EP1132700B1 - Verfahren und Vorrichtung zur kryogenischen Luftzerlegung - Google Patents

Verfahren und Vorrichtung zur kryogenischen Luftzerlegung Download PDF

Info

Publication number
EP1132700B1
EP1132700B1 EP01400413A EP01400413A EP1132700B1 EP 1132700 B1 EP1132700 B1 EP 1132700B1 EP 01400413 A EP01400413 A EP 01400413A EP 01400413 A EP01400413 A EP 01400413A EP 1132700 B1 EP1132700 B1 EP 1132700B1
Authority
EP
European Patent Office
Prior art keywords
column
air
oxygen
process according
fraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01400413A
Other languages
English (en)
French (fr)
Other versions
EP1132700A1 (de
Inventor
Jean-Pierre Tranier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP1132700A1 publication Critical patent/EP1132700A1/de
Application granted granted Critical
Publication of EP1132700B1 publication Critical patent/EP1132700B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04103Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression using solely hydrostatic liquid head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/0406Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04381Details relating to the work expansion, e.g. process parameter etc. using work extraction by mechanical coupling of compression and expansion so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/044Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04424Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system without thermally coupled high and low pressure columns, i.e. a so-called split columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/0443A main column system not otherwise provided, e.g. a modified double column flowsheet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/0446Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases
    • F25J3/04466Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases for producing oxygen as a mixing column overhead gas by mixing gaseous air feed and liquid oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/0466Producing crude argon in a crude argon column as a parallel working rectification column or auxiliary column system in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/52Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the high pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/76Refluxing the column with condensed overhead gas being cycled in a quasi-closed loop refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/20Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/02Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams using a pump in general or hydrostatic pressure increase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/58Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being argon or crude argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen

