EP2963371A1 - Method and device for creating a pressurised gas product by the cryogenic decomposition of air - Google Patents

Method and device for creating a pressurised gas product by the cryogenic decomposition of air Download PDF

Info

Publication number
EP2963371A1
EP2963371A1 EP15001884.4A EP15001884A EP2963371A1 EP 2963371 A1 EP2963371 A1 EP 2963371A1 EP 15001884 A EP15001884 A EP 15001884A EP 2963371 A1 EP2963371 A1 EP 2963371A1
Authority
EP
European Patent Office
Prior art keywords
pressure
air
partial flow
heat exchanger
main heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15001884.4A
Other languages
German (de)
French (fr)
Other versions
EP2963371B1 (en
Inventor
Dimitri Goloubev
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51176035&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2963371(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to EP15001884.4A priority Critical patent/EP2963371B1/en
Publication of EP2963371A1 publication Critical patent/EP2963371A1/en
Application granted granted Critical
Publication of EP2963371B1 publication Critical patent/EP2963371B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04024Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04145Mechanically coupling of different compressors of the air fractionation process to the same driver(s)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04175Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/042Division of the main heat exchange line in consecutive sections having different functions having an intermediate feed connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04381Details relating to the work expansion, e.g. process parameter etc. using work extraction by mechanical coupling of compression and expansion so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/52Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the high pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen

Definitions

  • the invention relates to a method and apparatus for variable recovery of a compressed gas product by cryogenic separation of air.
  • the distillation column system of such a system can be designed as a two-column system (for example as a classic Linde double column system), or as a three or more column system. It may in addition to the columns for nitrogen-oxygen separation, further devices for obtaining highly pure products and / or other air components, in particular of noble gases have, for example, an argon production and / or a krypton-xenon recovery.
  • condenser-evaporator refers to a heat exchanger in which a first condensing fluid stream undergoes indirect heat exchange with a second evaporating fluid stream.
  • Each condenser-evaporator has a liquefaction space and an evaporation space, which consist of liquefaction passages or evaporation passages.
  • the condensation (liquefaction) of the first fluid flow is performed, in the evaporation space the evaporation of the second fluid flow.
  • Evaporation and liquefaction space are formed by groups of passages that are in heat exchange relationship with each other.
  • the evaporation space of a condenser-evaporator can be designed as a bath evaporator, falling-film evaporator or forced-flow evaporator.
  • a liquid product placed under pressure is vaporized against a heat transfer medium and finally recovered as an internally compressed compressed gas product.
  • This method is also called internal compression. It serves to obtain gaseous printed product.
  • the product stream is then "pseudo-evaporated".
  • the product stream may be, for example, an oxygen product from the low-pressure column of a two-column system or a nitrogen product from the high-pressure column of a two-column system or from the liquefaction space of a main condenser via which the high-pressure column and low-pressure column are in heat-exchanging connection
  • a high-pressure heat carrier is liquefied (or pseudo-liquefied when it is under supercritical pressure).
  • the heat transfer medium is often formed by part of the air, in the present case by the "second partial flow" of the compressed feed air.
  • EP 1139046 A1 EP 1146301 A1 .
  • DE 10213212 A1 DE 10213211 A1 .
  • EP 1357342 A1 or DE 10238282 A1 DE 10302389 A1 .
  • DE 10332863 A1 EP 1544559 A1 .
  • EP 1666824 A1 EP 1672301 A1 .
  • DE 102005028012 A1 .
  • WO 2007033838 A1 WO 2007104449 A1 .
  • EP 1845324 A1 is
  • the invention relates to systems in which the total feed air is compressed to a pressure well above the highest distillation pressure prevailing inside the columns of the distillation column system (this is normally the high pressure column pressure).
  • HAP processes HAP - high air pressure
  • This is the "first pressure”, ie the outlet pressure of the main air compressor (MAC main air compressor), in which the total air is compressed, for example, more than 4 bar, in particular 6 to 16 bar above the highest distillation pressure.
  • the "first pressure” is between 17 and 25 bar.
  • the main air compressor is regularly the only external energy driven machine for compressing air.
  • a “single machine” is understood to mean a single stage or multi-stage compressor whose stages are all connected to the same drive, with all stages in housed in the same housing or connected to the same gear.
  • MAC-BAC processes in which the air in the main air compressor is compressed to a relatively low total air pressure, for example the operating pressure of the high-pressure column (plus line losses). Part of the air from the main air compressor is compressed to a higher pressure in an external energy driven air booster (BAC).
  • BAC external energy driven air booster
  • This higher pressure air component (often called the choke flow) provides the majority of the heat required for (pseudo) evaporation of the internally compressed product in the main heat exchanger. It is depressurised downstream of the main air compressor in a throttle valve or in a liquid turbine (DLE) to the pressure required in the distillation column system.
  • DLE liquid turbine
  • the invention is based on the object to further improve such a method in terms of energy efficiency.
  • One of the two turbine streams or both can be recompressed together with the second partial flow in the first booster to the second pressure, as described in the claims 3 and 4.
  • the third partial flow can remain without recompression; it is then introduced under the first pressure in the second air turbine.
  • the stream at least partially condensed in the evaporation space of the bottom evaporator of the high-pressure column is then preferably fed to the high-pressure column at an intermediate point.
  • FIGS. 1 and 2 illustrated schematically embodiments.
  • atmospheric air is sucked through a filter 1 from a main air compressor 2.
  • the main air compressor has five stages in the example and compresses the total air flow to a "first pressure", for example 19.7 bar.
  • the total air flow 3 downstream of the main air compressor 2 is cooled under the first pressure in a pre-cooling 4.
  • the pre-cooled total air flow 5 is purified in a cleaning device 6, which is formed in particular by a pair of switchable molecular sieve adsorber.
  • the purified total air flow 7 is recompressed to a first part 8 in a hot air compressor 9 with aftercooler 10 to a "second pressure" of for example 24 bar and then into a "first partial flow” 11 (first turbine air flow) and a "second partial flow”.
  • Divided 12 first inductor current).
  • the first substream 11 is cooled in a main heat exchanger 13 to a first intermediate temperature of about 135K.
  • the cooled first partial flow 14 is expanded in a first air turbine 15 from the second pressure to about 5.5 bar to perform work.
  • the first air turbine 15 drives the warm air compressor 9.
  • the work-performing relaxed first partial flow 16 is introduced into a separator (phase separator) 17.
  • the liquid portion 18 is introduced via lines 19 and 20 into the low-pressure column 22 of the distillation column system.
  • the distillation column system comprises a high-pressure column 21, the low-pressure column 22 and a main condenser 23 and a conventional argon production 24 with crude argon column 25 and pure argon column 26.
  • the main condenser 23 is designed as a condenser-evaporator, in the concrete example as a cascade evaporator.
  • the operating pressure at the top of the high pressure column is in the example 5.3 bar, the one at the top of the low pressure column 1.35 bar.
  • the second partial flow 12 of the feed air is cooled in the main heat exchanger 13 to a second intermediate temperature, which is higher than the first intermediate temperature, fed via line 27 to a cold compressor 28 and there recompressed to a "third pressure" of about 35 bar.
  • the recompressed second partial stream 29 is at a third intermediate temperature, which is higher than the second intermediate temperature, again introduced into the main heat exchanger 13 and cooled there to the cold end.
  • the cold second partial stream 30 is expanded in a throttle valve 31 to approximately the operating pressure of the high-pressure column and fed via line 32 to the high-pressure column 21.
  • a part 33 is removed again, cooled in a supercooling countercurrent 34 and fed via the lines 35 and 20 in the low-pressure column 22.
  • a "third substream" 436 of the feed air is introduced under the second pressure into the main heat exchanger 13 and cooled there to a fourth intermediate temperature, which in the example is slightly higher than the first intermediate temperature.
  • the cooled third partial flow 37 is expanded in a second air turbine 38 from the first pressure to perform work.
  • the working power relaxed turbine stream 339 has a pressure which is at least 1 bar, in particular 4 to 10 bar above the operating pressure of the high-pressure column, and a temperature which is at least 10 K, in particular 15 to 40 K above the inlet temperature of the low-pressure nitrogen streams 55, 61 is located at the cold end of the main heat exchanger. This stream is then further cooled in the cold part of the main heat exchanger.
  • the further cooled third partial flow 340 is expanded as a third throttle flow in a throttle valve 341 to about high-pressure column pressure and introduced via line 32 into the high-pressure column.
  • the heat exchange process in the main heat exchanger can be further optimized, in particular in the case of relatively low GAN-IC pressures of for example 7 to 15 bar, in particular about 12 bar.
  • the second air turbine 38 drives the cold compressor 28.
  • the working expanded third partial flow 339 is supplied via line 40 of the high-pressure column 21 at the bottom.
  • a "fourth partial flow” 41 (second throttle flow) flows through the main heat exchanger 13 from the hot to the cold end under the first pressure.
  • the cold fourth partial stream 42 is expanded in a throttle valve 43 to approximately the operating pressure of the high-pressure column and fed via line 32 to the high-pressure column 21.
  • the oxygen-enriched bottom liquid 44 of the high-pressure column 21 is cooled in the subcooling countercurrent 34 and introduced via line 45 into the optional argon recovery 24. Resulting vapor 46 and remaining liquid 47 are fed into the low-pressure column 22.
  • a first part 49 of the top nitrogen 48 of the high-pressure column 21 is completely or substantially completely liquefied in the liquefaction space of the main condenser 23 against liquid oxygen evaporating in the evaporation space from the bottom of the low-pressure column.
  • a first part 51 of the liquid nitrogen 50 produced in the process is introduced as reflux to the high-pressure column 21.
  • a second part 52 is cooled in the subcooling countercurrent 34, fed via line 53 into the low pressure column 22. At least a portion of the liquid low pressure nitrogen 53 serves as reflux in the low pressure column 21; another part 54 can be obtained as liquid nitrogen product (LIN).
  • gaseous impurity nitrogen 61 is withdrawn, warmed in the supercooling countercurrent 34 and in the main heat exchanger 13.
  • the warm impure nitrogen 62 may be vented (63) into the atmosphere (ATM) and / or used as the regeneration gas 64 for the purifier 6.
  • Gaseous nitrogen 55 from the top of the low pressure column 22 is also heated in the subcooling countercurrent 34 and main heat exchanger 13 and withdrawn via line 56 as low pressure nitrogen product (GAN).
  • the lines 67 and 68 connect the low-pressure column 21 with the crude argon column 25 of argon recovery 24th
  • a first portion 70 of the liquid oxygen 69 from the bottom of the low-pressure column 21 is withdrawn as the "first product stream", brought to a "first product pressure” of, for example, 37 bar in an oxygen pump 71 and vaporized under the first product pressure in the main heat exchanger 13 and finally via line 72 as "first compressed gas product” (GOX IC - compressed gas internal oxygen) won.
  • a second portion 73 of the liquid oxygen 69 from the bottom of the low-pressure column 21 is optionally cooled in the subcooling countercurrent 34 and recovered via line 74 as a liquid oxygen product (LOX).
  • LOX liquid oxygen product
  • a third part 75 of the liquid nitrogen 50 from the high-pressure column 21 and the main condenser 23 is also subjected to internal compression by being brought in a nitrogen pump 76 to a second product pressure of 12 bar, for example, under the second product pressure in the main heat exchanger 13 pseudo and finally recovered via line 77 as internally compressed gaseous nitrogen pressure product (GAN IC).
  • GAN IC internally compressed gaseous nitrogen pressure product
  • a second part 78 of the gaseous top nitrogen 48 of the high-pressure column 21 is warmed in the main heat exchanger and recovered via line 79 either as a gaseous medium pressure product or - as shown - used as a sealing gas (seal gas) for one or more of the illustrated process pumps.
  • FIG. 2 differs from FIG. 1 in that the third partial flow 36 of the feed air is introduced under the first pressure into the main heat exchanger 13 and the second turbine 38 thus has a correspondingly lower inlet pressure.
  • the high-pressure column has a sump evaporator 351. This is used in particular when at least temporarily a particularly low liquid production or even pure gas operation is desired.
  • the turbine 38 of the previous embodiments can not be driven with their maximum throughput, because otherwise too much air would have to be driven as a third partial flow through the cold end of the main heat exchanger and the operation of the main heat exchanger would be less efficient.
  • FIG. 3 can now be passed at a particularly low liquid production part 350 of the third partial flow from the turbine 38 on the main heat exchanger.
  • the turbine 38 (and thus the coupled cold compressor) can now be operated at full throughput, without burdening the heat exchange process in the main heat exchanger.
  • the stream 350 is at least partially condensed in the evaporation space of the bottom evaporator 351 and then via line 352 of High-pressure column fed at an intermediate point. He intensifies the distillation in the lower part of the high-pressure column.
  • the stream 350 can also be cooled to the dew state before it is introduced into the bottom evaporator in the main heat exchanger. This can be done in a separate passage, but also by intermediate removal at a suitable location and appropriate Umspeisung.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Das Verfahren und die Vorrichtung dienen zur Gewinnung eines Druckgasprodukts (72; 73) mittels Tieftemperaturzerlegung von Luft in einem Destillationssäulen-System, das eine Hochdrucksäule (21) und eine Niederdrucksäule (22) aufweist. Die gesamte Einsatzluft wird in einem Hauptluftverdichter (2) auf einen ersten Druck verdichtet, der mindestens 4 bar höher als der Betriebsdruck der Hochdrucksäule (21) ist. Ein erster Teilstrom (8, 11, 14) der im Hauptluftverdichter (2) verdichteten Einsatzluft (7) wird in einem Hauptwärmetauscher (13) auf eine Zwischentemperatur abgekühlt und in einer ersten Luftturbine (15) arbeitsleistend entspannt. Mindestens ein erster Teil des arbeitsleistend entspannten ersten Teilstroms (16) wird in das Destillationssäulen-System eingeleitet (40; 18, 19, 20). Ein zweiter Teilstrom (12, 27, 29, 30) der im Hauptluftverdichter (2) verdichteten Einsatzluft wird in einem ersten Nachverdichter (9), der insbesondere von der ersten Turbine (15) angetrieben wird, auf einen zweiten Druck nachverdichtet, der höher als der erste Druck ist, in dem Hauptwärmetauscher (13) auf eine Zwischentemperatur abgekühlt, in einem zweiten Nachverdichter (28), der als Kaltverdichter betrieben und insbesondere von der zweiten Turbine (38) angetrieben wird, auf einen dritten Druck nachverdichtet, der höher als der zweite Druck ist, in dem Hauptwärmetauscher (13) abgekühlt und anschließend entspannt (31) und in das Destillationssäulen-System eingeleitet (32). Ein dritter Teilstrom (436, 37) der im Hauptluftverdichter (2) verdichteten Einsatzluft (7) wird in dem Hauptwärmetauscher (13) auf eine Zwischentemperatur abgekühlt und in einer zweiten Luftturbine (38) arbeitsleistend entspannt. Mindestens ein erster Teil (339) des arbeitsleistend entspannten dritten Teilstroms wird in das Destillationssäulen-System eingeleitet (340). Ein erster Produktstrom (69; 75) wird flüssig aus dem Destillationssäulen-System entnommen und einer Druckerhöhung (71; 76) auf einen ersten Produktdruck unterworfen. Der erste Produktstrom wird unter dem ersten Produktdruck im Hauptwärmetauscher (13) verdampft oder pseudo-verdampft und angewärmt. Der angewärmte erste Produktstrom (72; 77) wird als erstes Druckgasprodukt (GOX IC; GAN IC) gewonnen. Der dritte Teilstrom (37) wird in der zweiten Luftturbine (38) auf einen Druck entspannt, der mindestens 1 bar höher als der Betriebsdruck der Hochdrucksäule (21) ist. Mindestens ein erster Teil (339) des arbeitsleistend entspannten dritten Teilstroms wird in dem Hauptwärmetauscher (13) weiter abgekühlt, verflüssigt und anschließend entspannt (341) und in das Destillationssäulen-System eingeleitet.The method and apparatus serve to recover a compressed gas product (72; 73) by cryogenic separation of air in a distillation column system having a high pressure column (21) and a low pressure column (22). The total feed air is compressed in a main air compressor (2) to a first pressure which is at least 4 bar higher than the operating pressure of the high-pressure column (21). A first partial flow (8, 11, 14) of the feed air (7) compressed in the main air compressor (2) is cooled to an intermediate temperature in a main heat exchanger (13) and expanded to perform work in a first air turbine (15). At least a first part of the work-performing expanded first partial flow (16) is introduced into the distillation column system (40, 18, 19, 20). A second partial flow (12, 27, 29, 30) of the feed air compressed in the main air compressor (2) is recompressed in a first secondary compressor (9), which is driven in particular by the first turbine (15), to a second pressure which is higher than the first pressure is, in the main heat exchanger (13) cooled to an intermediate temperature, in a second booster (28), which is operated as a cold compressor and in particular by the second turbine (38), after-compressed to a third pressure which is higher than that second pressure is cooled in the main heat exchanger (13) and then expanded (31) and introduced into the distillation column system (32). A third partial flow (436, 37) of the feed air (7) compressed in the main air compressor (2) is cooled in the main heat exchanger (13) to an intermediate temperature and expanded in a second air turbine (38) to perform work. At least a first portion (339) of the work-performing expanded third substream is introduced into the distillation column system (340). A first product stream (69; 75) is withdrawn liquid from the distillation column system and subjected to a pressure increase (71; 76) to a first product pressure. The first product stream is vaporized or pseudo-vaporized and warmed under the first product pressure in the main heat exchanger (13). The warmed first product stream (72; 77) is recovered as the first compressed gas product (GOX IC; GAN IC). The third partial flow (37) is expanded in the second air turbine (38) to a pressure which is at least 1 bar higher than the operating pressure of the high-pressure column (21). At least a first part (339) of the work-performing expanded third partial stream is further cooled in the main heat exchanger (13), liquefied and then expanded (341) and introduced into the distillation column system.

