EP3179187B1 - Method for obtaining a liquid and a gaseous oxygen-rich air product in an air breakdown apparatus and air breakdown apparatus - Google Patents
Method for obtaining a liquid and a gaseous oxygen-rich air product in an air breakdown apparatus and air breakdown apparatus Download PDFInfo
- Publication number
- EP3179187B1 EP3179187B1 EP16020460.8A EP16020460A EP3179187B1 EP 3179187 B1 EP3179187 B1 EP 3179187B1 EP 16020460 A EP16020460 A EP 16020460A EP 3179187 B1 EP3179187 B1 EP 3179187B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- air
- turbine
- pressure
- compressed
- column
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 98
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title claims description 91
- 239000001301 oxygen Substances 0.000 title claims description 91
- 229910052760 oxygen Inorganic materials 0.000 title claims description 91
- 239000007788 liquid Substances 0.000 title claims description 59
- 230000015556 catabolic process Effects 0.000 title 2
- 238000000926 separation method Methods 0.000 claims description 61
- 238000002156 mixing Methods 0.000 claims description 50
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 42
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 40
- 229910052757 nitrogen Inorganic materials 0.000 claims description 21
- 238000004821 distillation Methods 0.000 claims description 19
- 239000000047 product Substances 0.000 description 67
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000007789 gas Substances 0.000 description 7
- 238000001816 cooling Methods 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 239000012263 liquid product Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- 238000004781 supercooling Methods 0.000 description 3
- 238000005056 compaction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 238000005057 refrigeration Methods 0.000 description 2
- 238000004887 air purification Methods 0.000 description 1
- -1 as explained above Chemical compound 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04163—Hot end purification of the feed air
- F25J3/04169—Hot end purification of the feed air by adsorption of the impurities
- F25J3/04175—Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04193—Division of the main heat exchange line in consecutive sections having different functions
- F25J3/042—Division of the main heat exchange line in consecutive sections having different functions having an intermediate feed connection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04296—Claude expansion, i.e. expanded into the main or high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04303—Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
- F25J3/04393—Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/0446—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases
- F25J3/04466—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases for producing oxygen as a mixing column overhead gas by mixing gaseous air feed and liquid oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04787—Heat exchange, e.g. main heat exchange line; Subcooler, external reboiler-condenser
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04793—Rectification, e.g. columns; Reboiler-condenser
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04812—Different modes, i.e. "runs" of operation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/04—Processes or apparatus using separation by rectification in a dual pressure main column system
- F25J2200/06—Processes or apparatus using separation by rectification in a dual pressure main column system in a classical double column flow-sheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/90—Details relating to column internals, e.g. structured packing, gas or liquid distribution
- F25J2200/94—Details relating to the withdrawal point
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/40—Air or oxygen enriched air, i.e. generally less than 30mol% of O2
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/50—Oxygen or special cases, e.g. isotope-mixtures or low purity O2
- F25J2215/52—Oxygen production with multiple purity O2
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2235/00—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
- F25J2235/50—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
Definitions
- the invention relates to a method for obtaining a liquid and a gaseous, oxygen-rich air product in an air separation plant and an air separation plant arranged for carrying out such a method.
- cryogenic separation of air in air separation plants is known and, for example at H.-W. Haring (ed.), Industrial Gases Processing, Wiley-VCH, 2006 , in particular Section 2.2.5, "Cryogenic Rectification" described.
- EP 1 387 136 A1 and EP 1 666 824 A1 are described. Also in the FR 2 895 068 A1 , the EP 0 698 772 A1 and the DE 10 2013 002 094 A1 Air separation plants are disclosed with a mixing column.
- mixed column air In a mixing column head near an oxygen-rich liquid and near the gaseous compressed air, so-called mixed column air, fed and each other sent to meet. Due to the intensive contact, a certain proportion of the more volatile nitrogen from the mixed column air passes into the oxygen-rich liquid.
- the oxygen-rich liquid is vaporized in the mixing column and can be removed at the top of the mixing column as so-called "impure" oxygen.
- the impure oxygen can be taken from the air separation plant as a gas product.
- the mixing column air in turn is liquefied when passing through the mixing column, enriched to some extent with oxygen, and can be withdrawn from the bottom of the mixing column. This liquefied stream can then be fed into the distillation column system used at an energetically and / or separation-appropriate location.
- the EP 2 980 514 A1 discloses a HAP process (see below) in which two portions of the feed air are vented after cooling in the main heat exchanger without further compression in two expansion machines. A third portion of the feed air is brought to a higher pressure level in a booster and in booster, which are each coupled to the expansion machines, cooled in the main heat exchanger and expanded in a sealing fluid expander (DLE).
- DLE sealing fluid expander
- FR 2 913 759 A1 discloses an air separation process in which at least a portion of the feed air in an auxiliary turbine can be expanded, and in which the air expanded in the auxiliary turbine can be at least partially heated or fed to the distillation column system.
- Air separation plants with so-called Lachmann turbines, by means of which a portion of the feed air is blown into the low-pressure column, are from the US 5,379,598 A and the DE 199 51 521 A1 known.
- the refrigeration demand is covered in such systems usually by the relaxation of air in a so-called injection turbine.
- a blow-in turbine relaxes air from a pressure level of, for example, 5.0 to 6.0 bar to a pressure level of, for example, 1.2 to 1.6 bar (in each case absolute pressures; Invention specific pressure levels are given below).
- a distillation column system with (at least) a high pressure column and a low pressure column is provided.
- the high-pressure column is operated in the illustrated example case at the mentioned pressure level of 5.0 to 6.0 bar, the low-pressure column at the mentioned pressure level of 1.2 to 1.6 bar.
- the air released in the injection turbine is fed into the low-pressure column.
- the relaxation is possible by the specified pressure difference between the high pressure column and low pressure column.
- the relaxed in this way in the low pressure column air disturbs the rectification, which is why the amount of air in the spar turbine relaxable air and thus the cooling capacity of the system are highly limited. Therefore, systems with such interconnections no significant amounts of liquid products can be removed.
- the present invention proposes a method for obtaining a liquid and a gaseous, oxygen-rich air product in an air separation plant and an air separation plant equipped for carrying out such a method with the features of the independent claims.
- Preferred embodiments are subject of the dependent claims and the following description.
- turbo compressors are used to compress the air. This applies, for example, to the "main air compressor”, which is characterized in that it compresses the entire quantity of air fed into the distillation column system, that is to say the entire feed air. Accordingly, it is also possible to provide a “secondary compressor” in which a part of the air quantity compressed in the main air compressor is brought to an even higher pressure. This, too, can be designed as a turbocompressor. For compressing partial air quantities, further turbocompressors are typically provided, which are also referred to as boosters, but make only a relatively small amount of compaction compared to the main air compressor or the booster compressor.
- turboexpanders can also be coupled with turbo compressors and drive them. If one or more turbocompressors without externally supplied energy, i. driven only by one or more turboexpander, the term “turbine booster” is used for such an arrangement. In a turbine booster, the turboexpander and the turbo compressor are mechanically coupled.
- pressure level and "temperature level” to characterize pressures and temperatures, which is to express that pressures and temperatures in a given equipment need not be used in the form of exact pressure or temperature values to achieve this to realize innovative concept.
- pressures and temperatures typically range in certain ranges, such as ⁇ 1%, 5%, or even 10%, about an average.
- values within a "level” are not more than 5% or 10% apart.
- Corresponding pressure levels and temperature levels can be in disjoint areas or in areas that overlap one another. In particular, for example, pressure levels include unavoidable pressure drops or expected pressure drops, for example, due to cooling effects or line losses. The same applies to temperature levels.
- the pressure levels specified here in bar are absolute pressures.
- a “product” leaves the described plant and is stored or consumed, for example, in a tank. So it no longer only participates exclusively in the plant-internal circuits, but can be used accordingly before leaving the plant, for example as a refrigerant in a heat exchanger.
- the term “product” thus does not include such fractions or streams that remain in the plant itself and are used exclusively there, for example as reflux, coolant or purge gas.
- product further includes a quantity.
- a “product” corresponds to at least 1%, in particular at least 2%, for example at least 5% or at least 10% of the amount of air used in a corresponding plant.
- Lower amounts of liquid fractions also conventionally obtained in spent gas plants and optionally removed from such a plant do not constitute "products" within the meaning of this application.
- small amounts of a liquid fraction separating off in the bottom are always removed in order to enrich undesired components like to avoid methane. However, this is not due to the amount of "products" in the sense of this application.
- a liquid or gaseous "oxygen-rich air product” is in the usage of this application, a fluid in a corresponding state of matter having an oxygen content of at least 75%, in particular at least 80%, on a molar, weight or volume basis. Also, the "impure oxygen”, which is taken from the mixing column, is thus an oxygen-rich air product.
- the present invention proposes a process for the cryogenic separation of air which utilizes an air separation plant having a main heat exchanger and a distillation column system comprising a high pressure column operating at a first pressure level, a low pressure column operating at a second pressure level, and a mixing column.
- the second pressure level is lower than the first one.
- an oxygen-rich stream having a first oxygen content can be removed liquid, which is not discharged directly from the liquid separation plant liquid or vaporized, but, especially after heating, with the first oxygen content is fed liquid into the mixing column, in particular in the upper area, for example on the head.
- a first compressed air flow is also fed in gaseous form and sent in the mixing column to the oxygen-rich stream with the first oxygen content. The feeding of the first compressed air flow into the mixing column is preferably carried out directly above the sump.
- this head side can be taken from an oxygen-rich stream having a second oxygen content below the first oxygen content and discharged as a gaseous oxygen-rich air product from the air separation plant.
- the oxygen-rich stream with the second oxygen content is the mentioned "impure” oxygen, whose (second) oxygen content, however, is sufficient for certain applications and makes possible the mentioned energetic optimization.
- the low-pressure column in particular its sump, a pure oxygen stream can be removed liquid and discharged with its oxygen content as a liquid oxygen-rich air product liquid from the air separation plant.
- the corresponding is in the WO 2014/037091 A2 shown.
- the pure oxygen stream has an oxygen content above the first oxygen content.
- another liquid oxygen-rich air product is provided which has a high oxygen content.
- a liquid oxygen-rich air product at least temporarily discharged liquid, for example, a corresponding liquid oxygen-rich air product from the low pressure column with the first oxygen content or corresponding pure oxygen.
- Other oxygen-rich air products can be discharged liquid from the air separation plant.
- the amount thereof includes at least the values given above in terms of "products". The amount in which a corresponding liquid oxygen-rich air product can be discharged liquid from the air separation plant is very flexible due to the measures proposed according to the invention.
- oxygen-rich streams namely in particular the oxygen-rich stream with the first oxygen content and possibly the pure oxygen stream with the higher oxygen content and other oxygen-rich streams
- the speech that are taken from the low-pressure column liquid these are streams that are suitable for the production of corresponding oxygen-rich air products are used. They are therefore, as mentioned above for the term "products", discharged in an amount from the low pressure column, which differs significantly from streams that are not provided as products, such as purge streams, which are only for the removal of impurities, for example from a swamp the Low pressure column to be used.
- the oxygen-rich stream with the first oxygen content and possibly the pure oxygen stream and others Oxygen-rich streams are thus taken in each case in an amount from the low-pressure column, which is in the range mentioned above with respect to a "product".
- the first compressed air flow which is fed into the mixing column is formed using air which is compressed to an initial pressure level above the first pressure level and then, in particular in the main heat exchanger, cooled to a first temperature level and expanded in a first turbine becomes.
- HAP High Air Pressure
- the present invention is used in particular in so-called HAP ("High Air Pressure") processes, ie processes in which the total amount of air supplied to a distillation column system is compressed to a pressure well above that highest operating pressure used in the distillation column system.
- HAP High Air Pressure
- the present invention further proposes to feed into the high-pressure column a second compressed air stream, which is likewise formed using the compressed to the output pressure level and then, in particular in the main heat exchanger, cooled to the first temperature level and relaxed in the first turbine air. Part of the air expanded in the first turbine is thus fed into the mixing column after its expansion in the first turbine and another part into the high-pressure column.
- the present invention proposes to feed into the low-pressure column a third compressed air flow, which is formed using air, which is compressed to the outlet pressure level and then, in particular in the main heat exchanger, cooled to a second temperature level, expanded in a second turbine, and thereafter in the main heat exchanger is further cooled to a third temperature level.
- the air is in the first turbine in the context of the present invention to the first, i. the pressure level of the high pressure column, and in the second turbine to the second, i. the pressure level of the low pressure column, relaxed.
- the mixing column is in the context of the present invention at the first pressure level, i. the pressure level of the high-pressure column, or at a third pressure level, which differs by at most 1 bar from the first pressure level operated.
- the air expanded in the first turbine and in the second turbine is supplied to the first turbine at the first temperature level and the second turbine at the second temperature level, wherein the first temperature level is at least 20 K, in particular at least 30 K or at least 40 K, below the second temperature level.
- the first temperature level may be 25 to 35 K or 28 to 32 K, more particularly approximately 30 K, below the second temperature level.
- the first turbine is a "cold" turbine
- the second turbine is a "warm” turbine.
- the liquid production i. reduce the amount in which liquid air products are discharged liquid from the air separation plant
- the pressure of the main air compressor would have to be lowered at a constant, flowing through the main air compressor air flow.
- a correspondingly reduced pressure at constant air volume increases the real volume of the compressed air. Therefore, in conventional systems, the devices arranged in the warm part, in particular the air purification and precooling units, would have to be significantly larger. This is not desirable for economic reasons.
- a reduction in pressure at a constant amount of air is typically not optimal in terms of the efficiency of the main air compressor used.
- a HAP process using a medium pressure turbine as well as an injection turbine provides plant flexibility advantages for providing the liquid oxygen product and the operating costs, as has been recognized according to the invention.
- the “medium-pressure turbine” is the aforementioned first turbine, the “injection turbine” is formed in the context of the present application by the second turbine. Because the method according to the invention is designed as a HAP method, only a single main air compressor is required, which significantly reduces the investment costs.
