EP1284404A1 - Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft - Google Patents

Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft Download PDF

Info

Publication number
EP1284404A1
EP1284404A1 EP01128631A EP01128631A EP1284404A1 EP 1284404 A1 EP1284404 A1 EP 1284404A1 EP 01128631 A EP01128631 A EP 01128631A EP 01128631 A EP01128631 A EP 01128631A EP 1284404 A1 EP1284404 A1 EP 1284404A1
Authority
EP
European Patent Office
Prior art keywords
column
pressure
product
fraction
pressure column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01128631A
Other languages
English (en)
French (fr)
Inventor
Dietrich Rottmann
Christian Kunz
Horst Corduan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP1284404A1 publication Critical patent/EP1284404A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/042Division of the main heat exchange line in consecutive sections having different functions having an intermediate feed connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/0446Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • F25J2200/06Processes or apparatus using separation by rectification in a dual pressure main column system in a classical double column flow-sheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/90Details relating to column internals, e.g. structured packing, gas or liquid distribution
    • F25J2200/94Details relating to the withdrawal point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen

Definitions

  • the invention relates to a method for obtaining a printed product by Cryogenic air separation in a rectification system that includes a pressure column and has a low pressure column, this method having the in claim 1 steps a to f listed.
  • the rectification system of the invention can be used as a classic double column system be designed, but also as a three or multi-column system. It can be in addition to the columns for nitrogen-oxygen separation further devices for Obtaining other air components, especially noble gases.
  • a mixing column is used in the process, in which an oxygen-rich fraction from the rectification in direct heat exchange is evaporated with a heat transfer medium.
  • the top gas of the mixing column is used for indirect evaporation of a liquid product pressurized liquid (see above) called internal compression).
  • the oxygen-rich fraction used as the insert for the mixing column points an oxygen concentration higher than that of air and for example 70 to 99.5 mol%, preferably 90 to 98 mol%.
  • Under Mixing column is understood to be a countercurrent contact column in which one is lighter volatile gaseous fraction sent to a less volatile liquid becomes.
  • the method according to the invention is suitable for the extraction of gaseous Pressurized oxygen and / or gaseous pressurized nitrogen, in particular for generation of gaseous impure oxygen under pressure.
  • An impure oxygen is used here Mixture with an oxygen content of 99.5 mol% or less, in particular of 70 to 99.5 mol% understood.
  • the product pressures are, for example, 3 to 25 bar, preferably at 4 to 16 bar.
  • the printed product can be used for Compressed further in gaseous state.
  • the invention has for its object the method mentioned in the introduction to make it economically more economical, in particular by simplifying equipment and / or energy saving.
  • This task is solved in that the indirect heat exchange for Evaporation of the liquid product pressurized liquid no longer in one separate condenser-evaporator is carried out, but in the Main heat exchanger system in which the pressure from the column air is also cooled.
  • the product fraction is preferably immediately after the pressure increase (for Example in a pump) in the cold end of the main heat exchanger system introduced, there first warmed to boiling point temperature and then evaporates, both against the condensing or condensed Top fraction of the mixing column.
  • the main heat exchanger system in the sense of the present invention can, must but not be realized by a single heat exchanger block. It can also come from several blocks connected in parallel or in series. With parallel When interconnected, the blocks have the same inlet and outlet temperatures. In the Usually the evaporation and at least part of the warming up of the liquid takes place on Pressurized product flow takes place in the same heat exchanger block.
  • the mixing column is operated under a pressure sufficient to achieve the Product fraction under the desired pressure against the condensing head gas To evaporate the mixing column, for example below 5 to 17 bar, preferably below 5 to 13 bar.
  • the pressure of the pressure column in the invention is in the range of, for example 5 to 15 bar, preferably 5 to 12 bar, that of the low pressure column for example 1.3 to 6 bar, preferably 1.3 to 4 bar.
  • the overhead product of the mixing column is preferably downstream of the condensation, which takes place in the condenser-evaporator, relaxed and into the low pressure column returned.
  • a second stream of purified feed air is preferably compressed to a pressure, which is significantly higher than the operating pressure of the pressure column in the main heat exchanger system cooled and then introduced as a heat transfer medium in the mixing column.
  • This second air flow simultaneously supplies at least part of the heat Warming up of the liquid product pressurized downstream of it Evaporation.
  • "significantly higher” is understood to mean a pressure difference that is higher than the line losses, in particular higher than 1 bar.
  • This pressure difference can be achieved, for example, that the total air on essentially Pressure column pressure is compressed and then branched into two air streams, the second stream being further compressed, for example by a motor driven compressor.
  • the two air streams can be separated from Atmospheric pressure can be compressed to the required pressures.
  • the pressure on the second airflow is compressed is generally 1.1 to 2.0 times the pressure of the liquid product fraction as it evaporates.
  • the second current at a first intermediate point under a first Intermediate temperature is taken from the main heat exchanger system, where the first intermediate temperature is significantly higher than its dew point.
  • the gaseous The top product of the mixing column is at the first intermediate point in the Main heat exchanger system introduced, on which the second stream from the Main heat exchanger system is removed. This allows the same passage in the Main heat exchanger system for both cooling the second air flow and can also be used for the condensation of the top product of the mixing column.
  • the product fraction is made from the Low pressure column removed.
  • the product fraction and the oxygen-rich fraction for the mixing column can then be withdrawn from the low pressure column together and / or be brought together under pressure in liquid form, which is particularly apparatus-wise is simple.
  • the product fraction and the oxygen-rich Fraction can be removed from the low pressure column at various points. there the oxygen-rich fraction is preferably at least one theoretical or practical floor above the point of withdrawal of the product fraction from the Low pressure column deducted.
  • nitrogen can be used as a printed product be won.
  • the (additional) product fraction is then from the pressure column removed, if necessary, for example in the top condenser of the pressure column liquefied, separated from the oxygen-rich fraction and brought under pressure evaporated and warmed in the main heat exchanger system.
  • the mixing column becomes a liquid fraction, for example Bottom liquid, removed, relaxed and in the pressure column or in the Low pressure column initiated.
  • the Feed point preferably above the removal of the oxygen-rich fraction and the recovery of the top fraction from the mixing column, preferably one to twenty theoretical plates above the introduction of the top fraction of the mixing column.
  • the liquid fraction from the mixing column is removed if necessary cooled, for example by indirect heat exchange with the product fraction and / or the oxygen-rich fraction.
  • the invention also relates to a device for obtaining a printed product by low-temperature separation of air according to claim 10.
  • compressed and cleaned air 1 is branched upstream of a main heat exchanger 2 into three partial flows 50, 60, 70.
  • the air pressure at this point corresponds to the operating pressure of the pressure column 4 plus line losses.
  • a first air flow 50 is approximately in the main heat exchanger 2 against reverse flows Cooled dew point temperature and via line 51 without pressure changing Measures fed into the lower area of a pressure column 3.
  • Crude oxygen 5 from the bottom of the pressure column 3 is - optionally after Subcooling in the subcooling counterflow 6 - in a low pressure column 4 throttled (7).
  • Top nitrogen 8 of the pressure column 3 is via line 9 in a Main condenser 10 out there and against evaporating bottom liquid Low pressure column 4 liquefied.
  • the condensate 11 is at least partially over Line 12 abandoned as a return to the pressure column 3.