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur variablen Gewinnung eines Druckgasprodukts mittels Tieftemperaturzerlegung von Luft.The invention relates to a method and apparatus for variable recovery of a compressed gas product by cryogenic separation of air.

Verfahren und Vorrichtungen zur Tieftemperaturzerlegung von Luft sind zum Beispiel aus Hausen/Linde, Tieftemperaturtechnik, 2. Auflage 1985, Kapitel 4 (Seiten 281 bis 337 ) bekannt.For example, methods and apparatus for cryogenic decomposition of air are off Hausen / Linde, Tiefftemperaturtechnik, 2nd edition 1985, chapter 4 (pages 281 to 337 ) known.

Das Destillationssäulen-System einer solchen Anlage kann als Zwei-Säulen-System (zum Beispiel als klassisches Linde-Doppelsäulensystem) ausgebildet sein, oder auch als Drei- oder Mehr-Säulen-System. Es kann zusätzlich zu den Kolonnen zur Stickstoff-Sauerstoff-Trennung weitere Vorrichtungen zur Gewinnung hoch reiner Produkte und/oder anderer Luftkomponenten, insbesondere von Edelgasen aufweisen, beispielsweise eine Argongewinnung und/oder eine Krypton-Xenon-Gewinnung.The distillation column system of such a system can be designed as a two-column system (for example as a classic Linde double column system), or as a three or more column system. It may in addition to the columns for nitrogen-oxygen separation, further devices for obtaining highly pure products and / or other air components, in particular of noble gases have, for example, an argon production and / or a krypton-xenon recovery.

Als "Kondensator-Verdampfer" wird ein Wärmetauscher bezeichnet, in dem ein erster, kondensierender Fluidstrom in indirekten Wärmeaustausch mit einem zweiten, verdampfenden Fluidstrom tritt. Jeder Kondensator-Verdampfer weist einen Verflüssigungsraum und einen Verdampfungsraum auf, die aus Verflüssigungspassagen beziehungsweise Verdampfungspassagen bestehen. In dem Verflüssigungsraum wird die Kondensation (Verflüssigung) des ersten Fluidstroms durchgeführt, in dem Verdampfungsraum die Verdampfung des zweiten Fluidstroms. Verdampfungs- und Verflüssigungsraum werden durch Gruppen von Passagen gebildet, die untereinander in Wärmeaustauschbeziehung stehen. Der Verdampfungsraum eines Kondensator-Verdampfers kann als Badverdampfer, Fallfilmverdampfer oder Forced-Flow-Verdampfer ausgebildet sein.The term "condenser-evaporator" refers to a heat exchanger in which a first condensing fluid stream undergoes indirect heat exchange with a second evaporating fluid stream. Each condenser-evaporator has a liquefaction space and an evaporation space, which consist of liquefaction passages or evaporation passages. In the liquefaction space, the condensation (liquefaction) of the first fluid flow is performed, in the evaporation space the evaporation of the second fluid flow. Evaporation and liquefaction space are formed by groups of passages that are in heat exchange relationship with each other. The evaporation space of a condenser-evaporator can be designed as a bath evaporator, falling-film evaporator or forced-flow evaporator.

Bei dem Prozess der Erfindung wird ein flüssig auf Druck gebrachter Produktstrom gegen einen Wärmeträger verdampft und schließlich als innenverdichtetes Druckgasprodukt gewonnen. Diese Methode wird auch als Innenverdichtung bezeichnet. Sie dient zur Gewinnung von gasförmigem Druckprodukt. Für den Fall eines überkritischen Drucks findet kein Phasenübergang im eigentlichen Sinne statt, der Produktstrom wird dann "pseudo-verdampft". Bei dem Produktstrom kann es sich beispielsweise um ein Sauerstoffprodukt aus der Niederdrucksäule eines Zwei-SäulenSystems oder um ein Stickstoffprodukt aus der Hochdrucksäule eines Zwei-SäulenSystems beziehungsweise aus dem Verflüssigungsraum eines Hauptkondensators handeln, über den Hochdrucksäule und Niederdrucksäule in wärmetauschender Verbindung stehenIn the process of the invention, a liquid product placed under pressure is vaporized against a heat transfer medium and finally recovered as an internally compressed compressed gas product. This method is also called internal compression. It serves to obtain gaseous printed product. In the case a supercritical pressure, no phase transition takes place in the true sense, the product stream is then "pseudo-evaporated". The product stream may be, for example, an oxygen product from the low-pressure column of a two-column system or a nitrogen product from the high-pressure column of a two-column system or from the liquefaction space of a main condenser via which the high-pressure column and low-pressure column are in heat-exchanging connection

Gegen den (pseudo-)verdampfenden Produktstrom wird ein unter hohem Druck stehender Wärmeträger verflüssigt (beziehungsweise pseudo-verflüssigt, wenn er unter überkritischem Druck steht). Der Wärmeträger wird häufig durch einen Teil der Luft gebildet, im vorliegenden Fall von dem "zweiten Teilstrom" der verdichteten Einsatzluft.Against the (pseudo) evaporating product stream, a high-pressure heat carrier is liquefied (or pseudo-liquefied when it is under supercritical pressure). The heat transfer medium is often formed by part of the air, in the present case by the "second partial flow" of the compressed feed air.

Innenverdichtungsverfahren sind zum Beispiel bekannt aus DE 830805 , DE 901542 (= US 2712738 / US 2784572 ), DE 952908 , DE 1103363 (= US 3083544 ), DE 1112997 (= US 3214925 ), DE 1124529 , DE 1117616 (= US 3280574 ), DE 1226616 (= US 3216206 ), DE 1229561 (= US 3222878 ), DE 1199293 , DE 1187248 (= US 3371496 ), DE 1235347 , DE 1258882 (= US 3426543 ), DE 1263037 (= US 3401531 ), DE 1501722 (= US 3416323 ), DE 1501723 (= US 3500651 ), DE 253132 (= US 4279631 ), DE 2646690 , EP 93448 B1 (= US 4555256 ), EP 384483 B1 (= US 5036672 ), EP 505812 B1 (= US 5263328 ), EP 716280 B1 (= US 5644934 ), EP 842385 B1 (= US 5953937 ), EP 758733 B1 (= US 5845517 ), EP 895045 B1 (= US 6038885 ), DE 19803437 A1 , EP 949471 B1 (= US 6185960 B1 ), EP 955509 A1 (= US 6196022 B1 ), EP 1031804 A1 (= US 6314755 ), DE 19909744 A1 , EP 1067345 A1 (= US 6336345 ), EP 1074805 A1 (= US 6332337 ), DE 19954593 A1 , EP 1134525 A1 (= US 6477860 ), DE 10013073 A1 , EP 1139046 A1 , EP 1146301 A1 , EP 1150082 A1 , EP 1213552 A1 , DE 10115258 A1 , EP 1284404 A1 (= US 2003051504 A1 ), EP 1308680 A1 (= US 6612129 B2 ), DE 10213212 A1 , DE 10213211 A1 , EP 1357342 A1 oder DE 10238282 A1 DE 10302389 A1 , DE 10334559 A1 , DE 10334560 A1 , DE 10332863 A1 , EP 1544559 A1 , EP 1585926 A1 , DE 102005029274 A1 EP 1666824 A1 , EP 1672301 A1 , DE 102005028012 A1 , WO 2007033838 A1 , WO 2007104449 A1 , EP 1845324 A1 , DE 102006032731 A1 , EP 1892490 A1 , DE 102007014643 A1 , A1, EP 2015012 A2 , EP 2015013 A2 , EP 2026024 A1 , WO 2009095188 A2 oder DE 102008016355A1 .Internal compression methods are known, for example DE 830805 . DE 901542 (= US 2712738 / US 2784572 ) DE 952908 . DE 1103363 (= US 3,083,544 ) DE 1112997 (= US 3214925 ) DE 1124529 . DE 1117616 (= US 3280574 ) DE 1226616 (= US 3216206 ) DE 1229561 (= US 3222878 ) DE 1199293 . DE 1187248 (= US 3371496 ) DE 1235347 . DE 1258882 (= US 3426543 ) DE 1263037 (= US 3401531 ) DE 1501722 (= US 3,416,323 ) DE 1501723 (= US 3,500,651 ) DE 253132 (= US 4279631 ) DE 2646690 . EP 93448 B1 (= US 4555256 ) EP 384483 B1 (= US 5036672 ) EP 505812 B1 (= US 5263328 ) EP 716280 B1 (= US 5644934 ) EP 842385 B1 (= US 5953937 ) EP 758733 B1 (= US 5845517 ) EP 895045 B1 (= US 6038885 ) DE 19803437 A1 . EP 949471 B1 (= US 6,189,960 B1 ) EP 955509 A1 (= US 6196022 B1 ) EP 1031804 A1 (= US 6314755 ) DE 19909744 A1 . EP 1067345 A1 (= US 6336345 ) EP 1074805 A1 (= US 6332337 ) DE 19954593 A1 . EP 1134525 A1 (= US 6477860 ) DE 10013073 A1 . EP 1139046 A1 . EP 1146301 A1 . EP 1150082 A1 . EP 1213552 A1 . DE 10115258 A1 . EP 1284404 A1 (= US 2003051504 A1 ) EP 1308680 A1 (= US 6612129 B2 ) DE 10213212 A1 . DE 10213211 A1 . EP 1357342 A1 or DE 10238282 A1 DE 10302389 A1 . DE 10334559 A1 . DE 10334560 A1 . DE 10332863 A1 . EP 1544559 A1 . EP 1585926 A1 . DE 102005029274 A1 EP 1666824 A1 . EP 1672301 A1 . DE 102005028012 A1 . WO 2007033838 A1 . WO 2007104449 A1 . EP 1845324 A1 . DE 102006032731 A1 . EP 1892490 A1 . DE 102007014643 A1 , A1, EP 2015012 A2 . EP 2015013 A2 . EP 2026024 A1 . WO 2009095188 A2 or DE 102008016355A1 ,