- the inlet pressures of both turbines are preferably at the same level, in particular at that of the discharge pressure of the main air compressor.
- the output pressure level ie the pressure level provided by the main air compressor
- the amount of air in the form of the third Compressed air flow is fed into the low pressure column (ie the "blowing air", which is expanded in the second turbine, ie the "injection turbine"), raised.
- the increased amount of air expanded in the second turbine thus increases the so-called “air factor”, that is, the total amount of air required for rectification.
- the main air compressor delivers less power and liquid production drops.
- the real volume of air in the warm part remains approximately constant.
- the map of the main air compressor has been reduced in this way, both the amount and the pressure of the compressed air, which i.d.R. more advantageous effect on the efficiency of the main air compressor as a pure pressure reduction.
- a fourth compressed air flow is advantageously used, which is fed into the high pressure column and formed using air, which is compressed to the output pressure level and then cooled to a third temperature level and expanded by means of a throttle.
- a corresponding fourth compressed air flow corresponds to a throttle flow of a conventional air separation process.
- the method according to the invention comprises a first method mode and a second method mode, wherein in the first method mode from the air separation plant, the liquid oxygen-rich air product is discharged in a greater amount liquid than in the second method mode, and wherein in the first method mode, a larger amount of air in the second turbine is relaxed than in the second method mode and thereby at the same time the third compressed air flow in the first method of operation comprises the same larger amount of air than in the second method mode.
- the amount of bubbling air which is expanded by the second turbine and fed into the low-pressure column, is increased.
- an additional cooling demand which consists of the removal of the liquid oxygen product, are covered.
- the liquid oxygen-rich air product which is discharged from the air separation plant, is taken from the low-pressure column.
- the pure oxygen as explained above, or a liquid oxygen product with a lower oxygen content can be used. If such a liquid oxygen-rich air product "discharged liquid", this means that no evaporation takes place within the air separation plant.
- the liquid oxygen-rich air product is discharged in a greater amount liquid than in the second process mode, this may also include that in the second process mode, no liquid oxygen-rich air product is discharged.
- the amount of the liquid oxygen-rich air product that is liquidly discharged from the air separation plant in the first process mode may be 1.5 times, 2 times, 3 times, 4 times, or 5 times the corresponding amount in the second process mode include.
- the increase in the relaxed in the second turbine and at the same time encompassed by the third compressed air flow amount of air is advantageously carried out taking into account a so-called Einblaseäquivalents.
- the injection equivalent initially comprises the amount of air expanded by the second turbine, which at the same time corresponds to the volume of air covered by the third compressed air flow, and additionally the amount of nitrogen-rich streams, which are likewise taken from the high-pressure column.
- These nitrogen-rich streams are liquid nitrogen and pressurized nitrogen, which are provided as nitrogen-rich air products of a corresponding air separation plant. These nitrogen-rich streams are not used as liquid reflux to the high pressure column and the low pressure column.
- the sum of the amount of air expanded in the second turbine and simultaneously encompassed by the third compressed air flow and the amount of such nitrogen-rich streams in the first process mode comprises 12 to 18% and in the second process mode 0 to 8% of the total amount of air fed into the distillation column system.
- This total amount of air fed into the distillation column system also comprises the air expanded in the second turbine.
- variable speed turbine is used in the context of this application only as a distinction from turbines whose speed is adjusted to a fixed speed value, for example by means of appropriately controlled brakes. The same applies to the second turbine.
- the process according to the invention is advantageously used in connection with so-called HAP processes in which the entire air fed into the distillation column system is compressed to a pressure level which is above the pressure level of the high-pressure column using a main air compressor.
- the entire air fed into the distillation column system is brought to the outlet pressure level using a main air compressor.
- the air factor i. the amount of air used to obtain a fixed amount of product, significantly greater than in the second mode of operation, because the relaxed in the second turbine and at the same time included by the third compressed air flow and fed into the low pressure column air amount is greater than in the second process mode.
- a larger amount of liquid product is withdrawn than in the second method mode. Therefore, a larger amount of air must also be conducted through the main air compressor than in the second method mode. Due to the larger air factor in this case the final pressure of the main air compressor, so here referred to as "output pressure level" pressure level, but still less than at lower air factor.
- the air factor is significantly lower than in the first method mode, because the amount of air expanded in the second turbine and at the same time encompassed by the third compressed air flow and fed into the low pressure column is less than in the first method mode.
- a smaller amount of liquid product is withdrawn than in the first process mode.
- output pressure level output pressure level
- the amount of air guided through the main air compressor must be kept the same at reduced pressure, resulting in an increased real volume of this amount of air.
- the load case in the second operating mode is therefore no longer dimensioning for the warm part of the air separation plant.
- the pressure difference with respect to the final pressure of the main air compressor (ie, the "output pressure level") in the first and second process modes is lower than would be the case in conventional methods because, as mentioned, the final pressure of the main air compressor is lower in the first mode of operation due to the larger air factor remains as at a lower air factor. Since both the amount of air compressed in the main air compressor and the pressure used there sink, this load case is generally better in the characteristic diagram than in the case of a constant compressed air quantity and a more reduced pressure.
- the air expanded in the first turbine and the second turbine is supplied to the first turbine and the second turbine at the same pressure level, in particular the outlet pressure level.
- the outlet pressure level in the first process mode is 1 to 10 bar above the outlet pressure level in the second process mode.
- the third pressure level if the mixing column is not operated at the first pressure level, differs, as mentioned, by at most 1 bar from the first one.
- the first temperature level is preferably 110 to 140 ° C, the second temperature level 130 to 240 ° C and the third temperature level 97 to 102 ° C.
- the turbines used in the present invention can be braked in different ways.
- a generator, a booster and / or an oil brake can be used.
- the process according to the invention is particularly suitable for cases in which the first oxygen content is below 99 mole percent, for example 98 to 99 mole percent, and the second oxygen content is 80 to 98 mole percent.
- the oxygen content of the pure oxygen stream, if formed, is advantageously 99 to 100 mole percent.
- a method using a mixing column proves to be particularly energy efficient in these cases.
- the present invention further extends to an air separation plant having a main heat exchanger and a distillation column system comprising a high pressure column adapted for operation at a first pressure level, a low pressure column adapted for operation at a second, lower pressure level, and a mixing column.
- a corresponding system means are provided which are adapted to remove the low-pressure column an oxygen-rich stream with a first oxygen content liquid and feed with the first oxygen content liquid in the mixing column, in particular in the upper region, further a first compressed air flow in gaseous form in the mixing column feed, in particular in the vicinity of the sump, and in the mixing column
- the mixing column head side to remove an oxygen-rich stream with a second oxygen content below the first oxygen content and out of the air separation plant, and the first compressed air flow using of air compressed to an outlet pressure level above the first pressure level and thereafter cooled to a first temperature level and expanded in a first turbine.
- a pure oxygen stream can be removed liquid from the low-pressure column and discharged liquid from the air separation plant.
- means set up for this purpose are available.
- means are provided which are adapted to discharge from the air separation plant, at least temporarily, a liquid, oxygen-rich air product in a liquid state.
- means are provided which are adapted to feed into the high-pressure column a second compressed air stream and this also using the compressed to the output pressure level and then to the first Temperature level cooled and relaxed in the first turbine to form air, fed to the low pressure column a third compressed air flow and form this using air, which is compressed to the output pressure level and then cooled to a second temperature level, relaxed in a second turbine and in the main heat exchanger is further cooled to a third temperature level, and to relax the air in the first turbine to the first and in the second turbine to the second pressure level and to operate the mixing column at the first pressure level or a third pressure level, which is at most 1 bar of different from the first pressure level.
- these means are further configured to supply the first and second turbine relaxed air in the first turbine to the first turbine at the first temperature level and the second turbine at the second temperature level, wherein the first temperature level is at least 20K below the second temperature level ,
- the air separation plant is set up for operation in a first method mode and a second method mode, in which means are provided which in the first method mode from the air separation plant discharge the oxygen-rich liquid air product in a larger amount in a liquid than in the second method mode, and in the first mode of operation to vent a larger amount of air in the second turbine than in the second mode of operation, thereby the third compressed air stream in the first method of operation comprises the same larger amount of air than in the second method of operation.
- FIG. 1 shows an air separation plant according to an embodiment of the invention in the form of a schematic diagram of the system.
- FIG. 1 an air separation plant according to a particularly preferred embodiment of the invention is shown and designated 100 in total.
- the air separation plant 100 is sucked by means of a main air compressor 2 via a filter 1 an air feed stream a and compressed in the example shown to a pressure level of 6 to 15 bar (abs.).
- the compaction can be followed by drying, cooling and purification steps of known type, which for clarity in FIG. 1 not illustrated.
- a correspondingly compressed and purified air stream b is divided into two partial streams c and d, which are supplied at the said pressure level to a main heat exchanger 3 on the warm side, cooled therein and removed at different temperature levels.
- two partial flows e and f are formed by removal from the main heat exchanger 3 at different temperature levels.
- the partial flow e is expanded in a relaxation machine 4, the partial flow f in a relaxation machine 5. Since the partial flow e is cooled to a lower temperature than the partial flow f, the expansion machine 4 is also referred to as a "cold" expansion machine, the expansion machine 5, however, as a "warm” relaxation machine.
- the relaxation of the two partial flows e and f is carried out in each case starting from the mentioned pressure level of 5 to 15 bar (abs.).
- the partial flow e is in the example shown to a pressure level of about 5.4 bar (abs.) Relaxed, the partial flow f, however, to a pressure level of about 1.4 bar (abs.).
- Generators 41 and 51 are coupled to the expansion machines 4 and 5, respectively.
- the partial flow e is again divided into two partial flows g and h after its expansion in the expansion machine 4.
- the partial flow g is supplied close to the bottom of a high-pressure column 61, which is formed as part of a double column 6.
- the partial flow h is relaxed near the sump in a mixing column 7.
- the high pressure column 61 is operated at the mentioned pressure level of about 5.4 bar (abs.), the mixing column 7 at a slightly lower pressure level of about 5.0 bar (abs.).
- the partial flow f is returned to its relaxation in the expansion machine 5 at an intermediate temperature level in the main heat exchanger 3, taken this cold side, and fed into a low pressure column 62, which is also formed as part of the double column 6.
- the low pressure column 62 is operated at the mentioned pressure level of about 1.4 bar (abs.).
- the partial flow d is taken from the main heat exchanger 3 cold side and, starting from the mentioned pressure level of 6 to 15 bar (abs.) Relaxed in the high-pressure column 61.
- a liquid, oxygen-enriched fraction is separated on the swamp side and withdrawn in the form of the current i.
- the current i is passed through a supercooling countercurrent 8 and then released into the low-pressure column 62.
- a nitrogen-rich top product from the head of the high-pressure column 61 is withdrawn and led to a part in the form of the current k through a main condenser 63 of the double column 6 and there at least partially liquefied.
- a portion of the liquid, nitrogen-rich overhead product of the high pressure column 61 is passed (see linkage A) in the form of stream I through the subcooling countercurrent and discharged as a liquid nitrogen-rich air product at the plant boundary.
- Another part of the liquefied, nitrogen-rich overhead product of the high pressure column 61 is recycled as reflux to the high pressure column 61.
- a nitrogen-enriched stream m is withdrawn, also guided by the supercooling countercurrent 8 and relaxed close to the head into the low-pressure column 62.
- a liquid, oxygen-rich fraction is formed, which is subtracted (see link B) in the form of the current n, passed through the supercooling countercurrent 8 and discharged as a liquid oxygen-rich air product at the plant boundary.
- an oxygen-enriched stream o is withdrawn, pressurized by a pump 9 in the liquid state, passed through the subcooling countercurrent 8, heated in the main heat exchanger 3 and fed close to the head into the mixing column 7.
- the mixing column 7 is operated as explained several times. From the top of the mixing column 7, a stream p depleted of oxygen relative to the stream o is withdrawn, heated in the main heat exchanger 3 and discharged as gaseous oxygen product at the plant boundary.
- an impure nitrogen stream q is withdrawn, passed through the subcooling countercurrent 8 and the main heat exchanger 3 and used for example in a purification device for the current a.
- a nitrogen-rich stream r is formed from nitrogen-enriched top product of the low-pressure column 61, which is not passed through the main condenser 63.
- the in the FIG. 1 illustrated air separation plant 100 is configured for two modes of operation, which were previously discussed.
- a first method of operation the amount of the liquid air product discharged here in liquid form from the air separation plant 100 in the form of the flow n is greater than in the second method of operation.
- a larger amount of air is released via the turbine 5 in the first method mode than in the second method mode, so that the air factor increases.
- the pressure and the amount of the flow b ie the final pressure of the main air compressor 2 and the amount of air guided through it, decrease.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
Description
Die Erfindung betrifft ein Verfahren zur Gewinnung eines flüssigen und eines gasförmigen, sauerstoffreichen Luftprodukts in einer Luftzerlegungsanlage und eine zur Durchführung eines derartigen Verfahrens eingerichtete Luftzerlegungsanlage.The invention relates to a method for obtaining a liquid and a gaseous, oxygen-rich air product in an air separation plant and an air separation plant arranged for carrying out such a method.
Die Herstellung von Luftprodukten in flüssigem oder gasförmigem Zustand durch Tieftemperaturzerlegung von Luft in Luftzerlegungsanlagen ist bekannt und beispielsweise bei
Für eine Reihe industrieller Anwendungen wird zumindest nicht ausschließlich reiner Sauerstoff benötigt. Dies eröffnet die Möglichkeit, Luftzerlegungsanlagen hinsichtlich ihrer Erstellungs- und Betriebskosten, insbesondere ihres Energieverbrauchs, zu optimieren. Für Details sei auf Fachliteratur, z.B.
Zur Gewinnung von gasförmigem Drucksauerstoff geringerer Reinheit können unter anderem Luftzerlegungsanlagen mit sogenannten Mischsäulen eingesetzt werden, wie sie seit längerem bekannt und in einer Reihe von Druckschriften, z.B.
