EP1067345A1 - Process and device for cryogenic air separation - Google Patents

Process and device for cryogenic air separation Download PDF

Info

Publication number
EP1067345A1
EP1067345A1 EP99121174A EP99121174A EP1067345A1 EP 1067345 A1 EP1067345 A1 EP 1067345A1 EP 99121174 A EP99121174 A EP 99121174A EP 99121174 A EP99121174 A EP 99121174A EP 1067345 A1 EP1067345 A1 EP 1067345A1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
main heat
cold
partial
cold end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99121174A
Other languages
German (de)
French (fr)
Other versions
EP1067345B1 (en
Inventor
Horst Dipl.-Ing. Corduan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP1067345A1 publication Critical patent/EP1067345A1/en
Application granted granted Critical
Publication of EP1067345B1 publication Critical patent/EP1067345B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • F25J1/0224Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop in combination with an internal quasi-closed refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0234Integration with a cryogenic air separation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04339Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04381Details relating to the work expansion, e.g. process parameter etc. using work extraction by mechanical coupling of compression and expansion so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/20Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/40Processes or apparatus involving steps for recycling of process streams the recycled stream being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop

Definitions

  • the invention relates to a method for the low-temperature separation of air, in which compressed and cleaned feed air cooled in a main heat exchanger and is supplied at least in part to a rectification column, a first partial stream the feed air at an intermediate temperature from the main heat exchanger removed and fed to a cold compression at this intermediate temperature.
  • the invention is used in cases where part of the feed air ("first partial stream") is post-compressed, for example in order to evaporate a liquid process stream to be used.
  • a liquid process stream it can a product stream (e.g. liquid oxygen, liquid nitrogen or liquid argon) from a rectification column to the bottom or intermediate liquid a rectification column or an external liquid that for example, is removed from a storage tank.
  • product stream e.g. liquid oxygen, liquid nitrogen or liquid argon
  • the "main heat exchanger" is preferably replaced by a single one Heat exchanger block formed. In the case of larger systems, it may make sense to use the Main heat exchanger through several in terms of temperature history parallel strands to be realized by separate Components are formed. Basically, it is possible that the Main heat exchanger or each of these strands by two or more serially connected blocks is formed.
  • this densification is carried out in a conventional manner, by the partial air flow at about an ambient temperature of a corresponding Machine is fed.
  • a cold compressor for post-compression be used.
  • Under "cold compression” there is a compression process understood, in which the gas is supplied to the compression at a temperature which is well below ambient temperature, generally below 250 K, preferably below 200 K.
  • the invention has for its object the method of the type mentioned and to specify a corresponding device that is particularly energetically favorable are operating.
  • This object is achieved in that the first partial stream upstream of it Removal is heated in the main heat exchanger.
  • the partial air flow provided for the cold compression is thus initially cooled further than is actually necessary in the main heat exchanger, i.e. via the Intermediate temperature, which is about the entry temperature of the cold compression corresponds. Then he - again in the main heat exchanger - on the Intermediate temperature warmed up.
  • This procedure appears at first glance unfavorable, because of the unnecessary cooling and reheating additional exchange losses and thus higher energy consumption can be expected.
  • the Heat transfer in the cold part of the main heat exchanger (below the Intermediate temperature) is improved.
  • the ones to be heated and currents to be cooled have a higher density than in the warm part.
  • the Heat exchanger passages that they flow through usually have constructive Establish the same number and the same cross-sections.
  • the passages are cold Part operated with an underload of about 20%, so to speak. Due to this fact the flow conditions in the cold part of the main heat exchanger are not optimal.
  • the invention achieves an improvement here by - specifically anyway treating - partial air flow for cold compression both the ones to be cooled and the currents to be heated are also supplemented. It has been found that the Improvement of the heat transfer through the optimized in the context of the invention Flow conditions in the cold part of the main heat exchanger expected additional exchange losses overcompensated and overall leads to an energetically particularly favorable process.
  • the first partial flow can be downstream against the cold compression evaporating process stream are at least partially liquefied.
  • This Heat exchange step can either be in the main heat exchanger or in one separate condenser-evaporator. This is particularly cheap Procedure if all or a large part of the oxygen product as Liquid removed from the rectification, pressurized in liquid form and is finally evaporated against the cold compressed partial air flow. In this case So much air is cold compressed that the flow conditions in the cold part of the main heat exchanger by reheating it according to the invention Partial air flow are practically optimal.
  • the first partial stream is heated to the cold end of the Main heat exchanger introduced. So it is completely through the Main heat exchanger guided and flows through the entire cold part of the main heat exchanger, so that the entire cold part of the Main heat exchanger can enjoy the improved flow.
  • the cooling of the first substream can be carried out separately from or together with other parts of the feed air.
  • the Cooling air flow after it is removed from the cold end of the Main heat exchanger subjected to phase separation the first partial flow at least by part of the vapor phase removed from the phase separation is formed.
  • the entire vapor portion is preferably from the phase separation led to cold compression while the separated liquid into or one the rectification columns is fed, for example into the pressure column of a Two-column apparatus.
  • cooling air flow is expanded, before being subjected to phase separation. But even if there is no Phase separation, it may be useful to throttle the cooling air flow before using it first partial flow is fed to the cold end of the main heat exchanger.
  • all of the electricity that is subjected to cold compression can are formed by the first partial flow, which at the intermediate point from the Main heat exchanger is withdrawn.
  • the cooling air flow is divided into the first partial flow and a second partial flow is introduced, the first partial flow in the cold end of the main heat exchanger and the second partial flow without temperature-changing measures with the first partial flow between its removal at the first intermediate temperature and the cold compression is fed.
  • This will also cause cold in the Cold compression current introduced, for partial or full compensation or possibly even for overcompensation during cold compression Compression heat is used. This gives you an additional parameter that is used for Optimization of the heat exchange process can be used.
  • the first partial flow can be downstream of the cold compression at an intermediate point of the main heat exchanger, which corresponds to a second intermediate temperature, the Cooling air flow are supplied. Without the one described in the previous paragraph Compensation for the heat of compression lies at this second intermediate temperature above the first intermediate temperature. When mixed with the very cold second partial air flow upstream of the cold compression, the second Intermediate temperature at or even below the first intermediate temperature.
  • a turbine air flow in the main heat exchanger is directed to a the third intermediate temperature is cooled and then relaxed in a work-performing manner, wherein at least a portion of the relaxation generated during work relaxation mechanical energy is used to drive the cold compression. If that's for the process does not require cold to be generated by another expansion machine it is necessary to use the expansion machine not only with the cold compressor, but also to couple with a generator or a brake blower.
  • the invention also relates to a device for the low-temperature separation of air according to claims 5 to 8.
  • Atmospheric air 1 is compressed after flowing through a filter 2 (3) and Direct contact cooler 4 initiated. There it comes into countercurrent contact with liquid Water 5.
  • the water 6 remaining liquid in the direct heat exchange becomes withdrawn from the direct contact cooler 4.
  • the cooled and steamed laden air 7 is in a cleaning device 8 of water and carbon dioxide and optionally freed of further impurities.
  • the cleaning facility 8 is preferably formed by at least two switchable containers, which with an adsorbent, for example a molecular sieve.
  • the cleaned feed air flow 9 is divided into a first main air flow 10 and one split second main air stream 20.
  • the former flows to the warm end of one Main heat exchanger 30 is in the main heat exchanger 30 to about dew point cooled, removed again at the cold end and finally via lines 11 and 12 fed to the bottom of the pressure column 50 of a double column.
  • the second main air stream 20 is in an externally driven secondary compressor 21 further compressed and after flowing through an aftercooler 22 also warm End inserted into the main heat exchanger 30 (line 23).
  • Part 24 of the second Main air flow the "cooling air flow” remains in the cold end Main heat exchanger 30 and 25 - if necessary after slight throttling "First partial flow" 26 reintroduced into the main heat exchanger 30, namely in the Warm-up passages 17.
  • the first partial flow removed via line 28 and fed to a cold compressor 29.
  • the cold compacted first partial flow 31 is at a second intermediate temperature, which in the example is higher than the first intermediate temperature, again into the main heat exchanger 30 introduced, namely in the cooling passages 32.
  • After cooling and at least partial liquefaction in the main heat exchanger becomes the first partial flow 33 finally fed into the pressure column 50 via the valve 34.
  • the feed point is one or more theoretical or practical floors above the Pressure column sump.
  • Another part 35 of the second main air stream 23 becomes a third Intermediate temperature, which in the example is between the first and the second Intermediate temperature is taken as "turbine air flow" and one Relaxation machine 36 supplied, which is on a common shaft with the Cold compressor 29 and a generator 37 is coupled.
  • the work relaxed Air 38 together with the first main air stream 11 via line 12 to the sump the pressure column 50 out.
  • the double column has a low pressure column 51. Both Parts are on a common condenser-evaporator 52, the Main condenser in heat exchanging connection. Top gas 53 of the pressure column 50 is at least partially condensed in the main condenser 52. The condensate flows to a first part 55 as a return to the pressure column 50, to a second part 55 it is subcooled in a supercooling counterflow 56 and via line 57 and valve 58 placed on top of the low pressure column 51.
  • Raw oxygen from the lower region of the pressure column 50 flows up in the example two different routes to the low pressure column 51.
  • a first raw oxygen fraction 59 is subcooled from the bottom of the pressure column (56) and via line 60 and Throttle valve 61 transferred to the low pressure column.
  • At the level of the infeed of the liquefied first partial air stream 33 becomes a second crude oxygen liquid of the pressure column 50 and in a similar manner (subcooling 56, line 63 and valve 64) are fed into the low-pressure column 51 at a somewhat higher point.
  • the oxygen product is liquid via line 65 from the bottom of the Low pressure column 51 withdrawn by a pump 66 in the liquid state on the brought desired product pressure, via line 67 to the main heat exchanger 30 led, evaporated there and warmed to about ambient temperature.
  • the Oxygen leaves the system via line 68 as an internally compressed product (GOX-IC, gaseous oxygen - internally compressed).
  • no pure nitrogen is produced.
  • the nitrogen rich Top product 69 is used as residual gas in the supercooling counterflow 56 and in Main heat exchanger 30 warmed up.
  • the warm residual gas 70 can be conducted directly via the line 71 can be released into the atmosphere and / or via line 72 - if necessary after heating 73 - used as regeneration gas for the cleaning device 8 become.
  • the moist regeneration gas flows via line 74 to the atmosphere.
  • Deviating from the embodiment can in the low pressure column on the pure nitrogen can also be obtained in a known manner.
  • the evaporation of the liquid pressurized oxygen 67 can also be outside the main heat exchanger 30 is carried out in a separate product evaporator (secondary condenser), whose liquefaction space downstream of the first substream Cold compression 29 is flowed through.
  • FIG. 2 corresponds to the method and the device of FIG Figure 1 in large parts. In the following only the different aspects in the described.
  • the cooling air stream 24 is downstream of its removal from the cold end the main heat exchanger 30 or the optional valve 25 to two Streams divided, namely the "first sub-stream" 226 - 227 - 228, which is analogous to that 1 to the cold compressor 29, and a "second partial flow" 201, which - regulated by valve 202 - on the main heat exchanger 30 and in particular passed the warm-up passages 227 and at 203 the first Intermediate temperature warmed first partial stream 228 is mixed.
  • the Mixture flows at a correspondingly lower temperature at the entry of the Cold compressor 29.
  • the cold compressed air 231 also has a lower one Temperature than in Figure 1, in the specific example of Figure 2 is the second Intermediate temperature even lower than the first intermediate temperature.
  • Corresponding the cooling and liquefaction passages 232 are shorter for the first one Partial flow downstream of the cold compression.
  • the cooling air flow 24 is here after partial liquefaction Main heat exchanger 30 and throttling 25 for phase separation into one Separator 301 initiated.
  • the liquid phase becomes analogous to stream 33 from FIG. 1 fed into the pressure column 50 via line 333 and valve 334.
  • the steam 326 out the separator 301 forms the "first partial flow" which, as in FIG Cold compression 29 is performed. Downstream of the cold compression 29 cold-compressed first partial flow 331, however, not in its own cooling passages introduced, but mixed with the second main air flow.
  • the cold compressed The amount of air will thus be circulated in a 24 - 25 - 301 - 326 - 29 - 331 cycle.
  • the heat transfer in the cold part of the main heat exchanger can be special be designed cheaply.
  • Figure 4 differs from Figure 3 in the same way, Figure 2 is different from Figure 1, namely by an additional "second partial air flow” 401.
  • the admixture 403 of the cold second partial stream is used 401 to the first partial flow 428, which is heated to the first intermediate temperature Compensation or overcompensation of the heat of compression, which at the cold compression 29 arises.