Die Erfindung betrifft insbesondere Systeme, bei denen die gesamte Einsatzluft auf einen Druck verdichtet wird, der deutlich über dem höchsten Destillationsdruck, der im Inneren der Säulen des Destillationssäulen-Systems herrscht (im Normalfall ist dies der Hochdrucksäulendruck). Solche Systeme werden auch als HAP-Prozesse bezeichnet (HAP - high air pressure). Dabei liegt der "erste Druck", also der Austrittsdruck des Hauptluftverdichters (MAC = main air compressor), in dem die Gesamtluft verdichtet wird, beispielsweise mehr als 4 bar, insbesondere 6 bis 16 bar über dem höchsten Destillationsdruck. Absolut liegt der "erste Druck" beispielsweise zwischen 17 und 25 bar. Bei HAP-Verfahren stellt der Hauptluftverdichter regelmäßig die einzige mit externer Energie angetriebene Maschine zur Verdichtung von Luft dar. Unter einer "einzigen Maschine" wird hier ein einstufiger oder mehrstufiger Verdichter verstanden, dessen Stufen alle mit dem gleichen Antrieb verbunden sind, wobei alle Stufen in demselben Gehäuse untergebracht oder mit demselben Getriebe verbunden sind.More particularly, the invention relates to systems in which the total feed air is compressed to a pressure well above the highest distillation pressure prevailing inside the columns of the distillation column system (this is normally the high pressure column pressure). Such systems are also referred to as HAP processes (HAP - high air pressure). This is the "first pressure", ie the outlet pressure of the main air compressor (MAC = main air compressor), in which the total air is compressed, for example, more than 4 bar, in particular 6 to 16 bar above the highest distillation pressure. In absolute terms, for example, the "first pressure" is between 17 and 25 bar. In HAP processes, the main air compressor is regularly the only external energy driven machine for compressing air. A "single machine" is understood to mean a single stage or multi-stage compressor whose stages are all connected to the same drive, with all stages in housed in the same housing or connected to the same gear.

Eine Alternative zu derartigen HAP-Verfahren stellen so genannte MAC-BAC-Verfahren dar, bei denen die Luft im Hauptluftverdichter auf einen relativ niedrigen Gesamtluftdruck verdichtet wird, zum Beispiel auf den Betriebsdruck der Hochdrucksäule (plus Leitungsverlusten). Ein Teil der Luft aus dem Hauptluftverdichter wird in einem mit externer Energie angetriebenen Luftnachverdichter (BAC = booster air compressor) auf einen höheren Druck verdichtet. Dieser Luftteil unter höherem Druck (häufig Drosselstrom genannt) liefert den Großteil der für die (Pseudo-)Verdampfung des innenverdichteten Produkts notwendige Wärme im Hauptwärmetauscher. Er wird stromabwärts des Hauptluftverdichters in einem Drosselventil oder in einer Flüssigturbine (DLE = dense liquid expander) auf den im Destillationssäulen-System benötigten Druck entspannt.An alternative to such HAP processes are so-called MAC-BAC processes, in which the air in the main air compressor is compressed to a relatively low total air pressure, for example the operating pressure of the high-pressure column (plus line losses). Part of the air from the main air compressor is compressed to a higher pressure in an external energy driven air booster (BAC). This higher pressure air component (often called the choke flow) provides the majority of the heat required for (pseudo) evaporation of the internally compressed product in the main heat exchanger. It is depressurised downstream of the main air compressor in a throttle valve or in a liquid turbine (DLE) to the pressure required in the distillation column system.

Ein Verfahren der eingangs genannten Art mit serielle verbundenem erstem Nachverdichter (Warmbooster) und zweitem Nachverdichter (Kaltbooster) ist aus DE 102010055448 A1 bekannt.A method of the type mentioned with serial connected first booster (warm booster) and second booster (cold booster) is out DE 102010055448 A1 known.

Der Erfindung liegt die Aufgabe zugrunden, ein derartiges Verfahren hinsichtlich der energetischen Effizienz weiter zu verbessern.The invention is based on the object to further improve such a method in terms of energy efficiency.

Diese Aufgabe wird durch die Merkmale des Patentanspruchs 1 gelöst. Neben dem "zweiten Teilstrom" - dem Drosselstrom unter dem besonders hohen dritten Druck - wird ein weiterer Drosselstrom unter einem vergleichsweise niedrigen Druck von beispielsweise 7 bis 15 bar, insbesondere 10 bis 13 bar durch den kalten Teil des Hauptwärmetauschers gefahren. Dieser weitere Drosselstrom wird durch den "dritten Teilstrom" der Luft stromabwärts seiner Entspannung in der zweiten Luftturbine gebildet. Der zusätzliche Luftstrom im kalten Teil des Hauptwärmetauschers ermöglicht es, ein günstiges Wärmetauschdiagramm zu erreichen und damit Energie zu sparen, insbesondere wenn als innenverdichtetes Produkt Stickstoff zwischen 7 und 15 bar gewonnen wird.This object is solved by the features of patent claim 1. In addition to the "second partial flow" - the throttle flow under the particularly high third pressure - another throttle flow is driven at a comparatively low pressure, for example 7 to 15 bar, in particular 10 to 13 bar through the cold part of the main heat exchanger. This further inductor current is formed by the "third partial flow" of the air downstream of its expansion in the second air turbine. The additional air flow in the cold part of the main heat exchanger makes it possible to achieve a favorable heat exchange diagram and thus to save energy, in particular if nitrogen is obtained as an internally compressed product between 7 and 15 bar.

In vielen Fällen ist eine weitere Optimierung des Wärmeaustauschprozesses im Hauptwärmetauscher möglich, indem ein vierter Teilstrom der im Hauptluftverdichter verdichteten Luft unter dem ersten Druck, dem Austrittsdruck des Hauptluftverdichters, in dem Hauptwärmetauscher abgekühlt und anschließend entspannt und in das Destillationssäulen-System eingeleitet wird.In many cases, further optimization of the heat exchange process in the main heat exchanger is possible by cooling a fourth substream of the compressed air in the main air compressor under the first pressure, the outlet pressure of the main air compressor in the main heat exchanger and then released and introduced into the distillation column system.

Einer der beiden Turbinenströme oder beide können gemeinsam mit dem zweiten Teilstrom in dem ersten Nachverdichter auf den zweiten Druck nachverdichtet werden, wie es in den Patentansprüchen 3 und 4 beschrieben ist.One of the two turbine streams or both can be recompressed together with the second partial flow in the first booster to the second pressure, as described in the claims 3 and 4.

Insbesondere der dritte Teilstrom kann auch ohne Nachverdichtung bleiben; er wird dann unter dem ersten Druck in die zweite Luftturbine eingeleitet.In particular, the third partial flow can remain without recompression; it is then introduced under the first pressure in the second air turbine.

Wenn das System zeitweise mit besonders niedriger Flüssigproduktion oder als reine Gasanlage gefahren werden soll, ist es günstig, zu diesen Zeiten einen zweiten Teil des arbeitsleistend entspannten dritten Teilstroms nicht in den Hauptwärmetauscher einzuführen, sondern in den Verflüssigungsraum einen Sumpfverdampfers der Hochdrucksäule, der als Kondensator-Verdampfer ausgebildet ist.If the system is to be operated at times with particularly low liquid production or as a pure gas system, it is favorable, at these times a second part of the working expanded third partial stream not to introduce into the main heat exchanger, but in the liquefaction room a bottom evaporator of the high-pressure column, which is used as capacitor Evaporator is formed.

Der in dem Verdampfungsraum des Sumpfverdampfers der Hochdrucksäule mindestens teilweise kondensierte Strom wird dann vorzugsweise der Hochdrucksäule an einer Zwischenstelle zugeführt.The stream at least partially condensed in the evaporation space of the bottom evaporator of the high-pressure column is then preferably fed to the high-pressure column at an intermediate point.

Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand von in den Figuren 1 und 2 schematisch dargestellten Ausführungsbeispielen näher erläutert.The invention and further details of the invention are described below with reference to the FIGS. 1 and 2 illustrated schematically embodiments.

In Figur 1 wird atmosphärische Luft (AIR) wird über ein Filter 1 von einem Hauptluftverdichter 2 angesaugt. Der Hauptluftverdichter weist in dem Beispiel fünf Stufen auf und verdichtet den Gesamtluftstrom auf einen "ersten Druck" von beispielsweise 19,7 bar. Der Gesamtluftstrom 3 stromabwärts des Hauptluftverdichters 2 wird unter dem ersten Druck in einer Vorkühlung 4 gekühlt. Der vorgekühlte Gesamtluftstrom 5 wird in einer Reinigungseinrichtung 6, die insbesondere durch ein Paar umschaltbarer Molsieb-Adsorber gebildet wird, gereinigt. Der gereinigte Gesamtluftstrom 7 wird zu einem ersten Teil 8 in einem im Warmen betriebenen Luftnachverdichter 9 mit Nachkühler 10 auf einen "zweiten Druck" von beispielsweise 24 bar nachverdichtet und anschließend in einen "ersten Teilstrom" 11 (erster Turbinenluftstrom) und einen "zweiten Teilstrom" 12 (erster Drosselstrom) aufgeteilt.In FIG. 1 atmospheric air (AIR) is sucked through a filter 1 from a main air compressor 2. The main air compressor has five stages in the example and compresses the total air flow to a "first pressure", for example 19.7 bar. The total air flow 3 downstream of the main air compressor 2 is cooled under the first pressure in a pre-cooling 4. The pre-cooled total air flow 5 is purified in a cleaning device 6, which is formed in particular by a pair of switchable molecular sieve adsorber. The purified total air flow 7 is recompressed to a first part 8 in a hot air compressor 9 with aftercooler 10 to a "second pressure" of for example 24 bar and then into a "first partial flow" 11 (first turbine air flow) and a "second partial flow". Divided 12 (first inductor current).

Der erste Teilstrom 11 wird in einem Hauptwärmetauscher 13 auf eine erste Zwischentemperatur von ca. 135K abgekühlt. Der abgekühlte erste Teilstrom 14 wird in einer ersten Luftturbine 15 von dem zweiten Druck auf etwa 5,5 bar arbeitsleistend entspannt. Die erste Luftturbine 15 treibt den warmen Luftnachverdichter 9 an. Der arbeitsleistend entspannte erste Teilstrom 16 wird in einen Abscheider (Phasentrenner) 17 eingeleitet. Der flüssige Anteil 18 wird über die Leitungen 19 und 20 in die Niederdrucksäule 22 des Destillationssäulen-Systems eingeleitet.The first substream 11 is cooled in a main heat exchanger 13 to a first intermediate temperature of about 135K. The cooled first partial flow 14 is expanded in a first air turbine 15 from the second pressure to about 5.5 bar to perform work. The first air turbine 15 drives the warm air compressor 9. The work-performing relaxed first partial flow 16 is introduced into a separator (phase separator) 17. The liquid portion 18 is introduced via lines 19 and 20 into the low-pressure column 22 of the distillation column system.