In eine Mischsäule werden kopfnah eine sauerstoffreiche Flüssigkeit und sumpfnah gasförmige Druckluft, sogenannte Mischsäulenluft, eingespeist und einander entgegengeschickt. Durch den intensiven Kontakt geht ein gewisser Anteil des leichter flüchtigen Stickstoffs aus der Mischsäulenluft in die sauerstoffreiche Flüssigkeit über. Die sauerstoffreiche Flüssigkeit wird dabei in der Mischsäule verdampft und kann am Kopf der Mischsäule als sogenannter "unreiner" Sauerstoff abgezogen werden. Der unreine Sauerstoff kann der Luftzerlegungsanlage als Gasprodukt entnommen werden. Die Mischsäulenluft ihrerseits wird beim Durchlaufen der Mischsäule verflüssigt, in gewissem Umfang mit Sauerstoff angereichert, und kann aus dem Sumpf der Mischsäule abgezogen werden. Dieser verflüssigte Strom kann anschließend an energetisch und/oder trenntechnisch geeigneter Stelle in das verwendete Destillationssäulensystem eingespeist werden. Durch die Verwendung einer Mischsäule kann die für die Stofftrennung erforderliche Energie auf Kosten der Reinheit des gasförmigen Sauerstoffprodukts beträchtlich reduziert werden.In a mixing column head near an oxygen-rich liquid and near the gaseous compressed air, so-called mixed column air, fed and each other sent to meet. Due to the intensive contact, a certain proportion of the more volatile nitrogen from the mixed column air passes into the oxygen-rich liquid. The oxygen-rich liquid is vaporized in the mixing column and can be removed at the top of the mixing column as so-called "impure" oxygen. The impure oxygen can be taken from the air separation plant as a gas product. The mixing column air in turn is liquefied when passing through the mixing column, enriched to some extent with oxygen, and can be withdrawn from the bottom of the mixing column. This liquefied stream can then be fed into the distillation column system used at an energetically and / or separation-appropriate location. By using a mixing column, the energy required for material separation can be significantly reduced at the expense of the purity of the gaseous oxygen product.
Die
In der
Luftzerlegungsanlagen mit sogenannten Lachmann-Turbinen, mittels derer ein Teil der Einsatzluft in die Niederdrucksäule eingeblasen wird, sind aus der
Nachteilig an bekannten Luftzerlegungsanlagen, auch solchen die mit Mischsäulen arbeiten, ist die eingeschränkte Flexibilität im Betrieb. Der Kältebedarf wird in derartigen Anlagen i.d.R. durch die Entspannung von Luft in einer sogenannten Einblaseturbine gedeckt. Eine derartige Einblaseturbine entspannt Luft von einem Druckniveau von beispielsweise 5,0 bis 6,0 bar auf ein Druckniveau von beispielsweise 1,2 bis 1,6 bar (es handelt sich jeweils um Absolutdrücke; im Rahmen der vorliegenden Erfindung eingesetzte spezifische Druckniveaus sind unten angegeben). In entsprechenden Anlagen ist ein Destillationssäulensystem mit (mindestens) einer Hochdrucksäule und einer Niederdrucksäule vorgesehen. Die Hochdrucksäule wird im erläuterten Beispielfall auf dem erwähnten Druckniveau von 5,0 bis 6,0 bar, die Niederdrucksäule auf dem erwähnten Druckniveau von 1,2 bis 1,6 bar betrieben. Die in der Einblaseturbine entspannte Luft wird in die Niederdrucksäule eingespeist. Die Entspannung ist durch den angegebenen Druckunterschied zwischen Hochdrucksäule und Niederdrucksäule möglich. Die auf diese Weise in die Niederdrucksäule entspannte Luft stört jedoch die Rektifikation, weshalb die Menge der in der Einblaseturbine entspannbaren Luft und damit die Kälteleistung der Anlage insgesamt stark begrenzt sind. Daher können Anlagen mit derartigen Verschaltungen keine nennenswerten Mengen an Flüssigprodukten entnommen werden.A disadvantage of known air separation plants, even those working with mixing columns, is the limited flexibility in operation. The refrigeration demand is covered in such systems usually by the relaxation of air in a so-called injection turbine. Such a blow-in turbine relaxes air from a pressure level of, for example, 5.0 to 6.0 bar to a pressure level of, for example, 1.2 to 1.6 bar (in each case absolute pressures; Invention specific pressure levels are given below). In appropriate plants, a distillation column system with (at least) a high pressure column and a low pressure column is provided. The high-pressure column is operated in the illustrated example case at the mentioned pressure level of 5.0 to 6.0 bar, the low-pressure column at the mentioned pressure level of 1.2 to 1.6 bar. The air released in the injection turbine is fed into the low-pressure column. The relaxation is possible by the specified pressure difference between the high pressure column and low pressure column. However, the relaxed in this way in the low pressure column air disturbs the rectification, which is why the amount of air in the spar turbine relaxable air and thus the cooling capacity of the system are highly limited. Therefore, systems with such interconnections no significant amounts of liquid products can be removed.
Die maximale Entnahmemenge von Flüssigstickstoff und Flüssigsauerstoff in herkömmlichen Anlagen mit Mischsäulen ist daher, wie bei anderen typischen Luftzerlegungsanlagen zur Bereitstellung von gasförmigen Luftprodukten (sogenannten Gasanlagen) auch, auf höchstens ca. 0,5% der eingesetzten Luftmenge begrenzt.The maximum removal rate of liquid nitrogen and liquid oxygen in conventional systems with mixing columns is therefore, as with other typical air separation plants for the provision of gaseous air products (so-called gas systems), limited to at most about 0.5% of the amount of air used.
Ein Verfahren, wie es in der
Es besteht daher der Bedarf nach verbesserten Möglichkeiten zur effizienten und flexiblen Erzeugung flüssiger und gasförmiger sauerstoffreicher Luftprodukte in Luftzerlegungsanlagen mit entsprechenden Mischsäulen.There is therefore a need for improved possibilities for the efficient and flexible production of liquid and gaseous oxygen-rich air products in air separation plants with corresponding mixing columns.
Die vorliegende Erfindung schlägt vor diesem Hintergrund ein Verfahren zur Gewinnung eines flüssigen und eines gasförmigen, sauerstoffreichen Luftprodukts in einer Luftzerlegungsanlage und eine zur Durchführung eines derartigen Verfahrens eingerichtete Luftzerlegungsanlage mit den Merkmalen der unabhängigen Patentansprüche vor. Bevorzugte Ausgestaltungen sind Gegenstand der abhängigen Patentansprüche sowie der nachfolgenden Beschreibung.Against this background, the present invention proposes a method for obtaining a liquid and a gaseous, oxygen-rich air product in an air separation plant and an air separation plant equipped for carrying out such a method with the features of the independent claims. Preferred embodiments are subject of the dependent claims and the following description.
In Luftzerlegungsanlagen kommen zur Verdichtung der Luft Turboverdichter zum Einsatz. Dies gilt beispielsweise für den "Hauptluftverdichter", der sich dadurch auszeichnet, dass durch diesen die gesamte in das Destillationssäulensystem eingespeiste Luftmenge, also die gesamte Einsatzluft, verdichtet wird. Entsprechend kann auch ein "Nachverdichter" vorgesehen sein, in dem ein Teil der im Hauptluftverdichter verdichteten Luftmenge auf einen nochmals höheren Druck gebracht wird, Auch dieser kann als Turboverdichter ausgebildet sein. Zur Verdichtung von Teilluftmengen sind typischerweise weitere Turboverdichter vorgesehen, die auch als Booster bezeichnet werden, im Vergleich zu dem Hauptluftverdichter oder dem Nachverdichter jedoch nur eine Verdichtung in relativ geringem Umfang vornehmen.In air separation plants, turbo compressors are used to compress the air. This applies, for example, to the "main air compressor", which is characterized in that it compresses the entire quantity of air fed into the distillation column system, that is to say the entire feed air. Accordingly, it is also possible to provide a "secondary compressor" in which a part of the air quantity compressed in the main air compressor is brought to an even higher pressure. This, too, can be designed as a turbocompressor. For compressing partial air quantities, further turbocompressors are typically provided, which are also referred to as boosters, but make only a relatively small amount of compaction compared to the main air compressor or the booster compressor.
An mehreren Stellen in Luftzerlegungsanlagen kann ferner Luft entspannt werden, wozu unter anderem Entspannungsmaschinen in Form von Turboexpandern, hier auch kurz als "Turbinen" bezeichnet, zum Einsatz kommen können. Turboexpander können auch mit Turboverdichtern gekoppelt sein und diese antreiben. Werden ein oder mehrere Turboverdichter ohne extern zugeführte Energie, d.h. nur über einen oder mehrere Turboexpander, angetrieben, wird für eine derartige Anordnung auch der Begriff "Turbinenbooster" verwendet. In einem Turbinenbooster sind der Turboexpander und der Turboverdichter mechanisch gekoppelt.At several points in air separation plants can also be relaxed air, including, inter alia, expansion machines in the form of turboexpanders, here also referred to as "turbines" can be used. Turboexpanders can also be coupled with turbo compressors and drive them. If one or more turbocompressors without externally supplied energy, i. driven only by one or more turboexpander, the term "turbine booster" is used for such an arrangement. In a turbine booster, the turboexpander and the turbo compressor are mechanically coupled.
Die vorliegende Anmeldung verwendet zur Charakterisierung von Drücken und Temperaturen die Begriffe "Druckniveau" und "Temperaturniveau", wodurch zum Ausdruck gebracht werden soll, dass Drücke und Temperaturen in einer entsprechenden Anlage nicht in Form exakter Druck- bzw. Temperaturwerte verwendet werden müssen, um das erfinderische Konzept zu verwirklichen. Jedoch bewegen sich derartige Drücke und Temperaturen typischerweise in bestimmten Bereichen, die beispielsweise ± 1%, 5% oder sogar 10% um einen Mittelwert liegen. In der Regel liegen Werte innerhalb eines "Niveaus" nicht mehr als 5 % oder 10 % auseinander. Entsprechende Druckniveaus und Temperaturniveaus können dabei in disjunkten Bereichen liegen oder in Bereichen, die einander überlappen. Insbesondere schließen beispielsweise Druckniveaus unvermeidliche Druckverluste oder zu erwartende Druckverluste, beispielsweise aufgrund von Abkühlungseffekten oder Leitungsverlusten, ein. Entsprechendes gilt für Temperaturniveaus. Bei hier in bar angegebenen Druckniveaus handelt es sich um Absolutdrücke.The present application uses the terms "pressure level" and "temperature level" to characterize pressures and temperatures, which is to express that pressures and temperatures in a given equipment need not be used in the form of exact pressure or temperature values to achieve this to realize innovative concept. However, such pressures and temperatures typically range in certain ranges, such as ± 1%, 5%, or even 10%, about an average. As a rule, values within a "level" are not more than 5% or 10% apart. Corresponding pressure levels and temperature levels can be in disjoint areas or in areas that overlap one another. In particular, for example, pressure levels include unavoidable pressure drops or expected pressure drops, for example, due to cooling effects or line losses. The same applies to temperature levels. The pressure levels specified here in bar are absolute pressures.
Im Rahmen dieser Anmeldung ist von der Gewinnung von Luftprodukten, insbesondere von sauerstoffreichen und stickstoffreichen Luftprodukten bzw. Sauerstoff- und Stickstoffprodukten, die Rede. Ein "Produkt" verlässt die erläuterte Anlage und wird beispielsweise in einem Tank eingelagert oder verbraucht. Es nimmt also nicht mehr nur ausschließlich an den anlageninternen Kreisläufen teil, kann jedoch vor dem Verlassen der Anlage entsprechend verwendet werden, beispielsweise als Kälteträger in einem Wärmetauscher. Der Begriff "Produkt" umfasst also nicht solche Fraktionen oder Ströme, die in der Anlage selbst verbleiben und ausschließlich dort, beispielsweise als Rücklauf, Kühlmittel oder Spülgas, verwendet werden.In the context of this application, the extraction of air products, in particular oxygen-rich and nitrogen-rich air products or oxygen and nitrogen products, the speech. A "product" leaves the described plant and is stored or consumed, for example, in a tank. So it no longer only participates exclusively in the plant-internal circuits, but can be used accordingly before leaving the plant, for example as a refrigerant in a heat exchanger. The term "product" thus does not include such fractions or streams that remain in the plant itself and are used exclusively there, for example as reflux, coolant or purge gas.
Der Begriff "Produkt" beinhaltet ferner eine Mengenangabe. Ein "Produkt" entspricht mindestens 1%, insbesondere mindestens 2%, beispielsweise mindestens 5% oder mindestens 10% der in einer entsprechenden Anlage eingesetzten Luftmenge. Geringere Mengen auch herkömmlicherweise in ausgesprochenen Gasanlagen anfallender und einer solchen Anlage gegebenenfalls entnehmbarer Flüssigfraktionen stellen damit keine "Produkte" im Sinne dieser Anmeldung dar. Beispielsweise werden in bekannten Destillationssäulensystemen der Niederdrucksäule stets geringe Mengen einer sich im Sumpf abscheidenden Flüssigfraktion entnommen, um eine Anreicherung unerwünschter Komponenten wie Methan zu vermeiden. Hierbei handelt es sich aber schon aufgrund der Menge nicht um "Produkte" im Sinne dieser Anmeldung. Durch die Entnahme von Flüssigprodukten wird einer Luftzerlegungsanlage eine beträchtliche Kältemenge "entzogen", die sonst durch Verdampfung dieser Flüssigprodukte zum Teil zurückgewonnen werden könnte. Eine derartige Entnahme wirkt sich jedoch erst ab einer bestimmten Entnahmemenge, also erst dann, wenn tatsächlich ein "Produkt" im Sinne der oben getroffenen Definition entnommen wird, aus.The term "product" further includes a quantity. A "product" corresponds to at least 1%, in particular at least 2%, for example at least 5% or at least 10% of the amount of air used in a corresponding plant. Lower amounts of liquid fractions also conventionally obtained in spent gas plants and optionally removed from such a plant do not constitute "products" within the meaning of this application. For example, in known distillation column systems of the low-pressure column, small amounts of a liquid fraction separating off in the bottom are always removed in order to enrich undesired components like to avoid methane. However, this is not due to the amount of "products" in the sense of this application. By removing liquid products, an air separation plant is "deprived" of a considerable amount of refrigerant, which could otherwise be recovered in part by evaporation of these liquid products. Such a removal, however, affects only from a certain withdrawal amount, so only when actually a "product" is taken in the sense of the above definition, from.