Abstract

A first side stream (26) is heated in the main heat exchanger (30) upstream of its extraction point (28) at the first intermediate temperature. An Independent claim is included for corresponding plant to carry out the process. Preferred Features: Before heating, the first side stream is introduced into the cold end of the heat exchanger (30). A cooling air flow (23, 24) is cooled down in the main heat exchanger (30). It is extracted (24) at the cold end of the heat exchanger. It is re-supplied, at least in part, to the cold end of the main heat exchanger, as the first side stream (26). The cooling air flow (24), following extraction from the cold end of the heat exchanger is supplied to a phase separator, in a variant design. Further variants based on the foregoing principles are described. A turbine airflow (23, 25) is cooled in the main heat exchanger (30) to a further intermediate temperature, then expanded (36) to produce mechanical energy driving cold compression (29).

Description

Die Erfindung betrifft ein Verfahren zur Tieftemperaturzerlegung von Luft, bei dem verdichtete und gereinigte Einsatzluft in einem Hauptwärmetauscher abgekühlt und mindestens zum Teil einer Rektifiziersäule zugeführt wird, wobei ein erster Teilstrom der Einsatzluft bei einer Zwischentemperatur aus dem Hauptwärmetauscher entnommen und unter dieser Zwischentemperatur einer Kaltverdichtung zugeführt wird.The invention relates to a method for the low-temperature separation of air, in which compressed and cleaned feed air cooled in a main heat exchanger and is supplied at least in part to a rectification column, a first partial stream the feed air at an intermediate temperature from the main heat exchanger removed and fed to a cold compression at this intermediate temperature.

Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft sind zum Beispiel aus Hausen/Linde, Tieftemperaturtechnik, 2. Auflage 1985, Kapitel 4 (Seiten 281 bis 337) bekannt.Methods and apparatus for the low-temperature separation of air are, for example, out Hausen / Linde, low-temperature technology, 2nd edition 1985, chapter 4 (pages 281 to 337) known.

Die Erfindung kommt in solchen Fällen zum Einsatz, in denen ein Teil der Einsatzluft ("erster Teilstrom") nachverdichtet wird, beispielsweise um zur Verdampfung eines flüssigen Prozeßstroms eingesetzt zu werden. Bei dem flüssigen Prozeßstrom kann es sich um einen Produktstrom (z.B. flüssigen Sauerstoff, flüssigen Stickstoff oder flüssiges Argon) aus einer Rektifiziersäule, um die Sumpf- oder Zwischenflüssigkeit einer Rektifiziersäule oder auch um eine externe Flüssigkeit handeln, die beispielsweise einem Speichertank entnommen wird. Es ist auch möglich, zwei oder mehr derartige Prozeßströme gegen den nachverdichteten Luftteilstrom zu verdampfen.The invention is used in cases where part of the feed air ("first partial stream") is post-compressed, for example in order to evaporate a liquid process stream to be used. With the liquid process stream, it can a product stream (e.g. liquid oxygen, liquid nitrogen or liquid argon) from a rectification column to the bottom or intermediate liquid a rectification column or an external liquid that for example, is removed from a storage tank. It is also possible to have two or two more such process streams against the post-compressed partial air stream evaporate.

Der "Hauptwärmetauscher" wird vorzugsweise durch einen einzigen Wärmetauscherblock gebildet. Bei größeren Anlagen kann es sinnvoll sein, den Hauptwärmetauscher durch mehrere hinsichtlich es Temperaturverlaufs parallelgeschaltete Stränge zu realisieren, die durch voneinander getrennte Bauelemente gebildet werden. Grundsätzlich ist es möglich, daß der Hauptwärmetauscher beziehungsweise jeder dieser Stränge durch zwei oder mehr seriell verbundene Blöcke gebildet wird.The "main heat exchanger" is preferably replaced by a single one Heat exchanger block formed. In the case of larger systems, it may make sense to use the Main heat exchanger through several in terms of temperature history parallel strands to be realized by separate Components are formed. Basically, it is possible that the Main heat exchanger or each of these strands by two or more serially connected blocks is formed.

In vielen Fällen wird diese Nachverdichtung auf konventionelle Weise durchgeführt, indem der Luftteilstrom bei etwa Umgebungstemperatur einer entsprechenden Maschine zugeführt wird. Alternativ kann ein Kaltverdichter zur Nachverdichtung verwendet werden. Unter "Kaltverdichtung" wird hier ein Verdichtungsvorgang verstanden, bei dem das Gas der Verdichtung bei einer Temperatur zugeführt wird, die deutlich unterhalb der Umgebungstemperatur liegt, im allgemeinen unterhalb von 250 K, vorzugsweise unterhalb von 200 K.In many cases, this densification is carried out in a conventional manner, by the partial air flow at about an ambient temperature of a corresponding Machine is fed. Alternatively, a cold compressor for post-compression be used. Under "cold compression" there is a compression process understood, in which the gas is supplied to the compression at a temperature which is well below ambient temperature, generally below 250 K, preferably below 200 K.