Das Destillationssäulen-System umfasst eine Hochdrucksäule 21, die Niederdrucksäule 22 und einen Hauptkondensator 23 sowie eine übliche Argongewinnung 24 mit Rohargonsäule 25 und Reinargonsäule 26. Der Hauptkondensator 23 ist als Kondensator-Verdampfer ausgebildet, in dem konkreten Beispiel als Kaskadenverdampfer. Der Betriebsdruck am Kopf der Hochdrucksäule beträgt in dem Beispiel 5,3 bar, derjenige am Kopf der Niederdrucksäule 1,35 bar.The distillation column system comprises a high-pressure column 21, the low-pressure column 22 and a main condenser 23 and a conventional argon production 24 with crude argon column 25 and pure argon column 26. The main condenser 23 is designed as a condenser-evaporator, in the concrete example as a cascade evaporator. The operating pressure at the top of the high pressure column is in the example 5.3 bar, the one at the top of the low pressure column 1.35 bar.

Der zweite Teilstrom 12 der Einsatzluft wird in dem Hauptwärmetauscher 13 auf eine zweite Zwischentemperatur abgekühlt, die höher als die erste Zwischentemperatur ist, über Leitung 27 einem Kaltverdichter 28 zugeleitet und dort auf einen "dritten Druck" von ca. 35 bar nachverdichtet. Der nachverdichtete zweite Teilstrom 29 wird bei einer dritten Zwischentemperatur, die höher als die zweite Zwischentemperatur ist, wieder in den Hauptwärmetauscher 13 eingeleitet und dort bis zum kalten Ende abgekühlt. Der kalte zweite Teilstrom 30 wird in einem Drosselventil 31 auf etwa den Betriebsdruck der Hochdrucksäule entspannt und über Leitung 32 der Hochdrucksäule 21 zugeführt. Ein Teil 33 wird wieder entnommen, in einem Unterkühlungs-Gegenströmer 34 abgekühlt und über die Leitungen 35 und 20 in die Niederdrucksäule 22 eingespeist.The second partial flow 12 of the feed air is cooled in the main heat exchanger 13 to a second intermediate temperature, which is higher than the first intermediate temperature, fed via line 27 to a cold compressor 28 and there recompressed to a "third pressure" of about 35 bar. The recompressed second partial stream 29 is at a third intermediate temperature, which is higher than the second intermediate temperature, again introduced into the main heat exchanger 13 and cooled there to the cold end. The cold second partial stream 30 is expanded in a throttle valve 31 to approximately the operating pressure of the high-pressure column and fed via line 32 to the high-pressure column 21. A part 33 is removed again, cooled in a supercooling countercurrent 34 and fed via the lines 35 and 20 in the low-pressure column 22.

Ein "dritter Teilstrom" 436 der Einsatzluft wird unter dem zweiten Druck in den Hauptwärmetauscher 13 eingeleitet und dort auf eine vierte Zwischentemperatur abgekühlt, die in dem Beispiel etwas höher als die erste Zwischentemperatur liegt. Der abgekühlte dritte Teilstrom 37 wird in einer zweiten Luftturbine 38 von dem ersten Druck aus arbeitsleistend entspannt. Der arbeitsleistend entspannte Turbinenstrom 339 weist einen Druck auf, der mindestens 1 bar, insbesondere 4 bis 10 bar über dem Betriebsdruck der Hochdrucksäule liegt, und eine Temperatur, die mindestens 10 K, insbesondere 15 bis 40 K oberhalb der Eintrittstemperatur der Niederdruck-Stickstoffströme 55, 61 am kalten Ende des Hauptwärmetauschers liegt. Dieser Strom wird dann im kalten Teil des Hauptwärmetauschers weiter abgekühlt. Der weiter abgekühlte dritte Teilstrom 340 wird als dritter Drosselstrom in einem Drosselventil 341 auf etwa Hochdrucksäulendruck entspannt und über Leitung 32 in die Hochdrucksäule eingeführt. Hierdurch lässt sich der Wärmeaustauschvorgang im Hauptwärmetauscher weiter optimieren, insbesondere im Falle von relativ geringen GAN-IC-Drücken von beispielsweise 7 bis 15 bar, insbesondere etwa 12 bar.A "third substream" 436 of the feed air is introduced under the second pressure into the main heat exchanger 13 and cooled there to a fourth intermediate temperature, which in the example is slightly higher than the first intermediate temperature. The cooled third partial flow 37 is expanded in a second air turbine 38 from the first pressure to perform work. The working power relaxed turbine stream 339 has a pressure which is at least 1 bar, in particular 4 to 10 bar above the operating pressure of the high-pressure column, and a temperature which is at least 10 K, in particular 15 to 40 K above the inlet temperature of the low-pressure nitrogen streams 55, 61 is located at the cold end of the main heat exchanger. This stream is then further cooled in the cold part of the main heat exchanger. The further cooled third partial flow 340 is expanded as a third throttle flow in a throttle valve 341 to about high-pressure column pressure and introduced via line 32 into the high-pressure column. As a result, the heat exchange process in the main heat exchanger can be further optimized, in particular in the case of relatively low GAN-IC pressures of for example 7 to 15 bar, in particular about 12 bar.

Die zweite Luftturbine 38 treibt den Kaltverdichter 28 an. Der arbeitsleistend entspannte dritte Teilstrom 339 wird über Leitung 40 der Hochdrucksäule 21 am Sumpf zugeführt.The second air turbine 38 drives the cold compressor 28. The working expanded third partial flow 339 is supplied via line 40 of the high-pressure column 21 at the bottom.

(Die Aufteilung in die Teilströme gleichen Drucks könnte abweichend von der Darstellung in der Zeichnung von Figur 1 auch im Inneren des Hauptwärmetauschers 13 durchgeführt werden.)(The division into the partial flows of equal pressure could deviate from the representation in the drawing of FIG. 1 also be performed inside the main heat exchanger 13.)

Ein "vierter Teilstrom" 41 (zweiter Drosselstrom) durchströmt den Hauptwärmetauscher 13 vom warmen bis zum kalten Ende unter dem ersten Druck. Der kalte vierte Teilstrom 42 wird in einem Drosselventil 43 auf etwa den Betriebsdruck der Hochdrucksäule entspannt und über Leitung 32 der Hochdrucksäule 21 zugeführt.A "fourth partial flow" 41 (second throttle flow) flows through the main heat exchanger 13 from the hot to the cold end under the first pressure. The cold fourth partial stream 42 is expanded in a throttle valve 43 to approximately the operating pressure of the high-pressure column and fed via line 32 to the high-pressure column 21.

Die sauerstoffangereicherte Sumpfflüssigkeit 44 der Hochdrucksäule 21 wird im Unterkühlungs-Gegenströmer 34 abgekühlt und über Leitung 45 in die fakultative Argongewinnung 24 eingeleitet. Daraus erzeugter Dampf 46 und verbleibende Flüssigkeit 47 werden in die Niederdrucksäule 22 eingespeist.The oxygen-enriched bottom liquid 44 of the high-pressure column 21 is cooled in the subcooling countercurrent 34 and introduced via line 45 into the optional argon recovery 24. Resulting vapor 46 and remaining liquid 47 are fed into the low-pressure column 22.

Ein erster Teil 49 des Kopfstickstoffs 48 der Hochdrucksäule 21 wird im Verflüssigungsraum des Hauptkondensators 23 gegen im Verdampfungsraum verdampfenden flüssigen Sauerstoff aus dem Sumpf der Niederdrucksäule vollständig oder im Wesentlichen vollständig verflüssigt. Ein erster Teil 51 des dabei erzeugten flüssigen Stickstoffs 50 wird als Rücklauf auf die Hochdrucksäule 21 aufgegeben. Ein zweiter Teil 52 wird im Unterkühlungs-Gegenströmer 34 abgekühlt, über Leitung 53 in die Niederdrucksäule 22 eingespeist. Mindestens ein Teil des flüssigen Niederdruckstickstoffs 53 dient als Rücklauf in der Niederdrucksäule 21; ein anderer Teil 54 kann als Flüssigstickstoffprodukt (LIN) gewonnen werden.A first part 49 of the top nitrogen 48 of the high-pressure column 21 is completely or substantially completely liquefied in the liquefaction space of the main condenser 23 against liquid oxygen evaporating in the evaporation space from the bottom of the low-pressure column. A first part 51 of the liquid nitrogen 50 produced in the process is introduced as reflux to the high-pressure column 21. A second part 52 is cooled in the subcooling countercurrent 34, fed via line 53 into the low pressure column 22. At least a portion of the liquid low pressure nitrogen 53 serves as reflux in the low pressure column 21; another part 54 can be obtained as liquid nitrogen product (LIN).

Von einer Zwischenstelle der Niederdrucksäule 22 wird gasförmiger Unreinstickstoff 61 abgezogen, im Unterkühlungs-Gegenströmer 34 und im Hauptwärmetauscher 13 angewärmt. Der warme Unreinstickstoff 62 kann in die Atmosphäre (ATM) abgeblasen (63) und/oder als Regeneriergas 64 für die Reinigungseinrichtung 6 eingesetzt werden. Gasförmiger Stickstoff 55 vom Kopf der Niederdrucksäule 22 wird ebenfalls im Unterkühlungs-Gegenströmer 34 und im Hauptwärmetauscher 13 angewärmt und über Leitung 56 als Niederdruckstickstoffprodukt (GAN) abgezogen.From an intermediate point of the low pressure column 22 gaseous impurity nitrogen 61 is withdrawn, warmed in the supercooling countercurrent 34 and in the main heat exchanger 13. The warm impure nitrogen 62 may be vented (63) into the atmosphere (ATM) and / or used as the regeneration gas 64 for the purifier 6. Gaseous nitrogen 55 from the top of the low pressure column 22 is also heated in the subcooling countercurrent 34 and main heat exchanger 13 and withdrawn via line 56 as low pressure nitrogen product (GAN).

Die Leitungen 67 und 68 (sogenannter Argonübergang) verbinden die Niederdrucksäule 21 mit der Rohargonsäule 25 der Argongewinnung 24.The lines 67 and 68 (so-called argon transition) connect the low-pressure column 21 with the crude argon column 25 of argon recovery 24th

Ein erster Teil 70 des flüssigen Sauerstoffs 69 vom Sumpf der Niederdrucksäule 21 wird als "erster Produktstrom" abgezogen, in einer Sauerstoffpumpe 71 auf einen "ersten Produktdruck" von beispielsweise 37 bar gebracht und unter dem ersten Produktdruck in dem Hauptwärmetauscher 13 verdampft und schließlich über Leitung 72 als "erstes Druckgasprodukt" (GOX IC - innenverdichteter gasförmiger Sauerstoff) gewonnen.A first portion 70 of the liquid oxygen 69 from the bottom of the low-pressure column 21 is withdrawn as the "first product stream", brought to a "first product pressure" of, for example, 37 bar in an oxygen pump 71 and vaporized under the first product pressure in the main heat exchanger 13 and finally via line 72 as "first compressed gas product" (GOX IC - compressed gas internal oxygen) won.

Ein zweiter Teil 73 des flüssigen Sauerstoffs 69 vom Sumpf der Niederdrucksäule 21 wird gegebenenfalls im Unterkühlungs-Gegenströmer 34 abgekühlt und über Leitung 74 als Flüssigsauerstoffprodukt (LOX) gewonnen.A second portion 73 of the liquid oxygen 69 from the bottom of the low-pressure column 21 is optionally cooled in the subcooling countercurrent 34 and recovered via line 74 as a liquid oxygen product (LOX).

In dem Beispiel wird auch ein dritter Teil 75 des flüssigen Stickstoffs 50 aus der Hochdrucksäule 21 beziehungsweise dem Hauptkondensator 23 einer Innenverdichtung unterzogen, indem er in einer Stickstoffpumpe 76 auf einen zweiten Produktdruck von beispielsweise 12 bar gebracht, unter dem zweiten Produktdruck in dem Hauptwärmetauscher 13 pseudo-verdampft und schließlich über Leitung 77 als innenverdichtetes gasförmiges Stickstoff-Druckprodukt (GAN IC) gewonnen.In the example, a third part 75 of the liquid nitrogen 50 from the high-pressure column 21 and the main condenser 23 is also subjected to internal compression by being brought in a nitrogen pump 76 to a second product pressure of 12 bar, for example, under the second product pressure in the main heat exchanger 13 pseudo and finally recovered via line 77 as internally compressed gaseous nitrogen pressure product (GAN IC).

Ein zweiter Teil 78 des gasförmigen Kopfstickstoffs 48 der Hochdrucksäule 21 wird im Hauptwärmetauscher angewärmt und über Leitung 79 entweder als gasförmiges Mitteldruckprodukt gewonnen oder - wie dargestellt - als Dichtgas (Sealgas) für eine oder mehrere der dargestellten Prozesspumpen eingesetzt.A second part 78 of the gaseous top nitrogen 48 of the high-pressure column 21 is warmed in the main heat exchanger and recovered via line 79 either as a gaseous medium pressure product or - as shown - used as a sealing gas (seal gas) for one or more of the illustrated process pumps.

