative complexité de l'installation, est avant tout adapté pour être utilisé dans des installations de forte capacité, dans lesquelles l'énergie spécifique est le paramètre le plus important, et ces installations sont précisément celles qui justifient l'adjonction d'une colonne de production d'argon.This is of particular interest since the process described above, due to the relative complexity of the installation, is above all suitable for use in high capacity installations, in which the specific energy is the most important parameter. , and these installations are precisely those which justify the addition of an argon production column.

De façon classique, dans le schéma de la Figure 4, la cuve de la colonne 31 est reliée au "piquage argon" de la colonne 11 via deux conduites 32 d'alimentation et 33 de retour, tandis que sa tête est équipée d'un condenseur 34 dans lequel du liquide riche, détendu en 35 jusqu'au voisinage de la pression atmosphérique, est vaporisé puis renvoyé dans la colonne 11 via une conduite 36. L'argon impur gazeux soutiré en tête de la colonne 31 via une conduite 37 est épuré en 31A puis 31B, et l'argon pur est soutiré de l'installation sous forme liquide via une conduite de production 37A.Conventionally, in the diagram of Figure 4, the tank of the column 31 is connected to the "argon tapping" of the column 11 via two supply and return lines 32, while its head is equipped with a condenser 34 in which rich liquid, expanded at 35 to near atmospheric pressure, is vaporized and then returned to column 11 via a line 36. The impure gaseous argon withdrawn at the top of the column 31 via a line 37 is purified in 31A then 31B, and the pure argon is withdrawn from the installation in liquid form via a production pipe 37A.

En variante, comme indiqué sur la Figure 4, le sous-refroidissement du liquide riche avant sa détente en 21 et éventuellement en 35, peut être réalisé dans un échangeur de chaleur additionnel 38 vaporisant de l'oxygène liquide soutiré en cuve de la colonne 11. Ceci permet de sous-refroidir de 4 à 5°C les grandes quantités de liquide riche qui circulent au cours de la mise en oeuvre d'un procédé "à pompe" et, par suite, d'améliorer le rendement d'extraction en oxygène et, s'il y a lieu, en argon.As a variant, as indicated in FIG. 4, the sub-cooling of the rich liquid before its expansion in 21 and possibly in 35, can be produced in an additional heat exchanger 38 vaporizing liquid oxygen withdrawn from the tank of column 11. This makes it possible to sub-cool from 4 to 5 ° C. the large quantities of rich liquid which circulate during the use of 'a "pump" process and, consequently, to improve the extraction yield of oxygen and, if necessary, of argon.

En variante également, comme indiqué en traits pointillés sur les Figures 1 et 4, l'installation peut produire en outre de l'azote gazeux sous pression, cet azote étant prélevé à l'état liquide dans la conduite 22, pompé à la pression désirée par une pompe 39, vaporisé puis réchauffé dans des passages 40 de la ligne d'échange 2, et soutiré via une conduite de production 41.Alternatively also, as indicated by dotted lines in Figures 1 and 4, the installation can also produce nitrogen gas under pressure, this nitrogen being taken in the liquid state in line 22, pumped at the desired pressure by a pump 39, vaporized and then reheated in passages 40 of the exchange line 2, and withdrawn via a production line 41.

On comprend que, dans le procédé de l'invention, tout ou partie du liquide soutiré peut également être constitué d'azote liquide (conduite 25).It is understood that, in the process of the invention, all or part of the liquid withdrawn can also consist of liquid nitrogen (line 25).

Le liquide vaporisé après pompage peut être de l'oxygène, de l'azote ou de l'argon.The liquid vaporized after pumping can be oxygen, nitrogen or argon.