Definitions

  • the present invention relates to a method and an installation of air separation by cryogenic distillation according to the preamble of claim 1 and claim 15, respectively.
  • Such a process and a such an installation are known from DE-A-1 199 293.
  • US-A-4947649 discloses a solution where air is compressed for introduce it at least partially in a single column. Such a solution is not applicable only if it is desired to produce nitrogen at a significantly higher pressure atmospheric pressure, particularly in the case of integration with a gas turbine. Conversely, if the air pressure supplied by the turbine compressor gas is very high, it is not advisable to use this process because the distillation under high pressure (pressure greater than 15 bar) is very difficult and poses significant technological problems when we get closer to the pressure supercritical nitrogen (33 bar).
  • the other disadvantage of the cycle described in this patent is that gaseous oxygen is produced at the same pressure as the air sent to the simple column.
  • EP-A-0584420 relates to a simple column which produces oxygen and nitrogen with head condenser and two reboilers operating at between 5 and 20 bar. A reboilers is heated with compressed nitrogen at room temperature and then cooled.
  • EP-B-0606 027 also describes a single column process for produce oxygen and / or nitrogen under pressure and at least one product liquid. Such a process is not interesting if one does not wish to produce products liquid. Indeed, the air pressure is eminently dependent on the amount of liquid produced. At zero or low liquid production, the air pressure is less than 3 bar abs, which poses problems in the design of the treatment in the head, which requires a huge amount of absorbent, making this process uneconomical.
  • the US-A-5794458 also discloses a single-column air distillation process. The main complaint that can be made about such a scheme is that it includes a compressor cold compressing a fluid very rich in oxygen. Moreover, in a classical way, the air compression is performed in one or more compressors operating at the ambient temperature.
  • DE-A-1199293 discloses a method of air distillation according to the preamble of the claim 1 wherein an air flow is separated in a single column and a flow of liquid oxygen is withdrawn in the vat from the column and vaporized by exchange of heat with a compressed cycle nitrogen flow rate in a cold compressor.
  • a part compressed nitrogen in the cold compressor at between 30 and 40 atma serves to reboil the simple column. In this case it is necessary to warm the nitrogen to compress it before cooling it and liquefying it against the oxygen that vaporizes. This is expensive in energy and complicates the construction of the exchangers.
  • US-A-5475980 discloses a double-column process for distillation of air which in an original way proposes to compress some of the air necessary for the distillation in a cold compressor.
  • the disadvantage of such a solution is the complexity of the exchange line from which the cold fluid is extracted to compress before reintroduce.
  • a cold compressor compresses a fluid whose oxygen content does not not exceed 30 mol%.
  • Another advantage of such a scheme is that it is better in energy than the scheme described in US Patent 5794458 because the turbine of the invention being on a fluid entering the cold box and not a fluid coming out of the cold box, the amount of heat exchanged in the main heat exchanger is significantly lower from where less irreversibilities.
  • Another aspect of the invention is to produce oxygen at a pressure greater than the pressure of the single column by compressing a liquid rich in oxygen (either by pump or by hydrostatic head) at a pressure greater than that of the single column and vaporizing it either by heat exchange indirect in a main heat exchanger or an external vaporizer, either by direct contact in a mixing column.
  • the ambient temperature is defined by the temperature at the suction of the Main air compressor supplying the separation unit.
  • FIGS. are schematic representations of facilities according to the invention.
  • the air 1 is compressed in the compressor 3, cleaned in 5 and divided in two.
  • Fraction 7 is partially cooled in exchanger 13 and sent to a turbine 15 in which it relaxes before being sent to the first column 17.
  • the rest of the air 9 (about 35%) is overpressed in the booster 11 and then crosses the exchanger 13 where it condenses before being sent to the column after a subcooling step in the exchanger 35, a few trays above the injection point of the air of the turbine 15.
  • the column operates at a pressure of between 1.2 and 1.3 bar abs, process which can be used up to pressures of 20 bar abs, preferably less than 10 bar abs.
  • Oxygen 27 is withdrawn in the bottom of the column, pressurized by the pump 23 and sent to the exchanger 13 where it vaporizes.