  • Another part can be as liquid nitrogen product 13 can be obtained.
  • a part 35 of the top nitrogen 8 of the pressure column 3 is directly to Main heat exchanger 2 guided and as a gaseous pressure nitrogen product 36th won.
  • Nitrogen-rich liquid 14 becomes from an intermediate point of pressure column 3 removed, subcooled in the supercooling counterflow 6 and via throttle valve 15 the low pressure column 4 at the head as a return.
  • a nitrogen-rich residual gas 16 is drawn off and warmed to about ambient temperature in the heat exchangers 6 and 2.
  • the warm residual gas 17 can be used, for example, as a regeneration gas in a not shown Cleaning device for the feed air 1 can be used.
  • the bottom of the low pressure column 4 there is impure oxygen with an oxygen content produced by 95 mol%.
  • At least a portion 19 of the bottom liquid 18 of the Low pressure column 4 forms the product fraction in the sense of the invention. It is by means of a pump 20 brought to about the product pressure of, for example, 7.4 bar and via line 21 to the cold end of the main heat exchanger 2. There she will successively warmed to boiling temperature, evaporated and to about Ambient temperature warmed up.
  • the product fraction at 22 as deducted gaseous pressure product under the product pressure of 7.4 bar.
  • On other part 23 of the bottom liquid 18 of the low pressure column 4 can be a liquid Oxygen product can be obtained.
  • Some (e.g. three theoretical) trays will be above the bottom of the low pressure column an oxygen-rich fraction 24 with an oxygen content of oxygen for example, 88 mol% removed in liquid form, brought to pressure in a pump 25 and after heating in 65 via line 26 to the top of a mixing column 27.
  • the operating pressure of the mixing column is, for example, 9.6 bar at the bottom.
  • the gaseous top product 28 of the mixing column 27 has an oxygen content of 83 mol% and is introduced into the cold part of the main heat exchanger 2. There it supplies the heat for the evaporation of the product stream 21 and for the latter Warming up to boiling temperature. With indirect heat exchange in Main heat exchanger 2, the top product of the mixing column is condensed and supercooled. The liquid flows back via line 29 and throttle valve 30 into the Low pressure column 4.
  • the feed point is about three theoretical floors above the point at which the oxygen-rich fraction 24 is removed.
  • the heat transfer medium for the mixing column 27 is the second partial flow 60 Feed air formed. This is in one (in the example by means of external energy driven) post-compressor 61 with subsequent post-cooling 62 to a little over Mixing column pressure brought and via line 63 to the warm end of Main heat exchanger 2 out.
  • the second partial flow of air is at one Intermediate temperature above the cold end again from the main heat exchanger 2 taken. After further cooling in 65, it is used as heat transfer medium 66 in the Swamp area of the mixing column introduced.
  • Both the swamp fraction 31/32 and an intermediate fraction 33/34 of the mixing column 27 are subcooled in 65 and then at the points corresponding to their respective composition in the Low pressure column 4 throttled.
  • FIG. 1 uses a third part 70/73 for this purpose Feed air at an intermediate temperature from the main heat exchanger 2 led out (74) and relaxed in a turbine 75 to 1.4 bar. to Increasing the cooling capacity or reducing the amount of turbine air
  • the air 70 can be depressurized to a pressure of for example, 8 bar (71).
  • the post-compressor 71 is in the Example driven by the mechanical energy generated in turbine 75, preferably by direct mechanical coupling of turbine 75 and Post-compressor 71.
  • the heat of compression is generated by indirect heat exchange with removed a coolant in an after cooler 72.
  • the work-relaxing air 76, 77 is fed directly into the low pressure column 4.
  • the main heat exchanger system in the sense of the invention is formed by a single block 2, which was referred to above as the main heat exchanger.
  • the main heat exchanger system is formed by two separate blocks 102a, 102b.
  • 102a the main heat exchanger in the narrower sense, the gaseous product streams 35, 16 are heated against the first and third air streams 50, 73.
  • the oxygen heat exchanger 102b only the liquid product stream is heated and evaporated, specifically in countercurrent to the top fraction 28 of the mixing column 27 and to the second air stream 63.
  • FIG. 1A The procedure of FIG. 1A is cheaper in terms of apparatus because only the exchanger Oxygen heat exchanger 102b to the high pressure of the second partial flow 63 Air must be designed. This solution is suitable for smaller plants. The complete one is more economical in terms of energy and therefore more advantageous for large systems Integration of the two heat exchange processes according to FIG. 1.
  • the method of FIG. 2 differs from the process of FIG. 1 in that it saves one pump (25 in FIG. 1). This is achieved by withdrawing the product fraction 21 and the oxygen-rich fraction 224/226 from the bottom of the low-pressure column 4 (218, 218a) and pressurizing them in a pump 220. The high-pressure liquid 218b is then divided into product stream 21 and feed liquid 224 for the mixing column 27. (The apparatus shown in the drawings as individual pumps are regularly designed as a pair of pumps for reasons of redundancy.)
  • Figure 3 also largely corresponds to Figure 1.
  • the gaseous pressurized nitrogen product 336 at a higher pressure won, which is significantly above the operating pressure of the pressure column 3.
  • Line 335 is with the outlet and not the inlet (see 35 in FIG. 1) of the main capacitor 10 connected.
  • the liquid nitrogen 335 is in a further pump 337 on the required product pressure (for example 6 to 25 bar) brought and in Main heat exchanger 2 evaporates and warms up.
  • the other flows are adjusted accordingly, especially the amount of High pressure air 63 can be increased compared to Figure 1.
  • Nitrogen can be produced under high pressure.
  • the pressure nitrogen production 335, 337 according to FIG. 3 is shown in FIG common compression 218a, 220 of oxygenated fraction and Combined product fraction.
  • the Internal nitrogen compression 335/337 carried out without internal oxygen compression, that is, the pump 220 is only used to apply liquid to the head of the Mixing column and not to produce a gaseous oxygen product.
  • the method of the invention is not only suitable for the extraction of impure Oxygen, but also leaves product purities of 98 mol% or more (for example 98 to 99.9%, preferably 98 to 99.5%) in the oxygen product 22 to.
  • argon production can be connected, as in FIG. 5 shows.
  • a common crude argon column 538 with an intermediate point in the Low pressure column connected (539, 540).
  • the argon transition 539/540 lies between the feed points of the two liquids 30, 34 from the mixing column 27.
  • Der Top condenser 541 of the crude argon column can, as usual, with crude oxygen 5 are operated downstream of the subcooling 6 (not shown).
  • the Raw argon product 542 is preferably further cleaned, for example in one also not shown pure argon column.
  • direct blowing of air into the low-pressure column 4 (77 in FIG. 5) can be dispensed with, in that the third partial stream 73 of the feed air in the turbine 75 is expanded to approximately the operating pressure of the pressure column 3, as shown in FIG. 6 .
  • the turbine exhaust gas 676 is then introduced into the pressure column 3 (677), in the example together with the direct air (first partial flow 51 of the air).
  • pure nitrogen 843-844-845 is also obtained in the low-pressure column 4.
  • a portion 814 of the liquid nitrogen 11 from the main condenser 10 in FIG. 6 is subcooled and fed via a throttle valve 815 as a return to the low-pressure column 4.
  • Impure nitrogen (nitrogen-rich residual gas) 816 is taken from an intermediate point of the low pressure column below a pure nitrogen section 846.
  • the liquid nitrogen product 813 is obtained from the low pressure column 4 in FIG. 8 deducted.
  • the methods for obtaining pressurized nitrogen from FIG. 1 are also shown (35 - 36) and Figure 3 (335 - 337 - 338 - 336) realized simultaneously. So that can gaseous nitrogen (845, 36, 336) under a total of three different pressures for Be made available without using an additional gas compressor should be.
  • FIGS. 6 to 8 can in principle also be used without argon extraction (crude argon column 538).
  • Tables 1 and 2 relate to the exemplary embodiment in FIG. 2. They relate to two design cases with different purity of the oxygen product. TABLE 1 No. Quantity in Nm 3 / h Pressure in bar Temperature in K O 2 content in mol% total air 1 183117 5.40 290.0 20.95% 1. Partial flow before introduction into the pressure column 51 113445 5.32 101.9 20.95% 2. Partial flow in front of the main heat exchanger system 63 53540 9.60 290.0 20.95% 2.
  • Figure 9 shows the heat exchange diagram (Q-T diagram) for the Main heat exchanger system 2 of the method according to Figure 2 (Table 1).