Claims (13)

Procédé de production d'un gaz sous une haute pression d'au moins 30 bars environ, du type dans lequel : on distille de l'air dans une installation à double colonne de distillation (1) comprenant une colonne (11) qui fonctionne sous une basse pression et une colonne (10) qui fonctionne sous une moyenne pression; on pompe (en 9) un liquide soutiré d'une colonne de l'installation (11); on vaporise le liquide comprimé, par échange de chaleur, dans un échangeur de chaleur (2) du type à plaques brasées, avec l'air en cours de refroidissement et/ou de liquéfaction; et on soutire au moins un produit liquide de l'installation (en 24, 25; 37A), caractérisé en ce que l'air à distiller est divisé en trois flux : - un premier flux d'air sous la moyenne pression, qui est refroidi jusqu'au voisinage de son point de rosée puis introduit dans la colonne moyenne pression (10); - un deuxième flux d'air sous une haute pression supérieure à 60 bars environ, ce deuxième flux d'air étant refroidi et liquéfié (en 17) puis, après détente (en 18), introduit dans la double colonne (1); et - un troisième flux d'air sous une pression intermédiaire, une partie au moins de ce troisième flux d'air étant, à une température intermédiaire de refroidissement, détendu à la moyenne pression dans une turbine (6) avant d'être introduit dans la colonne moyenne pression (10), la pression intermédiaire étant choisie de façon que l'air se trouve au voisinage de son point de rosée à l'entrée de la roue de la turbine. Method for producing a gas at a high pressure of at least about 30 bars, of the type in which: air is distilled in a double distillation column installation (1) comprising a column (11) which operates under a low pressure and a column (10) which operates under medium pressure; pumping (at 9) a liquid withdrawn from a column of the installation (11); the compressed liquid is vaporized, by heat exchange, in a heat exchanger (2) of the brazed plate type, with the air being cooled and / or liquefied; and at least one liquid product is withdrawn from the installation (at 24, 25; 37A), characterized in that the air to be distilled is divided into three flows: - A first air flow under medium pressure, which is cooled to the vicinity of its dew point and then introduced into the medium pressure column (10); - A second air flow under a high pressure greater than about 60 bars, this second air flow being cooled and liquefied (in 17) then, after expansion (in 18), introduced into the double column (1); and a third air flow under an intermediate pressure, at least part of this third air flow being, at an intermediate cooling temperature, expanded at medium pressure in a turbine (6) before being introduced into the medium pressure column (10), the intermediate pressure being chosen so that the air is in the vicinity of its dew point at the inlet of the turbine wheel. Procédé suivant la revendication 1, caractérisé en ce que ledit produit liquide est au moins en partie de l'argon liquide produit à partir d'une colonne additionnelle (31) de séparation oxygène/argon couplée à la double colonne (1).Method according to claim 1, characterized in that said liquid product is at less in part of the liquid argon produced from an additional column (31) of oxygen / argon separation coupled to the double column (1). Procédé suivant la revendication 2, caractérisé en ce que la totalité dudit produit liquide est constituée d'argon liquide.Method according to claim 2, characterized in that the whole of said liquid product consists of liquid argon. Procédé suivant l'une quelconque des revendications 1 à 3, caractérisé en ce qu'on assure la compression dudit deuxième flux d'air de la pression intermédiaire à la haute pression uniquement au moyen de l'énergie mécanique fournie par la turbine (8).Method according to any one of Claims 1 to 3, characterized in that the compression of the said second air flow from the intermediate pressure to the high pressure is ensured only by means of the mechanical energy supplied by the turbine (8) . Procédé suivant l'une quelconque des revendications 1 à 3, caractérisé en ce que ladite température intermédiaire est voisine de la température de vaporisation du liquide sous la haute pression.Process according to any one of Claims 1 to 3, characterized in that the said intermediate temperature is close to the vaporization temperature of the liquid under the high pressure. Procédé suivant l'une quelconque des revendications 1 à 3 ou 5, caractérisé en ce que la haute pression est voisine de 40 bars, et en ce que le débit de produit liquide soutiré de l'installation est sensiblement défini par : D L = -0,22 P + 22,
Figure imgb0003
où DL est, en %, le rapport du débit de produit liquide soutiré au débit total d'oxygène produit, et où P est la haute pression d'air en bars absolus.
Process according to any one of Claims 1 to 3 or 5, characterized in that the high pressure is close to 40 bars, and in that the flow rate of liquid product withdrawn from the installation is substantially defined by: D L = -0.22 P + 22,
Figure imgb0003
where D L is, in%, the ratio of the flow rate of liquid product withdrawn to the total flow rate of oxygen produced, and where P is the high air pressure in absolute bars.