Figur 2 unterscheidet sich von Figur 1 dadurch, dass der dritte Teilstrom 36 der Einsatzluft unter dem ersten Druck in den Hauptwärmetauscher 13 eingeleitet wird und die zweite Turbine 38 damit einen entsprechend niedrigeren Eintrittsdruck hat. FIG. 2 differs from FIG. 1 in that the third partial flow 36 of the feed air is introduced under the first pressure into the main heat exchanger 13 and the second turbine 38 thus has a correspondingly lower inlet pressure.

In dem Ausführungsbeispiel der Figur 3 weist die Hochdrucksäule einen Sumpfverdampfer 351 auf. Dieser wird insbesondere dann eingesetzt, wenn mindestens zeitweise eine besonders niedrige Flüssigproduktion oder sogar reiner Gasbetrieb gewünscht ist. Die Turbine 38 der vorigen Ausführungsbeispiele kann nicht mit ihrem maximalen Durchsatz gefahren werden, weil ansonsten zu viel Luft als dritter Teilstrom durch das kalte Ende des Hauptwärmetauschers gefahren werden müsste und der Betrieb des Hauptwärmetauschers damit weniger effizient wäre.In the embodiment of FIG. 3 the high-pressure column has a sump evaporator 351. This is used in particular when at least temporarily a particularly low liquid production or even pure gas operation is desired. The turbine 38 of the previous embodiments can not be driven with their maximum throughput, because otherwise too much air would have to be driven as a third partial flow through the cold end of the main heat exchanger and the operation of the main heat exchanger would be less efficient.

In Figur 3 kann nun bei besonders niedriger Flüssigproduktion ein Teil 350 des dritten Teilstroms aus der Turbine 38 am Hauptwärmetauscher vorbeigeführt werden. Die Turbine 38 (und damit der gekoppelte Kaltverdichter) kann nun mit vollen Durchsatz gefahren werden, ohne den Wärmeaustauschvorgang im Hauptwärmetauscher zu belasten. Der Strom 350 wird im Verdampfungsraum des Sumpfverdampfers 351 mindestens teilweise kondensiert und anschließend über Leitung 352 der Hochdrucksäule an einer Zwischenstelle zugeführt. Er verstärkt damit die Destillation im unteren Teil der Hochdrucksäule.In FIG. 3 can now be passed at a particularly low liquid production part 350 of the third partial flow from the turbine 38 on the main heat exchanger. The turbine 38 (and thus the coupled cold compressor) can now be operated at full throughput, without burdening the heat exchange process in the main heat exchanger. The stream 350 is at least partially condensed in the evaporation space of the bottom evaporator 351 and then via line 352 of High-pressure column fed at an intermediate point. He intensifies the distillation in the lower part of the high-pressure column.

Abweichend von der Darstellung in Figur 3 kann der Strom 350 auch vor der Einleitung in den Sumpfverdampfer im Hauptwärmetauscher auf den Tauzustand abgekühlt werden. Dies kann in einer separaten Passage erfolgen, aber auch durch Zwischenentnahme an geeigneter Stelle und entsprechende Umspeisung.Deviating from the illustration in FIG. 3 For example, the stream 350 can also be cooled to the dew state before it is introduced into the bottom evaporator in the main heat exchanger. This can be done in a separate passage, but also by intermediate removal at a suitable location and appropriate Umspeisung.

Claims (8)

Verfahren zur Gewinnung eines Druckgasprodukts (72; 73) mittels Tieftemperaturzerlegung von Luft in einem Destillationssäulen-System, das eine Hochdrucksäule (21) und eine Niederdrucksäule (22) aufweist, bei dem - die gesamte Einsatzluft in einem Hauptluftverdichter (2) auf einen ersten Druck verdichtet wird, der mindestens 4 bar höher als der Betriebsdruck der Hochdrucksäule (21) ist, - ein erster Teilstrom (8, 11, 14) der im Hauptluftverdichter (2) verdichteten Einsatzluft (7) in einem Hauptwärmetauscher (13) auf eine Zwischentemperatur abgekühlt und in einer ersten Luftturbine (15) arbeitsleistend entspannt wird, - mindestens ein erster Teil des arbeitsleistend entspannten ersten Teilstroms (16) in das Destillationssäulen-System eingeleitet (40; 18, 19, 20) wird, - ein zweiter Teilstrom (12, 27, 29, 30) der im Hauptluftverdichter (2) verdichteten Einsatzluft in einem ersten Nachverdichter (9), der insbesondere von der ersten Turbine (15) angetrieben wird, auf einen zweiten Druck nachverdichtet wird, der höher als der erste Druck ist, in dem Hauptwärmetauscher (13) auf eine Zwischentemperatur abgekühlt, in einem zweiten Nachverdichter (28), der als Kaltverdichter betrieben und insbesondere von der zweiten Turbine (38) angetrieben wird, auf einen dritten Druck nachverdichtet wird, der höher als der zweite Druck ist, in dem Hauptwärmetauscher (13) abgekühlt und anschließend entspannt (31) und in das Destillationssäulen-System eingeleitet (32) wird, - ein dritter Teilstrom (436, 37) der im Hauptluftverdichter (2) verdichteten Einsatzluft (7) in dem Hauptwärmetauscher (13) auf eine Zwischentemperatur abgekühlt und in einer zweiten Luftturbine (38) arbeitsleistend entspannt wird und - mindestens ein erster Teil (339) des arbeitsleistend entspannten dritten Teilstroms in das Destillationssäulen-System eingeleitet (340) wird, - ein erster Produktstrom (69; 75) flüssig aus dem Destillationssäulen-System entnommen und einer Druckerhöhung (71; 76) auf einen ersten Produktdruck unterworfen wird, - der erste Produktstrom unter dem ersten Produktdruck im Hauptwärmetauscher (13) verdampft oder pseudo-verdampft und angewärmt wird und - der angewärmte erste Produktstrom (72; 77) als erstes Druckgasprodukt (GOX IC; GAN IC) gewonnen wird,
dadurch gekennzeichnet, dass
- der dritte Teilstrom (37) in der zweiten Luftturbine (38) auf einen Druck entspannt wird, der mindestens 1 bar höher als der Betriebsdruck der Hochdrucksäule (21) ist, - der Eintrittsdruck der ersten Luftturbine (15) mindestens ein 1 bar kleiner als der dritte Druck ist und - mindestens ein erster Teil (339) des arbeitsleistend entspannten dritten Teilstroms in dem Hauptwärmetauscher (13) weiter abgekühlt, verflüssigt und anschließend entspannt (341) und in das Destillationssäulen-System eingeleitet wird.
A process for recovering a compressed gas product (72; 73) by cryogenic separation of air in a distillation column system comprising a high pressure column (21) and a low pressure column (22), wherein - the total feed air in a main air compressor (2) is compressed to a first pressure which is at least 4 bar higher than the operating pressure of the high-pressure column (21), a first partial flow (8, 11, 14) of the feed air (7) compressed in the main air compressor (2) is cooled to an intermediate temperature in a main heat exchanger (13) and expanded in a first air turbine (15) to perform work, at least a first part of the work-performing expanded first partial flow (16) is introduced into the distillation column system (40, 18, 19, 20), - A second partial stream (12, 27, 29, 30) of the main air compressor (2) compressed feed air in a first booster (9), which is in particular from the first turbine (15) is driven to a second pressure is recompressed, the higher as the first pressure is, in the main heat exchanger (13) cooled to an intermediate temperature, in a second booster (28) operated as a cold compressor and in particular by the second turbine (38) is recompressed to a third pressure, the higher when the second pressure is cooled in the main heat exchanger (13) and then expanded (31) and introduced into the distillation column system (32), - A third partial stream (436, 37) of the compressed air in the main compressor (2) compressed air (7) in the main heat exchanger (13) to an intermediate temperature and in a second air turbine (38) is expanded to perform work and - at least a first part (339) of the work-performing expanded third substream is introduced into the distillation column system (340), a first product stream (69; 75) is removed from the distillation column system in liquid form and subjected to a pressure increase (71; 76) to a first product pressure, - The first product stream under the first product pressure in the main heat exchanger (13) is evaporated or pseudo-evaporated and warmed and the warmed first product stream (72; 77) is obtained as the first compressed gas product (GOX IC; GAN IC),
characterized in that
the third partial flow (37) in the second air turbine (38) is expanded to a pressure which is at least 1 bar higher than the operating pressure of the high-pressure column (21), - The inlet pressure of the first air turbine (15) is at least a 1 bar less than the third pressure and - At least a first part (339) of the work-performing expanded third partial flow in the main heat exchanger (13) further cooled, liquefied and then relaxed (341) and introduced into the distillation column system.
Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ein vierter Teilstrom (41, 42) der im Hauptluftverdichter (2) verdichteten Luft (7) unter dem ersten Druck in dem Hauptwärmetauscher (13) abgekühlt und anschließend entspannt (43) und in das Destillationssäulen-System eingeleitet wird.A method according to claim 1, characterized in that a fourth substream (41, 42) of the compressed air in the main air compressor (2) (7) under the first pressure in the main heat exchanger (13) and then expanded (43) and in the Destillationssäulen- System is initiated. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der erste Teilstrom gemeinsam mit dem zweiten Teilstrom in dem erste Nachverdichter (9) auf den zweiten Druck gebracht wird und unter dem zweiten Druck in die erste Luftturbine (15) eingeleitet wird.A method according to claim 1 or 2, characterized in that the first partial flow is brought together with the second partial flow in the first booster (9) to the second pressure and is introduced under the second pressure in the first air turbine (15). Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der dritte Teilstrom gemeinsam mit dem zweiten Teilstrom und gegebenenfalls mit dem ersten Teilstrom in dem ersten Nachverdichter (9) auf den zweiten Druck gebracht wird und unter dem zweiten Druck in die zweite Luftturbine (38) eingeleitet wird.Method according to one of claims 1 to 3, characterized in that the third partial flow is brought together with the second partial flow and optionally with the first partial flow in the first booster (9) to the second pressure and under the second pressure in the second air turbine ( 38) is initiated. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der dritte Teilstrom unter dem ersten Druck in die zweite Luftturbine (38) eingeleitet wird.Method according to one of claims 1 to 3, characterized in that the third partial flow is introduced under the first pressure in the second air turbine (38). Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass zumindest zeitweise ein zweiter Teil (350) des arbeitsleistend entspannten dritten Teilstroms nicht in den Hauptwärmetauscher (13) eingeführt wird, sondern in den Verflüssigungsraum einen Sumpfverdampfers (351) der Hochdrucksäule, der als Kondensator-Verdampfer ausgebildet ist.Method according to one of claims 1 to 5, characterized in that at least temporarily a second part (350) of the work-performing expanded third partial flow is not introduced into the main heat exchanger (13), but in the Liquefaction space a sump evaporator (351) of the high-pressure column, which is designed as a condenser-evaporator. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass der in dem Verdampfungsraum des Sumpfverdampfers (351) der Hochdrucksäule mindestens teilweise kondensierte Strom (352) der Hochdrucksäule an einer Zwischenstelle zugeführt wird.A method according to claim 6, characterized in that in the evaporation space of the bottom evaporator (351) of the high-pressure column at least partially condensed stream (352) of the high-pressure column is fed at an intermediate point. Vorrichtung zur Gewinnung eines Druckgasprodukts (72; 73) mittels Tieftemperaturzerlegung von Luft mit - einem Destillationssäulen-System, das eine Hochdrucksäule (21) und eine Niederdrucksäule (22) aufweist, - einem Hauptluftverdichter (2) zum Verdichten der gesamten Einsatzluft auf einen ersten Druck, der mindestens 4 bar höher als der Betriebsdruck der Hochdrucksäule (21) ist, - Mittel zum Abkühlen eines ersten Teilstroms (8, 11, 14) der im Hauptluftverdichter (2) verdichteten Einsatzluft (7) in einem Hauptwärmetauscher (13) auf eine Zwischentemperatur - Mittel zum Einleiten des auf die Zwischentemperatur abgekühlten ersten Teilstroms in eine erste Luftturbine (15), - Mittel (40; 18, 19, 20) zum Einleiten des in der ersten Luftturbine (15) arbeitsleistend entspannten ersten Teilstroms (16) in das Destillationssäulen-System, - einem ersten Nachverdichter (9), der insbesondere von der ersten Turbine (15) angetrieben wird, zum Nachverdichten eines zweiten Teilstroms (12, 27, 29, 30) der im Hauptluftverdichter (2) verdichteten Einsatzluft auf einen zweiten Druck, der höher als der erste Druck ist, - Mittel zum Abkühlen des nachverdichteten zweiten Teilstroms in dem Hauptwärmetauscher (13) auf eine Zwischentemperatur, - einem zweiten Nachverdichter (28), der als Kaltverdichter betrieben und insbesondere von der zweiten Turbine (38) angetrieben wird, zum Nachverdichten des zweiten Teilstroms auf einen dritten Druck, der höher als der zweite Druck ist, - Mittel zum Abkühlen des weitere nachverdichteten zweiten Teilstroms in dem Hauptwärmetauscher (13) und zum anschließenden Entspannen (31) und Einleiten (32) in das Destillationssäulen-System eingeleitet wird, - Mittel zum Abkühlen eines dritten Teilstroms (436, 37) der im Hauptluftverdichter (2) verdichteten Einsatzluft (7) in dem Hauptwärmetauscher (13) auf eine Zwischentemperatur, - einer zweiten Luftturbine (38) zum arbeitsleistenden Entspannen des abgekühlten dritten Teilstroms, - Mittel zum Einleiten (340) des arbeitsleistend entspannten dritten Teilstroms in das Destillationssäulen-System, - Mittel zum flüssigen Entnehmen eines ersten Produktstroms (69; 75) aus dem Destillationssäulen-System, - Mittel zur Druckerhöhung (71; 76) des flüssig entnommenen ernste Produktstroms (69; 75) auf einen ersten Produktdruck, - Mittel zur Verdampfung und Pseudo-Verdampfung des ersten Produktstroms unter dem ersten Produktdruck im Hauptwärmetauscher (13) und mit - Mittel zum Gewinnen des angewärmten erste Produktstroms (72; 77) als erstes Druckgasprodukt (GOX IC; GAN IC),
gekennzeichnet durch
- Regelungsmittel zur Einstellung des Austrittsdrucks der zweiten Luftturbine (38) auf einen Druck, der mindestens 1 bar höher als der Betriebsdruck der Hochdrucksäule (21) ist, - Mittel zum Einleiten des ersten Teilstroms in die erste Luftturbine (15) unter einem Eintrittsdruck, der mindestens ein 1 bar kleiner als der dritte Druck ist, - Mittel zum Einleiten des arbeitsleistend entspannten dritten Teilstroms (399) in den Hauptwärmetauscher (13) zum Abkühlen und Verflüssigen und durch - Mittel zum Entspannen (341) und Einleiten in das Destillationssäulen-System des verflüssigten dritten Teilstroms.
Apparatus for recovering a compressed gas product (72, 73) by means of cryogenic separation of air with a distillation column system comprising a high pressure column (21) and a low pressure column (22), - A main air compressor (2) for compressing the total feed air to a first pressure which is at least 4 bar higher than the operating pressure of the high-pressure column (21), - means for cooling a first partial flow (8, 11, 14) of the main air compressor (2) compressed feed air (7) in a main heat exchanger (13) to an intermediate temperature Means for introducing the first partial flow cooled to the intermediate temperature into a first air turbine (15), Means (40; 18, 19, 20) for introducing the first partial flow (16), which in the first air turbine (15) performs work, into the distillation column system, - A first post-compressor (9), which is driven in particular by the first turbine (15), for recompressing a second partial flow (12, 27, 29, 30) of the main air compressor (2) compressed feed air to a second pressure higher than the first pressure is Means for cooling the post-compressed second substream in the main heat exchanger (13) to an intermediate temperature, a second after-compressor (28), which is operated as a cold compressor and in particular driven by the second turbine (38), for recompressing the second partial flow to a third pressure, which is higher than the second pressure, - means for cooling the further recompressed second substream in the main heat exchanger (13) and for subsequent expansion (31) and introduction (32) is introduced into the distillation column system, Means for cooling a third partial flow (436, 37) of the feed air (7) compressed in the main air compressor (2) in the main heat exchanger (13) to an intermediate temperature, - a second air turbine (38) for work-performing expansion of the cooled third partial flow, Means for introducing (340) the work-performing expanded third substream into the distillation column system, - means for liquid withdrawal of a first product stream (69; 75) from the distillation column system, - means for increasing the pressure (71; 76) of the liquid withdrawn serious product stream (69; 75) to a first product pressure, - means for evaporation and pseudo-evaporation of the first product stream under the first product pressure in the main heat exchanger (13) and with Means for obtaining the warmed first product stream (72, 77) as the first compressed gas product (GOX IC, GAN IC),
marked by
- Control means for adjusting the outlet pressure of the second air turbine (38) to a pressure which is at least 1 bar higher than the operating pressure of the high-pressure column (21), Means for introducing the first partial flow into the first air turbine (15) at an inlet pressure which is at least 1 bar less than the third pressure, - Means for introducing the working expanded third partial flow (399) in the main heat exchanger (13) for cooling and liquefying and by - means for expansion (341) and introduction into the distillation column system of the liquefied third substream.
EP15001884.4A 2014-07-05 2015-06-25 Method and device for creating a pressurised gas product by the cryogenic decomposition of air Active EP2963371B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15001884.4A EP2963371B1 (en) 2014-07-05 2015-06-25 Method and device for creating a pressurised gas product by the cryogenic decomposition of air