  • Nitrogen 25 from the top of the column warms up in the subcooler 35 before being divided in two. Part 31 is sent to the exchanger 13 where it heats up. The rest 29 is sent to the compressor 21 with an inlet temperature of - 182 ° C where it is compressed to 4.9 bar before to be sent to the reboiler of tank 19 of the first column 17. There it is condense and is returned to the top of the column to act as reflux. turbine 15 is coupled to the cold compressor 21.
  • Oxygen 27 is withdrawn in the bottom of the column, pressurized by the pump 23 and sent to the exchanger 13 where it vaporizes.
  • a cold booster 21 with several stages in series, each feeding an intermediate vaporizer or tank.
  • the cold booster 21 may have several stages in series driven each by a turbine or combined for example via a single-turbine multiplier.
  • Nitrogen 25 from the top of the column warms up in the subcooler 21 before being divided in two. Part 31 is sent to the exchanger 13 where it heats up. The rest 29 is sent to the compressor 21 with an inlet temperature of -182 ° C where it is compressed to 4.9 bar before to be sent to the reboiler of tank 19 of the first column 17. There it is condense and is returned to the top of the column to serve as reflux.
  • the turbine 15 is coupled to the cold compressor 21.
  • Figure 3 shows the case where the pressurized tank oxygen of the colone vaporizes by direct heat exchange in a mixing column.
  • the air 1 is compressed in the compressor 3, purified at 5 and divided into two. Fraction 7 is partially cooled in exchanger 13 and sent to a turbine 15 in which it relaxes before being sent to the first column 17. The rest of the air 9 (about 25%) is overpressed in the booster 11 and then passes through the exchanger 13.
  • the first column 17 operates at a pressure of between 3 and 20 bar.
  • the air flow 9 does not liquefy in the exchanger but is sent in form gas in the vat of the mixing column. So the mixing column operates at a higher pressure than the first column 17. It is possible to envisage both columns at the same pressure or to operate the mixing column at the lowest pressure.
  • the mixing column is fed at the top with oxygen pumped from the tank of the first column 17 but can be fed at the top by another flow less rich in oxygen than the flow pumped or in tank by air from a source other than the compressor 1.
  • Nitrogen 25 from the top of the column warms up in the subcooler 21 before being divided in two. Part 31 is sent to the interchange 13 where it is warms. The remainder 29 is sent to the compressor 21 with an inlet temperature of -182 ° C where it is compressed to 4.9 bar before being sent to the tank reboiler 19 of column 17. There it condenses and is returned to the top of the column to serve as the reflux.
  • the turbine 15 is coupled to the cold compressor 21.
  • an exchanger 49 warms the pumped oxygen sent to the top of the column 47.
  • the intermediate liquid flow of the mixing column is sent to the column 17 and the impure oxygen 48 withdrawn at the top of this one is sent to the exchanger 13.
  • FIG. 4 illustrates the case where a flow enriched with argon from the column 17 feeds a mixture column 57 having a cooled head condenser 51 by an intermediate liquid of the first column 17. A fluid enriched in argon is withdrawn at the top of the 57 mixture column.
  • Nitrogen 25 from the top of the column warms up in the subcooler 21 before being divided in two. Part 31 is sent to the interchange 13 where it is warms. The remainder 29 is sent to the compressor 21 with an inlet temperature of -182 ° C where it is compressed to 4.9 bar before being sent to the tank reboiler 19 of the first column 17. There he condenses and is sent back to the top of the column to serve of reflux.
  • the turbine 15 is coupled to the cold compressor 21.
  • Oxygen 27 is withdrawn in the bottom of the column, pressurized by the pump 23 and sent to the exchanger 13 where it vaporizes.
  • FIG. 5 shows a Etienne column 67 fed in the tank with a flow rate liquid drawn off some trays below the air injection point 9 and at the same level that the air blown 7. This liquid is pressurized by the pump 63 before being sent to the Etienne column. The liquid formed at the top of the column Etienne 67 is sent in head of the first column 17.
  • the Etienne column operating at 2.5 bar has a condenser head 61 cooled by part of the tank liquid 65 of the same column, the remainder of the liquid being sent to the column 17 below the injection point of the blown air 7.
  • the relaxed liquid vaporizes in the condenser 61 before being sent some trays above condenser 19 of column 17.
  • the turbine 15 is coupled to the compressor cold 21.
  • Oxygen 27 is withdrawn in the bottom of the column, pressurized by the pump 23 and sent to the exchanger 13 where it vaporizes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Claims (20)