Procédé suivant l'une quelconque des revendications 1 à 6, caractérisé en ce que le débit de produit liquide soutiré est compris entre 2 et 12% environ du débit total d'oxygène produit.Process according to any one of Claims 1 to 6, characterized in that the flow rate of liquid product withdrawn is between 2 and 12% approximately of the total flow rate of oxygen produced. Procédé suivant l'une quelconque des revendications 1 à 7, caractérisé en ce que lesdits deuxième et troisième flux d'air représentent respectivement environ 20 à 25% et environ 10 à 30% du débit total d'air à distiller.Process according to any one of Claims 1 to 7, characterized in that the said second and third air flows represent approximately 20 to 25% and approximately 10 to 30% of the total air flow to be distilled, respectively. Procédé selon l'une des revendications précédentes dans lequel le liquide vaporisé est de l'oxygène, de l'azote ou de l'argon.Method according to one of the preceding claims, in which the vaporized liquid is oxygen, nitrogen or argon. Installation de production d'un gaz sous une haute pression d'au moins 30 bars environ, du type comprenant une double colonne de distillation d'air (1) comprenant : une colonne fonctionnant sous une basse pression (11) et une colonne fonctionnant sous une moyenne pression (10); une pompe (9) de compression d'un liquide soutiré d'une colonne de l'installation (11); des moyens de compression (14, 30, 31) de l'air entrant; un échangeur de chaleur (2) du type à plaques brasées pour mettre en relation d'échange thermique l'air à distiller et le liquide comprimé; et une conduite (24, 25; 37A) de soutirage d'au moins un produit liquide de l'installation, caractérisée en ce que les moyens de compression comprennent des moyens (4, 6, 7) pour créer trois flux d'air, respectivement à la moyenne pression, à une pression intermédiaire et à une haute pression d'air; en ce que l'échangeur de chaleur (2) comporte des passages (13) de refroidissement de l'air moyenne pression de son bout chaud à son bout froid, des passages (14) de refroidissement partiel de l'air sous la pression intermédiaire, et des passages (17) de refroidissement de l'air haute pression de son bout chaud à son bout froid; et en ce que l'installation comprend une turbine (8) de détente à la moyenne pression d'une partie au moins de l'air sous la pression intermédiaire partiellement refroidi, ainsi qu'une colonne (31) de production d'argon liquide couplée à la double colonne (1).Installation for producing a gas under a high pressure of at least about 30 bars, of the type comprising a double air distillation column (1) comprising: a column operating under a low pressure (11) and a column operating under medium pressure (10); a pump (9) for compressing a liquid withdrawn from a column of the installation (11); means for compressing (14, 30, 31) the incoming air; a heat exchanger (2) of the brazed plate type for bringing the air to be distilled and the compressed liquid into heat exchange relation; and a pipe (24, 25; 37A) for withdrawing at least one liquid product from the installation, characterized in that the compression means comprise means (4, 6, 7) for creating three air flows, medium pressure, intermediate pressure and high air pressure, respectively; in that the heat exchanger (2) comprises passages (13) for cooling the medium pressure air from its hot end to its cold end, passages (14) for partial cooling of the air under the intermediate pressure , and passages (17) for cooling the high pressure air from its hot end to its cold end; and in that the installation comprises a turbine (8) for expansion at medium pressure of at least part of the air under the partially cooled intermediate pressure, as well as a column (31) for producing liquid argon coupled to the double column (1). Installation suivant la revendication 10, caractérisée en ce qu'elle comprend un échangeur de chaleur additionnel (38) pour sous-refroidir le liquide soutiré en cuve de la colonne moyenne pression (10) par vaporisation du liquide soutiré de la colonne (11).Installation according to claim 10, characterized in that it comprises an additional heat exchanger (38) for sub-cooling the liquid withdrawn from the tank of the medium pressure column (10) by vaporization of the liquid withdrawn from the column (11). Procédé de production d'un gaz sous une haute pression du type dans lequel : on distille de l'air dans une installation à double colonne de distillation (1) comprenant une colonne (11) qui fonctionne sous une basse pression et une colonne (10) qui fonctionne sous une moyenne pression dans lequel une partie de l'air est détendu à la moyenne pression dans une turbine (6) avant d'être introduit dans la colonne moyenne pression, la pression de l'air étant choisie de façon que l'air se trouve au voisinage de son point de rosée à l'entrée de la roue de la turbine.Method for producing a gas under high pressure of the type in which: air is distilled in a double-distillation plant (1) comprising a column (11) which operates under low pressure and a column (10 ) which operates at medium pressure in which part of the air is expanded to medium pressure in a turbine (6) before being introduced into the medium pressure column, the air pressure being chosen so that l air is near its dew point at the entrance to the turbine wheel. Procédé selon la revendication 12, dans lequel l'air à détendre dans la turbine est refroidi avant sa détente par du gaz provenant de la double colonne, éventuellement après une étape de pressurisation et de vaporisation.The method of claim 12, wherein the air to be expanded in the turbine is cooled before it is expanded by gas from the double column, optionally after a pressurization and vaporization step.
EP97400222A 1996-02-12 1997-01-31 Process and installation for the production of gaseous oxygen under high pressure Expired - Lifetime EP0789208B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9601698A FR2744795B1 (en) 1996-02-12 1996-02-12 PROCESS AND PLANT FOR THE PRODUCTION OF HIGH-PRESSURE GASEOUS OXYGEN
FR9601698 1996-02-12