Abstract

Das Verfahren und die Vorrichtung dienen zur Gewinnung eines Druckprodukts (22; 336) durch Tieftemperaturzerlegung von Luft in einem Rektifiziersystem, das eine Drucksäule (3) und eine Niederdrucksäule (4) aufweist. Ein erster Strom (50) verdichteter und gereinigter Einsatzluft (1) wird in einem Hauptwärmetauscher-System (2; 102a, 102b) abgekühlt und in die Drucksäule (3) eingeführt (51, 677). Mindestens eine Fraktion (5) aus der Drucksäule (3) wird entspannt (7) und in die Niederdrucksäule (4) eingespeist Eine sauerstoffreiche Fraktion (24; 218a) aus der Niederdrucksäule (4) wird flüssig auf Druck gebracht (25; 220) und auf eine Mischsäule (27) aufgegeben (26; 224, 226). Ein Wärmeträger (66) wird in den unteren Bereich der Mischsäule (27) eingeleitet und in Gegenstromkontakt mit der sauerstoffreichen Fraktion (26; 226) gebracht. Aus dem oberen Bereich der Mischsäule (27) wird ein gasförmiges Kopfprodukt (28) entnommen. Eine Produktfraktion (19; 218a; 335) wird aus dem Rektifiziersystem entnommen, flüssig auf Druck gebracht (20; 220; 337), in indirektem Wärmeaustausch (2, 102b) mit dem gasförmigen Kopfprodukt (28) der Mischsäule (27) verdampft und als Druckprodukt (22; 336) abgezogen. Der indirekte Wärmeaustausch zur Verdampfung der flüssig auf Druck gebrachten Produktfraktion (21) wird in dem Hauptwärmetauscher-System (2; 102a, 102b) durchgeführt. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft in einem Rektifiziersystem, das eine Drucksäule und eine Niederdrucksäule aufweist, wobei dieses Verfahren die im Patentanspruch 1 aufgeführten Schritte a bis f umfasst.
Das Rektifiziersystem der Erfindung kann als klassisches Doppelsäulensystem ausgebildet sein, aber auch als Drei- oder Mehrsäulensystem. Es kann zusätzlich zu den Kolonnen zur Stickstoff-Sauerstoff-Trennung weitere Vorrichtungen zur Gewinnung anderer Luftkomponenten, insbesondere von Edelgasen aufweisen. Zusätzlich zu dem Rektifiziersystem wird in dem Verfahren eine Mischsäule eingesetzt, in der eine sauerstoffreiche Fraktion aus der Rektifikation in direktem Wärmeaustausch mit einem Wärmeträger verdampft wird. Das Kopfgas der Mischsäule dient zur indirekten Verdampfung einer flüssig auf Druck gebrachten Produktfraktion (so genannte Innenverdichtung).
Die sauerstoffreiche Fraktion, die als Einsatz für die Mischsäule verwendet wird, weist eine Sauerstoffkonzentration auf, die höher als diejenige von Luft ist und beispielsweise bei 70 bis 99,5 mol%, vorzugsweise bei 90 bis 98 mol% liegt. Unter Mischsäule wird eine Gegenstromkontaktkolonne verstanden, in der eine leichter flüchtige gasförmige Fraktion einer schwerer flüchtigen Flüssigkeit entgegengeschickt wird.
Das erfindungsgemäße Verfahren eignet sich zur Gewinnung von gasförmigem Drucksauerstoff und/oder gasförmigem Druckstickstoff, insbesondere zur Erzeugung von gasförmigem unreinen Sauerstoff unter Druck. Als unreiner Sauerstoff wird hier ein Gemisch mit einem Sauerstoffgehalt von 99,5 mol% oder weniger, insbesondere von 70 bis 99,5 mol% verstanden. Die Produktdrücke liegen beispielsweise bei 3 bis 25 bar, vorzugsweise bei 4 bis 16 bar. Selbstverständlich kann das Druckprodukt bei Bedarf in gasförmigem Zustand weiter verdichtet werden.
Ein Verfahren der eingangs genannten Art ist aus DE 19803437 A1 bekannt. Hier wird flüssiger Sauerstoff gepumpt und im Kopfkondensator der Mischsäule verdampft.
Der Erfindung liegt die Aufgabe zugrunde, das eingangs genannte Verfahren wirtschaftlich günstiger zu gestalten, insbesondere durch apparative Vereinfachung und/oder Energieeinsparung.
Diese Aufgabe wird dadurch gelöst, dass der indirekte Wärmeaustausch zur Verdampfung der flüssig auf Druck gebrachten Produktfraktion nicht mehr in einem separaten Kondensator-Verdampfer durchgeführt wird, sondern in dem Hauptwärmetauscher-System, in dem auch die Drucksäulenluft abgekühlt wird. Vorzugsweise wird die Produktfraktion unmittelbar nach der Druckerhöhung (zum Beispiel in einer Pumpe) in das kalte Ende des Hauptwärmetauscher-Systems eingeführt, dort zunächst auf Siedepunktstemperatur angewärmt und anschließend verdampft, beides gegen die kondensierende beziehungsweise kondensierte Kopffraktion der Mischsäule.
Hierdurch kann auf den separaten Kondensator-Verdampfer, der bei dem Verfahren von DE 19803437 A1 notwendig ist, verzichtet werden, ebenso auf einen separaten Wärmetauscher für die Entfernung der Unterkühlung aus der flüssig auf Druck gebrachten Produktfraktion. Durch die Integration der Verdampfung der flüssigen Produktfraktion und die Abkühlung von Luft kann außerdem der Wärmeaustauschvorgang (Q-T-Diagramm) verbessert werden, sodass besonders geringe Austauschverluste erreicht und damit ein relativ geringer Energieverbrauch erzielt wird.
Das Hauptwärmetauscher-System im Sinne der vorliegenden Erfindung kann, muss aber nicht durch einen einzigen Wärmetauscherblock realisiert sein. Es kann auch aus mehreren parallel oder seriell verbundenen Blöcken bestehen. Bei paralleler Verschaltung weisen die Blöcke die gleichen Ein- und Austrittstemperaturen auf. In der Regel findet die Verdampfung und mindestens ein Teil der Anwärmung des flüssig auf Druck gebrachten Produktstroms in demselben Wärmetauscherblock statt.
Die Mischsäule wird unter einem Druck betrieben, der ausreicht, um die Produktfraktion unter dem gewünschten Druck gegen das kondensierende Kopfgas der Mischsäule zu verdampfen, beispielsweise unter 5 bis 17 bar, vorzugsweise unter 5 bis 13 bar. Der Druck der Drucksäule liegt bei der Erfindung im Bereich von beispielsweise 5 bis 15 bar, vorzugsweise 5 bis 12 bar, derjenige der Niederdrucksäule bei beispielsweise 1,3 bis 6 bar, vorzugsweise 1,3 bis 4 bar.
Vorzugsweise wird das Kopfprodukt der Mischsäule stromabwärts der Kondensation, die im Kondensator-Verdampfer stattfindet, entspannt und in die Niederdrucksäule zurückgeleitet. Es wird dort insbesondere einige theoretische Böden (zum Beispiel ein bis zehn theoretische Böden) oberhalb der Entnahme der sauerstoffreichen Fraktion eingespeist. Zwischen Kondensator-Verdampfer und Entspannung wird sie gegebenenfalls abgekühlt, beispielsweise durch indirekten Wärmeaustausch mit der Produktfraktion und/oder der sauerstoffreichen Fraktion.
Vorzugsweise wird ein zweiter Strom gereinigter Einsatzluft auf einen Druck verdichtet, der deutlich höher als der Betriebsdruck der Drucksäule ist, im Hauptwärmetauscher-System abgekühlt und anschließend als Wärmeträger in die Mischsäule eingeleitet. Dieser zweite Luftstrom liefert gleichzeitig mindestens einen Teil der Wärme zur Anwärmung der flüssig auf Druck gebrachten Produktfraktion stromabwärts ihrer Verdampfung. Unter "deutlich höher" wird hier eine Druckdifferenz verstanden, die höher als die Leitungsverluste ist, insbesondere höher als 1 bar. Diese Druckdifferenz kann beispielsweise dadurch erreicht werden, dass die Gesamtluft auf im wesentlichen Drucksäulendruck verdichtet und anschließend in zwei Luftströme verzweigt wird, wobei der zweite Strom weiter verdichtet wird, beispielsweise durch einen motorisch getriebenen Kompressor. Alternativ können die beiden Luftströme getrennt von Atmosphärendruck auf die jeweils benötigten Drücke verdichtet werden. Der Druck, auf den der zweite Luftstrom verdichtet wird, beträgt im Allgemeinen das 1,1- bis 2,0-Fache des Drucks der flüssigen Produktfraktion bei deren Verdampfung.
Es ist ferner günstig, wenn der zweite Strom nach seiner Abkühlung im Hauptwärmetauscher-System und vor seiner Einleitung in die Mischsäule in indirektem Wärmeaustausch mit der flüssig auf Druck gebrachten sauerstoffreichen Fraktion weiter abgekühlt wird. Damit werden die beiden Einsatzfraktionen der Mischsäule auf die für ihre Einspeisung optimale Temperatur gebracht.
Für die Optimierung des Q-T-Diagramms des Hauptwärmetauscher-Systems ist es von Vorteil, wenn der zweite Strom bei einer ersten Zwischenstelle unter einer ersten Zwischentemperatur aus dem Hauptwärmetauscher-System entnommen wird, wobei die erste Zwischentemperatur deutlich höher als sein Taupunkt liegt. Das gasförmige Kopfprodukt der Mischsäule wird bei der ersten Zwischenstelle in das Hauptwärmetauscher-System eingeführt, an der der zweite Strom aus dem Hauptwärmetauscher-System entnommen wird. Dadurch kann dieselbe Passage im Hauptwärmetauscher-System sowohl für die Abkühlung des zweiten Luftstroms als auch für die Kondensation des Kopfprodukts der Mischsäule verwendet werden.