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14002308 2014-07-05
EP15001884.4A EP2963371B1 (en) 2014-07-05 2015-06-25 Method and device for creating a pressurised gas product by the cryogenic decomposition of air

Publications (2)

Publication Number Publication Date
EP2963371A1 true EP2963371A1 (en) 2016-01-06
EP2963371B1 EP2963371B1 (en) 2018-05-02

Family

ID=51176035

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15001884.4A Active EP2963371B1 (en) 2014-07-05 2015-06-25 Method and device for creating a pressurised gas product by the cryogenic decomposition of air

Country Status (6)

Country Link
US (1) US10995983B2 (en)
EP (1) EP2963371B1 (en)
CN (1) CN105241178B (en)
RU (1) RU2696846C2 (en)
TR (1) TR201808162T4 (en)
TW (1) TWI691356B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4251938A1 (en) * 2020-11-24 2023-10-04 Linde GmbH Process and plant for cryogenic separation of air

Citations (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE830805C (en) 1944-11-19 1952-02-07 Linde Eismasch Ag Process for gas, especially air, separation
DE901542C (en) 1952-01-10 1954-01-11 Linde Eismasch Ag Process for the separation of air by liquefaction and rectification
US2712738A (en) 1952-01-10 1955-07-12 Linde S Eismaschinen Ag Method for fractionating air by liquefaction and rectification
DE952908C (en) 1953-10-11 1956-11-22 Linde Eismasch Ag Process for the separation of air
US2784572A (en) 1953-01-02 1957-03-12 Linde S Eismaschinen Ag Method for fractionating air by liquefaction and rectification
DE1103363B (en) 1958-09-24 1961-03-30 Linde Eismasch Ag Method and device for generating a balanced cold budget when extracting gas mixtures and / or gas mixture components under higher pressure by rectification
DE1112997B (en) 1960-08-13 1961-08-24 Linde Eismasch Ag Process and device for gas separation by rectification at low temperature
DE1117616B (en) 1960-10-14 1961-11-23 Linde Eismasch Ag Method and device for obtaining particularly pure decomposition products in cryogenic gas separation plants
DE1124529B (en) 1957-07-04 1962-03-01 Linde Eismasch Ag Method and device for carrying out heat exchange processes in a gas separation plant working with upstream regenerators
DE1187248B (en) 1963-03-29 1965-02-18 Linde Eismasch Ag Process and device for the production of oxygen gas with 70 to 98% O-content
DE1199293B (en) 1963-03-29 1965-08-26 Linde Eismasch Ag Method and device for air separation in a single column rectifier
US3216206A (en) 1961-11-29 1965-11-09 Linde Eismasch Ag Low temperature distillation of normally gaseous substances
US3222878A (en) 1962-12-21 1965-12-14 Linde Eismasch Ag Method and apparatus for fractionation of air
DE1235347B (en) 1964-05-13 1967-03-02 Linde Ag Method and device for the operation of switchable heat exchangers in low-temperature gas separation
DE1258882B (en) 1963-06-19 1968-01-18 Linde Ag Process and system for air separation by rectification using a high pressure gas refrigeration cycle for the pressure evaporation of liquid oxygen
DE1263037B (en) 1965-05-19 1968-03-14 Linde Ag Method for the separation of air in a rectification column and the separation of a gas mixture containing hydrogen
US3416323A (en) 1966-01-13 1968-12-17 Linde Ag Low temperature production of highly compressed gaseous and/or liquid oxygen
DE1501723A1 (en) 1966-01-13 1969-06-26 Linde Ag Method and device for generating gaseous high-pressure oxygen in the low-temperature rectification of air
DE2646690A1 (en) 1976-10-15 1978-04-20 Linde Ag Oxygen and steam mixer for cellulose bleaching - has air fractionating plant supplying liquid oxygen to steam nozzle
US4279631A (en) 1975-08-06 1981-07-21 Linde Aktiengesellschaft Process and apparatus for the production of oxygen by two-stage low-temperature rectification of air
US4555256A (en) 1982-05-03 1985-11-26 Linde Aktiengesellschaft Process and device for the production of gaseous oxygen at elevated pressure
US5036672A (en) 1989-02-23 1991-08-06 Linde Aktiengesellschaft Process and apparatus for air fractionation by rectification
US5263328A (en) 1991-03-26 1993-11-23 Linde Aktiengesellschaft Process for low-temperature air fractionation
US5400600A (en) * 1992-06-23 1995-03-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and installation for the production of gaseous oxygen under pressure
EP0660058A2 (en) * 1993-12-22 1995-06-28 The BOC Group plc Air separation
US5475980A (en) * 1993-12-30 1995-12-19 L'air Liquide, Societe Anonyme Pour L'etude L'exploitation Des Procedes Georges Claude Process and installation for production of high pressure gaseous fluid
US5644934A (en) 1994-12-05 1997-07-08 Linde Aktiengesellchaft Process and device for low-temperature separation of air
US5845517A (en) 1995-08-11 1998-12-08 Linde Aktiengesellschaft Process and device for air separation by low-temperature rectification
DE19803437A1 (en) 1998-01-29 1999-03-18 Linde Ag Oxygen and nitrogen extracted by low-temperature fractional distillation
US5953937A (en) 1995-07-21 1999-09-21 Linde Aktiengesellschaft Process and apparatus for the variable production of a gaseous pressurized product
EP0955509A1 (en) 1998-04-30 1999-11-10 Linde Aktiengesellschaft Process and apparatus to produce high purity nitrogen
US6038885A (en) 1997-07-30 2000-03-21 Linde Aktiengesellschaft Air separation process
DE19909744A1 (en) 1999-03-05 2000-05-04 Linde Ag Low-temperature air fractionating system re-compresses nitrogen-containing fraction separate from input air using indirect exchange for fraction heating.
EP1031804A1 (en) 1999-02-26 2000-08-30 Linde Technische Gase GmbH Air separation process with nitrogen recycling
DE19954593A1 (en) 1999-11-12 2000-09-28 Linde Ag Fractionated distillation of air to oxygen and nitrogen uses little energy and facilitates the production of oxygen of any purity level
DE10013073A1 (en) 2000-03-17 2000-10-19 Linde Ag Low temperature separation of air in distillation column system uses integrated heat exchanger system for cooling e.g. air supply by indirect heat exchange during vaporization of first liquid fraction
EP1067345A1 (en) 1999-07-05 2001-01-10 Linde Aktiengesellschaft Process and device for cryogenic air separation
EP1074805A1 (en) 1999-08-05 2001-02-07 Linde Aktiengesellschaft Process for producing oxygen under pressure and device therefor
US6185960B1 (en) 1998-04-08 2001-02-13 Linde Aktiengesellschaft Process and device for the production of a pressurized gaseous product by low-temperature separation of air
EP1134525A1 (en) 2000-03-17 2001-09-19 Linde Aktiengesellschaft Process for producing gaseous and liquid nitrogen with a variable quantity of liquid
EP1139046A1 (en) 2000-03-29 2001-10-04 Linde Aktiengesellschaft Process and device for producing a high pressure product by cryogenic air separation
EP1146301A1 (en) 2000-04-12 2001-10-17 Linde Gas Aktiengesellschaft Process and apparatus for the production of high pressure nitrogen from air separation
EP1150082A1 (en) 2000-04-28 2001-10-31 Linde Aktiengesellschaft Method and apparatus for heat exchange
US6314755B1 (en) 1999-02-26 2001-11-13 Linde Aktiengesellschaft Double column system for the low-temperature fractionation of air
EP1213552A1 (en) 2000-12-06 2002-06-12 Linde Aktiengesellschaft Engine system for the work expansion of two process streams
DE10115258A1 (en) 2001-03-28 2002-07-18 Linde Ag Machine system comprises relaxation machine for reducing pressure of first process fluid mechanically coupled to pump for increasing pressure of second process fluid present in liquid form
DE10213212A1 (en) 2002-03-25 2002-10-17 Linde Ag Air fractionation plant in which product stream is split, carries out all compression stages in common dual flow pump
DE10213211A1 (en) 2002-03-25 2002-10-17 Linde Ag Air fractionation in columns producing liquid and gaseous products, exchanges heat with circuit containing recirculated cryogenic liquid
EP1284404A1 (en) 2001-08-13 2003-02-19 Linde Aktiengesellschaft Process and device for recovering a product under pressure by cryogenic air separation
EP1308680A1 (en) 2001-10-31 2003-05-07 Linde AG Process and system for production of krypton and/or xenon by cryogenic air separation
DE10238282A1 (en) 2002-08-21 2003-05-28 Linde Ag Process for the low temperature decomposition of air comprises feeding a first process air stream into a high pressure column, producing a first oxygen-enriched fraction in the high pressure column, and further processing
DE10302389A1 (en) 2003-01-22 2003-06-18 Linde Ag Device for the low temperature decomposition of air comprises a rectification system consisting of a high pressure column, a low pressure column, and a condenser-evaporator system for heating the low pressure column
EP1357342A1 (en) 2002-04-17 2003-10-29 Linde Aktiengesellschaft Cryogenic triple column air separation system with argon recovery
DE10332863A1 (en) 2003-07-18 2004-02-26 Linde Ag Krypton and xenon recovery by low-temperature fractionation of air yields higher purity products and higher argon productivity, using low nitrogen content scrubbing liquid stream
DE10334559A1 (en) 2003-05-28 2004-12-16 Linde Ag Process for recovering krypton/xenon by the cryogenic separation of air comprises feeding an argon-enriched vapor from a crude argon rectification system into a sump evaporator
DE10334560A1 (en) 2003-05-28 2004-12-16 Linde Ag Method for recovering krypton and xenon from air, comprises separating nitrogen and oxygen and feeding krypton- and xenon-containing fraction into enrichment column, stream of pure air being decompressed and fed into column
EP1544559A1 (en) 2003-12-20 2005-06-22 Linde AG Process and device for the cryogenic separation of air
EP1585926A1 (en) 2002-12-19 2005-10-19 Karges-Faulconbridge, Inc. System for liquid extraction, and methods
DE102005029274A1 (en) 2004-08-17 2006-02-23 Linde Ag Obtaining gaseous pressure product, by cryogenic separation of air implementing normal operation, emergency operation, and bypass operation
EP1666824A1 (en) 2004-12-03 2006-06-07 Linde Aktiengesellschaft Process and device for the recovery of Argon by cryogenic separation of air
EP1672301A1 (en) 2004-12-03 2006-06-21 Linde AG Apparatus for the cryogenic separation of a gaseous mixture in particular of air
DE102005028012A1 (en) 2005-06-16 2006-09-14 Linde Ag Separation of air into nitrogen and oxygen at low temperatures, with a distillation column system, uses liquefied natural gas
DE102006032731A1 (en) 2006-07-14 2007-01-18 Linde Ag Air separation process for producing nitrogen-enriched and oxygen-enriched streams comprises introducing an instrument air stream into a gas pressure reservoir
WO2007033838A1 (en) 2005-09-23 2007-03-29 Linde Aktiengesellschaft Air cryogenic separation method and device
DE102007014643A1 (en) 2007-03-27 2007-09-20 Linde Ag Method for producing gaseous pressurized product by low temperature separation of air entails first and fourth partial air flows being expanded in turbines, and second and third partial flows compressed in post-compressors
WO2007104449A1 (en) 2006-03-15 2007-09-20 Linde Aktiengesellschaft Method and apparatus for fractionating air at low temperatures
EP1845324A1 (en) 2006-04-13 2007-10-17 Linde Aktiengesellschaft Process and device for producing a high pressure product by cryogenic air separation
EP1892490A1 (en) 2006-08-16 2008-02-27 Linde Aktiengesellschaft Method and device for the production of variable amounts of a pressurized product by cryogenic gas separation
EP2015012A2 (en) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Process for the cryogenic separation of air
EP2015013A2 (en) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Process and device for producing a gaseous pressurised product by cryogenic separation of air
EP2026024A1 (en) 2007-07-30 2009-02-18 Linde Aktiengesellschaft Process and device for producing argon by cryogenic separation of air
WO2009095188A2 (en) 2008-01-28 2009-08-06 Linde Aktiengesellschaft Method and device for low-temperature air separation
DE102008016355A1 (en) 2008-03-29 2009-10-01 Linde Ag Air cryogenic separation method for electrical energy at integrated gasification combined cycle power plant, involves bringing nitrogen flow into indirect exchange with partial flow in condenser-evaporator
DE102010052545A1 (en) * 2010-11-25 2012-05-31 Linde Aktiengesellschaft Method and apparatus for recovering a gaseous product by cryogenic separation of air
DE102010055448A1 (en) 2010-12-21 2012-06-21 Linde Ag Method and apparatus for the cryogenic separation of air
EP2634517A1 (en) * 2012-02-29 2013-09-04 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Process and apparatus for the separation of air by cryogenic distillation