Publications (2)

Publication Number Publication Date
EP0789208A1 true EP0789208A1 (en) 1997-08-13
EP0789208B1 EP0789208B1 (en) 2003-03-12

Family

ID=9489096

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97400222A Expired - Lifetime EP0789208B1 (en) 1996-02-12 1997-01-31 Process and installation for the production of gaseous oxygen under high pressure

Country Status (10)

Country Link
US (1) US5735142A (en)
EP (1) EP0789208B1 (en)
JP (1) JPH09310970A (en)
KR (1) KR100466917B1 (en)
CN (1) CN1097715C (en)
CA (1) CA2197156A1 (en)
DE (1) DE69719578T2 (en)
ES (1) ES2193336T3 (en)
FR (1) FR2744795B1 (en)
ZA (1) ZA971031B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0866292A1 (en) * 1997-03-19 1998-09-23 Praxair Technology, Inc. Cryogenic rectification system for producing high pressure nitrogen and high pressure oxygen
EP0909931A2 (en) * 1997-10-14 1999-04-21 Praxair Technology, Inc. Cryogenic rectification system for producing high pressure oxygen
FR3014180A1 (en) * 2013-11-29 2015-06-05 Air Liquide METHOD AND APPARATUS FOR AIR SEPARATION BY LOW TEMPERATURE DISTILLATION
FR3014181A1 (en) * 2013-11-29 2015-06-05 Air Liquide METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
FR3093169A1 (en) 2019-02-21 2020-08-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Installation and process for separating gases from air using a parallelepiped shaped adsorber
FR3093008A1 (en) 2019-02-21 2020-08-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Low pressure air gas separation plant and process
US12078415B2 (en) 2019-07-26 2024-09-03 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for the separation of air by cryogenic distillation
US12076688B2 (en) 2019-02-21 2024-09-03 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and facility for purifying a high-flow gas stream