Aus WO 9528610 oder EP 644388 A sind Verfahren bekannt, bei denen die Kaltverdichtung bei einer Zwischentemperatur durchgeführt wird, die zwischen den Temperaturen am warmen und kalten Ende des Hauptwärmetauschers liegt. Diese Zwischentemperatur kann insbesondere an demjenigen Punkt liegen, an dem sich die Kurven der anzuwärmenden und abzukühlenden Ströme im Wärmeaustauschdiagramm (Q-T-Diagramm) des Hauptwärmetauschers am nächsten kommen ("theoretical pinch point").Methods are known from WO 9528610 or EP 644388 A, in which the Cold compression is carried out at an intermediate temperature between the Temperatures at the warm and cold end of the main heat exchanger. This The intermediate temperature can be in particular at the point at which the Curves of the currents to be heated and cooled in the Heat exchange diagram (Q-T diagram) closest to the main heat exchanger come ("theoretical pinch point").

Bei den bekannten Verfahren wird der Luftteilstrom, der zur Kaltverdichtung führt, im Hauptwärmetauscher vom warmen Ende her bis zu der Zwischentemperatur abgekühlt und an der entsprechenden Zwischenstelle des Hauptwärmetauschers unmittelbar aus Abkühlpassagen entnommen.In the known methods, the partial air flow, which leads to cold compression, in the Main heat exchanger cooled from the warm end to the intermediate temperature and directly at the corresponding intermediate point of the main heat exchanger Cooling passages removed.

Der Erfindung liegt die Aufgabe zugrunde, das Verfahren der eingangs genannten Art und eine entsprechende Vorrichtung anzugeben, die energetisch besonders günstig zu betreiben sind.The invention has for its object the method of the type mentioned and to specify a corresponding device that is particularly energetically favorable are operating.

Diese Aufgabe wird dadurch gelöst, daß der erste Teilstrom stromaufwärts seiner Entnahme im Hauptwärmetauscher angewärmt wird.This object is achieved in that the first partial stream upstream of it Removal is heated in the main heat exchanger.

Gemäß der Erfindung wird der für die Kaltverdichtung vorgesehene Luftteilstrom also zunächst weiter als eigentlich nötig im Hauptwärmetauscher abgekühlt, also über die Zwischentemperatur hinaus, die etwa der Eintrittstemperatur der Kaltverdichtung entspricht. Anschließend wird er - ebenfalls im Hauptwärmetauscher - wieder auf die Zwischentemperatur angewärmt. Diese Verfahrensweise erscheint auf den ersten Blick ungünstig, da durch die an sich unnötige Abkühlung und Rückerwärmung mit zusätzlichen Austauschverlusten und damit höherem Energieverbrauch zu rechnen ist. Im Rahmen der Erfindung hat sich jedoch herausgestellt, daß dadurch der Wärmeübergang im kalten Teil des Hauptwärmetauschers (unterhalb der Zwischentemperatur) verbessert wird. According to the invention, the partial air flow provided for the cold compression is thus initially cooled further than is actually necessary in the main heat exchanger, i.e. via the Intermediate temperature, which is about the entry temperature of the cold compression corresponds. Then he - again in the main heat exchanger - on the Intermediate temperature warmed up. This procedure appears at first glance unfavorable, because of the unnecessary cooling and reheating additional exchange losses and thus higher energy consumption can be expected. In the context of the invention, however, it has been found that the Heat transfer in the cold part of the main heat exchanger (below the Intermediate temperature) is improved.

Im kalten Teil des Hauptwärmetauschers weisen die anzuwärmenden und abzukühlenden Ströme nämlich eine höhere Dichte auf als im warmen Teil. Die Wärmetauscherpassagen, die sie durchströmen, haben in der Regel aus konstruktiven Gründen dieselbe Anzahl und dieselben Querschnitte. Die Passagen werden im kalten Teil sozusagen mit einer Unterlast von etwa 20 % betrieben. Aufgrund dieser Tatsache sind die Strömungsverhältnisse im kalten Teil des Hauptwärmetauschers nicht optimal. Die Erfindung erreicht hier eine Verbesserung, indem der - ohnehin speziell zu behandelnde - Luftteilstrom für die Kaltverdichtung sowohl die abzukühlenden, als auch die anzuwärmenden Ströme ergänzt. Es hat sich herausgestellt, daß die Verbesserung des Wärmeübergangs durch die im Rahmen der Erfindung optimierten Strömungsverhältnisse im kalten Teil des Hauptwärmetauschers die erwartungsgemäßen zusätzlichen Austauschverluste überkompensiert und insgesamt zu einen energetisch besonders günstigen Prozeß führt. Außerdem führt der zusätzliche Mengenstrom im kalten Teil des Hauptwärmetauschers zu einem steileren Verlauf der Kurven der anzuwärmenden und abzukühlenden Ströme im Q-T-Diagramm und damit zu einer Verbesserung an der Stelle, an der sich diese Kurven am nächsten kommen ("theoretical pinch point").In the cold part of the main heat exchanger, the ones to be heated and currents to be cooled have a higher density than in the warm part. The Heat exchanger passages that they flow through usually have constructive Establish the same number and the same cross-sections. The passages are cold Part operated with an underload of about 20%, so to speak. Due to this fact the flow conditions in the cold part of the main heat exchanger are not optimal. The invention achieves an improvement here by - specifically anyway treating - partial air flow for cold compression both the ones to be cooled and the currents to be heated are also supplemented. It has been found that the Improvement of the heat transfer through the optimized in the context of the invention Flow conditions in the cold part of the main heat exchanger expected additional exchange losses overcompensated and overall leads to an energetically particularly favorable process. In addition, the additional flow in the cold part of the main heat exchanger to a steeper Course of the curves of the flows to be heated and cooled in the Q-T diagram and thus an improvement at the point where these curves are closest come ("theoretical pinch point").

Der erste Teilstrom kann stromabwärts der Kaltverdichtung gegen einen verdampfenden Prozeßstrom mindestens teilweise verflüssigt werden. Dieser Wärmeaustauschschritt kann entweder im Hauptwärmetauscher oder in einem separaten Kondensator-Verdampfer durchgeführt werden. Besonders günstig ist diese Verfahrensweise, wenn das gesamte Sauerstoffprodukt oder ein großer Teil davon als Flüssigkeit aus der Rektifikation entnommen, in flüssiger Form auf Druck gebracht und schließlich gegen den kaltverdichteten Luftteilstrom verdampft wird. In diesem Fall wird gerade soviel Luft kaltverdichtet, daß durch die Strömungsverhältnisse im kalten Teil des Hauptwärmetauschers durch die erfindungsgemäße Wiederanwärmung dieses Luftteilstroms praktisch optimal sind.The first partial flow can be downstream against the cold compression evaporating process stream are at least partially liquefied. This Heat exchange step can either be in the main heat exchanger or in one separate condenser-evaporator. This is particularly cheap Procedure if all or a large part of the oxygen product as Liquid removed from the rectification, pressurized in liquid form and is finally evaporated against the cold compressed partial air flow. In this case So much air is cold compressed that the flow conditions in the cold part of the main heat exchanger by reheating it according to the invention Partial air flow are practically optimal.

Vorzugsweise wird der erste Teilstrom vor seiner Anwärmung in das kalte Ende des Hauptwärmetauschers eingeführt. Er wird also zunächst vollständig durch den Hauptwärmetauscher geführt und strömt bei seiner Anwärmung nochmals durch den gesamten kalten Teil des Hauptwärmetauschers, so daß der gesamte kalte Teil des Hauptwärmetauschers in den Genuß der verbesserten Durchströmung kommt. Preferably, the first partial stream is heated to the cold end of the Main heat exchanger introduced. So it is completely through the Main heat exchanger guided and flows through the entire cold part of the main heat exchanger, so that the entire cold part of the Main heat exchanger can enjoy the improved flow.

Die Abkühlung des ersten Teilstroms kann dabei separat von oder gemeinsam mit anderen Teilen der Einsatzluft durchgeführt werden. Dazu wird ein Abkühlluftstrom im Hauptwärmetauscher abgekühlt, am kalten Ende des Hauptwärmetauschers entnommen und mindestens zum Teil als erster Teilstrom wieder dem kalten Ende des Hauptwärmetauschers zugeführt.The cooling of the first substream can be carried out separately from or together with other parts of the feed air. For this purpose, a cooling air flow in the Main heat exchanger cooled down, at the cold end of the main heat exchanger removed and at least partly as the first partial flow back to the cold end of the Main heat exchanger supplied.