  1. Verfahren zur Luftzerlegung durch kryogene Destillation in einem Gerät, das mindestens eine Kolonne (17, 47, 57) enthält, das die folgenden Schritte umfasst:
    Verdichten der Luft, Reinigen der Luft und Leiten mindestens eines Teils (7, 9) der Luft zu einer ersten (der) Kolonne (17);
    Abscheiden der Luft in der Kolonne bei kryogener Temperatur;
    Verdichten mindestens eines Teils einer Fraktion (25), die maximal 30 Molprozent Sauerstoff enthält, die aus dem Kolonnenkopf extrahiert wird, in einem Verdichter (21);
    mindestens teilweises Abkühlen der verdichteten Fraktion, ihr Kondensieren in einem Behälterverdampfer (19) der ersten Kolonne und Zurückleiten der kondensierten Fraktion zum Kolonnenkopf und
    Extrahieren einer flüssigen Fraktion (33), die reich an Sauerstoff ist, aus der ersten Kolonne, Druckbeaufschlagen der Fraktion auf einen Druck, der größer ist als der der Kolonne (17) und Verdampfen der Fraktion, um ein gasförmiges Produkt unter Druck zu erzeugen, das reich an Sauerstoff ist,
       dadurch gekennzeichnet, dass die Ansaugtemperatur des Verdichters kleiner ist als die Umgebungstemperatur und dass der flüssige Sauerstoff durch direkten oder indirekten Wärmeaustausch mit einem Teil der Versorgungsluft (7, 9) verdampft wird.
  2. Verfahren nach Anspruch 1, bei dem die verdichtete Fraktion (25) mindestens 19 Molprozent Sauerstoff und mindestens 81 % Molprozent Stickstoff enthält.
  3. Verfahren nach einem der Ansprüche 1 und 2, bei dem mindestens ein Teil (7) der Luft in einer Turbine (15) entspannt wird, bevor er zu der (ersten) Kolonne geleitet wird.
  4. Verfahren nach Anspruch 3, bei dem das Produkt der Arbeit durch das Entspannen mindestens eines Teils der Luft mindestens teilweise zum Verdichten in einer oder mehreren Verdichtungsstufen der Fraktion dient, die maximal 30 % Sauerstoff enthält.
  5. Verfahren nach Anspruch 1, 2, 3 oder 4, bei dem mindestens ein Teil der Luft (9) auf einen hohen Druck verdichtet, kondensiert und zu der (ersten) Kolonne geleitet wird.
  6. Verfahren nach Anspruch 5, bei dem ein nicht entspannter Teil der Luft durch Verdampfen eines Fluids, das intern ist oder aus der ersten Kolonne extrahiert wird, kondensiert wird (Fig. 1, 2).
  7. Verfahren nach einem der Ansprüche 1 bis 6, bei dem das Verdampfen der flüssigen Fraktion, die reich an Sauerstoff ist, durch direkten Kontakt in einer so genannten Mischhilfskolonne (47) erfolgt (Fig. 3).
  8. Verfahren nach einem der Ansprüche 1 bis 7, bei dem eine Hilfskolonne (57), die zur Argonherstellung bestimmt ist, ausgehend von der ersten Kolonne versorgt wird (Fig. 4).
  9. Verfahren nach einem der Ansprüche 1 bis 8, bei dem man in einer Hilfskolonne eine Flüssigkeit destilliert, die mit Sauerstoff angereichert ist, der aus der einzelnen Kolonne extrahiert wird, um eine Fraktion zu erzeugen, die reicher ist an Sauerstoff, und eine Fraktion, die an Sauerstoff abgereichert ist, und die wieder in die erste Kolonne eingeführt werden (Fig. 5).
  10. Verfahren nach einem der Ansprüche 1 bis 9, bei dem mindestens ein Teil der Luft, die für eine Kolonne des Geräts bestimmt ist, von dem Verdichter einer Gasturbine kommt und/oder ein mit Stickstoff angereichertes Gas ist, das von der (ersten) Kolonne stammt, zum System der Gasturbine zurückgeleitet wird.
  11. Verfahren nach Anspruch 10, bei dem der Eingangsdruck der Gasturbine größer ist als 15 bar absolut.
  12. Verfahren nach einem der Ansprüche 1 bis 11, bei dem die Ansaugtemperatur des kalten Verdichters (21) kleiner ist als -100 °C.
  13. Verfahren nach Anspruch 12, bei dem die Ansaugtemperatur des kalten Verdichters (21) kleiner ist als -150 °C.
  14. Verfahren nach einem der Ansprüche 1 bis 13, bei dem man als Endprodukt Flüssigkeit (78) erzeugt oder nicht.
  15. Anlage zur Luftzerlegung durch Destillation in mindestens einer ersten Kolonne (17), die einen Behälterverdampfer (19) hat, der Mittel (7) umfasst, um verdichtete und gereinigte Luft zu der (ersten) Kolonne zu leiten, einen Verdichter (21), um ein Gas (25), das maximal 30 Molprozent Sauerstoff enthält, das von dem Kopf der Kolonne kommt, zu verdichten, Mittel, um das verdichtete Gas zu dem Behälterverdampfer zu leiten, Mittel (33), um das verdichtete Gas, das in dem Behälterverdampfer (19) zumindest teilweise kondensiert ist, zu dem Kolonnenkopf zurückzuleiten, eventuell Mittel, um das verdichtete Gas, dem Behälterverdampfer vorgeschaltet, mit Stickstoff anzureichern, Mittel (27), um eine Flüssigkeit abzuzapfen, die in dem Behälter der Kolonne mit Sauerstoff angereichert wird, Mittel (23) um sie mit Druck zu beaufschlagen und Mittel (13, 47), um die mit Druck beaufschlagte Flüssigkeit durch direkten oder indirekten Wärmeaustausch zu verdampfen, dadurch gekennzeichnet, dass sie Mittel umfasst, um die mit Druck beaufschlagte Flüssigkeit durch direkten oder indirekten Wärmeaustausch mit Luft (9), die für die erste Kolonne bestimmt ist, zu verdampfen, und dadurch, dass der Verdichter eine Eingangstemperatur hat, die maximal 5 °C wärmer ist als eine Temperatur der (ersten) Kolonne, und dadurch, dass der Verdichter eine Eingangstemperatur hat, die niedriger ist als die Umgebungstemperatur.
  16. Anlage nach Anspruch 15, umfassend eine Luftentspannungsturbine (15), bei der der Ausgang der Turbine mit der (ersten) Kolonne verbunden ist.
  17. Anlage nach einem der Ansprüche 15 und 16, bei der die mit Druck beaufschlagte Flüssigkeit in einer Mischkolonne (47) verdampft.
  18. Anlage nach einem der Ansprüche 15 bis 17, die eine Kolonne zur Argonproduktion (57) umfasst, die ausgehend von der Kolonne (17) versorgt wird, die einen Behälterverdampfer (19) hat.
  19. Anlage nach einem der Ansprüche 15 bis 18, bei der die Kolonne (17), die einen Behälterverdampfer (19) hat, mindestens einen Zwischenkondenser (39) hat.
  20. Anlage nach einem der Ansprüche 15 bis 19, bei der die Kolonne (17), die einen Behälterverdampfer (19) hat, keinen Kopfverdichter hat.
EP01400413A 2000-03-07 2001-02-16 Verfahren und Vorrichtung zur kryogenischen Luftzerlegung Expired - Lifetime EP1132700B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0002924A FR2806152B1 (fr) 2000-03-07 2000-03-07 Procede et installation de separation d'air par distillation cryogenique
FR0002924 2000-03-07