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU787829A1 (en) * 1976-09-10 1980-12-15 Предприятие П/Я А-3605 Method of producing liquid and gaseous components of air
GB9008752D0 (en) * 1990-04-18 1990-06-13 Boc Group Plc Air separation
RU2054609C1 (en) * 1990-12-04 1996-02-20 Балашихинское научно-производственное объединение криогенного машиностроения им.40-летия Октября "Криогенмаш" Air separation method
FR2776760B1 (en) 1998-03-31 2000-05-05 Air Liquide METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
CN101779092A (en) * 2007-08-10 2010-07-14 乔治洛德方法研究和开发液化空气有限公司 Process and apparatus for the separation of air by cryogenic distillation
EP2312247A1 (en) * 2009-10-09 2011-04-20 Linde AG Method and device for generating liquid nitrogen from low temperature air separation
DE102010056560A1 (en) * 2010-08-13 2012-02-16 Linde Aktiengesellschaft Method for recovering compressed oxygen and compressed nitrogen by low temperature degradation of air in e.g. classical lime dual column system, for nitrogen-oxygen separation, involves driving circuit compressor by external energy
DE102010052544A1 (en) * 2010-11-25 2012-05-31 Linde Ag Process for obtaining a gaseous product by cryogenic separation of air
FR2973485B1 (en) * 2011-03-29 2017-11-24 L'air Liquide Sa Pour L'etude Et L'exploitation Des Procedes Georges Claude METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
FR2973487B1 (en) * 2011-03-31 2018-01-26 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude PROCESS AND APPARATUS FOR PRODUCING PRESSURIZED AIR GAS BY CRYOGENIC DISTILLATION
FR2976485B1 (en) * 2011-06-20 2013-10-11 Oreal USE AS ANTI-TRANSPARENT AGENT OF A FLOCCULATING HYDRODISPERSIBLE POLYMER COMPRISING NON-QUATERNIZED AMINE GROUPS