Falls das Druckprodukt Sauerstoff ist, wird die Produktfraktion aus der Niederdrucksäule entnommen. Die Produktfraktion und die sauerstoffreiche Fraktion für die Mischsäule können dann gemeinsam aus der Niederdrucksäule abgezogen und/oder gemeinsam flüssig auf Druck gebracht werden, was apparativ besonders einfach ist. Alternativ dazu können die Produktfraktion und die sauerstoffreiche Fraktion an verschiedenen Stellen der Niederdrucksäule entnommen werden. Dabei wird die sauerstoffreiche Fraktion vorzugsweise mindestens einen theoretischen oder praktischen Boden oberhalb der Entnahmestelle der Produktfraktion aus der Niederdrucksäule abgezogen.
Alternativ oder zusätzlich zum Drucksauerstoff kann Stickstoff als Druckprodukt gewonnen werden. Die (zusätzliche) Produktfraktion wird dann aus der Drucksäule entnommen, falls notwendig beispielsweise im Kopfkondensator der Drucksäule verflüssigt, getrennt von der sauerstoffreichen Fraktion flüssig auf Druck gebracht und im Hauptwärmetauscher-System verdampft und angewärmt.
Im unteren Bereich wird der Mischsäule eine flüssige Fraktion, beispielsweise Sumpfflüssigkeit, entnommen, entspannt und in die Drucksäule oder in die Niederdrucksäule eingeleitet. Im Falle der Einleitung in die Niederdrucksäule liegt die Einspeisestelle vorzugsweise oberhalb der Entnahme der sauerstoffreichen Fraktion und der Rückspeisung der Kopffraktion aus der Mischsäule, vorzugsweise ein bis zwanzig theoretische Böden oberhalb der Einführung der Kopffraktion der Mischsäule. Vor der Entspannung wird die flüssige Fraktion aus der Mischsäule gegebenenfalls abgekühlt, beispielsweise durch indirekten Wärmeaustausch mit der Produktfraktion und/oder der sauerstoffreichen Fraktion.
Die Erfindung betrifft außerdem eine Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft gemäß Patentanspruch 10.
Die Erfindung sowie weitere Einzelheiten der Erfindung werden im folgenden anhand von in den Zeichnungen schematisch dargestellten Ausführungsbeispielen näher erläutert. Hierbei zeigen:
Figur 1
eine erste Ausführungsform der Erfindung mit einem Hauptwärmetauscher-System in Form eines einzigen Blocks,
Figur 1A
eine Variante von Figur 1, bei der das Hauptwärmetauscher-System durch zwei parallele Blöcke gebildet wird,
Figur 2
eine weitere Variante von Figur 1, bei der nur eine Pumpe benötigt wird,
Figur 3
eine vierte Ausführungsform, bei der neben Sauerstoff auch Stickstoff innenverdichtet wird,
Figur 4
ein Verfahren, das Aspekte der Figuren 2 und 3 kombiniert,
Figuren 5 bis 8
weitere Ausführungsbeispiele, die insbesondere zur Argongewinnung geeignet sind, und
Figur 9
das Q-T-Diagramm zum Ausführungsbeispiel der Figur 2.
Für übereinstimmende oder einander entsprechende Verfahrensschritte beziehungsweise Apparate werden in allen Zeichnungen dieselben Bezugszeichen oder in den letzten beiden Stellen übereinstimmende Zahlen verwendet.
Verdichtete und gereinigte Luft 1 wird bei dem in Figur 1 skizzierten Prozess stromaufwärts eines Hauptwärmetauschers 2 in drei Teilströme 50, 60, 70 verzweigt. Der Luftdruck an dieser Stelle entspricht dem Betriebsdruck der Drucksäule 4 plus Leitungsverlusten.
Ein erster Luftstrom 50 wird im Hauptwärmetauscher 2 gegen Rückströme auf etwa Taupunktstemperatur abgekühlt und über Leitung 51 ohne druckverändemde Maßnahmen in den unteren Bereich einer Drucksäule 3 eingespeist.
Rohsauerstoff 5 aus dem Sumpf der Drucksäule 3 wird - gegebenenfalls nach Unterkühlung im Unterkühlungs-Gegenströmer 6 - in eine Niederdrucksäule 4 eingedrosselt (7). Kopfstickstoff 8 der Drucksäule 3 wird über Leitung 9 in einen Hauptkondensator 10 geführt und dort gegen verdampfende Sumpfflüssigkeit der Niederdrucksäule 4 verflüssigt. Das Kondensat 11 wird mindestens zum Teil über Leitung 12 als Rücklauf auf die Drucksäule 3 aufgegeben. Ein anderer Teil kann als flüssiges Stickstoffprodukt 13 gewonnen werden.
Ein Teil 35 des Kopfstickstoffs 8 der Drucksäule 3 wird direkt zum Hauptwärmetauscher 2 geführt und als gasförmiges Druckstickstoffprodukt 36 gewonnen.
Von einer Zwischenstelle der Drucksäule 3 wird stickstoffreiche Flüssigkeit 14 abgenommen, im Unterkühlungs-Gegenströmer 6 unterkühlt und über Drosselventil 15 der Niederdrucksäule 4 am Kopf als Rücklauf aufgegeben.
Am Kopf der Niederdrucksäule 4 wird ein stickstoffreiches Restgas 16 abgezogen und in den Wärmetauschern 6 und 2 auf etwa Umgebungstemperatur angewärmt. Das warme Restgas 17 kann beispielsweise als Regeneriergas in einer nicht dargestellten Reinigungsvorrichtung für die Einsatzluft 1 genutzt werden.
Im Sumpf der Niederdrucksäule 4 wird unreiner Sauerstoff mit einem Sauerstoffgehalt von 95 mol% erzeugt. Mindestens ein Teil 19 der Sumpfflüssigkeit 18 der Niederdrucksäule 4 bildet die Produktfraktion im Sinne der Erfindung. Sie wird mittels einer Pumpe 20 auf etwa den Produktdruck von beispielsweise 7,4 bar gebracht und über Leitung 21 zum kalten Ende des Hauptwärmetauschers 2 geleitet. Dort wird sie nacheinander auf Siedetemperatur angewärmt, verdampft und auf etwa Umgebungstemperatur angewärmt. Schließlich wird die Produktfraktion bei 22 als gasförmiges Druckprodukt unter dem Produktdruck von 7,4 bar abgezogen. Ein anderer Teil 23 der Sumpfflüssigkeit 18 der Niederdrucksäule 4 kann als flüssiges Sauerstoffprodukt gewonnen werden.
Einige (z. B. drei theoretische) Böden oberhalb des Sumpfs der Niederdrucksäule wird eine sauerstoffreiche Fraktion 24 mit einem Sauerstoffgehalt von Sauerstoff beispielsweise 88 mol% flüssig entnommen, in einer Pumpe 25 auf Druck gebracht und nach Anwärmung in 65 über Leitung 26 auf den Kopf einer Mischsäule 27 aufgegeben. Der Betriebsdruck der Mischsäule beträgt beispielsweise 9,6 bar am Sumpf. Das gasförmige Kopfprodukt 28 der Mischsäule 27 weist einen Sauerstoffgehalt von 83 mol% auf und wird in den kalten Teil des Hauptwärmetauschers 2 eingeleitet. Dort liefert es die Wärme zur Verdampfung des Produktstroms 21 und zu dessen Anwärmung auf Siedetemperatur. Bei dem indirektem Wärmeaustausch im Hauptwärmetauscher 2 wird das Kopfprodukt der Mischsäule kondensiert und unterkühlt. Die Flüssigkeit strömt über Leitung 29 und Drosselventil 30 zurück in die Niederdrucksäule 4. Die Einspeisestelle liegt etwa drei theoretische Böden oberhalb der Stelle, an der die sauerstoffreiche Fraktion 24 entnommen wird.
Der Wärmeträger für die Mischsäule 27 wird durch den zweiten Teilstrom 60 der Einsatzluft gebildet. Dieser wird in einem (in dem Beispiel mittels externer Energie angetriebenen) Nachverdichter 61 mit anschließender Nachkühlung 62 auf etwas über Mischsäulendruck gebracht und über Leitung 63 zum warmen Ende des Hauptwärmetauschers 2 geführt. Der zweite Teilstrom der Luft wird bei einer Zwischentemperatur oberhalb des kalten Endes wieder aus dem Hauptwärmetauscher 2 entnommen. Nach weiterer Abkühlung in 65 wird er als Wärmeträger 66 in den Sumpfbereich der Mischsäule eingeführt. Sowohl die Sumpffraktion 31/32 als auch eine Zwischenfraktion 33/34 der Mischsäule 27 werden in 65 unterkühlt und anschließend an den ihrer jeweiligen Zusammensetzung entsprechenden Stellen in die Niederdrucksäule 4 eingedrosselt.
Zur Abkühlung des zweiten Luftteilstroms 63 und zur Kondensation und Abkühlung der Kopffraktion 28 im Hauptwärmetauscher werden dieselben Passagen verwendet. Die kalten und die warmen Abschnitte dieser Passagen sind durch undurchlässige horizontale Wände voneinander getrennt (in der Zeichnung durch eine einzige horizontale Linie 67 symbolisiert). Diese Wände (so genannte Sidebars), sind an der Stelle der Zwischentemperatur angeordnet, an der die Kopffraktion 28 und der zweite Luftteil 64 dem Hauptwärmetauscher zugeführt beziehungsweise entnommen werden.
Zum Ausgleich der Isolations- und Austauschverluste und gegebenenfalls zur Erzeugung flüssiger Produkte (z. B. über Leitung 13 und/oder Leitung 23) wird Kälte durch arbeitsleistende Entspannung eines oder mehrerer Prozess-Ströme erzeugt. Bei dem Ausführungsbeispiel der Figur 1 wird zu diesem Zweck ein dritter Teil 70/73 der Einsatzluft bei einer Zwischentemperatur aus dem Hauptwärmetauscher 2 herausgeführt (74) und in einer Turbine 75 arbeitsleistend auf 1,4 bar entspannt. Zur Erhöhung der Kälteleistung beziehungsweise zur Verringerung der Turbinenluftmenge kann die Luft 70 vor der arbeitsleistenden Entspannung auf einen Druck von beispielsweise 8 bar nachverdichtet (71) werden. Der Nachverdichter 71 wird in dem Beispiel durch die in der Turbine 75 erzeugte mechanische Energie angetrieben, vorzugsweise durch direkte mechanische Kopplung von Turbine 75 und Nachverdichter 71. Die Verdichtungswärme wird durch indirekten Wärmeaustausch mit einem Kühlmittel in einem Nachkühler 72 entfernt. Die arbeitsleistend entspannte Luft 76, 77 wird direkt in die Niederdrucksäule 4 eingespeist.