Publications (2)

Publication Number Publication Date
EP1132700A1 EP1132700A1 (de) 2001-09-12
EP1132700B1 true EP1132700B1 (de) 2005-10-26

Family

ID=8847820

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01400413A Expired - Lifetime EP1132700B1 (de) 2000-03-07 2001-02-16 Verfahren und Vorrichtung zur kryogenischen Luftzerlegung

Country Status (8)

Country Link
US (1) US6484534B2 (de)
EP (1) EP1132700B1 (de)
AR (1) AR027970A1 (de)
BR (1) BR0102482A (de)
CA (1) CA2339392A1 (de)
DE (1) DE60114269T2 (de)
ES (1) ES2252164T3 (de)
FR (1) FR2806152B1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2830928B1 (fr) * 2001-10-17 2004-03-05 Air Liquide Procede de separation d'air par distillation cryogenique et une installation pour la mise en oeuvre de ce procede
US7296437B2 (en) * 2002-10-08 2007-11-20 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for separating air by cryogenic distillation and installation for implementing this process
EP1697741A4 (de) * 2003-12-04 2008-02-13 Xencor Inc Verfahren zur erzeugung von proteinvarianten mit erhöhtem wirtsstranggehalt und zusammensetzungen davon
EP1767884A1 (de) * 2005-09-23 2007-03-28 L'Air Liquide Société Anon. à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
US8397535B2 (en) * 2009-06-16 2013-03-19 Praxair Technology, Inc. Method and apparatus for pressurized product production
WO2012155318A1 (en) * 2011-05-13 2012-11-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for the production of oxygen at high pressure by cryogenic distillation