Bei dem erfindungsgemäßen Verfahren kann es günstig sein, vor der Wiederanwärmung des ersten Teilstroms flüssige Anteile abzutrennen. Hierzu wird der Abkühlluftstrom nach seiner Entnahme aus dem kalten Ende des Hauptwärmetauschers einer Phasentrennung unterworfen, wobei der erste Teilstrom mindestens durch einen Teil der aus der Phasentrennung entnommenen Dampfphase gebildet wird. Vorzugsweise wird der gesamte Dampfanteil aus der Phasentrennung zur Kaltverdichtung geführt, während die abgeschiedene Flüssigkeit in die oder eine der Rektifiziersäulen eingespeist wird, zum Beispiel in die Drucksäule eines Zweisäulenapparats.In the method according to the invention, it may be advantageous to To reheat the first partial stream to separate liquid components. For this, the Cooling air flow after it is removed from the cold end of the Main heat exchanger subjected to phase separation, the first partial flow at least by part of the vapor phase removed from the phase separation is formed. The entire vapor portion is preferably from the phase separation led to cold compression while the separated liquid into or one the rectification columns is fed, for example into the pressure column of a Two-column apparatus.

Insbesondere in diesem Fall ist es günstig, wenn der Abkühlluftstrom entspannt wird, bevor er der Phasentrennung unterworfen wird. Aber auch bei fehlender Phasentrennung kann es sinnvoll sein, den Abkühlluftstrom abzudrosseln, bevor er als erster Teilstrom dem kalten Ende des Hauptwärmetauschers zugeführt wird.In this case in particular, it is advantageous if the cooling air flow is expanded, before being subjected to phase separation. But even if there is no Phase separation, it may be useful to throttle the cooling air flow before using it first partial flow is fed to the cold end of the main heat exchanger.

Grundsätzlich kann der gesamte Strom, der der Kaltverdichtung unterworfen wird, durch den ersten Teilstrom gebildet werden, der an der Zwischenstelle aus dem Hauptwärmetauscher abgezogen wird. In vielen Fällen ist es jedoch günstiger, wenn der Abkühlluftstrom in den ersten Teilstrom und in einen zweiten Teilstrom aufgeteilt wird, wobei der erste Teilstrom in das kalte Ende des Hauptwärmetauschers eingeführt wird und der zweite Teilstrom ohne temperaturverändemde Maßnahmen mit dem ersten Teilstrom zwischen seiner Entnahme bei der ersten Zwischentemperatur und der Kaltverdichtung zugeführt wird. Hierdurch wird zusätzlich Kälte in den Kaltverdichtungsstrom eingeführt, die zur teilweise oder vollständigen Kompensation oder unter Umständen sogar zur Überkompensation bei der Kaltverdichtung erzeugten Kompressionswärme dient. Hiermit erhält man einen zusätzlichen Parameter, der zur Optimierung des Wärmeaustauschprozesses eingesetzt werden kann. Basically, all of the electricity that is subjected to cold compression can are formed by the first partial flow, which at the intermediate point from the Main heat exchanger is withdrawn. In many cases, however, it is cheaper if the cooling air flow is divided into the first partial flow and a second partial flow is introduced, the first partial flow in the cold end of the main heat exchanger and the second partial flow without temperature-changing measures with the first partial flow between its removal at the first intermediate temperature and the cold compression is fed. This will also cause cold in the Cold compression current introduced, for partial or full compensation or possibly even for overcompensation during cold compression Compression heat is used. This gives you an additional parameter that is used for Optimization of the heat exchange process can be used.

Der erste Teilstrom kann stromabwärts der Kaltverdichtung an einer Zwischenstelle des Hauptwärmetauschers, die einer zweiten Zwischentemperatur entspricht, dem Abkühlluftstrom zugeführt werden. Ohne die im vorigen Absatz beschriebene Kompensation der Kompressionswärme liegt diese zweite Zwischentemperatur oberhalb der ersten Zwischentemperatur. Bei Vermischung mit dem sehr kalten zweiten Teilluftstrom stromaufwärts der Kaltverdichtung kann die zweite Zwischentemperatur bei oder sogar unterhalb der ersten Zwischentemperatur liegen.The first partial flow can be downstream of the cold compression at an intermediate point of the main heat exchanger, which corresponds to a second intermediate temperature, the Cooling air flow are supplied. Without the one described in the previous paragraph Compensation for the heat of compression lies at this second intermediate temperature above the first intermediate temperature. When mixed with the very cold second partial air flow upstream of the cold compression, the second Intermediate temperature at or even below the first intermediate temperature.

Es ist außerdem günstig, wenn ein Turbinenluftstrom im Hauptwärmetauscher auf eine dritte Zwischentemperatur abgekühlt und anschließend arbeitsleistend entspannt wird, wobei mindestens eine Teil der bei der arbeitsleistenden Entspannung erzeugten mechanischen Energie zum Antrieb der Kaltverdichtung eingesetzt wird. Falls die für das Verfahren benötigte Kälte nicht durch eine weitere Entspannungsmaschine erzeugt wird, ist es notwendig, die Entspannungsmaschine nicht nur mit dem Kaltverdichter, sondern zusätzlich mit einem Generator oder einem Bremsgebläse zu koppeln.It is also beneficial if a turbine air flow in the main heat exchanger is directed to a the third intermediate temperature is cooled and then relaxed in a work-performing manner, wherein at least a portion of the relaxation generated during work relaxation mechanical energy is used to drive the cold compression. If that's for the process does not require cold to be generated by another expansion machine it is necessary to use the expansion machine not only with the cold compressor, but also to couple with a generator or a brake blower.

Die Erfindung betrifft außerdem eine Vorrichtung zur Tieftemperaturzerlegung von Luft gemäß den Ansprüchen 5 bis 8.The invention also relates to a device for the low-temperature separation of air according to claims 5 to 8.

Die Erfindung sowie weitere Einzelheiten der Erfindung werden im folgenden anhand von in den Zeichnungen schematisch dargestellten Ausführungsbeispielen näher erläutert. Hierbei zeigen:

Figur 1
ein erstes Ausführungsbeispiel für die Erfindung,
Figur 2
eine Abwandlung des ersten Ausführungsbeispiels,
Figur 3
ein zweites Ausführungsbeispiel für die Erfindung und
Figur 4
eine Abwandlung des zweiten Ausführungsbeispiels.
The invention and further details of the invention are explained in more detail below with reference to exemplary embodiments schematically illustrated in the drawings. Here show:
Figure 1
a first embodiment for the invention,
Figure 2
a modification of the first embodiment,
Figure 3
a second embodiment of the invention and
Figure 4
a modification of the second embodiment.

Atmosphärische Luft 1 wird nach Durchströmen eines Filters 2 verdichtet (3) und Direktkontaktkühler 4 eingeleitet. Sie tritt dort in Gegenstromkontakt mit flüssigem Wasser 5. Das bei dem direkten Wärmeaustausch flüssig verbliebene Wasser 6 wird aus dem Direktkontaktkühler 4 abgezogen. Die abgekühlte und mit Wasserdampf beladene Luft 7 wird in einer Reinigungseinrichtung 8 von Wasser und Kohlendioxid und gegebenenfalls von weiteren Verunreinigungen befreit. Die Reinigungseinrichtung 8 wird vorzugsweise durch mindestens zwei umschaltbare Behälter gebildet, die mit einem Adsorbens, beispielsweise einem Molekularsieb gefüllt sind.Atmospheric air 1 is compressed after flowing through a filter 2 (3) and Direct contact cooler 4 initiated. There it comes into countercurrent contact with liquid Water 5. The water 6 remaining liquid in the direct heat exchange becomes withdrawn from the direct contact cooler 4. The cooled and steamed laden air 7 is in a cleaning device 8 of water and carbon dioxide and optionally freed of further impurities. The cleaning facility 8 is preferably formed by at least two switchable containers, which with an adsorbent, for example a molecular sieve.

Der gereinigte Einsatzluftstrom 9 wird in einen ersten Hauptluftstrom 10 und einen zweiten Hauptluftstrom 20 aufgeteilt. Ersterer strömt zum warmen Ende eines Hauptwärmetauschers 30, wird im Hauptwärmetauscher 30 auf etwa Taupunkt abgekühlt, am kalten Ende wieder entnommen und schließlich über die Leitungen 11 und 12 dem Sumpf der Drucksäule 50 einer Doppelsäule zugeleitet.The cleaned feed air flow 9 is divided into a first main air flow 10 and one split second main air stream 20. The former flows to the warm end of one Main heat exchanger 30 is in the main heat exchanger 30 to about dew point cooled, removed again at the cold end and finally via lines 11 and 12 fed to the bottom of the pressure column 50 of a double column.