Ein flüssiges oder gasförmiges "sauerstoffreiches Luftprodukt" ist im Sprachgebrauch dieser Anmeldung ein Fluid in entsprechendem Aggregatzustand, das einen Sauerstoffgehalt von mindestens 75%, insbesondere mindestens 80%, auf molarer, Gewichts- oder Volumenbasis aufweist. Auch der "Unreinsauerstoff", der der Mischsäule entnommen wird, ist damit ein sauerstoffreiches Luftprodukt.A liquid or gaseous "oxygen-rich air product" is in the usage of this application, a fluid in a corresponding state of matter having an oxygen content of at least 75%, in particular at least 80%, on a molar, weight or volume basis. Also, the "impure oxygen", which is taken from the mixing column, is thus an oxygen-rich air product.
Die vorliegende Erfindung schlägt ein Verfahren zur Tieftemperaturzerlegung von Luft vor, bei dem eine Luftzerlegungsanlage mit einem Hauptwärmetauscher und einem Destillationssäulensystem verwendet wird, das eine auf einem ersten Druckniveau betriebene Hochdrucksäule, eine auf einem zweiten Druckniveau betriebene Niederdrucksäule und eine Mischsäule umfasst. Das zweite Druckniveau ist geringer als das erste.The present invention proposes a process for the cryogenic separation of air which utilizes an air separation plant having a main heat exchanger and a distillation column system comprising a high pressure column operating at a first pressure level, a low pressure column operating at a second pressure level, and a mixing column. The second pressure level is lower than the first one.
Wie beispielsweise bereits aus der eingangs erwähnten
Durch einen derartigen Betrieb der Mischsäule kann dieser kopfseitig ein sauerstoffreicher Strom mit einem zweiten Sauerstoffgehalt unterhalb des ersten Sauerstoffgehalts entnommen und als gasförmiges sauerstoffreiches Luftprodukt aus der Luftzerlegungsanlage ausgeleitet werden. Bei dem sauerstoffreichen Strom mit dem zweiten Sauerstoffgehalt handelt es sich um den erwähnten "unreinen" Sauerstoff, dessen (zweiter) Sauerstoffgehalt jedoch für bestimmte Anwendungen ausreichend ist und die erwähnte energetische Optimierung ermöglicht.By such operation of the mixing column, this head side can be taken from an oxygen-rich stream having a second oxygen content below the first oxygen content and discharged as a gaseous oxygen-rich air product from the air separation plant. The oxygen-rich stream with the second oxygen content is the mentioned "impure" oxygen, whose (second) oxygen content, however, is sufficient for certain applications and makes possible the mentioned energetic optimization.
In einer entsprechenden Anlage kann der Niederdrucksäule, insbesondere deren Sumpf, ein Reinsauerstoffstrom flüssig entnommen und mit seinem Sauerstoffgehalt als flüssiges sauerstoffreiches Luftprodukt flüssig aus der Luftzerlegungsanlage ausgeleitet werden. Entsprechendes ist in der
In jedem Fall wird auch in der vorliegenden Erfindung aus der Luftzerlegungsanlage ein flüssiges sauerstoffreiches Luftprodukt zumindest zeitweise flüssig ausgeleitet, beispielsweise ein entsprechendes flüssiges sauerstoffreiches Luftprodukt aus der Niederdrucksäule mit dem ersten Sauerstoffgehalt oder entsprechender Reinsauerstoff. Es können auch andere sauerstoffreiche Luftprodukte flüssig aus der Luftzerlegungsanlage ausgeleitet werden. Als Produkt umfasst deren Menge zumindest die oben hinsichtlich "Produkten" angegebenen Werte. Die Menge, in der ein entsprechendes flüssiges sauerstoffreiches Luftprodukt flüssig aus der Luftzerlegungsanlage ausgeleitet werden kann, ist aufgrund der erfindungsgemäß vorgeschlagenen Maßnahmen sehr flexibel.In any case, in the present invention from the air separation plant, a liquid oxygen-rich air product at least temporarily discharged liquid, for example, a corresponding liquid oxygen-rich air product from the low pressure column with the first oxygen content or corresponding pure oxygen. Other oxygen-rich air products can be discharged liquid from the air separation plant. As a product, the amount thereof includes at least the values given above in terms of "products". The amount in which a corresponding liquid oxygen-rich air product can be discharged liquid from the air separation plant is very flexible due to the measures proposed according to the invention.
Ist vorstehend von sauerstoffreichen Strömen, nämlich insbesondere dem sauerstoffreichen Strom mit dem ersten Sauerstoffgehalt und ggf. dem Reinsauerstoffstrom mit dem höheren Sauerstoffgehalt und weiteren sauerstoffreichen Strömen, die Rede, die der Niederdrucksäule flüssig entnommen werden, handelt es sich hierbei um Ströme, die zur Herstellung entsprechender sauerstoffreicher Luftprodukte verwendet werden. Sie werden daher, wie oben zum Begriff "Produkte" erwähnt, in einer Menge aus der Niederdrucksäule ausgeleitet, die sich deutlich von Strömen unterscheidet, die nicht als Produkte bereitgestellt werden, beispielsweise Spülströmen, die lediglich zur Entfernung von Verunreinigungen, beispielsweise aus einem Sumpf der Niederdrucksäule, verwendet werden. Der sauerstoffreiche Strom mit dem ersten Sauerstoffgehalt und ggf. der Reinsauerstoffstrom und andere sauerstoffreiche Ströme werden also jeweils in einer Menge aus der Niederdrucksäule entnommen, die im oben bezüglich eines "Produkts" erwähnten Bereich liegt.Is above of oxygen-rich streams, namely in particular the oxygen-rich stream with the first oxygen content and possibly the pure oxygen stream with the higher oxygen content and other oxygen-rich streams, the speech that are taken from the low-pressure column liquid, these are streams that are suitable for the production of corresponding oxygen-rich air products are used. They are therefore, as mentioned above for the term "products", discharged in an amount from the low pressure column, which differs significantly from streams that are not provided as products, such as purge streams, which are only for the removal of impurities, for example from a swamp the Low pressure column to be used. The oxygen-rich stream with the first oxygen content and possibly the pure oxygen stream and others Oxygen-rich streams are thus taken in each case in an amount from the low-pressure column, which is in the range mentioned above with respect to a "product".
Im Rahmen der vorliegenden Erfindung wird der erste Druckluftstrom, der in Mischsäule eingespeist wird, unter Verwendung von Luft gebildet, die auf ein Ausgangsdruckniveau oberhalb des ersten Druckniveaus verdichtet und danach, insbesondere in dem Hauptwärmetauscher, auf ein erstes Temperaturniveau abgekühlt und in einer ersten Turbine entspannt wird. Wie auch nachfolgend erläutert, kommt die vorliegende Erfindung insbesondere bei sogenannten HAP-Verfahren ("High Air Pressure") zum Einsatz, also Verfahren, bei denen die gesamte Luftmenge, die einem Destillationssäulensystem zugeführt wird, auf einen Druck verdichtet wird, der deutlich oberhalb des höchsten in dem Destillationssäulensystem verwendeten Betriebsdrucks liegt. Unter "deutlich oberhalb" ist dabei im vorliegenden Fall ein Druckunterschied von mindestens 1,0 bar, insbesondere mehr, zu verstehen. Durch die Verwendung einer entsprechenden ersten Turbine kann zusätzliche Kälte generiert werden, die Kälteverluste, insbesondere durch die Entnahme flüssiger sauerstoffreicher Luftprodukte, aus der Luftzerlegungsanlage, ausgleicht. Im Rahmen der vorliegenden Erfindung wird also ein Teil des Kältebedarfs durch die Entspannung der für die Bereitstellung des ersten Druckluftstroms verwendeten Luft, die in der ersten Turbine entspannt wird, gedeckt.In the context of the present invention, the first compressed air flow which is fed into the mixing column is formed using air which is compressed to an initial pressure level above the first pressure level and then, in particular in the main heat exchanger, cooled to a first temperature level and expanded in a first turbine becomes. As also explained below, the present invention is used in particular in so-called HAP ("High Air Pressure") processes, ie processes in which the total amount of air supplied to a distillation column system is compressed to a pressure well above that highest operating pressure used in the distillation column system. By "significantly above" is meant in the present case, a pressure difference of at least 1.0 bar, in particular more. By using a corresponding first turbine, additional cooling can be generated that compensates for cold losses, in particular by removing liquid oxygen-rich air products from the air separation plant. In the context of the present invention, therefore, part of the refrigeration requirement is covered by the expansion of the air used for the provision of the first compressed air flow, which is expanded in the first turbine.
Die vorliegende Erfindung schlägt ferner vor, in die Hochdrucksäule einen zweiten Druckluftstrom einzuspeisen, der ebenfalls unter Verwendung der auf das Ausgangsdruckniveau verdichteten und danach, insbesondere in dem Hauptwärmetauscher, auf das erste Temperaturniveau abgekühlten und in der ersten Turbine entspannten Luft gebildet wird. Ein Teil der in der ersten Turbine entspannten Luft wird also nach ihrer Entspannung in der ersten Turbine in die Mischsäule, ein weiterer Teil in die Hochdrucksäule eingespeist.The present invention further proposes to feed into the high-pressure column a second compressed air stream, which is likewise formed using the compressed to the output pressure level and then, in particular in the main heat exchanger, cooled to the first temperature level and relaxed in the first turbine air. Part of the air expanded in the first turbine is thus fed into the mixing column after its expansion in the first turbine and another part into the high-pressure column.
Ferner schlägt die vorliegende Erfindung vor, in die Niederdrucksäule einen dritten Druckluftstrom einzuspeisen, der unter Verwendung von Luft gebildet wird, die auf das Ausgangsdruckniveau verdichtet und danach, insbesondere in dem Hauptwärmetauscher, auf ein zweites Temperaturniveau abgekühlt, in einer zweiten Turbine entspannt, und danach in dem Hauptwärmetauscher weiter auf ein drittes Temperaturniveau abgekühlt wird.Furthermore, the present invention proposes to feed into the low-pressure column a third compressed air flow, which is formed using air, which is compressed to the outlet pressure level and then, in particular in the main heat exchanger, cooled to a second temperature level, expanded in a second turbine, and thereafter in the main heat exchanger is further cooled to a third temperature level.
Die Luft wird im Rahmen der vorliegenden Erfindung in der ersten Turbine auf das erste, d.h. das Druckniveau der Hochdrucksäule, und in der zweiten Turbine auf das zweite, d.h. das Druckniveau der Niederdrucksäule, entspannt. Die Mischsäule wird im Rahmen der vorliegenden Erfindung auf dem ersten Druckniveau, d.h. dem Druckniveau der Hochdrucksäule, oder auf einem dritten Druckniveau, das sich um höchstens 1 bar von dem ersten Druckniveau unterscheidet, betrieben.The air is in the first turbine in the context of the present invention to the first, i. the pressure level of the high pressure column, and in the second turbine to the second, i. the pressure level of the low pressure column, relaxed. The mixing column is in the context of the present invention at the first pressure level, i. the pressure level of the high-pressure column, or at a third pressure level, which differs by at most 1 bar from the first pressure level operated.
Die in der ersten Turbine und die in der zweiten Turbine entspannte Luft wird im Rahmen der vorliegenden Erfindung der ersten Turbine auf dem ersten Temperaturniveau und der zweiten Turbine auf dem zweiten Temperaturniveau zugeführt, wobei das erste Temperaturniveau mindestens 20 K, insbesondere mindestens 30 K oder mindestens 40 K, unterhalb des zweiten Temperaturniveaus liegt. Insbesondere kann das erste Temperaturniveau 25 bis 35 K oder 28 bis 32 K, weiter insbesondere ca. 30 K, unterhalb des zweiten Temperaturniveaus liegen. Zu den jeweiligen Temperaturniveaus sei auch auf die untenstehenden Erläuterungen verwiesen. Bei der ersten Turbine handelt es sich dabei um eine "kalte" Turbine, bei der zweiten Turbine um eine "warme" Turbine.In the context of the present invention, the air expanded in the first turbine and in the second turbine is supplied to the first turbine at the first temperature level and the second turbine at the second temperature level, wherein the first temperature level is at least 20 K, in particular at least 30 K or at least 40 K, below the second temperature level. In particular, the first temperature level may be 25 to 35 K or 28 to 32 K, more particularly approximately 30 K, below the second temperature level. For the respective temperature levels, reference is also made to the explanations below. The first turbine is a "cold" turbine, the second turbine is a "warm" turbine.
Wollte man in herkömmlichen Verfahren bzw. Anlagen, in denen ein HAP-Verfahren der zuvor erläuterten Art realisiert ist und eine Mischsäule eingesetzt wird, die Flüssigproduktion, d.h. die Menge, in der flüssige Luftprodukte flüssig aus der Luftzerlegungsanlage ausgeleitet werden, reduzieren, müsste der Druck des Hauptluftverdichters bei konstanter, durch den Hauptluftverdichter fließender Luftmenge abgesenkt werden. Ein entsprechend reduzierter Druck bei konstanter Luftmenge vergrößert jedoch das Realvolumen der verdichteten Luft. Daher müssten in herkömmlichen Anlagen die im warmen Teil angeordneten Apparate, insbesondere die Luftreinigungs- und Vorkühleinheiten, deutlich größer dimensioniert werden. Dies ist aus wirtschaftlichen Gründen nicht wünschenswert. Ferner ist eine Druckabsenkung bei konstanter Luftmenge hinsichtlich des Wirkungsgrads des verwendeten Hauptluftverdichters typischerweise nicht optimal.If it was desired in conventional processes or plants, in which a HAP process of the type described above is realized and a mixing column is used, the liquid production, i. reduce the amount in which liquid air products are discharged liquid from the air separation plant, the pressure of the main air compressor would have to be lowered at a constant, flowing through the main air compressor air flow. However, a correspondingly reduced pressure at constant air volume increases the real volume of the compressed air. Therefore, in conventional systems, the devices arranged in the warm part, in particular the air purification and precooling units, would have to be significantly larger. This is not desirable for economic reasons. Furthermore, a reduction in pressure at a constant amount of air is typically not optimal in terms of the efficiency of the main air compressor used.
