EP2906889B1 - Process and facility for generating liquid and gaseous oxygen products by low-temperature separation of air - Google Patents
Process and facility for generating liquid and gaseous oxygen products by low-temperature separation of air Download PDFInfo
- Publication number
- EP2906889B1 EP2906889B1 EP13755972.0A EP13755972A EP2906889B1 EP 2906889 B1 EP2906889 B1 EP 2906889B1 EP 13755972 A EP13755972 A EP 13755972A EP 2906889 B1 EP2906889 B1 EP 2906889B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- column
- pressure
- air
- low
- separation column
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04163—Hot end purification of the feed air
- F25J3/04169—Hot end purification of the feed air by adsorption of the impurities
- F25J3/04175—Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04296—Claude expansion, i.e. expanded into the main or high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/04—Processes or apparatus using separation by rectification in a dual pressure main column system
- F25J2200/06—Processes or apparatus using separation by rectification in a dual pressure main column system in a classical double column flow-sheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/90—Details relating to column internals, e.g. structured packing, gas or liquid distribution
- F25J2200/94—Details relating to the withdrawal point
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/50—Oxygen or special cases, e.g. isotope-mixtures or low purity O2
- F25J2215/52—Oxygen production with multiple purity O2
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2235/00—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
- F25J2235/50—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/0409—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04193—Division of the main heat exchange line in consecutive sections having different functions
- F25J3/042—Division of the main heat exchange line in consecutive sections having different functions having an intermediate feed connection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
- F25J3/04393—Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/0446—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases
- F25J3/04466—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases for producing oxygen as a mixing column overhead gas by mixing gaseous air feed and liquid oxygen
Definitions
- the invention relates to a method for generating liquid and gaseous oxygen products by the low-temperature decomposition of air using a mixing column and a corresponding air separation plant.
- oxygen products The production of oxygen or oxygen-rich mixtures, hereinafter referred to as oxygen products, is usually carried out by the low-temperature decomposition of air in air separation plants with known distillation column systems. These can be designed as two-pillar systems, in particular as classic double-pillar systems, but also as three-pillar or multi-pillar systems. Furthermore, devices for obtaining further air components, in particular the noble gases krypton, xenon and / or argon, can be provided.
- air separation systems with so-called mixing columns can be used for this purpose, as shown in EP 0 531 182 A1 , EP 0 697 576 A1 , EP 0 698 772 A1 , EP 1 139 046 A1 , DE 101 39 727 A1 , DE 102 28 111 A1 , DE 199 51 521 A1 as U.S. 5,490,391 A are shown.
- a liquid, oxygen-rich stream is fed into a mixing column at the upper end and a gaseous air stream at the lower end and sent towards each other. Through intensive contact, a certain proportion of the more volatile nitrogen is transferred from the air flow to the oxygen-rich flow.
- the oxygen-rich stream is vaporized in the mixing column and at its upper end as gaseous, "impure” oxygen deducted.
- the impure oxygen can be taken from the air separation plant as a gaseous oxygen product.
- the air flow in turn is liquefied, enriched to a certain extent with oxygen, and drawn off at the lower end of the mixing column.
- the liquefied air stream can then be fed into the distillation column system used at a point suitable for energy and / or separation technology.
- a method according to the invention is used to generate a liquid oxygen product and a gaseous oxygen product by the low-temperature decomposition of air.
- a distillation column system of an air separation plant is used for this.
- a liquid fraction with a first, higher oxygen content is made from the Removed the low pressure separation column of the distillation column system and led out of the air separation plant in liquid form.
- a liquid fraction with a second, lower oxygen content is taken from the same low-pressure separation column of the distillation column system and evaporated in a mixing column at a mixing column pressure against mixing column air, as explained above.
- the gaseous oxygen product is also led out of the air separation plant, but in the gaseous state.
- the liquid oxygen product is also referred to below as “pure” and the gaseous oxygen product is also referred to as “impure” oxygen, the possible contents of oxygen being given below.