In Figur 1 wird das Hauptwärmetauscher-System im Sinne der Erfindung durch einen einzigen Block 2 gebildet, der oben als Hauptwärmetauscher bezeichnet wurde. Im Unterschied dazu wird bei dem Prozess, der in Figur 1A dargestellt ist, das Hauptwärmetauscher-System durch zwei separate Blöcke 102a, 102b gebildet. In 102a, dem Hauptwärmetauscher im engeren Sinne, werden die gasförmigen Produktströme 35, 16 gegen den ersten und den dritten Luftstrom 50, 73 angewärmt. In dem Sauerstoffwärmetauscher 102b wird ausschließlich der flüssige Produktstrom angewärmt und verdampft, und zwar in Gegenstrom zur Kopffraktion 28 der Mischsäule 27 und zum zweiten Luftstrom 63.
Die Verfahrensweise von Figur 1A ist apparativ günstiger, weil lediglich der Tauscher Sauerstoffwärmetauscher 102b auf den hohen Druck des zweiten Teilstroms 63 der Luft ausgelegt werden muss. Diese Lösung bietet sich für kleinere Anlagen an. Energetisch günstiger und damit bei großen Anlagen vorteilhafter ist die vollständige Integration der beiden Wärmeaustauschvorgänge gemäß Figur 1.
Das Verfahren von Figur 2 unterscheidet sich von dem Prozess gemäß Figur 1 durch die Einsparung einer Pumpe (25 in Figur 1). Erreicht wird dies, indem die Produktfraktion 21 und die sauerstoffreiche Fraktion 224/226 gemeinsam vom Sumpf der Niederdrucksäule 4 abgezogen (218, 218a) und in einer Pumpe 220 auf Druck gebracht werden. Die Hochdruck-Flüssigkeit 218b wird anschließend auf Produktstrom 21 und Einsatzflüssigkeit 224 für die Mischsäule 27 aufgeteilt. (Die in den Zeichnungen als Einzelpumpen dargestellten Apparate werden aus Redundanzgründen regelmäßig als jeweils ein Pumpenpaar ausgeführt.)
Figur 3 stimmt ebenfalls in weiten Teilen mit Figur 1 überein. Bei diesem Prozess wird allerdings das gasförmige Druckstickstoffprodukt 336 auf einem höherem Druck gewonnen, der deutlich über dem Betriebsdruck der Drucksäule 3 liegt. Leitung 335 ist mit dem Austritt und nicht dem Eintritt (siehe 35 in Figur 1) des Hauptkondensators 10 verbunden. Der flüssige Stickstoff 335 wird in einer weiteren Pumpe 337 auf den benötigten Produktdruck (beispielweise 6 bis 25 bar) gebracht und im Hauptwärmetauscher 2 verdampft und angewärmt. Hierzu müssen selbstverständlich die anderen Ströme entsprechend angepasst werden, insbesondere Menge an Hochdruckluft 63 gegenüber Figur 1 erhöht werden. Somit kann mit dem erfindungsgemäßen Verfahren ohne zusätzlichen Gasverdichter kostengünstig Stickstoff unter hohem Druck produziert werden.
Die Druckstickstofferzeugung 335, 337 gemäß Figur 3 ist in Figur 4 mit der gemeinsamen Verdichtung 218a, 220 von sauerstoffreicher Fraktion und Produktfraktion kombiniert. In einer Variante des Verfahrens von Figur 4 wird die Stickstoff-Innenverdichtung 335/337 ohne Sauerstoff-Innenverdichtung durchgeführt, das heißt die Pumpe 220 dient nur zur Aufgabe von Flüssigkeit auf den Kopf der Mischsäule und nicht zur Erzeugung eines gasförmigen Sauerstoff-Produkts.
Das Verfahren der Erfindung eignet sich nicht nur für die Gewinnung von unreinem Sauerstoff, sondern lässt auch Produktreinheiten von 98 mol% oder mehr (beispielsweise 98 bis 99,9 %, vorzugsweise 98 bis 99,5 %) im Sauerstoffprodukt 22 zu. In diesem Fall kann eine Argonproduktion angeschlossen werden, wie Figur 5 zeigt. Hier ist eine übliche Rohargonsäule 538 mit einer Zwischenstelle der Niederdrucksäule verbunden (539, 540). Der Argon-Übergang 539/540 liegt zwischen den Zuspeisestellen der beiden Flüssigkeiten 30, 34 aus der Mischsäule 27. Der Kopfkondensator 541 der Rohargonsäule kann wie üblich mit Rohsauerstoff 5 stromabwärts der Unterkühlung 6 betrieben werden (nicht dargestellt). Das Rohargonprodukt 542 wird vorzugsweise weiter gereinigt, zum Beispiel in einer ebenfalls nicht dargestellten Reinargonsäule.
Zur Erhöhung der Argonausbeute kann auf die Direkteinblasung von Luft in die Niederdrucksäule 4 (77 in Figur 5) verzichtet werden, indem der dritte Teilstrom 73 der Einsatzluft in der Turbine 75 auf etwa den Betriebsdruck der Drucksäule 3 entspannt wird, wie es Figur 6 zeigt. Das Turbinenabgas 676 wird dann in die Drucksäule 3 eingeleitet (677), in dem Beispiel gemeinsam mit der Direktluft (erster Teilstrom 51 der Luft).
Wenn die in Figur 6 erzielte Kälteleistung nicht ausreicht, muss das Druckverhältnis an der Turbine 75 erhöht werden. Dies kann - wie in Figur 7 dargestellt - ohne Einsatz einer zusätzlichen Maschine erreicht werden, indem der extern angetriebene Nachverdichter für die Mischsäulenluft 763 zusätzlich für die Druckerhöhung in der Turbinenluft 770 genutzt wird. Die Turbine 75 entspannt in dem Beispiel auf Niederdrucksäulendruck; damit ist eine besonders hohe Flüssigproduktion möglich.
In Figur 8 wird auch in der Niederdrucksäule 4 reiner Stickstoff 843 - 844 - 845 gewonnen. Dazu wird ein Teil 814 des flüssigen Stickstoffs 11 aus dem Hauptkondensator 10 in 6 unterkühlt und über Drosselventil 815 als Rücklauf auf die Niederdrucksäule 4 aufgegeben. (Der in den anderen Ausführungsbeispielen dargestellte Zwischenabzug 14 an der Drucksäule kann hier entfallen.) Unreiner Stickstoff (stickstoffreiches Restgas) 816 wird von einer Zwischenstelle der Niederdrucksäule unterhalb eines Reinstickstoff-Abschnitts 846 abgenommen.
Das flüssige Stickstoffprodukt 813 wird in Figur 8 aus der Niederdrucksäule 4 abgezogen. Außerdem werden die Methoden zur Druckstickstoffgewinnung der Figur 1 (35 - 36) und der Figur 3 (335 - 337 - 338 - 336) gleichzeitig verwirklicht. Damit kann gasförmiger Stickstoff (845, 36, 336) unter insgesamt drei verschiedenen Drücken zur Verfügung gestellt werden, ohne dass dazu ein zusätzlicher Gasverdichter eingesetzt werden müsste.
Die speziellen Maßnahmen der Figuren 6 bis 8 können grundsätzlich auch ohne Argongewinnung (Rohargonsäule 538) eingesetzt werden.
Die folgenden Zahlenbeispiele in den Tabelle 1 und 2 beziehen sich auf das Ausführungsbeispiel von Figur 2. Sie betreffen zwei Auslegungsfälle mit unterschiedlicher Reinheit des Sauerstoffprodukts.
TABELLE 1 Nr. Menge in Nm3 /h Druck in bar Temperatur in K O2-Gehalt in mol-%
Gesamtluft 1 183117 5,40 290,0 20,95%
1. Teilstrom vor Einleitung in Drucksäule 51 113445 5,32 101,9 20,95%
2. Teilstrom vor Hauptwärmetauscher-System 63 53540 9,60 290,0 20,95%
2. Teilstrom vor Mischsäule 66 53540 9,52 107,6 20,95%
3. Teilstrom vor Turbine 74 15971 7,68 142,8 20,95%
3. Teilstrom nach Turbine 76 15971 1,40 92,8 20,95%
Mischsäulen-Sumpfflüssigkeit 31 32774 9,51 107,4 37,79%
Mischsäulen-Zwischenflüssigkeit 33 53304 9,51 111,0 61,84%
Sauerstoff vor Pumpe 218a 77569 1,40 92,6 95,00%
Sauerstoff nach Pumpe 218b 77569 11,00 93,3 95,00%
Sauerstoffreiche Fraktion vor Mischsäule 226 77569 10,89 116,9 95,00%
Sauerstoffprodukt 22 38000 7,38 287,3 95,00%
Druckstickstoffprodukt 36 1 5,16 287,3 0,95%
Restgas 17 22001 1,24 287,3 1,54%
Flüssiges Stickstoffprodukt 13 1 1,39 80,3 2,28%
Flüssiges Sauerstoffprodukt 23 1 1,35 91,0 95,00%
TABELLE 2 Nr. Menge in Nm3 /h Druck in bar Temperatur in K O2-Gehalt in mol-%
Gesamtluft 1 202839 5,40 290,0 20,95%
1. Teilstrom vor Einleitung in Drucksäule 51 128022 5,32 108,8 20,95%
2. Teilstrom vor Hauptwärmetauscher-System 63 58713 18,30 290,0 20,95%
2. Teilstrom vor Mischsäule 66 58713 18,22 118,2 20,95%
3. Teilstrom vor Turbine 74 15943 8,80 179,8 20,95%
3. Teilstrom nach Turbine 76 15943 1,39 113,7 20,95%
Mischsäulen-Sumpfflüssigkeit 31 39656 18,01 118,0 33,00%
Mischsäulen-Zwischenflüssigkeit 33 57370 18,01 123,0 61,09%
Sauerstoff vor Pumpe 218a 84828 1,40 92,8 90,50%
Sauerstoff nach Pumpe 218b 84828 19,00 94,2 90,50%
Sauerstoffreiche Fraktion vor Mischsäule 226 84828 18,89 130,0 90,50%
Sauerstoffprodukt 22 38000 14,88 287,0 99,35%
Druckstickstoffprodukt 36 1 5,16 287,0 2,40%
Restgas 17 22001 1,24 287,0 2,86%
Flüssiges Stickstoffprodukt 13 1 1,39 80,5 5,71%
Flüssiges Sauerstoffprodukt 23 1 1,35 91,0 90,50%
Figur 9 zeigt das Wärmeaustauschdiagramm (Q-T-Diagramm) für das Hauptwärmetauscher-System 2 des Verfahrens gemäß Figur 2 (Tabelle 1).