Für ein Verfahren, in dem der Mischsäulendruck, der sich nach dem geforderten Druck des gasförmigen Sauerstoffprodukts richtet, deutlich unterhalb oder oberhalb des Drucks der Hochdrucksäule liegt, bietet sich ein Prozess an, wie er in der zuvor erläuterten
Liegt hingegen der geforderte Druck des Druckprodukts auf oder nahe dem Druckniveau der Hochdrucksäule von ca. 5 bar, d.h. auf dem ersten Druckniveau oder auf einem dritten Druckniveau, das sich um höchstens 1 bar von dem ersten Druckniveau unterscheidet, wie im Rahmen der vorliegenden Erfindung, so bietet ein HAP-Verfahren unter Verwendung einer Mitteldruck- sowie einer Einblaseturbine Vorteile hinsichtlich der Anlagenflexibilität zur Bereitstellung des flüssigen Sauerstoffprodukts und der Betriebskosten, wie erfindungsgemäß erkannt wurde.On the other hand, if the required pressure of the printed product is at or near the pressure level of the high-pressure column of about 5 bar, i. at the first pressure level, or at a third pressure level that differs from the first pressure level by at most 1 bar, as in the present invention, a HAP process using a medium pressure turbine as well as an injection turbine provides plant flexibility advantages for providing the liquid oxygen product and the operating costs, as has been recognized according to the invention.
Bei der "Mitteldruckturbine" handelt es sich um die erwähnte erste Turbine, die "Einblaseturbine" wird im Rahmen der vorliegenden Anmeldung durch die zweite Turbine gebildet. Weil das erfindungsgemäße Verfahren als HAP-Verfahren ausgebildet ist, ist lediglich ein einziger Hauptluftverdichter erforderlich, was die Investitionskosten deutlich reduziert. Die Eintrittsdrücke beider Turbinen liegen vorzugsweise auf dem gleichen Niveau, insbesondere auf demjenigen des Austrittsdrucks des Hauptluftverdichters.The "medium-pressure turbine" is the aforementioned first turbine, the "injection turbine" is formed in the context of the present application by the second turbine. Because the method according to the invention is designed as a HAP method, only a single main air compressor is required, which significantly reduces the investment costs. The inlet pressures of both turbines are preferably at the same level, in particular at that of the discharge pressure of the main air compressor.
Soll eine vergleichsweise große Menge des flüssigen Sauerstoffprodukts bereitgestellt werden ("höhere Flüssigproduktion"), können im Rahmen einer bevorzugten Ausführungsform der vorliegenden Erfindung das Ausgangsdruckniveau (also das durch den Hauptluftverdichter bereitgestellte Druckniveau) und gleichzeitig dazu die Menge der Luft, die in Form des dritten Druckluftstroms in die Niederdrucksäule eingespeist wird (also der "Einblaseluft", die in der zweiten Turbine entspannt wird, also der "Einblaseturbine"), angehoben werden. Die erhöhte Menge der in der zweiten Turbine entspannten Luft erhöht damit den sogenannten "Luftfaktor", also die insgesamt zur Rektifikation benötigte Luftmenge.If a comparatively large amount of the liquid oxygen product is to be provided ("higher liquid production"), in a preferred embodiment of the present invention, the output pressure level (ie the pressure level provided by the main air compressor) and, at the same time, the amount of air in the form of the third Compressed air flow is fed into the low pressure column (ie the "blowing air", which is expanded in the second turbine, ie the "injection turbine"), raised. The increased amount of air expanded in the second turbine thus increases the so-called "air factor", that is, the total amount of air required for rectification.
Die erwähnte gleichzeitige Druck- und Mengenerhöhung führen der Anlage mehr Exergie zu, der Hauptluftverdichter liefert mehr Leistung und die Flüssigproduktion kann angehoben werden. Gleichzeitig bleibt das Realvolumen der Luft im warmen Teil im Rahmen der vorliegenden Erfindung annähernd konstant, da sowohl Druck als auch Menge gestiegen sind. Im Kennfeld des Hauptluftverdichters hat man auf diese Weise sowohl die Menge als auch den Druck der verdichteten Luft erhöht, was sich i.d.R. vorteilhaft auf den Wirkungsgrad des Hauptluftverdichters auswirkt.The mentioned simultaneous pressure and quantity increase lead the plant more exergy, the main air compressor delivers more power and the liquid production can be raised. At the same time, the real volume of air in the warm part remains approximately constant in the context of the present invention, since both pressure and quantity have increased. In the map of the main air compressor has been increased in this way, both the amount and the pressure of the compressed air, which usually has an advantageous effect on the efficiency of the main air compressor.
Soll hingegen eine vergleichsweise geringe Menge des flüssigen Sauerstoffprodukts bereitgestellt werden ("niedrigere Flüssigproduktion"), werden das Ausgangsdruckniveau und gleichzeitig dazu die Menge der Luft, die in Form des dritten Druckluftstroms in die Niederdrucksäule eingespeist wird, hingegen reduziert. Die reduzierte Menge der in der zweiten Turbine entspannten Luft reduziert den Luftfaktor.On the other hand, if a comparatively small amount of the liquid oxygen product is to be provided ("lower liquid production"), the outlet pressure level and at the same time the amount of air fed into the low pressure column in the form of the third compressed air flow will be reduced. The reduced amount of air expanded in the second turbine reduces the air factor.
Die gleichzeitige Druck- und Mengenabsenkung führen der Anlage also weniger Exergie zu, der Hauptluftverdichter liefert weniger Leistung und die Flüssigproduktion sinkt. Gleichzeitig bleibt wiederum das Realvolumen der Luft im warmen Teil annähernd konstant. Im Kennfeld des Hauptluftverdichters hat man auf diese Weise sowohl die Menge als auch den Druck der verdichteten Luft reduziert, was sich i.d.R. vorteilhafter auf den Wirkungsgrad des Hauptluftverdichters auswirkt als eine reine Druckabsenkung.The simultaneous reduction in pressure and quantity thus lead to less exergy to the system, the main air compressor delivers less power and liquid production drops. At the same time, in turn, the real volume of air in the warm part remains approximately constant. In the map of the main air compressor has been reduced in this way, both the amount and the pressure of the compressed air, which i.d.R. more advantageous effect on the efficiency of the main air compressor as a pure pressure reduction.
Im Rahmen der vorliegenden Erfindung wird vorteilhafterweise ein vierter Druckluftstrom verwendet, der in die Hochdrucksäule eingespeist und unter Verwendung von Luft gebildet wird, die auf das Ausgangsdruckniveau verdichtet und danach auf ein drittes Temperaturniveau abgekühlt und mittels einer Drossel entspannt wird. Ein entsprechender vierter Druckluftstrom entspricht einem Drosselstrom eines herkömmlichen Luftzerlegungsverfahrens.In the present invention, a fourth compressed air flow is advantageously used, which is fed into the high pressure column and formed using air, which is compressed to the output pressure level and then cooled to a third temperature level and expanded by means of a throttle. A corresponding fourth compressed air flow corresponds to a throttle flow of a conventional air separation process.
Das erfindungsgemäße Verfahren umfasst einen ersten Verfahrensmodus und einen zweiten Verfahrensmodus, wobei in dem ersten Verfahrensmodus aus der Luftzerlegungsanlage das flüssige sauerstoffreiche Luftprodukt in einer größeren Menge flüssig ausgeleitet wird als in dem zweiten Verfahrensmodus, und wobei in dem ersten Verfahrensmodus eine größere Luftmenge in der zweiten Turbine entspannt wird als in dem zweiten Verfahrensmodus und hierdurch zugleich der dritte Druckluftstrom in dem ersten Verfahrensmodus dieselbe größere Luftmenge umfasst als in dem zweiten Verfahrensmodus. Mit anderen Worten wird zur Entnahme einer größeren Menge eines flüssigen sauerstoffreichen Luftprodukts im Rahmen der vorliegenden Erfindung die Einblaseluftmenge, die durch die zweite Turbine entspannt und in die Niederdrucksäule eingespeist wird, erhöht. Hierdurch kann ein zusätzlicher Kältebedarf, der aufgrund der Entnahme des flüssigen Sauerstoffprodukts besteht, gedeckt werden.The method according to the invention comprises a first method mode and a second method mode, wherein in the first method mode from the air separation plant, the liquid oxygen-rich air product is discharged in a greater amount liquid than in the second method mode, and wherein in the first method mode, a larger amount of air in the second turbine is relaxed than in the second method mode and thereby at the same time the third compressed air flow in the first method of operation comprises the same larger amount of air than in the second method mode. In other words, to remove a larger amount of a liquid oxygen-rich air product in the present invention, the amount of bubbling air, which is expanded by the second turbine and fed into the low-pressure column, is increased. As a result, an additional cooling demand, which consists of the removal of the liquid oxygen product, are covered.
Das flüssige sauerstoffreiche Luftprodukt, das jeweils aus der Luftzerlegungsanlage ausgeleitet wird, wird der Niederdrucksäule entnommen. Hierbei kann entweder der Reinsauerstoff, wie oben erläutert, oder ein flüssiges Sauerstoffprodukt mit einem niedrigeren Sauerstoffgehalt verwendet werden. Wird ein derartiges flüssiges sauerstoffreiches Luftprodukt "flüssig ausgeleitet", bedeutet dies, dass keine Verdampfung innerhalb der Luftzerlegungsanlage erfolgt. Ist oben angegeben, dass in dem ersten Verfahrensmodus aus der Luftzerlegungsanlage das flüssige sauerstoffreiche Luftprodukt in einer größeren Menge flüssig ausgeleitet wird als in dem zweiten Verfahrensmodus, kann dies auch umfassen, dass in dem zweiten Verfahrensmodus kein flüssiges sauerstoffreiches Luftprodukt ausgeleitet wird. Die Menge des flüssigen sauerstoffreichen Luftprodukts, die in dem ersten Verfahrensmodus flüssig aus der Luftzerlegungsanlage ausgeleitet wird, kann beispielsweise das 1,5-fache, 2-fache, 3-fache, 4-fache oder 5-fache der entsprechenden Menge in dem zweiten Verfahrensmodus umfassen.The liquid oxygen-rich air product, which is discharged from the air separation plant, is taken from the low-pressure column. Here, either the pure oxygen, as explained above, or a liquid oxygen product with a lower oxygen content can be used. If such a liquid oxygen-rich air product "discharged liquid", this means that no evaporation takes place within the air separation plant. It is stated above that in the first method of operation of the air separation plant, the liquid oxygen-rich air product is discharged in a greater amount liquid than in the second process mode, this may also include that in the second process mode, no liquid oxygen-rich air product is discharged. For example, the amount of the liquid oxygen-rich air product that is liquidly discharged from the air separation plant in the first process mode may be 1.5 times, 2 times, 3 times, 4 times, or 5 times the corresponding amount in the second process mode include.
Die Erhöhung der in der zweiten Turbine entspannten und zugleich von dem dritten Druckluftstrom umfassten Luftmenge erfolgt vorteilhafterweise unter Berücksichtigung eines sogenannten Einblaseäquivalents. Das Einblaseäquivalent umfasst zunächst die Menge der durch die zweite Turbine entspannten Luftmenge, die zugleich der von dem dritten Druckluftstrom umfassten Luftmenge entspricht, und zusätzlich die Menge von stickstoffreichen Strömen, die ebenfalls der Hochdrucksäule entnommen werden. Bei diesen stickstoffreichen Strömen handelt es sich um flüssigen Stickstoff und um Druckstickstoff, die als stickstoffreiche Luftprodukte einer entsprechenden Luftzerlegungsanlage zur Verfügung gestellt werden. Diese stickstoffreichen Ströme werden nicht als flüssiger Rücklauf auf die Hochdrucksäule und die Niederdrucksäule verwendet. Vorteilhafterweise umfasst die Summe der in der zweiten Turbine entspannten und zugleich von dem dritten Druckluftstrom umfassten Luftmenge und der Menge solcher stickstoffreicher Ströme in dem ersten Verfahrensmodus 12 bis 18% und in dem zweiten Verfahrensmodus 0 bis 8% der in das Destillationssäulensystem insgesamt eingespeisten Gesamtluftmenge. Diese in das Destillationssäulensystem insgesamt eingespeiste Gesamtluftmenge umfasst auch die in der zweiten Turbine entspannte Luft.The increase in the relaxed in the second turbine and at the same time encompassed by the third compressed air flow amount of air is advantageously carried out taking into account a so-called Einblaseäquivalents. The injection equivalent initially comprises the amount of air expanded by the second turbine, which at the same time corresponds to the volume of air covered by the third compressed air flow, and additionally the amount of nitrogen-rich streams, which are likewise taken from the high-pressure column. These nitrogen-rich streams are liquid nitrogen and pressurized nitrogen, which are provided as nitrogen-rich air products of a corresponding air separation plant. These nitrogen-rich streams are not used as liquid reflux to the high pressure column and the low pressure column. Advantageously, the sum of the amount of air expanded in the second turbine and simultaneously encompassed by the third compressed air flow and the amount of such nitrogen-rich streams in the first process mode comprises 12 to 18% and in the second process mode 0 to 8% of the total amount of air fed into the distillation column system. This total amount of air fed into the distillation column system also comprises the air expanded in the second turbine.