- the purity of the “pure” oxygen product depends on the type of air separation plant used and the requirements of the respective consumer. As explained, the production of “impure” gaseous oxygen products can be carried out in an energetically favorable manner with mixing columns.
- the terms “higher” and “lower” oxygen content relate to one another.
- product also includes a quantity.
- a "product” corresponds to at least 1%, in particular at least 2%, for example at least 5% or at least 10% of the amount of air used in a corresponding system. Smaller amounts of liquid fractions also conventionally occurring in specific gas systems and possibly removable from such a system do not constitute "products" in the sense of this application this Liquid products could be partially recovered. However, such a withdrawal only takes effect from a certain withdrawal quantity, that is, only when a "product” in the sense of the definition given above is actually withdrawn.
- cryogenic liquids obtained as intermediate products can be evaporated in gas systems and used to cool the air used in particular. If, however, liquid products, for example liquid oxygen and / or nitrogen, are to be removed from an air separation plant, this amount of cold is thereby withdrawn from the system. The "missing" cold in liquid systems must therefore also be generated, ultimately in the form of compressor power.
- the invention develops its particular advantages in plants which are used to produce a gaseous oxygen product with, for example, less than 98 mol% (mol%) purity and, at the same time, larger amounts of a "pure" liquid oxygen product in the sense used here.
- the process proves to be highly efficient and allows 1% to 5% or 1% to 10% of the total air supplied to the air separation plant in compressed form (referred to in this application as "total air") in the form of liquid products.
- total air total air
- the method presented here can, for example, be based on an air separation plant with a double column system.
- double column systems comprise a high pressure separation column and a low pressure separation column for separating oxygen and nitrogen.
- the high-pressure separation column operates at an operating pressure of, for example, 5 to 7.5 bar, in particular 5.5 to 6 bar
- the low-pressure separation column operates at an operating pressure of, for example, 1.3 to 1.8 bar, in particular 1.3 to 1.6 bar.
- the pressures specified below are absolute pressures.
- the high-pressure separation column and the low-pressure separation column can also be at least partially structurally separated from one another. In this case, the two-pillar systems mentioned at the beginning are involved.
- the invention can also be implemented with three or multiple column systems for separating oxygen and nitrogen and / or with distillation column systems which are set up to obtain further components.
- the separation column with the highest operating pressure is referred to as the "high-pressure separation column”.
- the separation column, from which oxygen, for example an oxygen-rich stream with more than 99 mol%, is withdrawn, is then referred to in the parlance of this application as the "low-pressure separation column”.
- the mixing column can also be operated under a higher pressure than the high-pressure separation column.
- the liquid fraction with the first oxygen content is removed from the bottom of the low-pressure separation column and the liquid fraction with the second oxygen content is removed from the low-pressure separation column at a different level.
- the liquid fraction with the first oxygen content is withdrawn from the bottom of the low-pressure separation column and the liquid fraction with the second oxygen content is withdrawn from the side of the low-pressure separation column at a height corresponding to the second oxygen content.
- the extraction height from the low-pressure separation column correlates directly with the oxygen content under the particular operating conditions used, so that a person skilled in the art can easily establish a corresponding relationship.
- the removal from the side of the low-pressure separation column proves to be particularly favorable in terms of energy.
- the liquid oxygen-rich stream that is fed into the mixing column i.e. that oxygen-rich stream which corresponds to the liquid fraction with the second, lower oxygen content withdrawn according to the invention, advantageously has an oxygen content of 70 to 99 mol%, in particular 90 to 98 mol%, on.
- the first oxygen content found in the liquid oxygen product advantageously corresponds to at least 99 mol%, in particular at least 99.5 mol%.
- the first is advantageously always above the second oxygen content.
- the liquid fraction with the first oxygen content is advantageously supercooled in a heat exchanger after it has been removed from the separation column of the distillation column system. This enables the liquid fraction to then be safely transferred to a tank without the inevitable heat losses that would lead to excessive evaporation.