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1199293B (de) * 1963-03-29 1965-08-26 Linde Eismasch Ag Verfahren und Vorrichtung zur Luftzerlegung in einem Einsaeulenrektifikator
US3392536A (en) * 1966-09-06 1968-07-16 Air Reduction Recompression of mingled high air separation using dephlegmator pressure and compressed low pressure effluent streams
US5351492A (en) * 1992-09-23 1994-10-04 Air Products And Chemicals, Inc. Distillation strategies for the production of carbon monoxide-free nitrogen
US5379599A (en) * 1993-08-23 1995-01-10 The Boc Group, Inc. Pumped liquid oxygen method and apparatus
FR2721383B1 (fr) * 1994-06-20 1996-07-19 Maurice Grenier Procédé et installation de production d'oxygène gazeux sous pression.
US5832748A (en) * 1996-03-19 1998-11-10 Praxair Technology, Inc. Single column cryogenic rectification system for lower purity oxygen production
JP2875206B2 (ja) * 1996-05-29 1999-03-31 日本エア・リキード株式会社 高純度窒素製造装置及び方法
US6082135A (en) * 1999-01-29 2000-07-04 The Boc Group, Inc. Air separation method and apparatus to produce an oxygen product

Also Published As

Publication number Publication date
US6484534B2 (en) 2002-11-26
AR027970A1 (es) 2003-04-16
EP1132700A1 (de) 2001-09-12
FR2806152A1 (fr) 2001-09-14
DE60114269D1 (de) 2005-12-01
FR2806152B1 (fr) 2002-08-30
CA2339392A1 (en) 2001-09-07
US20020134105A1 (en) 2002-09-26
DE60114269T2 (de) 2006-07-20
BR0102482A (pt) 2001-10-16
ES2252164T3 (es) 2006-05-16

Similar Documents

Publication Publication Date Title
EP0689019B1 (de) Verfahren und Einrichtung zur Herstellung von gasförmigem Drucksauerstoff
EP0713069B1 (de) Verfahren und Anlage zur Lufttrennung
JP4728219B2 (ja) 空気の低温蒸留により加圧空気ガスを製造するための方法及びシステム
JP2836781B2 (ja) 空気分離方法
WO2007068858A2 (fr) Procédé de séparation d'air par distillation cryogénique
EP1014020B1 (de) Kryogenisches Luftzerleggungsverfahren
EP0618415B1 (de) Verfahren und Vorrichtung zur Herstellung von gasförmigem Sauerstoff und/oder gasförmigem Stickstoff unter Druck durch Zerlegung von Luft
FR2990500A1 (fr) Procede et appareil de separation d'air par distillation cryogenique
FR3062197A3 (fr) Procede et appareil pour la separation de l'air par distillation cryogenique
KR101947112B1 (ko) 정화된 두 개의 부분 공기 스트림을 발생시키기 위한 방법 및 장치
EP1189003B1 (de) Verfahren und Vorrichtung zur Luftzerlegung durch Tieftemperaturdestillation
JP2000310481A (ja) 極低温空気分離方法及び設備
EP1132700B1 (de) Verfahren und Vorrichtung zur kryogenischen Luftzerlegung
US6305191B1 (en) Separation of air
JP2000346547A (ja) 空気分離のための極低温蒸留
JP2011519010A (ja) 低温蒸留によって空気を分離する装置および方法
JP2000356465A (ja) 空気分離用低温蒸留システム
FR2831249A1 (fr) Procede et installation de separation d'air par distillation cryogenique
JPH08170876A (ja) 冷却蒸留による酸素の製造方法及び装置
EP0612967A1 (de) Verfahren und Anlage zur Herstellung von Sauerstoff und/oder Stickstoff unter Druck
FR3011916A1 (fr) Procede et appareil de separation d'air par distillation cryogenique
FR2837564A1 (fr) Procede et installation de production d'oxygene et/ou d'azote sous pression et d'argon pur
FR2787559A1 (fr) Procede et installation de separation d'air par distillation cryogenique
EP1063485B1 (de) Vorrichtung und Verfahren zur Luftzerlegung durch Tieftemperaturrektifikation
JPH11325716A (ja) 空気の分離

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FI FR GB SE

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR

17P Request for examination filed

Effective date: 20020312

AKX Designation fees paid

Free format text: DE ES FI FR GB SE

17Q First examination report despatched

Effective date: 20030718

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FI FR GB SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051026

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60114269

Country of ref document: DE

Date of ref document: 20051201

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060126

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060116

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2252164

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060727

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110302

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20110228

Year of fee payment: 11

Ref country code: GB

Payment date: 20110217

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120216

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120216

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140219

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60114269

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150901