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2776760B1 (en) * 1998-03-31 2000-05-05 Air Liquide METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
JP3715497B2 (en) 2000-02-23 2005-11-09 株式会社神戸製鋼所 Method for producing oxygen
US6253577B1 (en) 2000-03-23 2001-07-03 Praxair Technology, Inc. Cryogenic air separation process for producing elevated pressure gaseous oxygen
FR2854682B1 (en) * 2003-05-05 2005-06-17 Air Liquide METHOD AND INSTALLATION OF AIR SEPARATION BY CRYOGENIC DISTILLATION
FR2865024B3 (en) * 2004-01-12 2006-05-05 Air Liquide METHOD AND INSTALLATION OF AIR SEPARATION BY CRYOGENIC DISTILLATION
US7272954B2 (en) * 2004-07-14 2007-09-25 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Proceded Georges Claude Low temperature air separation process for producing pressurized gaseous product
EP1726900A1 (en) * 2005-05-20 2006-11-29 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for the separation of air by cryogenic distillation
US20080223077A1 (en) * 2007-03-13 2008-09-18 Neil Mark Prosser Air separation method
US20100192629A1 (en) * 2009-01-30 2010-08-05 Richard John Jibb Oxygen product production method
US8726691B2 (en) * 2009-01-30 2014-05-20 Praxair Technology, Inc. Air separation apparatus and method
US20100192628A1 (en) * 2009-01-30 2010-08-05 Richard John Jibb Apparatus and air separation plant
US9279613B2 (en) * 2010-03-19 2016-03-08 Praxair Technology, Inc. Air separation method and apparatus
CN102564064A (en) * 2010-11-25 2012-07-11 林德股份公司 Method and device for creating a gaseous, pressurised product by the cryogenic decomposition of air
US8991209B2 (en) * 2010-12-13 2015-03-31 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and installation for producing high-pressure nitrogen
CN102721263A (en) * 2012-07-12 2012-10-10 杭州杭氧股份有限公司 System and method for separating air by utilizing cryogenic cooling technology
BR112019003828A2 (en) * 2016-08-30 2019-06-18 8 Rivers Capital Llc cryogenic air separation method to produce oxygen at high pressures

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5337570A (en) * 1993-07-22 1994-08-16 Praxair Technology, Inc. Cryogenic rectification system for producing lower purity oxygen
EP0672878A1 (en) * 1994-03-16 1995-09-20 The BOC Group plc Air separation
EP0689019A1 (en) * 1994-06-20 1995-12-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for producing gaseous oxygen under pressure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2652409A1 (en) * 1989-09-25 1991-03-29 Air Liquide REFRIGERANT PRODUCTION PROCESS, CORRESPONDING REFRIGERANT CYCLE AND THEIR APPLICATION TO AIR DISTILLATION.
JP2909678B2 (en) * 1991-03-11 1999-06-23 レール・リキード・ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method and apparatus for producing gaseous oxygen under pressure
US5475980A (en) * 1993-12-30 1995-12-19 L'air Liquide, Societe Anonyme Pour L'etude L'exploitation Des Procedes Georges Claude Process and installation for production of high pressure gaseous fluid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5337570A (en) * 1993-07-22 1994-08-16 Praxair Technology, Inc. Cryogenic rectification system for producing lower purity oxygen
EP0672878A1 (en) * 1994-03-16 1995-09-20 The BOC Group plc Air separation
EP0689019A1 (en) * 1994-06-20 1995-12-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for producing gaseous oxygen under pressure

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0866292A1 (en) * 1997-03-19 1998-09-23 Praxair Technology, Inc. Cryogenic rectification system for producing high pressure nitrogen and high pressure oxygen
EP0909931A2 (en) * 1997-10-14 1999-04-21 Praxair Technology, Inc. Cryogenic rectification system for producing high pressure oxygen
EP0909931A3 (en) * 1997-10-14 1999-08-25 Praxair Technology, Inc. Cryogenic rectification system for producing high pressure oxygen
FR3014180A1 (en) * 2013-11-29 2015-06-05 Air Liquide METHOD AND APPARATUS FOR AIR SEPARATION BY LOW TEMPERATURE DISTILLATION
FR3014181A1 (en) * 2013-11-29 2015-06-05 Air Liquide METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
FR3093169A1 (en) 2019-02-21 2020-08-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Installation and process for separating gases from air using a parallelepiped shaped adsorber
FR3093008A1 (en) 2019-02-21 2020-08-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Low pressure air gas separation plant and process
US12076688B2 (en) 2019-02-21 2024-09-03 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and facility for purifying a high-flow gas stream
US12098883B2 (en) 2019-02-21 2024-09-24 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude System and method for separating air gases at low pressure
US12078415B2 (en) 2019-07-26 2024-09-03 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for the separation of air by cryogenic distillation