Der zweite Hauptluftstrom 20 wird in einem extern angetriebenen Nachverdichter 21 weiter verdichtet und nach Durchströmen eines Nachkühlers 22 ebenfalls am warmen Ende in den Hauptwärmetauscher 30 eingeführt (Leitung 23). Ein Teil 24 des zweiten Hauptluftstroms, der "Abkühlluftstrom" verbleibt bis zum kalten Ende im Hauptwärmetauscher 30 und wird - gegebenenfalls nach leichter Drosselung 25 als "erster Teilstrom" 26 wieder in den Hauptwärmetauscher 30 eingeleitet, und zwar in die Anwärmpassagen 17. Bei einer ersten Zwischentemperatur wird der erste Teilstrom über Leitung 28 entnommen und einem Kaltverdichter 29 zugeführt. Der kaltverdichtete erste Teilstrom 31 wird bei einer zweiten Zwischentemperatur, die in dem Beispiel höher als die erste Zwischentemperatur ist, wieder in den Hauptwärmetauscher 30 eingeführt, und zwar in die Abkühlpassagen 32. Nach Abkühlung und mindestens teilweiser Verflüssigung im Hauptwärmetauscher wird der erste Teilstrom 33 schließlich über das Ventil 34 in die Drucksäule 50 eingespeist. Die Einspeisestelle liegt einen oder mehrere theoretische beziehungsweise praktische Böden oberhalb des Drucksäulensumpfs.The second main air stream 20 is in an externally driven secondary compressor 21 further compressed and after flowing through an aftercooler 22 also warm End inserted into the main heat exchanger 30 (line 23). Part 24 of the second Main air flow, the "cooling air flow" remains in the cold end Main heat exchanger 30 and 25 - if necessary after slight throttling "First partial flow" 26 reintroduced into the main heat exchanger 30, namely in the Warm-up passages 17. At a first intermediate temperature, the first partial flow removed via line 28 and fed to a cold compressor 29. The cold compacted first partial flow 31 is at a second intermediate temperature, which in the example is higher than the first intermediate temperature, again into the main heat exchanger 30 introduced, namely in the cooling passages 32. After cooling and at least partial liquefaction in the main heat exchanger becomes the first partial flow 33 finally fed into the pressure column 50 via the valve 34. The feed point is one or more theoretical or practical floors above the Pressure column sump.

Ein anderer Teil 35 des zweiten Hauptluftstroms 23 wird bei einer dritten Zwischentemperatur, die in dem Beispiel zwischen der ersten und der zweiten Zwischentemperatur liegt, als "Turbinenluftstrom" entnommen und einer Entspannungsmaschine 36 zugeführt, die über eine gemeinsame Welle mit dem Kaltverdichter 29 und einem Generator 37 gekoppelt ist. Die arbeitsleistend entspannte Luft 38 wird gemeinsam mit dem ersten Hauptluftstrom 11 über Leitung 12 zum Sumpf der Drucksäule 50 geführt.Another part 35 of the second main air stream 23 becomes a third Intermediate temperature, which in the example is between the first and the second Intermediate temperature is taken as "turbine air flow" and one Relaxation machine 36 supplied, which is on a common shaft with the Cold compressor 29 and a generator 37 is coupled. The work relaxed Air 38 together with the first main air stream 11 via line 12 to the sump the pressure column 50 out.

Die Doppelsäule weist außer der Drucksäule 50 eine Niederdrucksäule 51 auf. Beide Teile stehen über einen gemeinsamen Kondensator-Verdampfer 52, den Hauptkondensator in wärmetauschender Verbindung. Kopfgas 53 der Drucksäule 50 wird im Hauptkondensator 52 mindestens teilweise kondensiert. Das Kondensat strömt zu einem ersten Teil 55 als Rücklauf zur Drucksäule 50 zurück, zu einem zweiten Teil 55 wird es in einem Unterkühlungsgegenströmer 56 unterkühlt und über Leitung 57 und Ventil 58 auf den Kopf der Niederdrucksäule 51 aufgegeben.In addition to the pressure column 50, the double column has a low pressure column 51. Both Parts are on a common condenser-evaporator 52, the Main condenser in heat exchanging connection. Top gas 53 of the pressure column 50 is at least partially condensed in the main condenser 52. The condensate flows to a first part 55 as a return to the pressure column 50, to a second part 55 it is subcooled in a supercooling counterflow 56 and via line 57 and valve 58 placed on top of the low pressure column 51.

Rohsauerstoff aus dem unteren Bereich der Drucksäule 50 strömt in dem Beispiel auf zwei verschiedenen Wegen zur Niederdrucksäule 51. Eine erste Rohsauerstofffraktion 59 wird vom Sumpf der Drucksäule wird unterkühlt (56) und über Leitung 60 und Drosselventil 61 in die Niederdrucksäule überführt. Auf Höhe der Einspeisung des verflüssigten ersten Teilluftstroms 33 wird eine zweite Rohsauerstofffraktion flüssig aus der Drucksäule 50 abgeführt und auf ähnliche Weise (Unterkühlung 56, Leitung 63 und Ventil 64) an etwas höherer Stelle in die Niederdrucksäule 51 eingespeist.Raw oxygen from the lower region of the pressure column 50 flows up in the example two different routes to the low pressure column 51. A first raw oxygen fraction 59 is subcooled from the bottom of the pressure column (56) and via line 60 and Throttle valve 61 transferred to the low pressure column. At the level of the infeed of the liquefied first partial air stream 33 becomes a second crude oxygen liquid of the pressure column 50 and in a similar manner (subcooling 56, line 63 and valve 64) are fed into the low-pressure column 51 at a somewhat higher point.

Das Sauerstoffprodukt wird über Leitung 65 flüssig aus dem Sumpf der Niederdrucksäule 51 abgezogen, durch eine Pumpe 66 in flüssigem Zustand auf den gewünschten Produktdruck gebracht, über Leitung 67 zum Hauptwärmetauscher 30 geführt, dort verdampft und auf etwa Umgebungstemperatur angewärmt. Der Sauerstoff verläßt die Anlage über Leitung 68 als innenverdichtetes Produkt (GOX-IC, gaseous oxygen - intemally compressed).The oxygen product is liquid via line 65 from the bottom of the Low pressure column 51 withdrawn by a pump 66 in the liquid state on the brought desired product pressure, via line 67 to the main heat exchanger 30 led, evaporated there and warmed to about ambient temperature. The Oxygen leaves the system via line 68 as an internally compressed product (GOX-IC, gaseous oxygen - internally compressed).

In dem Ausführungsbeispiel wird kein reiner Stickstoff hergestellt. Das stickstoffreiche Kopfprodukt 69 wird als Restgas im Unterkühlungsgegenströmer 56 und im Hauptwärmetauscher 30 angewärmt. Das warme Restgas 70 kann direkt über Leitung 71 in die Atmosphäre abgelassen werden und/oder über Leitung 72 - gegebenenfalls nach Erhitzen 73 - als Regeneriergas für die Reinigungseinrichtung 8 verwendet werden. Das feuchte Regeneriergas strömt über Leitung 74 zur Atmosphäre.In the exemplary embodiment, no pure nitrogen is produced. The nitrogen rich Top product 69 is used as residual gas in the supercooling counterflow 56 and in Main heat exchanger 30 warmed up. The warm residual gas 70 can be conducted directly via the line 71 can be released into the atmosphere and / or via line 72 - if necessary after heating 73 - used as regeneration gas for the cleaning device 8 become. The moist regeneration gas flows via line 74 to the atmosphere.

Abweichend von dem Ausführungsbeispiel kann in der Niederdrucksäule auf die bekannte Weise auch reiner Stickstoff gewonnen werden. Die Verdampfung des flüssig auf Druck gebrachten Sauerstoffs 67 kann auch außerhalb des Hauptwärmetauschers 30 in einem separaten Produktverdampfer (Nebenkondensator) durchgeführt wird, dessen Verflüssigungsraum von dem ersten Teilstrom stromabwärts der Kaltverdichtung 29 durchströmt wird. Deviating from the embodiment can in the low pressure column on the pure nitrogen can also be obtained in a known manner. The evaporation of the liquid pressurized oxygen 67 can also be outside the main heat exchanger 30 is carried out in a separate product evaporator (secondary condenser), whose liquefaction space downstream of the first substream Cold compression 29 is flowed through.

Das Ausführungsbeispiel der Figur 2 entspricht dem Verfahren und der Vorrichtung von Figur 1 in weiten Teilen. Im folgenden werden lediglich die abweichenden Aspekte im einzelnen beschrieben.The exemplary embodiment in FIG. 2 corresponds to the method and the device of FIG Figure 1 in large parts. In the following only the different aspects in the described.