Claims (10)

  1. Verfahren zur Gewinnung eines Druckprodukts (22; 336) durch Tieftemperaturzerlegung von Luft in einem Rektifiziersystem, das eine Drucksäule (3) und eine Niederdrucksäule (4) aufweist, bei dem
    a. ein erster Strom (50) verdichteter und gereinigter Einsatzluft (1) in einem Hauptwärmetauscher-System (2; 102a, 102b) abgekühlt und in die Drucksäule (3) eingeführt (51, 677) wird,
    b. mindestens eine Fraktion (5) aus der Drucksäule (3) entspannt (7) und in die Niederdrucksäule (4) eingespeist wird,
    c. eine sauerstoffreiche Fraktion (24; 218a) aus der Niederdrucksäule (4) flüssig auf Druck gebracht (25; 220) und auf eine Mischsäule (27) aufgegeben (26; 224, 226) wird,
    d. ein Wärmeträger (66) in den unteren Bereich der Mischsäule (27) eingeleitet und in Gegenstromkontakt mit der sauerstoffreichen Fraktion (26; 226) gebracht wird,
    e. aus dem oberen Bereich der Mischsäule (27) ein gasförmiges Kopfprodukt (28) entnommen wird und
    f. eine Produktfraktion (19; 218a; 335) aus dem Rektifiziersystem entnommen, flüssig auf Druck gebracht (20; 220; 337), in indirektem Wärmeaustausch (2, 102b) mit dem gasförmigen Kopfprodukt (28) der Mischsäule (27) verdampft und als Druckprodukt (22; 336) abgezogen wird,
    dadurch gekennzeichnet, dass
    g. der indirekte Wärmeaustausch zur Verdampfung der flüssig auf Druck gebrachten Produktfraktion (21) in dem Hauptwärmetauscher-System (2; 102a, 102b) durchgeführt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ein zweiter Strom (60, 760) gereinigter Einsatzluft (1) auf einen Druck verdichtet (61, 761) wird, der deutlich höher als der Betriebsdruck der Drucksäule (3) ist, im Hauptwärmetauscher-System (2, 102a, 102b) abgekühlt und anschließend als Wärmeträger (64, 66) in die Mischsäule (27) eingeleitet wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, der zweite Strom (64) nach seiner Abkühlung im Hauptwärmetauscher-System (2; 102a, 102b) und vor seiner Einleitung in die Mischsäule (27) in indirektem Wärmeaustausch (65) mit der flüssig auf Druck gebrachten sauerstoffreichen Fraktion (24; 224) weiter abgekühlt wird.
  4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass der zweite Strom (64) bei einer ersten Zwischenstelle (67) unter einer ersten Zwischentemperatur aus dem Hauptwärmetauscher-System (2, 102a, 102b) entnommen wird, wobei die erste Zwischentemperatur deutlich höher als sein Taupunkt liegt.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass das gasförmige Kopfprodukt (28) der Mischsäule (27) bei der ersten Zwischenstelle (67) in das Hauptwärmetauscher-System (2; 102a, 102b) eingeführt wird, an der der zweite Strom (64) aus dem Hauptwärmetauscher-System entnommen wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Produktfraktion (19, 21) aus der Niederdrucksäule (4) entnommen (18; 218) wird.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Produktfraktion (21) und die sauerstoffreiche Fraktion (224) gemeinsam aus der Niederdrucksäule (4) abgezogen (218, 218a) und insbesondere gemeinsam flüssig auf Druck gebracht (220) werden.
  8. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die sauerstoffreiche Fraktion (24) mindestens einen theoretischen oder praktischen Boden oberhalb der Entnahmestelle der Produktfraktion (18, 19) aus der Niederdrucksäule (4) abgezogen wird.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die oder eine weitere Produktfraktion (335; 35) aus der Drucksäule (4) entnommen wird.
  10. Vorrichtung zur Gewinnung eines Druckprodukts (22; 336) durch Tieftemperaturzerlegung von Luft mit einem Rektifiziersystem, das eine Drucksäule (3) und eine Niederdrucksäule (4) aufweist,
    a. mit einer ersten Einsatzluftleitung (1, 50, 51, 677) zur Einleitung verdichteter und gereinigter Einsatzluft über ein Hauptwärmetauscher-System (2; 102a, 102b) in die Drucksäule (3),
    b. mit einer Flüssigkeitsüberführleitung (5) zur Einspeisung einer Fraktion aus der Drucksäule (3) in die Niederdrucksäule (4), wobei die Flüssigkeitsüberführleitung eine Entspannungseinrichtung (7) aufweist,
    c. mit einem Mittel (25; 220) zur Erhöhung des Drucks einer sauerstoffreichen Fraktion (24; 218a) aus der Niederdrucksäule (4), dessen Austritt in Strömungsverbindung (26; 218b, 224, 226) mit einer Mischsäule (27) steht,
    d. mit einer Zuführungsleitung (66) zur Einleitung eines Wärmeträgers in den unteren Bereich der Mischsäule (27),
    e. mit einer Kopfproduktleitung (28) zur Entnahme eines gasförmigen Kopfprodukts aus dem oberen Bereich der Mischsäule (27) und
    f. mit Mitteln (20; 220; 337) zur Erhöhung des Drucks einer flüssigen Produktfraktion (19; 218a; 335) aus dem Rektifiziersystem, deren Austritt in Strömungsverbindung mit einem Produktverdampfer (2, 102b) steht, der auch mit der Kopfproduktleitung (28) sowie mit einer Druckproduktleitung (22; 336) verbunden ist,
    dadurch gekennzeichnet, dass
    g. der Produktverdampfer durch das Hauptwärmetauscher-System (2; 102a, 102b) gebildet wird.
EP01128631A 2001-08-13 2001-11-30 Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft Withdrawn EP1284404A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10139727 2001-08-13
DE10139727A DE10139727A1 (de) 2001-08-13 2001-08-13 Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft

Publications (1)

Publication Number Publication Date
EP1284404A1 true EP1284404A1 (de) 2003-02-19

Family

ID=7695306

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01128631A Withdrawn EP1284404A1 (de) 2001-08-13 2001-11-30 Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft

Country Status (3)

Country Link
US (1) US6662595B2 (de)
EP (1) EP1284404A1 (de)
DE (1) DE10139727A1 (de)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007031765A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren zur Tieftemperaturzerlegung von Luft
DE102007031759A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
DE102009034979A1 (de) 2009-04-28 2010-11-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Drucksauerstoff
EP2312248A1 (de) 2009-10-07 2011-04-20 Linde Aktiengesellschaft Verfahren und Vorrichtung Gewinnung von Drucksauerstoff und Krypton/Xenon
WO2011116981A2 (de) 2010-03-26 2011-09-29 Linde Aktiengesellschaft Vorrichtung zur tieftemperaturzerlegung von luft
WO2011116871A2 (de) 2010-03-26 2011-09-29 Linde Aktiengesellschaft Vorrichtung zur tieftemperaturzerlegung von luft
EP2458311A1 (de) 2010-11-25 2012-05-30 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102010052544A1 (de) 2010-11-25 2012-05-31 Linde Ag Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2503269A1 (de) 2011-03-25 2012-09-26 Linde Aktiengesellschaft Vorrichtung zur Tieftemperaturzerlegung von Luft
EP2505947A1 (de) 2011-03-29 2012-10-03 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von Floatglas
DE102011015429A1 (de) 2011-03-29 2012-10-04 Linde Ag Verfahren und Vorrichtung zum Betreiben eines Rebox-Brenners
EP2520886A1 (de) 2011-05-05 2012-11-07 Linde AG Verfahren und Vorrichtung zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2568242A1 (de) 2011-09-08 2013-03-13 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Stahl
EP2600090A1 (de) 2011-12-01 2013-06-05 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von Drucksauerstoff durch Tieftemperaturzerlegung von Luft
DE102011121314A1 (de) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102013017590A1 (de) 2013-10-22 2014-01-02 Linde Aktiengesellschaft Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage
DE102012017488A1 (de) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Verfahren zur Erstellung einer Luftzerlegungsanlage, Luftzerlegungsanlage und zugehöriges Betriebsverfahren
WO2014067662A2 (de) 2012-11-02 2014-05-08 Linde Aktiengesellschaft Verfahren zur tieftemperaturzerlegung von luft in einer luftzerlegungsanlage und luftzerlegungsanlage
DE102013002094A1 (de) 2013-02-05 2014-08-07 Linde Aktiengesellschaft Verfahren zur Produktion von Luftprodukten und Luftzerlegungsanlage
EP2784420A1 (de) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Verfahren zur Luftzerlegung und Luftzerlegungsanlage
WO2014154339A2 (de) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Verfahren zur luftzerlegung und luftzerlegungsanlage
EP2801777A1 (de) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Luftzerlegungsanlage mit Hauptverdichterantrieb
EP2963367A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft mit variablem Energieverbrauch
EP2963370A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
EP2963369A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
EP2963371A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur gewinnung eines druckgasprodukts durch tieftemperaturzerlegung von luft
DE102015015684A1 (de) 2015-12-03 2016-07-21 Linde Aktiengesellschaft Verfahren zur Tieftemperaturzerlegung von Luft und Luftzerlegungsanlage
EP3179186A1 (de) 2015-12-07 2017-06-14 Linde Aktiengesellschaft Verfahren zur gewinnung eines flüssigen und eines gasförmigen, sauerstoffreichen luftprodukts in einer luftzerlegungsanlage und luftzerlegungsanlage

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2861841B1 (fr) * 2003-11-04 2006-06-30 Air Liquide Procede et appareil de separation d'air par distillation cryogenique
GB0422635D0 (en) * 2004-10-12 2004-11-10 Air Prod & Chem Process for the cryogenic distillation of air
US8806218B2 (en) * 2005-03-18 2014-08-12 Microsoft Corporation Management and security of personal information
US8640496B2 (en) * 2008-08-21 2014-02-04 Praxair Technology, Inc. Method and apparatus for separating air
DE102012017484A1 (de) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Verfahren und Anlage zur Erzeugung flüssiger und gasförmiger Sauerstoffprodukte durch Tieftemperaturzerlegung von Luft
US20150168056A1 (en) * 2013-12-17 2015-06-18 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method For Producing Pressurized Gaseous Oxygen Through The Cryogenic Separation Of Air
US9964354B2 (en) 2016-01-19 2018-05-08 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for producing pressurized gaseous oxygen through the cryogenic separation of air
CN116817541B (zh) * 2023-08-31 2023-11-10 齐齐哈尔黎明气体有限公司 医用氧充装过程放空气体回收装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2680114A1 (fr) 1991-08-07 1993-02-12 Air Liquide Procede et installation de distillation d'air, et application a l'alimentation en gaz d'une acierie.
EP0547946A1 (de) * 1991-12-18 1993-06-23 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Verfahren und Apparat zur Herstellung unreinen Sauerstoffs
EP0660058A2 (de) * 1993-12-22 1995-06-28 The BOC Group plc Lufttrennung
EP0698772A1 (de) * 1994-08-25 1996-02-28 The Boc Group, Inc. Verfahren und Vorrichtung zur Herstellung von Sauerstoff
US5655388A (en) * 1995-07-27 1997-08-12 Praxair Technology, Inc. Cryogenic rectification system for producing high pressure gaseous oxygen and liquid product
DE19803437A1 (de) 1998-01-29 1999-03-18 Linde Ag Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
FR2778971A1 (fr) * 1998-05-20 1999-11-26 Air Liquide Installation de production d'un gaz, forme d'un constituant ou d'un melange de constituants de l'air sous une haute pression