Patent Citations (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE830805C (en) 1944-11-19 1952-02-07 Linde Eismasch Ag Process for gas, especially air, separation
DE901542C (en) 1952-01-10 1954-01-11 Linde Eismasch Ag Process for the separation of air by liquefaction and rectification
US2712738A (en) 1952-01-10 1955-07-12 Linde S Eismaschinen Ag Method for fractionating air by liquefaction and rectification
US2784572A (en) 1953-01-02 1957-03-12 Linde S Eismaschinen Ag Method for fractionating air by liquefaction and rectification
DE952908C (en) 1953-10-11 1956-11-22 Linde Eismasch Ag Process for the separation of air
DE1124529B (en) 1957-07-04 1962-03-01 Linde Eismasch Ag Method and device for carrying out heat exchange processes in a gas separation plant working with upstream regenerators
US3083544A (en) 1958-09-24 1963-04-02 Linde S Eismaschinen Ag Hollri Rectification of gases
DE1103363B (en) 1958-09-24 1961-03-30 Linde Eismasch Ag Method and device for generating a balanced cold budget when extracting gas mixtures and / or gas mixture components under higher pressure by rectification
DE1112997B (en) 1960-08-13 1961-08-24 Linde Eismasch Ag Process and device for gas separation by rectification at low temperature
US3214925A (en) 1960-08-13 1965-11-02 Linde Eismasch Ag System for gas separation by rectification at low temperatures
DE1117616B (en) 1960-10-14 1961-11-23 Linde Eismasch Ag Method and device for obtaining particularly pure decomposition products in cryogenic gas separation plants
US3280574A (en) 1960-10-14 1966-10-25 Linde Ag High pressure pure gas for preventing contamination by low pressure raw gas in reversing regenerators
DE1226616B (en) 1961-11-29 1966-10-13 Linde Ag Process and device for the production of gaseous pressurized oxygen with simultaneous production of liquid decomposition products by low-temperature air separation
US3216206A (en) 1961-11-29 1965-11-09 Linde Eismasch Ag Low temperature distillation of normally gaseous substances
US3222878A (en) 1962-12-21 1965-12-14 Linde Eismasch Ag Method and apparatus for fractionation of air
DE1229561B (en) 1962-12-21 1966-12-01 Linde Ag Method and device for separating air by liquefaction and rectification with the aid of an inert gas cycle
DE1187248B (en) 1963-03-29 1965-02-18 Linde Eismasch Ag Process and device for the production of oxygen gas with 70 to 98% O-content
DE1199293B (en) 1963-03-29 1965-08-26 Linde Eismasch Ag Method and device for air separation in a single column rectifier
US3371496A (en) 1963-03-29 1968-03-05 Linde Ag Wash liquid production by heat exchange with low pressure liquid oxygen
US3426543A (en) 1963-06-19 1969-02-11 Linde Ag Combining pure liquid and vapor nitrogen streams from air separation for crude hydrogen gas washing
DE1258882B (en) 1963-06-19 1968-01-18 Linde Ag Process and system for air separation by rectification using a high pressure gas refrigeration cycle for the pressure evaporation of liquid oxygen
DE1235347B (en) 1964-05-13 1967-03-02 Linde Ag Method and device for the operation of switchable heat exchangers in low-temperature gas separation
US3401531A (en) 1965-05-19 1968-09-17 Linde Ag Heat exchange of compressed nitrogen and liquid oxygen in ammonia synthesis feed gas production
DE1263037B (en) 1965-05-19 1968-03-14 Linde Ag Method for the separation of air in a rectification column and the separation of a gas mixture containing hydrogen
US3416323A (en) 1966-01-13 1968-12-17 Linde Ag Low temperature production of highly compressed gaseous and/or liquid oxygen
DE1501723A1 (en) 1966-01-13 1969-06-26 Linde Ag Method and device for generating gaseous high-pressure oxygen in the low-temperature rectification of air
DE1501722A1 (en) 1966-01-13 1969-06-26 Linde Ag Process for cryogenic air separation for the production of highly compressed gaseous and / or liquid oxygen
US3500651A (en) 1966-01-13 1970-03-17 Linde Ag Production of high pressure gaseous oxygen by low temperature rectification of air
US4279631A (en) 1975-08-06 1981-07-21 Linde Aktiengesellschaft Process and apparatus for the production of oxygen by two-stage low-temperature rectification of air
DE2535132C3 (en) 1975-08-06 1981-08-20 Linde Ag, 6200 Wiesbaden Process and device for the production of pressurized oxygen by two-stage low-temperature rectification of air
DE2646690A1 (en) 1976-10-15 1978-04-20 Linde Ag Oxygen and steam mixer for cellulose bleaching - has air fractionating plant supplying liquid oxygen to steam nozzle
US4555256A (en) 1982-05-03 1985-11-26 Linde Aktiengesellschaft Process and device for the production of gaseous oxygen at elevated pressure
EP0093448B1 (en) 1982-05-03 1986-10-15 Linde Aktiengesellschaft Process and apparatus for obtaining gaseous oxygen at elevated pressure
US5036672A (en) 1989-02-23 1991-08-06 Linde Aktiengesellschaft Process and apparatus for air fractionation by rectification
EP0384483B1 (en) 1989-02-23 1992-07-22 Linde Aktiengesellschaft Air rectification process and apparatus
US5263328A (en) 1991-03-26 1993-11-23 Linde Aktiengesellschaft Process for low-temperature air fractionation
EP0505812B1 (en) 1991-03-26 1995-10-18 Linde Aktiengesellschaft Low temperature air separation process
US5400600A (en) * 1992-06-23 1995-03-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and installation for the production of gaseous oxygen under pressure
EP0660058A2 (en) * 1993-12-22 1995-06-28 The BOC Group plc Air separation
US5475980A (en) * 1993-12-30 1995-12-19 L'air Liquide, Societe Anonyme Pour L'etude L'exploitation Des Procedes Georges Claude Process and installation for production of high pressure gaseous fluid
US5644934A (en) 1994-12-05 1997-07-08 Linde Aktiengesellchaft Process and device for low-temperature separation of air
EP0716280B1 (en) 1994-12-05 2001-05-16 Linde Aktiengesellschaft Method and apparatus for the low temperature air separation
EP0842385B1 (en) 1995-07-21 2001-04-18 Linde Aktiengesellschaft Method and device for the production of variable amounts of a pressurized gaseous product
US5953937A (en) 1995-07-21 1999-09-21 Linde Aktiengesellschaft Process and apparatus for the variable production of a gaseous pressurized product
US5845517A (en) 1995-08-11 1998-12-08 Linde Aktiengesellschaft Process and device for air separation by low-temperature rectification
EP0758733B1 (en) 1995-08-11 2000-11-02 Linde Aktiengesellschaft Air separation process and apparatus by low temperature rectification
US6038885A (en) 1997-07-30 2000-03-21 Linde Aktiengesellschaft Air separation process
EP0895045B1 (en) 1997-07-30 2002-11-27 Linde Aktiengesellschaft Air separation process
DE19803437A1 (en) 1998-01-29 1999-03-18 Linde Ag Oxygen and nitrogen extracted by low-temperature fractional distillation
EP0949471B1 (en) 1998-04-08 2002-12-18 Linde AG Cryogenic air separation plant with two different operation modes
US6185960B1 (en) 1998-04-08 2001-02-13 Linde Aktiengesellschaft Process and device for the production of a pressurized gaseous product by low-temperature separation of air
EP0955509A1 (en) 1998-04-30 1999-11-10 Linde Aktiengesellschaft Process and apparatus to produce high purity nitrogen
US6196022B1 (en) 1998-04-30 2001-03-06 Linde Aktiengesellschaft Process and device for recovering high-purity oxygen
EP1031804A1 (en) 1999-02-26 2000-08-30 Linde Technische Gase GmbH Air separation process with nitrogen recycling
US6314755B1 (en) 1999-02-26 2001-11-13 Linde Aktiengesellschaft Double column system for the low-temperature fractionation of air
DE19909744A1 (en) 1999-03-05 2000-05-04 Linde Ag Low-temperature air fractionating system re-compresses nitrogen-containing fraction separate from input air using indirect exchange for fraction heating.
EP1067345A1 (en) 1999-07-05 2001-01-10 Linde Aktiengesellschaft Process and device for cryogenic air separation
US6336345B1 (en) 1999-07-05 2002-01-08 Linde Aktiengesellschaft Process and apparatus for low temperature fractionation of air
EP1074805A1 (en) 1999-08-05 2001-02-07 Linde Aktiengesellschaft Process for producing oxygen under pressure and device therefor
US6332337B1 (en) 1999-08-05 2001-12-25 Linde Aktiengesellschaft Method and apparatus for recovering oxygen at hyperbaric pressure
DE19954593A1 (en) 1999-11-12 2000-09-28 Linde Ag Fractionated distillation of air to oxygen and nitrogen uses little energy and facilitates the production of oxygen of any purity level
DE10013073A1 (en) 2000-03-17 2000-10-19 Linde Ag Low temperature separation of air in distillation column system uses integrated heat exchanger system for cooling e.g. air supply by indirect heat exchange during vaporization of first liquid fraction
EP1134525A1 (en) 2000-03-17 2001-09-19 Linde Aktiengesellschaft Process for producing gaseous and liquid nitrogen with a variable quantity of liquid
US6477860B2 (en) 2000-03-17 2002-11-12 Linde Aktiengesellschaft Process for obtaining gaseous and liquid nitrogen with a variable proportion of liquid product
EP1139046A1 (en) 2000-03-29 2001-10-04 Linde Aktiengesellschaft Process and device for producing a high pressure product by cryogenic air separation
EP1146301A1 (en) 2000-04-12 2001-10-17 Linde Gas Aktiengesellschaft Process and apparatus for the production of high pressure nitrogen from air separation
EP1150082A1 (en) 2000-04-28 2001-10-31 Linde Aktiengesellschaft Method and apparatus for heat exchange
EP1213552A1 (en) 2000-12-06 2002-06-12 Linde Aktiengesellschaft Engine system for the work expansion of two process streams
DE10115258A1 (en) 2001-03-28 2002-07-18 Linde Ag Machine system comprises relaxation machine for reducing pressure of first process fluid mechanically coupled to pump for increasing pressure of second process fluid present in liquid form
US20030051504A1 (en) 2001-08-13 2003-03-20 Linde Aktiengesellschaft Process and device for obtaining a compressed product by low temperature separation of air
EP1284404A1 (en) 2001-08-13 2003-02-19 Linde Aktiengesellschaft Process and device for recovering a product under pressure by cryogenic air separation
EP1308680A1 (en) 2001-10-31 2003-05-07 Linde AG Process and system for production of krypton and/or xenon by cryogenic air separation
US6612129B2 (en) 2001-10-31 2003-09-02 Linde Aktiengesellschaft Process and apparatus for producing krypton and/or xenon by low-temperature fractionation of air
DE10213211A1 (en) 2002-03-25 2002-10-17 Linde Ag Air fractionation in columns producing liquid and gaseous products, exchanges heat with circuit containing recirculated cryogenic liquid
DE10213212A1 (en) 2002-03-25 2002-10-17 Linde Ag Air fractionation plant in which product stream is split, carries out all compression stages in common dual flow pump
EP1357342A1 (en) 2002-04-17 2003-10-29 Linde Aktiengesellschaft Cryogenic triple column air separation system with argon recovery
DE10238282A1 (en) 2002-08-21 2003-05-28 Linde Ag Process for the low temperature decomposition of air comprises feeding a first process air stream into a high pressure column, producing a first oxygen-enriched fraction in the high pressure column, and further processing
EP1585926A1 (en) 2002-12-19 2005-10-19 Karges-Faulconbridge, Inc. System for liquid extraction, and methods
DE10302389A1 (en) 2003-01-22 2003-06-18 Linde Ag Device for the low temperature decomposition of air comprises a rectification system consisting of a high pressure column, a low pressure column, and a condenser-evaporator system for heating the low pressure column
DE10334559A1 (en) 2003-05-28 2004-12-16 Linde Ag Process for recovering krypton/xenon by the cryogenic separation of air comprises feeding an argon-enriched vapor from a crude argon rectification system into a sump evaporator
DE10334560A1 (en) 2003-05-28 2004-12-16 Linde Ag Method for recovering krypton and xenon from air, comprises separating nitrogen and oxygen and feeding krypton- and xenon-containing fraction into enrichment column, stream of pure air being decompressed and fed into column
DE10332863A1 (en) 2003-07-18 2004-02-26 Linde Ag Krypton and xenon recovery by low-temperature fractionation of air yields higher purity products and higher argon productivity, using low nitrogen content scrubbing liquid stream
EP1544559A1 (en) 2003-12-20 2005-06-22 Linde AG Process and device for the cryogenic separation of air
DE102005029274A1 (en) 2004-08-17 2006-02-23 Linde Ag Obtaining gaseous pressure product, by cryogenic separation of air implementing normal operation, emergency operation, and bypass operation
EP1666824A1 (en) 2004-12-03 2006-06-07 Linde Aktiengesellschaft Process and device for the recovery of Argon by cryogenic separation of air
EP1672301A1 (en) 2004-12-03 2006-06-21 Linde AG Apparatus for the cryogenic separation of a gaseous mixture in particular of air
DE102005028012A1 (en) 2005-06-16 2006-09-14 Linde Ag Separation of air into nitrogen and oxygen at low temperatures, with a distillation column system, uses liquefied natural gas
WO2007033838A1 (en) 2005-09-23 2007-03-29 Linde Aktiengesellschaft Air cryogenic separation method and device
WO2007104449A1 (en) 2006-03-15 2007-09-20 Linde Aktiengesellschaft Method and apparatus for fractionating air at low temperatures
EP1845324A1 (en) 2006-04-13 2007-10-17 Linde Aktiengesellschaft Process and device for producing a high pressure product by cryogenic air separation
DE102006032731A1 (en) 2006-07-14 2007-01-18 Linde Ag Air separation process for producing nitrogen-enriched and oxygen-enriched streams comprises introducing an instrument air stream into a gas pressure reservoir
EP1892490A1 (en) 2006-08-16 2008-02-27 Linde Aktiengesellschaft Method and device for the production of variable amounts of a pressurized product by cryogenic gas separation
DE102007014643A1 (en) 2007-03-27 2007-09-20 Linde Ag Method for producing gaseous pressurized product by low temperature separation of air entails first and fourth partial air flows being expanded in turbines, and second and third partial flows compressed in post-compressors
EP2015012A2 (en) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Process for the cryogenic separation of air
EP2015013A2 (en) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Process and device for producing a gaseous pressurised product by cryogenic separation of air
EP2026024A1 (en) 2007-07-30 2009-02-18 Linde Aktiengesellschaft Process and device for producing argon by cryogenic separation of air
WO2009095188A2 (en) 2008-01-28 2009-08-06 Linde Aktiengesellschaft Method and device for low-temperature air separation
DE102008016355A1 (en) 2008-03-29 2009-10-01 Linde Ag Air cryogenic separation method for electrical energy at integrated gasification combined cycle power plant, involves bringing nitrogen flow into indirect exchange with partial flow in condenser-evaporator
DE102010052545A1 (en) * 2010-11-25 2012-05-31 Linde Aktiengesellschaft Method and apparatus for recovering a gaseous product by cryogenic separation of air
DE102010055448A1 (en) 2010-12-21 2012-06-21 Linde Ag Method and apparatus for the cryogenic separation of air
EP2634517A1 (en) * 2012-02-29 2013-09-04 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Process and apparatus for the separation of air by cryogenic distillation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAUSEN; LINDE: "Tieftemperaturtechnik, 2. Auflage", 1985, article "Kapitel 4", pages: 281 - 337

Also Published As

Publication number Publication date
US20160187059A1 (en) 2016-06-30
TW201615255A (en) 2016-05-01
CN105241178A (en) 2016-01-13
RU2015126528A (en) 2017-01-13
TR201808162T4 (en) 2018-07-23
TWI691356B (en) 2020-04-21
EP2963371B1 (en) 2018-05-02
CN105241178B (en) 2020-03-06
RU2015126528A3 (en) 2019-02-01
RU2696846C2 (en) 2019-08-06
US10995983B2 (en) 2021-05-04

Similar Documents

Publication Publication Date Title
EP3164654B1 (en) Method and device for the low-temperature separation of air at variable energy consumption
EP2015012A2 (en) Process for the cryogenic separation of air
EP1994344A1 (en) Method and apparatus for fractionating air at low temperatures
DE102010052545A1 (en) Method and apparatus for recovering a gaseous product by cryogenic separation of air
EP2963370B1 (en) Method and device for the cryogenic decomposition of air
EP1074805B1 (en) Process for producing oxygen under pressure and device therefor
EP3410050B1 (en) Method for producing one or more air products and air separation system
EP2236964A1 (en) Method and device for low-temperature air separation
EP2520886A1 (en) Method and device for creating gaseous oxygen pressurised product by the cryogenic decomposition of air
WO2020169257A1 (en) Method and system for low-temperature air separation
EP2963369B1 (en) Method and device for the cryogenic decomposition of air
EP2489968A1 (en) Method and device for cryogenic decomposition of air
EP2053331A1 (en) Method and device for low-temperature air separation
EP2551619A1 (en) Method and device for extracting pressurised oxygen and pressurised nitrogen by cryogenic decomposition of air
WO2020244801A1 (en) Method and system for low-temperature air separation
EP4065910A1 (en) Process and plant for low-temperature fractionation of air
WO2017108187A1 (en) Method and device for obtaining pure nitrogen and pure oxygen by low-temperature separation of air
EP2767787A1 (en) Method for producing gaseous oxygen by cryogenic air decomposition
DE102007042462A1 (en) Method and apparatus for the cryogenic separation of air
DE19933558B4 (en) Three-column process and apparatus for the cryogenic separation of air
EP2963371B1 (en) Method and device for creating a pressurised gas product by the cryogenic decomposition of air
EP2600090B1 (en) Method and device for generating pressurised oxygen by cryogenic decomposition of air
WO2011110301A2 (en) Method and device for cryogenic separation of air
WO2021204424A2 (en) Process for cryogenic fractionation of air, air fractionation plant and integrated system composed of at least two air fractionation plants
EP3343159A1 (en) Method and device for creating gaseous oxygen and gaseous pressurised nitrogen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160630

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20171205

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 995719

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015004065

Country of ref document: DE

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180502

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180802

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180802

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502015004065

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180630

26 Opposition filed

Opponent name: L'AIR LIQUIDE SOCIETE ANONYME POUR L'ETUDE ET L'EX

Effective date: 20190201

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180625

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: LINDE GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180502

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150625

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502015004065

Country of ref document: DE

Owner name: LINDE GMBH, DE

Free format text: FORMER OWNER: LINDE AKTIENGESELLSCHAFT, 80331 MUENCHEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180902

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: L'AIR LIQUIDE SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE

Effective date: 20190201

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502015004065

Country of ref document: DE

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20220419

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230621

Year of fee payment: 9

Ref country code: DE

Payment date: 20230620

Year of fee payment: 9

Ref country code: CZ

Payment date: 20230609

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230619

Year of fee payment: 9

Ref country code: AT

Payment date: 20230616

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230622

Year of fee payment: 9