In Figur 2 wird der Abkühlluftstrom 24 stromabwärts seiner Entnahme vom kalten Ende des Hauptwärmetauschers 30 beziehungsweise des optionalen Ventils 25 auf zwei Ströme aufgeteilt, nämlich den "ersten Teilstrom" 226 - 227 - 228, der analog zu dem Verfahren von Figur 1 zum Kaltverdichter 29 geführt wird, und eine "zweiten Teilstrom" 201, der - geregelt von Ventil 202 - am Hauptwärmetauscher 30 und insbesondere an den Anwärmpassagen 227 vorbeigeleitet und bei 203 dem auf die erste Zwischentemperatur angewärmten ersten Teilstrom 228 zugemischt wird. Das Gemisch strömt unter einer entsprechend niedrigeren Temperatur zum Eintritt des Kaltverdichters 29. Demzufolge weist auch die kaltverdichtete Luft 231 eine niedrigere Temperatur als bei Figur 1 auf, in dem konkreten Beispiel von Figur 2 ist die zweite Zwischentemperatur sogar geringer als die erste Zwischentemperatur. Entsprechend kürzer ausgebildet sind die Abkühl- und Verflüssigungspassagen 232 für den ersten Teilstrom stromabwärts der Kaltverdichtung.In Figure 2, the cooling air stream 24 is downstream of its removal from the cold end the main heat exchanger 30 or the optional valve 25 to two Streams divided, namely the "first sub-stream" 226 - 227 - 228, which is analogous to that 1 to the cold compressor 29, and a "second partial flow" 201, which - regulated by valve 202 - on the main heat exchanger 30 and in particular passed the warm-up passages 227 and at 203 the first Intermediate temperature warmed first partial stream 228 is mixed. The Mixture flows at a correspondingly lower temperature at the entry of the Cold compressor 29. Accordingly, the cold compressed air 231 also has a lower one Temperature than in Figure 1, in the specific example of Figure 2 is the second Intermediate temperature even lower than the first intermediate temperature. Corresponding the cooling and liquefaction passages 232 are shorter for the first one Partial flow downstream of the cold compression.

Auch bezüglich Figur 3 werden im folgenden lediglich die Unterschiede zu Figur 1 detailliert besprochen. Der Abkühlluftstrom 24 wird hier nach Teilverflüssigung im Hauptwärmetauscher 30 und Drosselung 25 zwecks Phasentrennung in einen Abscheider 301 eingeleitet. Die flüssige Phase wird analog zum Strom 33 von Figur 1 über Leitung 333 und Ventil 334 in die Drucksäule 50 eingespeist. Der Dampf 326 aus dem Abscheider 301 bildet den "ersten Teilstrom", der wie in Figur 1 zur Kaltverdichtung 29 geführt wird. Stromabwärts der Kaltverdichtung 29 wird der kaltverdichtete erste Teilstrom 331 allerdings nicht in eigene Abkühlpassagen eingeführt, sondern mit dem zweiten Hauptluftstrom vermischt. Die kaltverdichtete Luftmenge wird somit in einem Kreislauf 24 - 25 - 301 - 326 - 29 - 331 geführt werden. Somit kann der Wärmeübergang im kalten Teil des Hauptwärmetauschers besonders günstig gestaltet werden.3, only the differences from FIG. 1 are also described below discussed in detail. The cooling air flow 24 is here after partial liquefaction Main heat exchanger 30 and throttling 25 for phase separation into one Separator 301 initiated. The liquid phase becomes analogous to stream 33 from FIG. 1 fed into the pressure column 50 via line 333 and valve 334. The steam 326 out the separator 301 forms the "first partial flow" which, as in FIG Cold compression 29 is performed. Downstream of the cold compression 29 cold-compressed first partial flow 331, however, not in its own cooling passages introduced, but mixed with the second main air flow. The cold compressed The amount of air will thus be circulated in a 24 - 25 - 301 - 326 - 29 - 331 cycle. Thus the heat transfer in the cold part of the main heat exchanger can be special be designed cheaply.

Figur 4 unterscheidet sich auf dieselbe Weise von Figur 3 wird Figur 2 von Figur 1, nämlich durch einen zusätzlichen "zweiten Teilluftstrom" 401. Dieser wird hier aus demjenigen Teil 401 des Dampfs aus dem Abscheider 301 gebildet wird, der nicht über Leitung 426 als "erster Teilstrom" zum kalten Ende des Hauptwärmetauschers 30 geleitet wird. Wie in Figur 2 dient die Zumischung 403 des kalten zweiten Teilstroms 401 zum auf die erste Zwischentemperatur angewärmten ersten Teilstrom 428 der Kompensation beziehungsweise Überkompensation der Kompressionswärme, die bei der Kaltverdichtung 29 entsteht.Figure 4 differs from Figure 3 in the same way, Figure 2 is different from Figure 1, namely by an additional "second partial air flow" 401. This becomes here that part 401 of the steam is formed from the separator 301 that does not have Line 426 as the "first partial flow" to the cold end of the main heat exchanger 30 is directed. As in FIG. 2, the admixture 403 of the cold second partial stream is used 401 to the first partial flow 428, which is heated to the first intermediate temperature Compensation or overcompensation of the heat of compression, which at the cold compression 29 arises.

Claims (10)