Eine derartige Variabilität ist insbesondere dadurch zu bewerkstelligen, dass die erste Turbine drehzahlvariabel ausgebildet ist bzw. betrieben wird, so dass in den unterschiedlichen Betriebsmodi ein entsprechend unterschiedlicher Luftdurchsatz erzielt werden kann. Der Begriff der "drehzahlvariablen" Turbine wird im Rahmen dieser Anmeldung lediglich als Abgrenzung gegenüber Turbinen verwendet, deren Drehzahl, beispielsweise mittels entsprechend geregelter Bremsen, auf einen festen Drehzahlwert eingestellt wird. Entsprechendes gilt auch für die zweite Turbine.Such variability can be achieved, in particular, by virtue of the fact that the first turbine is designed to be variable in speed or operated, so that a correspondingly different air throughput can be achieved in the different operating modes. The term "variable speed" turbine is used in the context of this application only as a distinction from turbines whose speed is adjusted to a fixed speed value, for example by means of appropriately controlled brakes. The same applies to the second turbine.
Wie bereits erwähnt, kommt das erfindungsgemäße Verfahren vorteilhafterweise im Zusammenhang mit sogenannten HAP-Verfahren zum Einsatz, bei denen die gesamte, in das Destillationssäulensystem eingespeiste Luft unter Verwendung eines Hauptluftverdichters auf ein Druckniveau verdichtet wird, das oberhalb des Druckniveaus der Hochdrucksäule liegt. Es wird also vorteilhafterweise die gesamte, in das Destillationssäulensystem eingespeiste Luft unter Verwendung eines Hauptluftverdichters auf das Ausgangsdruckniveau gebracht.As already mentioned, the process according to the invention is advantageously used in connection with so-called HAP processes in which the entire air fed into the distillation column system is compressed to a pressure level which is above the pressure level of the high-pressure column using a main air compressor. Thus, advantageously, the entire air fed into the distillation column system is brought to the outlet pressure level using a main air compressor.
Im Rahmen einer bevorzugten Ausführungsform der vorliegenden Erfindung ist, wie bereits oben mit anderen Worten erläutert, in dem ersten Verfahrensmodus der Luftfaktor, d.h. die zur Gewinnung einer fixen Produktmenge eingesetzte Luftmenge, deutlich größer als in dem zweiten Verfahrensmodus, weil die in der zweiten Turbine entspannte und zugleich von dem dritten Druckluftstrom umfasste und in die Niederdrucksäule eingespeiste Luftmenge größer als in dem zweiten Verfahrensmodus ist. In dem ersten Verfahrensmodus wird, wie erwähnt, eine größere Flüssigproduktmenge entnommen als in dem zweiten Verfahrensmodus. Es muss auch daher eine größere Luftmenge durch den Hauptluftverdichter geführt werden als in dem zweiten Verfahrensmodus. Aufgrund des größeren Luftfaktors bleibt hierbei der Enddruck des Hauptluftverdichters, also das hier als "Ausgangsdruckniveau" bezeichnete Druckniveau, aber noch immer geringer als bei geringerem Luftfaktor.In a preferred embodiment of the present invention, as explained above in other words, in the first method of operation the air factor, i. the amount of air used to obtain a fixed amount of product, significantly greater than in the second mode of operation, because the relaxed in the second turbine and at the same time included by the third compressed air flow and fed into the low pressure column air amount is greater than in the second process mode. In the first mode of operation, as mentioned, a larger amount of liquid product is withdrawn than in the second method mode. Therefore, a larger amount of air must also be conducted through the main air compressor than in the second method mode. Due to the larger air factor in this case the final pressure of the main air compressor, so here referred to as "output pressure level" pressure level, but still less than at lower air factor.
In dem zweiten Verfahrensmodus ist der Luftfaktor hingegen deutlich geringer als in dem ersten Verfahrensmodus, weil die in der zweiten Turbine entspannte und zugleich von dem dritten Druckluftstrom umfasste und in die Niederdrucksäule eingespeiste Luftmenge geringer als in dem ersten Verfahrensmodus ist. In dem zweiten Verfahrensmodus wird, wie erwähnt, eine geringere Flüssigproduktmenge entnommen als in dem ersten Verfahrensmodus. Dies führt zu einer Verringerung der durch den Hauptluftverdichter geführten Luftmenge bei gleichzeitig geringerem Enddruck (also dem hier als "Ausgangsdruckniveau" bezeichneten Druckniveau) gegenüber dem ersten Verfahrensmodus. Wie erwähnt, muss hingegen bei herkömmlichen Verfahren die durch den Hauptluftverdichter geführte Luftmenge bei verringertem Druck gleichgehalten werden, was zu einem erhöhten Realvolumen dieser Luftmenge führt. Dies ist im Rahmen einer bevorzugten Ausführungsform der Erfindung nicht mehr der Fall, der Lastfall in dem zweiten Betriebsmodus ist also nicht mehr dimensionierend für den warmen Teil der Luftzerlegungsanlage. Gleichzeitig ist der Druckunterschied bezüglich des Enddrucks des Hauptluftverdichters (also dem "Ausgangsdruckniveau") in dem ersten und zweiten Verfahrensmodus geringer als dies in herkömmlichen Verfahren der Fall wäre, weil, wie erwähnt, aufgrund des größeren Luftfaktors der Enddruck des Hauptluftverdichters in dem ersten Verfahrensmodus geringer bleibt als bei einem geringeren Luftfaktor. Da sowohl die im Hauptluftverdichter verdichtete Luftmenge als auch der dort verwendete Druck sinken, liegt dieser Lastfall in der Regel besser im Kennfeld als bei konstanter verdichteter Luftmenge und stärker gesenktem Druck.By contrast, in the second method of operation, the air factor is significantly lower than in the first method mode, because the amount of air expanded in the second turbine and at the same time encompassed by the third compressed air flow and fed into the low pressure column is less than in the first method mode. In the second process mode, as mentioned, a smaller amount of liquid product is withdrawn than in the first process mode. This leads to a reduction of the Main air compressor guided amount of air at the same time lower end pressure (ie the here referred to as "output pressure level" pressure level) compared to the first method mode. As mentioned, however, in conventional methods, the amount of air guided through the main air compressor must be kept the same at reduced pressure, resulting in an increased real volume of this amount of air. This is no longer the case in the context of a preferred embodiment of the invention, the load case in the second operating mode is therefore no longer dimensioning for the warm part of the air separation plant. At the same time, the pressure difference with respect to the final pressure of the main air compressor (ie, the "output pressure level") in the first and second process modes is lower than would be the case in conventional methods because, as mentioned, the final pressure of the main air compressor is lower in the first mode of operation due to the larger air factor remains as at a lower air factor. Since both the amount of air compressed in the main air compressor and the pressure used there sink, this load case is generally better in the characteristic diagram than in the case of a constant compressed air quantity and a more reduced pressure.
Vorteilhafterweise wird die in der ersten Turbine und der zweiten Turbine entspannte Luft der ersten Turbine und der zweiten Turbine auf dem demselben Druckniveau, insbesondere dem Ausgangsdruckniveau, zugeführt. Vorteilhafterweise liegt im Rahmen der vorliegenden Erfindung dabei das Ausgangsdruckniveau in dem ersten Verfahrensmodus um 1 bis 10 bar oberhalb des Ausgangsdruckniveaus in dem zweiten Verfahrensmodus. Insgesamt können im Rahmen der vorliegenden Anmeldung des Ausgangsdruckniveau bei 6 bis 15 bar, das erste Druckniveau bei 4,3 bis 6,9 bar, insbesondere bei ca. 5,4 bar, und das zweite Druckniveau bei 1,3 bis 1,7 bar, insbesondere bei ca. 1,4 bar, liegen. Das dritte Druckniveau, falls die Mischsäule nicht auf dem ersten Druckniveau betrieben wird, unterscheidet sich, wie erwähnt, um höchstens 1 bar von dem ersten. Das erste Temperaturniveau beträgt vorzugsweise 110 bis 140 °C, das zweite Temperaturniveau 130 bis 240 °C und das dritte Temperaturniveau 97 bis 102 °C.Advantageously, the air expanded in the first turbine and the second turbine is supplied to the first turbine and the second turbine at the same pressure level, in particular the outlet pressure level. Advantageously, in the context of the present invention, the outlet pressure level in the first process mode is 1 to 10 bar above the outlet pressure level in the second process mode. Overall, in the context of the present application, the starting pressure level at 6 to 15 bar, the first pressure level at 4.3 to 6.9 bar, in particular at about 5.4 bar, and the second pressure level at 1.3 to 1.7 bar , in particular at about 1.4 bar lie. The third pressure level, if the mixing column is not operated at the first pressure level, differs, as mentioned, by at most 1 bar from the first one. The first temperature level is preferably 110 to 140 ° C, the second temperature level 130 to 240 ° C and the third temperature level 97 to 102 ° C.
Die im Rahmen der vorliegenden Erfindung verwendeten Turbinen können auf unterschiedliche Weise gebremst werden. Insbesondere können ein Generator, ein Booster und/oder eine Ölbremse zum Einsatz kommen.The turbines used in the present invention can be braked in different ways. In particular, a generator, a booster and / or an oil brake can be used.
Das erfindungsgemäße Verfahren eignet sich insbesondere für Fälle, in denen der erste Sauerstoffgehalt unterhalb von 99 Molprozent, beispielsweise bei 98 bis 99 Molprozent, und der zweite Sauerstoffgehalt bei 80 bis 98 Molprozent liegt. Der Sauerstoffgehalt des Reinsauerstoffstroms, falls gebildet, liegt vorteilhafterweise bei 99 bis 100 Molprozent. Ein Verfahren unter Verwendung einer Mischsäule erweist in diesen Fällen als besonders energieeffizient.The process according to the invention is particularly suitable for cases in which the first oxygen content is below 99 mole percent, for example 98 to 99 mole percent, and the second oxygen content is 80 to 98 mole percent. The oxygen content of the pure oxygen stream, if formed, is advantageously 99 to 100 mole percent. A method using a mixing column proves to be particularly energy efficient in these cases.
Die vorliegende Erfindung erstreckt sich ferner auf eine Luftzerlegungsanlage mit einem Hauptwärmetauscher und einem Destillationssäulensystem, das eine für einen Betrieb auf einem ersten Druckniveau eingerichtete Hochdrucksäule, eine für einen Betrieb auf einem zweiten, geringeren Druckniveau eingerichtete Niederdrucksäule und eine Mischsäule umfasst.The present invention further extends to an air separation plant having a main heat exchanger and a distillation column system comprising a high pressure column adapted for operation at a first pressure level, a low pressure column adapted for operation at a second, lower pressure level, and a mixing column.
In einer entsprechenden Anlage sind Mittel vorgesehen, die dafür eingerichtet sind, der Niederdrucksäule einen sauerstoffreichen Strom mit einem ersten Sauerstoffgehalt flüssig zu entnehmen und mit dem ersten Sauerstoffgehalt flüssig in die Mischsäule einzuspeisen, insbesondere in den oberen Bereich, ferner einen ersten Druckluftstrom gasförmig in die Mischsäule einzuspeisen, insbesondere in der Nähe des Sumpfes, und in der Mischsäule dem sauerstoffreichen Strom mit dem ersten Sauerstoffgehalt entgegenzuschicken, der Mischsäule kopfseitig einen sauerstoffreichen Strom mit einem zweiten Sauerstoffgehalt unterhalb des ersten Sauerstoffgehalts zu entnehmen und aus der Luftzerlegungsanlage auszuleiten, und den ersten Druckluftstrom unter Verwendung von Luft zu bilden, die auf ein Ausgangsdruckniveau oberhalb des ersten Druckniveaus verdichtet und danach auf ein erstes Temperaturniveau abgekühlt und in einer ersten Turbine entspannt wird.In a corresponding system means are provided which are adapted to remove the low-pressure column an oxygen-rich stream with a first oxygen content liquid and feed with the first oxygen content liquid in the mixing column, in particular in the upper region, further a first compressed air flow in gaseous form in the mixing column feed, in particular in the vicinity of the sump, and in the mixing column entgegenzusicken the oxygen-rich stream with the first oxygen content, the mixing column head side to remove an oxygen-rich stream with a second oxygen content below the first oxygen content and out of the air separation plant, and the first compressed air flow using of air compressed to an outlet pressure level above the first pressure level and thereafter cooled to a first temperature level and expanded in a first turbine.
Wie erwähnt, kann auch ein Reinsauerstoffstrom flüssig der Niederdrucksäule entnommen und flüssig aus der Luftzerlegungsanlage ausgeleitet werden. In einem derartigen Fall sind hierzu eingerichtete Mittel vorhanden. In jedem Fall sind Mittel bereitgestellt, die dafür eingerichtet sind, aus der Luftzerlegungsanlage zumindest zeitweise ein flüssiges, sauerstoffreiches Luftprodukt in flüssigem Zustand auszuleiten.As mentioned, a pure oxygen stream can be removed liquid from the low-pressure column and discharged liquid from the air separation plant. In such a case, means set up for this purpose are available. In any case, means are provided which are adapted to discharge from the air separation plant, at least temporarily, a liquid, oxygen-rich air product in a liquid state.
Erfindungsgemäß sind Mittel vorgesehen, die dazu eingerichtet sind, in die Hochdrucksäule einen zweiten Druckluftstrom einzuspeisen und diesen ebenfalls unter Verwendung der auf das Ausgangsdruckniveau verdichteten und danach auf das erste Temperaturniveau abgekühlten und in der ersten Turbine entspannten Luft zu bilden, in die Niederdrucksäule einen dritten Druckluftstrom einzuspeisen und diesen unter Verwendung von Luft zu bilden, die auf das Ausgangsdruckniveau verdichtet und danach auf ein zweites Temperaturniveau abgekühlt, in einer zweiten Turbine entspannt und in dem Hauptwärmetauscher weiter auf ein drittes Temperaturniveau abgekühlt wird, und die Luft in der ersten Turbine auf das erste und in der zweiten Turbine auf das zweite Druckniveau zu entspannen und die Mischsäule auf dem ersten Druckniveau oder einem dritten Druckniveau zu betreiben, das sich um höchstens 1 bar von dem ersten Druckniveau unterscheidet.According to the invention means are provided which are adapted to feed into the high-pressure column a second compressed air stream and this also using the compressed to the output pressure level and then to the first Temperature level cooled and relaxed in the first turbine to form air, fed to the low pressure column a third compressed air flow and form this using air, which is compressed to the output pressure level and then cooled to a second temperature level, relaxed in a second turbine and in the main heat exchanger is further cooled to a third temperature level, and to relax the air in the first turbine to the first and in the second turbine to the second pressure level and to operate the mixing column at the first pressure level or a third pressure level, which is at most 1 bar of different from the first pressure level.