Also Published As

Publication number Publication date
CN1168463A (en) 1997-12-24
DE69719578D1 (en) 2003-04-17
CA2197156A1 (en) 1997-08-13
FR2744795B1 (en) 1998-06-05
ES2193336T3 (en) 2003-11-01
DE69719578T2 (en) 2003-12-11
JPH09310970A (en) 1997-12-02
US5735142A (en) 1998-04-07
KR970062629A (en) 1997-09-12
KR100466917B1 (en) 2005-04-22
EP0789208B1 (en) 2003-03-12
CN1097715C (en) 2003-01-01
ZA971031B (en) 1997-08-25
FR2744795A1 (en) 1997-08-14

Similar Documents

Publication Publication Date Title
EP0789208B1 (en) Process and installation for the production of gaseous oxygen under high pressure
EP0689019B1 (en) Process and apparatus for producing gaseous oxygen under pressure
EP0420725B1 (en) Refrigeration production process, the refrigeration cycle used and application in the distillation of air
EP0576314B1 (en) Process and installation for the production of gaseous oxygen under pressure
EP0628778B1 (en) Process and high pressure gas supply unit for an air constituent consuming installation
EP0504029B1 (en) Process for the production of gaseous pressurised oxygen
EP0713069B1 (en) Process and plant for air separation
EP2122282B1 (en) Method for separating a mixture of carbon monoxide, methane, hydrogen and nitrogen by cryogenic distillation
FR2757282A1 (en) METHOD AND INSTALLATION FOR PROVIDING A VARIABLE FLOW OF AN AIR GAS
WO2007068858A2 (en) Process for separating air by cryogenic distillation
EP0605262B1 (en) Process and apparatus for the production of gaseous oxygen under pressure
EP0618415B1 (en) Process and installation for the production of gaseous oxygen and/or gaseous nitrogen under pressure by distillation of air
EP0606027A1 (en) Air distillation process and plant for producing at least a high pressure gaseous product and at least a liquid
FR2690982A1 (en) Impure oxygen@ large amt. prodn. avoiding large dia. low pressure column - by distn. of air using a double distn. column with medium and low pressure columns, avoiding extra distn. column mfr., utilising purificn. device, compressor and turbine
FR2787560A1 (en) PROCESS FOR CRYOGENIC SEPARATION OF AIR GASES
EP0694746A1 (en) Process for the production of a gas under pressure in variable quantities
EP0641983B1 (en) Process and installation for the production of gaseous oxygen and/or nitrogen under pressure
FR2688052A1 (en) Method and installation for producing pressurised gaseous oxygen and/or nitrogen by distillation of air
EP0611218B2 (en) Process and installation for producing oxygen under pressure
CA2146831A1 (en) Process and unit for producing oxygen by air distillation
FR2837564A1 (en) Distillation of air to produce oxygen, nitrogen and pure argon, extracts oxygen of specified purity and subjects argon to catalytic de-oxygenation
FR2862004A1 (en) Enriching a flow of pressurised gas in one of its components by dividing the gas into two fractions, separating one fraction to obtain an enriched gas and mixing that gas with the other fraction
EP1409937A1 (en) Method and installation for water vapour production and air distillation
EP3913310A1 (en) Method and device for air separation by cryogenic distilling
FR2864213A1 (en) Producing oxygen, argon or nitrogen as high-pressure gas by distilling air comprises using electricity generated by turbine to drive cold blower

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT

17P Request for examination filed

Effective date: 19980213

17Q First examination report despatched

Effective date: 20000404

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69719578

Country of ref document: DE

Date of ref document: 20030417

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2193336

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20051208

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20060113

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20060120

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070930

BERE Be: lapsed

Owner name: S.A. L'*AIR LIQUIDE A DIRECTOIRE ET CONSEIL DE SUR

Effective date: 20070131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20070201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090122

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090122

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100131