Verfahren zur Tieftemperaturzerlegung von Luft, bei dem verdichtete und gereinigte Einsatzluft (9, 10, 20) in einem Hauptwärmetauscher (30) abgekühlt und mindestens zum Teil einer Rektifiziersäule (50) zugeführt (12, 33, 333) wird, wobei ein erster Teilstrom (26, 226, 326, 426) der Einsatzluft dem Hauptwärmetauscher (30) zugeführt, mindestens zum Teil bei einer ersten Zwischentemperatur aus dem Hauptwärmetauscher entnommen (28, 228, 428) und einer Kaltverdichtung (29) zugeführt wird, dadurch gekennzeichnet, daß der erste Teilstrom (26, 226, 326, 426) stromaufwärts seiner Entnahme (28, 228, 428) bei der ersten Zwischentemperatur im Hauptwärmetauscher (30) angewärmt (27, 227) wird.Method for the low-temperature separation of air, in which compressed and cleaned feed air (9, 10, 20) is cooled in a main heat exchanger (30) and at least partially fed (12, 33, 333) to a rectification column (50), a first partial stream ( 26, 226, 326, 426) of the feed air to the main heat exchanger (30), at least partially removed from the main heat exchanger (28, 228, 428) at a first intermediate temperature and fed to a cold compression (29), characterized in that the first Partial stream (26, 226, 326, 426) upstream of its removal (28, 228, 428) is heated (27, 227) at the first intermediate temperature in the main heat exchanger (30). Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der erste Teilstrom (26, 226, 326, 426) vor seiner Anwärmung (27, 227) in das kalte Ende des Hauptwärmetauschers (30) eingeführt wird.Method according to Claim 1, characterized in that the first partial flow (26, 226, 326, 426) is introduced into the cold end of the main heat exchanger (30) before it is heated (27, 227). Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß ein Abkühlluftstrom (23, 24) im Hauptwärmetauscher (30) abgekühlt, am kalten Ende des Hauptwärmetauschers entnommen (24) und mindestens zum Teil als erster Teilstrom (26, 226, 326, 426) wieder dem kalten Ende des Hauptwärmetauschers (30) zugeführt wird.Method according to Claim 2, characterized in that a cooling air stream (23, 24) is cooled in the main heat exchanger (30), removed (24) at the cold end of the main heat exchanger and at least partly as the first partial stream (26, 226, 326, 426) cold end of the main heat exchanger (30) is supplied. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß der Abkühlluftstrom (24) nach seiner Entnahme aus dem kalten Ende des Hauptwärmetauschers (30) einer Phasentrennung (301) unterworfen wird, wobei der erste Teilstrom (326, 426) mindestens durch einen Teil der aus der Phasentrennung (301) entnommenen Dampfphase gebildet wird.A method according to claim 3, characterized in that the cooling air stream (24) after its removal from the cold end of the main heat exchanger (30) is subjected to a phase separation (301), the first partial stream (326, 426) being separated by at least part of the Phase separation (301) taken vapor phase is formed. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß der Abkühlluftstrom (24) entspannt (25) wird, bevor er der Phasentrennung (301) unterworfen beziehungsweise als erster Teilstrom (26, 226) dem kalten Ende des Hauptwärmetauschers (30) zugeführt wird.Method according to claim 3 or 4, characterized in that the cooling air flow (24) is expanded (25) before it is subjected to phase separation (301) or is supplied as the first partial flow (26, 226) to the cold end of the main heat exchanger (30). Verfahren nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, daß der Abkühlluftstrom (24) in den ersten Teilstrom (226, 426) und in einen zweiten Teilstrom (201, 401) aufgeteilt wird, wobei der erste Teilstrom (226, 426) in das kalte Ende des Hauptwärmetauschers (30) eingeführt wird und der zweite Teilstrom (201, 401) ohne temperaturverändemde Maßnahmen mit dem ersten Teilstrom (228, 428) zwischen seiner Entnahme bei der ersten Zwischentemperatur und der Kaltverdichtung (29) zugeführt (203, 403) wird.Method according to one of claims 3 to 5, characterized in that the cooling air flow (24) is divided into the first partial flow (226, 426) and a second partial flow (201, 401), the first partial flow (226, 426) in the cold end of the main heat exchanger (30) is introduced and the second partial flow (201, 401) is fed with the first partial flow (228, 428) without temperature-changing measures between its removal at the first intermediate temperature and the cold compression (29) (203, 403) becomes. Verfahren nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, daß der erste Teilstrom (331) stromabwärts der Kaltverdichtung (29) an einer Zwischenstelle des Hauptwärmetauschers (30), die einer zweiten Zwischentemperatur entspricht, dem Abkühlluftstrom (23, 24) zugeführt wird.Method according to one of claims 3 to 6, characterized in that the first partial flow (331) downstream of the cold compression (29) at an intermediate point of the main heat exchanger (30), which corresponds to a second intermediate temperature, is fed to the cooling air flow (23, 24). Verfahren nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, daß ein Turbinenluftstrom (23, 35) im Hauptwärmetauscher (30) auf eine dritte Zwischentemperatur abgekühlt und anschließend arbeitsleistend entspannt (36) wird, wobei mindestens ein Teil der bei der arbeitsleistenden Entspannung (36) erzeugten mechanischen Energie zum Antrieb der Kaltverdichtung (29) eingesetzt wird.Method according to one of claims 3 to 7, characterized in that a turbine air flow (23, 35) in the main heat exchanger (30) is cooled to a third intermediate temperature and is then relaxed (36) while performing work, with at least part of the relaxation (36) during work ) generated mechanical energy is used to drive the cold compression (29). Vorrichtung zur Tieftemperaturzerlegung von Luft mit einem Hauptwärmetauscher (30), der ein warmes und ein kaltes Ende aufweist, sowie Gruppen von Abkühl- und Anwärmpassagen aufweist, mit mindestens einer Rektifiziersäule (50), mit einer Einsatzluftleitung zur Zufuhr (9, 10, 20, 23) verdichteter und gereinigter Einsatzluft zu dem Hauptwärmetauscher (30) und zur Einspeisung (12, 33, 333) mindestens eines Teils der abgekühlten Einsatzluft in die Rektifiziersäule (50) und mit einer Kaltverdichtungsleitung (28, 228, 428), die von einer Zwischenstelle des Hauptwärmetauschers (30) zu einem Kaltverdichter (29) führt, dadurch gekennzeichnet, daß die Kaltverdichtungsleitung (28, 228, 428) stromaufwärts des Kaltverdichters (29) an der Zwischenstelle mit einer Gruppe von Anwärmpassagen (27, 227) des Hauptwärmetauschers (30) verbunden ist.Device for the low temperature separation of air with a main heat exchanger (30), which has a warm and a cold end, and has groups of cooling and heating passages, with at least one rectification column (50), with a Feed air line for supplying (9, 10, 20, 23) compressed and cleaned feed air to the main heat exchanger (30) and for feeding (12, 33, 333) at least part of the cooled feed air into the rectification column (50) and with a cold compression line (28, 228, 428) which leads from an intermediate point of the main heat exchanger (30) to a cold compressor (29), characterized in that the cold compression line (28, 228, 428) upstream of the cold compressor (29) is connected at the intermediate point to a group of heating passages (27, 227) of the main heat exchanger (30). Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß die Gruppe von Anwärmpassagen (27, 227) des Hauptwärmetauschers (30), die an der Zwischenstelle mit der Kaltverdichtungsleitung (28, 228, 428) verbunden sind, vom kalten Ende bis zu der Zwischenstelle durchgehend ausgebildet und am kalten Ende mit einer Gruppe von Abkühlpassagen verbunden (24, 26, 226, 326, 426) sind.Apparatus according to claim 9, characterized in that the group of heating passages (27, 227) of the main heat exchanger (30), which are connected at the intermediate point to the cold compression line (28, 228, 428), are continuous from the cold end to the intermediate point and are connected (24, 26, 226, 326, 426) to a group of cooling passages at the cold end.
EP99121174A 1999-07-05 1999-10-22 Process and device for cryogenic air separation Expired - Lifetime EP1067345B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19930731 1999-07-05
DE19930731 1999-07-05

Publications (2)

Publication Number Publication Date
EP1067345A1 true EP1067345A1 (en) 2001-01-10
EP1067345B1 EP1067345B1 (en) 2004-06-16

Family

ID=7913552

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99121174A Expired - Lifetime EP1067345B1 (en) 1999-07-05 1999-10-22 Process and device for cryogenic air separation

Country Status (4)

Country Link
US (1) US6336345B1 (en)
EP (1) EP1067345B1 (en)
AT (1) ATE269526T1 (en)
DE (1) DE59909750D1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007145915A2 (en) * 2006-06-09 2007-12-21 Praxair Technology Inc. Air separation method
DE102007031759A1 (en) 2007-07-07 2009-01-08 Linde Ag Method and apparatus for producing gaseous pressure product by cryogenic separation of air
DE102007031765A1 (en) 2007-07-07 2009-01-08 Linde Ag Process for the cryogenic separation of air
DE102009034979A1 (en) 2009-04-28 2010-11-04 Linde Aktiengesellschaft Method for producing pressurized oxygen by evaporating liquid oxygen using a copper and nickel heat exchanger block
EP2312248A1 (en) 2009-10-07 2011-04-20 Linde Aktiengesellschaft Method and device for obtaining pressurised oxygen and krypton/xenon
EP2458311A1 (en) 2010-11-25 2012-05-30 Linde Aktiengesellschaft Method and device for creating a gaseous, pressurised product by the cryogenic decomposition of air
DE102010052544A1 (en) 2010-11-25 2012-05-31 Linde Ag Process for obtaining a gaseous product by cryogenic separation of air
EP2520886A1 (en) 2011-05-05 2012-11-07 Linde AG Method and device for creating gaseous oxygen pressurised product by the cryogenic decomposition of air
EP2568242A1 (en) 2011-09-08 2013-03-13 Linde Aktiengesellschaft Method and device for generating of steel
EP2600090A1 (en) 2011-12-01 2013-06-05 Linde Aktiengesellschaft Method and device for generating pressurised oxygen by cryogenic decomposition of air
DE102011121314A1 (en) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Method for producing gaseous oxygen product in main heat exchanger system in distillation column system, involves providing turbines, where one of turbines drives compressor, and other turbine drives generator
DE102013017590A1 (en) 2013-10-22 2014-01-02 Linde Aktiengesellschaft Method for recovering methane-poor fluids in liquid air separation system to manufacture air product, involves vaporizing oxygen, krypton and xenon containing sump liquid in low pressure column by using multi-storey bath vaporizer
DE102012017488A1 (en) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Method for building air separation plant, involves selecting air separation modules on basis of product specification of module set with different air pressure requirements
EP2784420A1 (en) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Method for air separation and air separation plant
WO2014154339A2 (en) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Method for air separation and air separation plant
EP2801777A1 (en) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Air separation plant with main compressor drive
EP2963369A1 (en) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Method and device for the cryogenic decomposition of air
EP2963371A1 (en) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Method and device for creating a pressurised gas product by the cryogenic decomposition of air
EP2963367A1 (en) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Method and device for cryogenic air separation with variable power consumption
EP2963370A1 (en) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Method and device for the cryogenic decomposition of air
CN109737689A (en) * 2018-12-29 2019-05-10 侨源气体(福州)有限公司 Air separation and purification system and method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2851330B1 (en) * 2003-02-13 2006-01-06 Air Liquide PROCESS AND PLANT FOR THE PRODUCTION OF A GASEOUS AND HIGH PRESSURE PRODUCTION OF AT LEAST ONE FLUID SELECTED AMONG OXYGEN, ARGON AND NITROGEN BY CRYOGENIC DISTILLATION OF AIR
FR2854683B1 (en) * 2003-05-05 2006-09-29 Air Liquide METHOD AND INSTALLATION FOR PRODUCING PRESSURIZED AIR GASES BY AIR CRYOGENIC DISTILLATION
EP1767884A1 (en) * 2005-09-23 2007-03-28 L'Air Liquide Société Anon. à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude Process and apparatus for the separation of air by cryogenic distillation
EP1972875A1 (en) * 2007-03-23 2008-09-24 L'AIR LIQUIDE, S.A. pour l'étude et l'exploitation des procédés Georges Claude Process and apparatus for the separation of air by cryogenic distillation
DE102009048456A1 (en) * 2009-09-21 2011-03-31 Linde Aktiengesellschaft Method and apparatus for the cryogenic separation of air
EP2369281A1 (en) * 2010-03-09 2011-09-28 Linde Aktiengesellschaft Method and device for cryogenic decomposition of air
DE102010055448A1 (en) 2010-12-21 2012-06-21 Linde Ag Method and apparatus for the cryogenic separation of air
FR3062197B3 (en) * 2017-05-24 2019-05-10 Air Liquide METHOD AND APPARATUS FOR SEPARATING AIR BY CRYOGENIC DISTILLATION
WO2021016756A1 (en) * 2019-07-26 2021-02-04 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for the separation of air by cryogenic distillation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4224045A (en) * 1978-08-23 1980-09-23 Union Carbide Corporation Cryogenic system for producing low-purity oxygen
WO1995028610A1 (en) * 1994-04-15 1995-10-26 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Improved heat exchanger with brazed plates
EP0689019A1 (en) * 1994-06-20 1995-12-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for producing gaseous oxygen under pressure
EP0831285A2 (en) * 1996-09-20 1998-03-25 The BOC Group plc Air separation
EP0932003A2 (en) * 1998-01-22 1999-07-28 Air Products And Chemicals, Inc. Elevated pressure air separation process with use of waste expansion for compression of a process stream