Diese Mittel sind erfindungsgemäß ferner dazu eingerichtet, die in der ersten Turbine und die in der zweiten Turbine entspannte Luft der ersten Turbine auf dem ersten Temperaturniveau und der zweiten Turbine auf dem zweiten Temperaturniveau zuzuführen, wobei das erste Temperaturniveau mindestens 20 K unterhalb des zweiten Temperaturniveaus liegt.According to the invention, these means are further configured to supply the first and second turbine relaxed air in the first turbine to the first turbine at the first temperature level and the second turbine at the second temperature level, wherein the first temperature level is at least 20K below the second temperature level ,
Die Luftzerlegungsanlage ist erfindungsgemäß für einen Betrieb in einem ersten Verfahrensmodus und einem zweiten Verfahrensmodus eingerichtet, indem Mittel vorgesehen sind, die dafür eingerichtet sind, in dem ersten Verfahrensmodus aus der Luftzerlegungsanlage das sauerstoffreiche flüssiges Luftprodukt in einer größeren Menge flüssig auszuleiten als in dem zweiten Verfahrensmodus, und in dem ersten Verfahrensmodus eine größere Luftmenge in der zweiten Turbine zu entspannen als in dem zweiten Verfahrensmodus, so dass hierdurch der dritte Druckluftstrom in dem ersten Verfahrensmodus dieselbe größere Luftmenge umfasst als in dem zweiten Verfahrensmodus.According to the invention, the air separation plant is set up for operation in a first method mode and a second method mode, in which means are provided which in the first method mode from the air separation plant discharge the oxygen-rich liquid air product in a larger amount in a liquid than in the second method mode, and in the first mode of operation to vent a larger amount of air in the second turbine than in the second mode of operation, thereby the third compressed air stream in the first method of operation comprises the same larger amount of air than in the second method of operation.
Die Erfindung wird nachfolgend unter Bezugnahme auf die beigefügten Zeichnungen näher erläutert, die bevorzugte Ausführungsformen der vorliegenden Erfindung veranschaulichen.The invention will be explained in more detail below with reference to the accompanying drawings, which illustrate preferred embodiments of the present invention.
In
Der Luftzerlegungsanlage 100 wird mittels eines Hauptluftverdichters 2 über ein Filter 1 ein Einsatzluftstrom a angesaugt und im dargestellten Bespiel auf ein Druckniveau von 6 bis 15 bar (abs.) verdichtet. Der Verdichtung können sich Trocknungs-, Kühl- und Aufreinigungsschritte bekannter Art anschließen, die der Übersichtlichkeit halber in
Ein entsprechend verdichteter und aufgereinigter Luftstrom b wird in zwei Teilströme c und d aufgeteilt, die auf dem genannten Druckniveau einem Hauptwärmetauscher 3 warmseitig zugeführt, in diesem abgekühlt und auf unterschiedlichen Temperaturniveaus entnommen werden.A correspondingly compressed and purified air stream b is divided into two partial streams c and d, which are supplied at the said pressure level to a main heat exchanger 3 on the warm side, cooled therein and removed at different temperature levels.
Aus dem Teilstrom c werden durch eine Entnahme aus dem Hauptwärmetauscher 3 auf unterschiedlichen Temperaturniveaus zwei Teilströme e und f gebildet. Der Teilstrom e wird in einer Entspannungsmaschine 4, der Teilstrom f in einer Entspannungsmaschine 5 entspannt. Da der Teilstrom e auf eine tiefere Temperatur als der Teilstrom f abgekühlt wird, wird die Entspannungsmaschine 4 auch als "kalte" Entspannungsmaschine, die Entspannungsmaschine 5 hingegen als "warme" Entspannungsmaschine bezeichnet.From the partial flow c, two partial flows e and f are formed by removal from the main heat exchanger 3 at different temperature levels. The partial flow e is expanded in a
Die Entspannung der beiden Teilströme e und f erfolgt jeweils ausgehend von dem erwähnten Druckniveau von 5 bis 15 bar (abs.). Der Teilstrom e wird im dargestellten Beispiel auf ein Druckniveau von ca. 5,4 bar (abs.), der Teilstrom f hingegen auf ein Druckniveau von ca. 1,4 bar (abs.) entspannt. Mit den Entspannungsmaschinen 4 und 5 sind jeweils Generatoren 41 bzw. 51 gekoppelt.The relaxation of the two partial flows e and f is carried out in each case starting from the mentioned pressure level of 5 to 15 bar (abs.). The partial flow e is in the example shown to a pressure level of about 5.4 bar (abs.) Relaxed, the partial flow f, however, to a pressure level of about 1.4 bar (abs.).
Der Teilstrom e wird nach seiner Entspannung in der Entspannungsmaschine 4 nochmals in zwei Teilströme g und h aufgeteilt. Der Teilstrom g wird sumpfnah einer Hochdrucksäule 61 zugeführt, die als Teil einer Doppelsäule 6 ausgebildet ist. Der Teilstrom h wird sumpfnah in eine Mischsäule 7 entspannt. Die Hochdrucksäule 61 wird auf dem erwähnten Druckniveau von ca. 5,4 bar (abs.), die Mischsäule 7 auf einem etwas geringeren Druckniveau von ca. 5,0 bar (abs.) betrieben.The partial flow e is again divided into two partial flows g and h after its expansion in the
Der Teilstrom f wird nach seiner Entspannung in der Entspannungsmaschine 5 auf einem Zwischentemperaturniveau in den Hauptwärmetauscher 3 zurückgeführt, diesem kaltseitig entnommen, und in eine Niederdrucksäule 62 eingespeist, die ebenfalls als Teil der Doppelsäule 6 ausgebildet ist. Die Niederdrucksäule 62 wird auf dem erwähnten Druckniveau von ca. 1,4 bar (abs.) betrieben.The partial flow f is returned to its relaxation in the
Der Teilstrom d wird dem Hauptwärmetauscher 3 kaltseitig entnommen und, ausgehend von dem erwähnten Druckniveau von 6 bis 15 bar (abs.) in die Hochdrucksäule 61 entspannt.The partial flow d is taken from the main heat exchanger 3 cold side and, starting from the mentioned pressure level of 6 to 15 bar (abs.) Relaxed in the high-
In der Hochdrucksäule 61 wird eine flüssige, sauerstoffangereicherte Fraktion sumpfseitig abgeschieden und in Form des Stroms i abgezogen. Der Strom i wird durch einen Unterkühlungsgegenströmer 8 geführt und anschließend in die Niederdrucksäule 62 entspannt.In the high-
Ein stickstoffreiches Kopfprodukt vom Kopf der Hochdrucksäule 61 wird abgezogen und zu einem Teil in Form des Stroms k durch einen Hauptkondensator 63 der Doppelsäule 6 geführt und dort zumindest teilweise verflüssigt. Ein Teil des flüssigen, stickstoffreichen Kopfprodukts der Hochdrucksäule 61 wird (siehe Verknüpfung A) in Form des Stroms l durch den Unterkühlungsgegenströmer geführt und als flüssiges stickstoffreiches Luftprodukt an der Anlagengrenze abgegeben. Ein weiterer Teil des verflüssigten, stickstoffreichen Kopfprodukts der Hochdrucksäule 61 wird als Rücklauf auf die Hochdrucksäule 61 zurückgeführt.A nitrogen-rich top product from the head of the high-
Von einem Zwischenboden der Hochdrucksäule 61 wird ein stickstoffangereicherter Strom m abgezogen, ebenfalls durch den Unterkühlungsgegenströmer 8 geführt und kopfnah in die Niederdrucksäule 62 entspannt.From a false bottom of the high-
Im Sumpf der Niederdrucksäule wird eine flüssige, sauerstoffreiche Fraktion gebildet, die (siehe Verknüpfung B) in Form des Stroms n abgezogen, teilweise durch den Unterkühlungsgegenströmer 8 geführt und als flüssiges sauerstoffreiches Luftprodukt an der Anlagengrenze abgegeben wird.In the bottom of the low-pressure column, a liquid, oxygen-rich fraction is formed, which is subtracted (see link B) in the form of the current n, passed through the supercooling
Von einem Zwischenboden der Niederdrucksäule 62 wird ein sauerstoffangereicherter Strom o abgezogen, mittels einer Pumpe 9 in flüssigem Zustand druckbeaufschlagt, durch den Unterkühlungsgegenströmer 8 geführt, in dem Hauptwärmetauscher 3 erwärmt und kopfnah in die Mischsäule 7 eingespeist. Die Mischsäule 7 wird wie mehrfach erläutert betrieben. Vom Kopf der Mischsäule 7 wird ein gegenüber dem Strom o an Sauerstoff abgereicherter Strom p abgezogen, im Hauptwärmetauscher 3 erwärmt und als gasförmiges Sauerstoffprodukt an der Anlagengrenze abgegeben.From an intermediate bottom of the
Vom Kopf der Niederdrucksäule 62 wird ein unreiner Stickstoffstrom q abgezogen, durch den Unterkühlungsgegenströmer 8 und den Hauptwärmetauscher 3 geführt und beispielsweise in einer Aufreinigungseinrichtung für den Strom a eingesetzt.From the top of the low-
Ein stickstoffreicher Strom r wird aus nicht durch den Hauptkondensator 63 geführtem, stickstoffangereichertem Kopfprodukt der Niederdrucksäule 61 gebildet.A nitrogen-rich stream r is formed from nitrogen-enriched top product of the low-
Die in der
Claims (13)
- Process for the low-temperature separation of air, in which an air separation system (100) having a main heat exchanger (3) and a distillation column system (6, 7) is used, which distillation column system comprises a high-pressure column (61) operated at a first pressure level, a low-pressure column (62) operated at a second, lower pressure level, and a mixing column (7), and in which- an oxygen-rich stream (n) having a first oxygen content is withdrawn in the liquid state from the low-pressure column (62) and is fed in the liquid state with the first oxygen content into the mixing column (7),- in addition, a first compressed-air stream (h) is fed in the gaseous state into the mixing column (7) and, in the mixing column (7), is sent in counterflow to the oxygen-rich stream (n) having the first oxygen content,- an oxygen-rich stream (o) having a second oxygen content below the first oxygen content is withdrawn from the mixing column (7) overhead and is passed out of the air separation system (100),- the first compressed-air stream (h) is formed using air that is compressed to a starting pressure level above the first pressure level and thereafter is cooled to a first temperature level, is fed at the first temperature level to a first turbine (4) and is expanded in the first turbine (4),- a liquid oxygen-rich air product is passed in the liquid state out of the air separation system (100) at least at times,- a second compressed-air stream (g) is fed into the high-pressure column (61), which second compressed-air stream is likewise formed using the air that is compressed to the starting pressure level and thereafter cooled to the first temperature level and expanded in the first turbine (4),- a third compressed-air stream (f) is fed into the low-pressure column (62), which third compressed-air stream is formed using air that is compressed to the starting pressure level and thereafter cooled to a second temperature level, fed at the second temperature level to a second turbine (5), expanded in the second turbine (5) and cooled further in the main heat exchanger (3) to a third temperature level,- the air is expanded in the first turbine (4) to the first pressure level and in the second turbine (5) to the second pressure level, and the mixing column (7) is operated at the first pressure level or a third pressure level that differs from the first pressure level by at most 1 bar,- the first temperature level is at least 20 K below the second temperature level, and- the process comprises a first process mode and a second process mode, wherein, in the first process mode, the liquid oxygen-rich air product is passed out of the air separation system (100) in a larger amount than in the second process mode, and in the first process mode, a larger amount of air is expanded in the second turbine (5) than in the second process mode and as a result, at the same time the third compressed-air stream (f) in the first process mode comprises the same larger amount of air than in the second process mode.
- Process according to Claim 1, in which a fourth compressed-air stream (f) is fed into the high-pressure column (62), which fourth compressed-air stream is formed using air which is compressed to the starting pressure level and thereafter is cooled to a third temperature level and is expanded by means of a throttle.
- Process according to Claim 1, in which one or more nitrogen-rich streams (1, q) are withdrawn from the high-pressure column (61) and are passed out of the air separation system (100), wherein the amount of air expanded in the second turbine (4) and at the same time comprised by the third compressed-air stream (f) is adjusted in such a manner that a sum of the amount of the amount of air expanded by the second turbine (4) and at the same time comprised by the third compressed-air stream (f) and the amount comprised by the nitrogen-rich stream or streams (1, q), in the first process mode, corresponds to 12 to 18 per cent of the total amount of air fed into the distillation column system (6, 7) and in the second process mode corresponds to 0 to 8 per cent of the total amount of air fed into the distillation column system (6, 7).
- Process according to Claim 1 or 3, in which all of the air fed into the distillation column system (6, 7) is brought to the starting pressure level using a main air compressor (2).
- Method according to Claim 4, in which, in the first process mode, a larger amount of air is conducted through the main air compressor (2) at a higher pressure than in the second process mode.
- Process according to one of the preceding claims, in which the air expanded in the first turbine (4) and the second turbine (5) is fed to the first turbine (4) and to the second turbine (5) at the same pressure level.
- Process according to one of the preceding claims, in which the starting pressure in the first process mode is 1 to 10 bar above the starting pressure in the second process mode.
- Process according to one of the preceding claims, in which the starting pressure level is 6 to 15 bar (abs.), the first pressure level is 4.3 to 6.9 bar (abs.) and the second pressure level is 1.3 to 1.7 bar (abs.).
- Process according to one of the preceding claims, in which the first temperature level is 110 to 140°C, the second temperature level is 130 to 240°C, and the third temperature level is 97 to 102°C.