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5341646A (en) * 1993-07-15 1994-08-30 Air Products And Chemicals, Inc. Triple column distillation system for oxygen and pressurized nitrogen production
US5456083A (en) * 1994-05-26 1995-10-10 The Boc Group, Inc. Air separation apparatus and method
US5628207A (en) * 1996-04-05 1997-05-13 Praxair Technology, Inc. Cryogenic Rectification system for producing lower purity gaseous oxygen and high purity oxygen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2680114A1 (fr) 1991-08-07 1993-02-12 Air Liquide Procede et installation de distillation d'air, et application a l'alimentation en gaz d'une acierie.
EP0547946A1 (de) * 1991-12-18 1993-06-23 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Verfahren und Apparat zur Herstellung unreinen Sauerstoffs
EP0660058A2 (de) * 1993-12-22 1995-06-28 The BOC Group plc Lufttrennung
EP0698772A1 (de) * 1994-08-25 1996-02-28 The Boc Group, Inc. Verfahren und Vorrichtung zur Herstellung von Sauerstoff
US5655388A (en) * 1995-07-27 1997-08-12 Praxair Technology, Inc. Cryogenic rectification system for producing high pressure gaseous oxygen and liquid product
DE19803437A1 (de) 1998-01-29 1999-03-18 Linde Ag Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
FR2778971A1 (fr) * 1998-05-20 1999-11-26 Air Liquide Installation de production d'un gaz, forme d'un constituant ou d'un melange de constituants de l'air sous une haute pression

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007031765A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren zur Tieftemperaturzerlegung von Luft
DE102007031759A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
EP2015012A2 (de) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Verfahren zur Tieftemperaturzerlegung von Luft
EP2015013A2 (de) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
DE102009034979A1 (de) 2009-04-28 2010-11-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Drucksauerstoff
EP2312248A1 (de) 2009-10-07 2011-04-20 Linde Aktiengesellschaft Verfahren und Vorrichtung Gewinnung von Drucksauerstoff und Krypton/Xenon
WO2011116981A2 (de) 2010-03-26 2011-09-29 Linde Aktiengesellschaft Vorrichtung zur tieftemperaturzerlegung von luft
WO2011116871A2 (de) 2010-03-26 2011-09-29 Linde Aktiengesellschaft Vorrichtung zur tieftemperaturzerlegung von luft
DE102010012920A1 (de) 2010-03-26 2011-09-29 Linde Aktiengesellschaft Vorrichtung zur Tieftemperaturzerlegung von Luft
DE102010052544A1 (de) 2010-11-25 2012-05-31 Linde Ag Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2458311A1 (de) 2010-11-25 2012-05-30 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102010052545A1 (de) 2010-11-25 2012-05-31 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2466236A1 (de) 2010-11-25 2012-06-20 Linde Aktiengesellschaft Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tiefemperaturzerlegung von Luft
EP2503269A1 (de) 2011-03-25 2012-09-26 Linde Aktiengesellschaft Vorrichtung zur Tieftemperaturzerlegung von Luft
DE102011015233A1 (de) 2011-03-25 2012-09-27 Linde Ag Vorrichtung zur Tieftemperaturzerlegung von Luft
US9228778B2 (en) 2011-03-25 2016-01-05 Linde Aktiengesellschaft Device for the low-temperature separation of air
EP2505947A1 (de) 2011-03-29 2012-10-03 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von Floatglas
DE102011015430A1 (de) 2011-03-29 2012-10-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von Flachgas
DE102011015429A1 (de) 2011-03-29 2012-10-04 Linde Ag Verfahren und Vorrichtung zum Betreiben eines Rebox-Brenners
EP2520886A1 (de) 2011-05-05 2012-11-07 Linde AG Verfahren und Vorrichtung zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102011112909A1 (de) 2011-09-08 2013-03-14 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Stahl
EP2568242A1 (de) 2011-09-08 2013-03-13 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Stahl
EP2600090A1 (de) 2011-12-01 2013-06-05 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von Drucksauerstoff durch Tieftemperaturzerlegung von Luft
DE102011121314A1 (de) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102012017488A1 (de) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Verfahren zur Erstellung einer Luftzerlegungsanlage, Luftzerlegungsanlage und zugehöriges Betriebsverfahren
WO2014067662A2 (de) 2012-11-02 2014-05-08 Linde Aktiengesellschaft Verfahren zur tieftemperaturzerlegung von luft in einer luftzerlegungsanlage und luftzerlegungsanlage
DE102012021694A1 (de) 2012-11-02 2014-05-08 Linde Aktiengesellschaft Verfahren zur Tieftemperaturzerlegung von Luft in einer Luftzerlegungsanlage und Luftzerlegungsanlage
DE102013002094A1 (de) 2013-02-05 2014-08-07 Linde Aktiengesellschaft Verfahren zur Produktion von Luftprodukten und Luftzerlegungsanlage
WO2014154339A2 (de) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Verfahren zur luftzerlegung und luftzerlegungsanlage
EP2784420A1 (de) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Verfahren zur Luftzerlegung und Luftzerlegungsanlage
EP2801777A1 (de) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Luftzerlegungsanlage mit Hauptverdichterantrieb
DE102013017590A1 (de) 2013-10-22 2014-01-02 Linde Aktiengesellschaft Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage
EP2963367A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft mit variablem Energieverbrauch
EP2963370A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
EP2963369A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
EP2963371A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur gewinnung eines druckgasprodukts durch tieftemperaturzerlegung von luft
WO2016005031A1 (de) 2014-07-05 2016-01-14 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft mit variablem energieverbrauch
DE102015015684A1 (de) 2015-12-03 2016-07-21 Linde Aktiengesellschaft Verfahren zur Tieftemperaturzerlegung von Luft und Luftzerlegungsanlage
EP3179186A1 (de) 2015-12-07 2017-06-14 Linde Aktiengesellschaft Verfahren zur gewinnung eines flüssigen und eines gasförmigen, sauerstoffreichen luftprodukts in einer luftzerlegungsanlage und luftzerlegungsanlage
EP3179187A1 (de) 2015-12-07 2017-06-14 Linde Aktiengesellschaft Verfahren zur gewinnung eines flüssigen und eines gasförmigen, sauerstoffreichen luftprodukts in einer luftzerlegungsanlage und luftzerlegungsanlage

Also Published As

Publication number Publication date
DE10139727A1 (de) 2003-02-27
US20030051504A1 (en) 2003-03-20
US6662595B2 (en) 2003-12-16

Similar Documents

Publication Publication Date Title
EP1284404A1 (de) Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
EP1067345B1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP1308680B1 (de) Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
EP1243882B1 (de) Argongewinnung mit einem Drei-Säulen-System zur Luftzerlegung und einer Rohargonsäule
DE19803437A1 (de) Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
DE10013073A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP0948730B1 (de) Verfahren und vorrichtung zur gewinnung von druckstickstoff
EP0716280A2 (de) Verfahren und Vorrichtungen zur Tieftemperaturzerlegung von Luft
EP1357342A1 (de) Drei-Säulen-System zur Tieftemperaturzerlegung mit Argongewinnung
EP2026024A1 (de) Verfahren und Vorrichtung zur Gewinnung von Argon durch Tieftemperaturzerlegung von Luft
EP1376037A1 (de) Luftzerlegungsverfahren und -anlage mit Mischsäule und Krypton-Xenon-Gewinnung
DE10018200A1 (de) Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff durch Tieftemperaturzerlegung von Luft
DE10332863A1 (de) Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
DE19936816A1 (de) Verfahren und Vorrichtung zur Gewinnung von Sauerstoff unter überatmosphärischem Druck
EP0768503B1 (de) Dreifachsäulenverfahren zur Tieftemperaturzerlegung von Luft
DE3107151A1 (de) Verfahren und vorrichtung zur verfluessigung und zerlegung von luft
DE60007686T2 (de) Tieftemperaturrektifikationsystem zur Luftzerleggung
EP2551619A1 (de) Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff und Drucksauerstoff durch Tieftemperaturzerlegung von Luft
EP2914913A2 (de) Verfahren zur tieftemperaturzerlegung von luft in einer luftzerlegungsanlage und luftzerlegungsanlage
DE19933558A1 (de) Dreisäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft
EP1189001B1 (de) Verfahren und Vorrichtung zur Erzeugung hoch reinen Stickstoffs durch Tieftemperatur-Luftzerlegung
DE10153919A1 (de) Verfahren und Vorrichtung zur Gewinnung hoch reinen Sauerstoffs aus weniger reinem Sauerstoff
DE19819263C2 (de) Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff
EP1284403B1 (de) Verfahren und Vorrichtung zur Erzeugung von Sauerstoff durch Tieftemperatur-Zerlegung von Luft
EP1209431B1 (de) Verfahren und Vorrichtung zur Erzeugung von Sauerstoff und Stickstoff

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20030718

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 20090407

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110601