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2080929B (en) * 1980-07-22 1984-02-08 Air Prod & Chem Producing gaseous oxygen
US5275003A (en) * 1992-07-20 1994-01-04 Air Products And Chemicals, Inc. Hybrid air and nitrogen recycle liquefier
FR2714721B1 (en) * 1993-12-31 1996-02-16 Air Liquide Method and installation for liquefying a gas.
US5901576A (en) * 1998-01-22 1999-05-11 Air Products And Chemicals, Inc. Single expander and a cold compressor process to produce oxygen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4224045A (en) * 1978-08-23 1980-09-23 Union Carbide Corporation Cryogenic system for producing low-purity oxygen
WO1995028610A1 (en) * 1994-04-15 1995-10-26 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Improved heat exchanger with brazed plates
EP0689019A1 (en) * 1994-06-20 1995-12-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for producing gaseous oxygen under pressure
EP0831285A2 (en) * 1996-09-20 1998-03-25 The BOC Group plc Air separation
EP0932003A2 (en) * 1998-01-22 1999-07-28 Air Products And Chemicals, Inc. Elevated pressure air separation process with use of waste expansion for compression of a process stream

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007145915A2 (en) * 2006-06-09 2007-12-21 Praxair Technology Inc. Air separation method
US7549301B2 (en) 2006-06-09 2009-06-23 Praxair Technology, Inc. Air separation method
WO2007145915A3 (en) * 2006-06-09 2009-03-05 Praxair Technology Inc Air separation method
EP2015012A2 (en) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Process for the cryogenic separation of air
EP2015013A2 (en) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Process and device for producing a gaseous pressurised product by cryogenic separation of air
DE102007031765A1 (en) 2007-07-07 2009-01-08 Linde Ag Process for the cryogenic separation of air
DE102007031759A1 (en) 2007-07-07 2009-01-08 Linde Ag Method and apparatus for producing gaseous pressure product by cryogenic separation of air
DE102009034979A1 (en) 2009-04-28 2010-11-04 Linde Aktiengesellschaft Method for producing pressurized oxygen by evaporating liquid oxygen using a copper and nickel heat exchanger block
EP2312248A1 (en) 2009-10-07 2011-04-20 Linde Aktiengesellschaft Method and device for obtaining pressurised oxygen and krypton/xenon
EP2458311A1 (en) 2010-11-25 2012-05-30 Linde Aktiengesellschaft Method and device for creating a gaseous, pressurised product by the cryogenic decomposition of air
DE102010052545A1 (en) 2010-11-25 2012-05-31 Linde Aktiengesellschaft Method and apparatus for recovering a gaseous product by cryogenic separation of air
DE102010052544A1 (en) 2010-11-25 2012-05-31 Linde Ag Process for obtaining a gaseous product by cryogenic separation of air
EP2466236A1 (en) 2010-11-25 2012-06-20 Linde Aktiengesellschaft Method and device for creating a gaseous, pressurised product by the cryogenic decomposition of air
EP2520886A1 (en) 2011-05-05 2012-11-07 Linde AG Method and device for creating gaseous oxygen pressurised product by the cryogenic decomposition of air
EP2568242A1 (en) 2011-09-08 2013-03-13 Linde Aktiengesellschaft Method and device for generating of steel
DE102011112909A1 (en) 2011-09-08 2013-03-14 Linde Aktiengesellschaft Process and apparatus for recovering steel
EP2600090A1 (en) 2011-12-01 2013-06-05 Linde Aktiengesellschaft Method and device for generating pressurised oxygen by cryogenic decomposition of air
DE102011121314A1 (en) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Method for producing gaseous oxygen product in main heat exchanger system in distillation column system, involves providing turbines, where one of turbines drives compressor, and other turbine drives generator
DE102012017488A1 (en) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Method for building air separation plant, involves selecting air separation modules on basis of product specification of module set with different air pressure requirements
EP2784420A1 (en) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Method for air separation and air separation plant
WO2014154339A2 (en) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Method for air separation and air separation plant
EP2801777A1 (en) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Air separation plant with main compressor drive
DE102013017590A1 (en) 2013-10-22 2014-01-02 Linde Aktiengesellschaft Method for recovering methane-poor fluids in liquid air separation system to manufacture air product, involves vaporizing oxygen, krypton and xenon containing sump liquid in low pressure column by using multi-storey bath vaporizer
EP2963369A1 (en) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Method and device for the cryogenic decomposition of air
EP2963371A1 (en) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Method and device for creating a pressurised gas product by the cryogenic decomposition of air
EP2963367A1 (en) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Method and device for cryogenic air separation with variable power consumption
EP2963370A1 (en) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Method and device for the cryogenic decomposition of air
WO2016005031A1 (en) 2014-07-05 2016-01-14 Linde Aktiengesellschaft Method and device for the low-temperature separation of air at variable energy consumption
CN109737689A (en) * 2018-12-29 2019-05-10 侨源气体(福州)有限公司 Air separation and purification system and method

Also Published As

Publication number Publication date
DE59909750D1 (en) 2004-07-22
EP1067345B1 (en) 2004-06-16
US6336345B1 (en) 2002-01-08
ATE269526T1 (en) 2004-07-15

Similar Documents

Publication Publication Date Title
EP1067345B1 (en) Process and device for cryogenic air separation
EP0093448B1 (en) Process and apparatus for obtaining gaseous oxygen at elevated pressure
EP1134525B1 (en) Process for producing gaseous and liquid nitrogen with a variable quantity of liquid
DE3706733C2 (en)
EP1284404A1 (en) Process and device for recovering a product under pressure by cryogenic air separation
EP1994344A1 (en) Method and apparatus for fractionating air at low temperatures
DE19803437A1 (en) Oxygen and nitrogen extracted by low-temperature fractional distillation
EP1074805B1 (en) Process for producing oxygen under pressure and device therefor
DE10013073A1 (en) Low temperature separation of air in distillation column system uses integrated heat exchanger system for cooling e.g. air supply by indirect heat exchange during vaporization of first liquid fraction
EP0948730B1 (en) Method and device for producing compressed nitrogen
DE102010052545A1 (en) Method and apparatus for recovering a gaseous product by cryogenic separation of air
EP2313724A2 (en) Process and device for cryogenic air fractionation
DE19609490A1 (en) Oxygen-production process with reduced energy requirement
EP2963369B1 (en) Method and device for the cryogenic decomposition of air
DE19951521A1 (en) Recovering pressurized product by low temperature decomposition of air in rectification system comprises cold compressing heat carrier stream before introducing into mixing column
EP0768503B1 (en) Triple column air separation process
EP1227288A1 (en) System with three columns for cryogenic separation of air
EP3019804A2 (en) Method for producing at least one air product, air separation system, method and device for producing electrical energy
EP0878677A1 (en) Process and apparatus for the production of nitrogen by cryogenic air separation
DE10052180A1 (en) Three-column system for the low-temperature separation of air
DE10045128A1 (en) Method and device for producing high-purity nitrogen by low-temperature air separation
EP1134524A2 (en) Process for producing gaseous nitrogen
EP1284403B1 (en) Process and apparatus for the production of oxygen by low temperature air separation
EP2863156A1 (en) Method for obtaining at least one air product in an air processing system and air processing system
EP1189002A1 (en) Process and apparatus for obtaining a gaseous product from cryogenic air separation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010612

R17P Request for examination filed (corrected)

Effective date: 20010601

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20021126

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040616

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040616

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040616

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040616

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59909750

Country of ref document: DE

Date of ref document: 20040722

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040916

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040927

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20041003

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20041006

Year of fee payment: 6

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20041014

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20041020

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041022

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20041216

Year of fee payment: 6

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050317

EN Fr: translation not filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051022

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060503

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20051022

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20060501

BERE Be: lapsed

Owner name: *LINDE A.G.

Effective date: 20051031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041116