- Process according to one of the preceding claims, in which the first turbine (4) and/or the second turbine (5) is or are braked using a generator, a booster and/or an oil brake.
- Process according to one of the preceding claims, in which the first oxygen content is 99 to 100 mol per cent and the second oxygen content is 80 to 98 mol per cent.
- Process according to one of the preceding claims, in which the first turbine (4) and the second turbine (5) are variable-speed turbines.
- Air separation system (100) having a main heat exchanger (3) and a distillation column system (6, 7) that comprises a high-pressure column (61) equipped for operation at a first pressure level, a low-pressure column (62) equipped for operation at a second, lower pressure level, and a mixing column (7), and in which means are provided that are equipped to- withdraw in the liquid state an oxygen-rich stream (n) having a first oxygen content from the low-pressure column (62) and to feed it in the liquid state with the first oxygen content into the mixing column (7),- in addition, to feed a first compressed-air stream (h) in the gaseous state into the mixing column (7) and, in the mixing column (7), to send it in counterflow to the oxygen-rich stream (n) having the first oxygen content,- to withdraw from the mixing column (7) overhead an oxygen-rich stream (o) having a second oxygen content below the first oxygen content and to pass it out of the air separation system (100),- to form the first compressed-air stream (h) using air that is compressed to a starting pressure level above the first pressure level and thereafter is cooled to a first temperature level, is fed at the first temperature level to a first turbine (4) and is expanded in the first turbine (4),- to pass a liquid oxygen-rich air product in the liquid state out of the air separation system (100) at least at times,- feed a second compressed-air stream (g) into the high-pressure column (62) and to form this second compressed-air stream likewise using the air that is compressed to the starting pressure level and thereafter cooled to the first temperature level and expanded in the first turbine (4),- to feed a third compressed-air stream (f) into the low-pressure column (62) and form this third compressed-air stream using air that is compressed to the starting pressure level and thereafter cooled to a second temperature level, fed at the second temperature level to a second turbine (5), expanded in the second turbine (4) and cooled further in the main heat exchanger (3) to a third temperature level,- to expand the air in the first turbine (4) to the first pressure level and in the second turbine (5) to the second pressure level and to operate the mixing column (7) at the first pressure level or a third pressure level that differs from the first pressure level by at most 1 bar, wherein the first temperature level is at least 20 K below the second temperature level,wherein the air separation system is equipped for operation in a first process mode and a second process mode, by means being provided that are equipped to- pass, in the first process mode, the liquid oxygen-rich air product out of the air separation system (100) in a larger amount than in the second process mode, and- to expand, in the first process mode, a larger amount of air in the second turbine (5) than in the second process mode, so that as a result the third compressed-air stream (f) in the first process mode comprises the same larger amount of air than in the second process mode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL16020460T PL3179187T3 (en) | 2015-12-07 | 2016-11-23 | Method for obtaining a liquid and a gaseous oxygen-rich air product in an air breakdown apparatus and air breakdown apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15003483.3A EP3179186A1 (en) | 2015-12-07 | 2015-12-07 | Method for obtaining a liquid and a gaseous oxygen-rich air product in an air breakdown apparatus and air breakdown apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3179187A1 EP3179187A1 (en) | 2017-06-14 |
EP3179187B1 true EP3179187B1 (en) | 2019-01-30 |
Family
ID=54838147
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15003483.3A Withdrawn EP3179186A1 (en) | 2015-12-07 | 2015-12-07 | Method for obtaining a liquid and a gaseous oxygen-rich air product in an air breakdown apparatus and air breakdown apparatus |
EP16020460.8A Active EP3179187B1 (en) | 2015-12-07 | 2016-11-23 | Method for obtaining a liquid and a gaseous oxygen-rich air product in an air breakdown apparatus and air breakdown apparatus |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15003483.3A Withdrawn EP3179186A1 (en) | 2015-12-07 | 2015-12-07 | Method for obtaining a liquid and a gaseous oxygen-rich air product in an air breakdown apparatus and air breakdown apparatus |
Country Status (7)
Country | Link |
---|---|
EP (2) | EP3179186A1 (en) |
CN (1) | CN107131718B (en) |
AU (1) | AU2016269434B2 (en) |
BR (1) | BR102016028677B1 (en) |
CL (1) | CL2016003150A1 (en) |
PL (1) | PL3179187T3 (en) |
RU (1) | RU2722074C2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019081065A1 (en) | 2017-10-24 | 2019-05-02 | Linde Aktiengesellschaft | Method and apparatus for treating a sour gas mixture |
EP3727646B1 (en) | 2017-12-19 | 2023-05-24 | Linde GmbH | Gas treatment method including an oxidative process providing waste heat and corresponding apparatus |
EP3557166A1 (en) | 2018-04-19 | 2019-10-23 | Linde Aktiengesellschaft | Method for the low-temperature decomposition of air and air separation plant |
EP3614083A1 (en) * | 2018-08-22 | 2020-02-26 | Linde Aktiengesellschaft | Air separation system, method for cryogenic decomposition of air using air separation system and method for creating an air separation system |
US20200080773A1 (en) * | 2018-09-07 | 2020-03-12 | Zhengrong Xu | Cryogenic air separation unit with flexible liquid product make |
WO2020083527A1 (en) | 2018-10-23 | 2020-04-30 | Linde Aktiengesellschaft | Method and unit for low-temperature air separation |
WO2020160842A1 (en) | 2019-02-07 | 2020-08-13 | Linde Gmbh | Gas treatment method and apparatus including an oxidative process for treating a sour gas mixture using gas from an air separation process |
WO2022016416A1 (en) * | 2020-07-22 | 2022-01-27 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Argon enhancing method and device |
JP2024013252A (en) * | 2022-07-20 | 2024-02-01 | 大陽日酸株式会社 | Heat exchanger |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT961138B (en) | 1971-02-01 | 1973-12-10 | Air Liquide | PLANT FOR COMPRESSING A FLUID BY EXPANSION OF ANOTHER FLUID |
GB2079428A (en) * | 1980-06-17 | 1982-01-20 | Air Prod & Chem | A method for producing gaseous oxygen |
EP0383994A3 (en) * | 1989-02-23 | 1990-11-07 | Linde Aktiengesellschaft | Air rectification process and apparatus |
US5379598A (en) * | 1993-08-23 | 1995-01-10 | The Boc Group, Inc. | Cryogenic rectification process and apparatus for vaporizing a pumped liquid product |
US5454227A (en) | 1994-08-17 | 1995-10-03 | The Boc Group, Inc. | Air separation method and apparatus |
US5490391A (en) * | 1994-08-25 | 1996-02-13 | The Boc Group, Inc. | Method and apparatus for producing oxygen |
DE19803437A1 (en) | 1998-01-29 | 1999-03-18 | Linde Ag | Oxygen and nitrogen extracted by low-temperature fractional distillation |
DE19951521A1 (en) | 1999-10-26 | 2001-05-03 | Linde Ag | Recovering pressurized product by low temperature decomposition of air in rectification system comprises cold compressing heat carrier stream before introducing into mixing column |
DE10015602A1 (en) | 2000-03-29 | 2001-10-04 | Linde Ag | Method and device for obtaining a printed product by low-temperature separation of air |
DE10139727A1 (en) | 2001-08-13 | 2003-02-27 | Linde Ag | Method and device for obtaining a printed product by low-temperature separation of air |
DE10209421A1 (en) | 2002-03-05 | 2003-04-03 | Linde Ag | Process for recovering a compressed product comprises subjecting air to low temperature decomposition in a rectification system consisting of a high pressure column and a low pressure column |
DE10217093A1 (en) | 2002-04-17 | 2003-01-23 | Linde Ag | Separation column system, for separation of high purity nitrogen or oxygen, has temperature measurements at high pressure column and mixer column to set purity according to temperature |
DE10228111A1 (en) | 2002-06-24 | 2004-01-15 | Linde Ag | Air separation process and plant with mixing column and krypton-xenon extraction |
EP1387136A1 (en) | 2002-08-02 | 2004-02-04 | Linde AG | Process and device for producing impure oxygen by cryogenic air distillation |
EP1666824A1 (en) | 2004-12-03 | 2006-06-07 | Linde Aktiengesellschaft | Process and device for the recovery of Argon by cryogenic separation of air |
FR2895068B1 (en) * | 2005-12-15 | 2014-01-31 | Air Liquide | AIR SEPARATION METHOD BY CRYOGENIC DISTILLATION |
FR2913759B1 (en) * | 2007-03-13 | 2013-08-16 | Air Liquide | METHOD AND APPARATUS FOR GENERATING GAS AIR FROM THE AIR IN A GAS FORM AND LIQUID WITH HIGH FLEXIBILITY BY CRYOGENIC DISTILLATION |
DE102012017484A1 (en) | 2012-09-04 | 2014-03-06 | Linde Aktiengesellschaft | Process and plant for the production of liquid and gaseous oxygen products by cryogenic separation of air |
DE102013002094A1 (en) * | 2013-02-05 | 2014-08-07 | Linde Aktiengesellschaft | Method for producing liquid and gaseous oxygen by low temperature separation of air in air separation system in industrial application, involves feeding feed air flow to portion in mixed column and to another portion in separating column |
EP2980514A1 (en) * | 2014-07-31 | 2016-02-03 | Linde Aktiengesellschaft | Method for the low-temperature decomposition of air and air separation plant |
-
2015
- 2015-12-07 EP EP15003483.3A patent/EP3179186A1/en not_active Withdrawn
-
2016
- 2016-11-23 PL PL16020460T patent/PL3179187T3/en unknown
- 2016-11-23 EP EP16020460.8A patent/EP3179187B1/en active Active
- 2016-12-06 BR BR102016028677-8A patent/BR102016028677B1/en active IP Right Grant
- 2016-12-06 RU RU2016147701A patent/RU2722074C2/en active
- 2016-12-06 AU AU2016269434A patent/AU2016269434B2/en active Active
- 2016-12-06 CL CL2016003150A patent/CL2016003150A1/en unknown
- 2016-12-06 CN CN201611273153.9A patent/CN107131718B/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
PL3179187T3 (en) | 2019-07-31 |
CN107131718B (en) | 2020-12-22 |
CL2016003150A1 (en) | 2017-06-02 |
EP3179187A1 (en) | 2017-06-14 |
RU2722074C2 (en) | 2020-05-26 |
RU2016147701A3 (en) | 2020-04-14 |
RU2016147701A (en) | 2018-06-07 |
AU2016269434B2 (en) | 2022-03-31 |
BR102016028677B1 (en) | 2022-08-16 |
CN107131718A (en) | 2017-09-05 |
EP3179186A1 (en) | 2017-06-14 |
BR102016028677A2 (en) | 2017-07-25 |
AU2016269434A1 (en) | 2017-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3179187B1 (en) | Method for obtaining a liquid and a gaseous oxygen-rich air product in an air breakdown apparatus and air breakdown apparatus | |
EP1067345B1 (en) | Process and device for cryogenic air separation | |
EP2980514A1 (en) | Method for the low-temperature decomposition of air and air separation plant | |
EP2963370B1 (en) | Method and device for the cryogenic decomposition of air | |
EP1074805B1 (en) | Process for producing oxygen under pressure and device therefor | |
EP3410050B1 (en) | Method for producing one or more air products and air separation system | |
WO2021204424A2 (en) | Process for cryogenic fractionation of air, air fractionation plant and integrated system composed of at least two air fractionation plants | |
EP3870915A1 (en) | Method and unit for low-temperature air separation | |
EP2963369B1 (en) | Method and device for the cryogenic decomposition of air | |
WO2020164799A1 (en) | Method and system for providing one or more oxygen-rich, gaseous air products | |
WO2014154339A2 (en) | Method for air separation and air separation plant | |
DE19933558C5 (en) | Three-column process and apparatus for the cryogenic separation of air | |
EP2906889B1 (en) | Process and facility for generating liquid and gaseous oxygen products by low-temperature separation of air | |
DE102012021694A1 (en) | Process for the cryogenic separation of air in an air separation plant and air separation plant | |
DE102016015446A1 (en) | Process for the cryogenic separation of air and air separation plant | |
DE10045128A1 (en) | Method and device for producing high-purity nitrogen by low-temperature air separation | |
DE202018006161U1 (en) | Plant for the cryogenic separation of air | |
EP4127583B1 (en) | Process and plant for low-temperature separation of air | |
WO2020048634A1 (en) | Method for the low-temperature separation of air and air separation plant | |
EP4435364A1 (en) | Method for the low-temperature separation of air, and air separation plant | |
DE10339230A1 (en) | Process for decomposing air at low temperatures in a rectifier system for nitrogen-oxygen removal comprises operating the process in a first time section in a gas operation and in a second time section in a liquid operation | |
EP4435365A1 (en) | Method and system for the low-temperature separation of air, and method and system for producing ammonia | |
EP4211409A1 (en) | Method for obtaining one or more air products, and air fractionation plant | |
WO2022263013A1 (en) | Method and plant for providing a pressurized oxygen-rich, gaseous air product | |
WO2021204418A1 (en) | Method for producing a gaseous and a liquid nitrogen product by means of a low-temperature separation of air, and air separation system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20171206 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180815 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1093618 Country of ref document: AT Kind code of ref document: T Effective date: 20190215 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502016003245 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190430 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190130 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190130 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190130 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190530 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190130 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190501 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190130 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190430 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190130 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190530 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190130 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190130 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190130 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190130 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190130 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190130 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190130 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502016003245 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190130 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20191031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190130 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502016003245 Country of ref document: DE Owner name: LINDE GMBH, DE Free format text: FORMER OWNER: LINDE AKTIENGESELLSCHAFT, 80331 MUENCHEN, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191123 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191130 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190130 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20191130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190130 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20201123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20161123 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190130 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1093618 Country of ref document: AT Kind code of ref document: T Effective date: 20211123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211123 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231124 Year of fee payment: 8 Ref country code: DE Payment date: 20231120 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20231114 Year of fee payment: 8 |