- the liquid fraction with the second oxygen content is in turn heated in a heat exchanger after being removed from the separation column of the distillation column system and / or after evaporation in the mixing column.
- a heat exchanger can be used that also serves to subcool the liquid fraction with the first oxygen content after removal from the distillation column system.
- the liquid fraction with the second oxygen content can also be passed through a main heat exchanger of the air separation plant and heated there further.
- the liquid fraction with the second oxygen content is advantageously fed into the mixing column at the top by means of at least one pump and at least one expansion valve after it has been removed from the separation column of the distillation column system.
- the pressure is increased to the mixing column pressure, which is above the pressure of the low-pressure separation column from which the liquid fraction with the second oxygen content is advantageously withdrawn.
- the method explained is advantageously implemented as a so-called HAP method (High Air Pressure).
- the total air supplied to the air separation plant is advantageously compressed in a main compressor to a feed pressure of 6 to 30 bar, in particular 7 to 20 bar, for example 10 to 14 bar.
- the main compressor is preferably the only machine driven by external energy for compressing air.
- a "single machine” is understood here, for example, as a single-stage or multi-stage compressor, the stages of which are all connected to the same drive, all stages in the same housing housed or connected to the same transmission.
- the total air is preferably compressed to a pressure which, for example, is significantly higher than the operating pressure of the column with the highest pressure level.
- partial flows for example in boosters that are coupled to expansion turbines, can also be "re-compressed", but for which no external energy is supplied.
- the feed pressure can alternatively or additionally also be specified in relation to the operating pressure of the high-pressure separation column.
- the pressure difference between the feed pressure and the operating pressure of the high-pressure separation column not only corresponds to the natural pressure drop through lines, heat exchangers and other apparatus, but is at least 1 bar, in particular at least 3 bar, preferably at least 5 bar.
- the pressure difference between the feed pressure and the operating pressure of the high-pressure separation column is, for example, 5 to 25 bar, in particular 7 to 15 bar.
- a first partial flow of the total air is expanded in a first expansion machine to the operating pressure of the high-pressure separation column and fed into the high-pressure separation column. This allows additional cold to be gained.
- the first partial flow can be compressed in a booster coupled to the first expansion machine and / or cooled before and / or after the expansion in the first expansion machine.
- the resulting heat of compression can be dissipated by cooling after compression, e.g. by water cooling and / or by cooling to an intermediate temperature in a main heat exchanger. If, after the expansion, the then cold gas is passed through the cold end of the main heat exchanger, further cooling can be effected.
- a second partial flow of the total air is used as the mixing column air, which is expanded to the mixing column pressure in a second expansion machine and is fed into the mixing column in a lower region.
- This also helps to cover the cooling requirements of the system.
- the two expansion machines have different inlet temperatures, that is to say the inlet temperature of the second expansion machine is in particular at least 5 K higher or lower than that of the first expansion machine.
- the first and / or the second partial flow can be cooled in different ways, so that the method can be optimized, for example, with regard to smaller volumes for the main heat exchanger on the one hand or with regard to maximum energy savings.
- the second partial flow can also be cooled before and / or after the expansion in the second expansion machine, so that the temperatures desired in each case can be achieved.
- one of the two relaxation machines is coupled to a booster.
- the expansion work can be put to good use.
- precisely the amount of air that is introduced into the expansion machine coupled to the booster is previously passed through the booster, which is advantageously designed as a hot compressor.
- the other of the two expansion machines is mechanically coupled to a generator and / or an oil brake in which the expansion work that is released can be implemented accordingly.
- a pressure of 2 to 6 bar is advantageously used as the mixing column pressure.
- the mixing column pressure depends, for example, on the externally required supply pressure for the gaseous oxygen product or can likewise be optimized in accordance with energetic considerations. In the latter case, a pressure of or close to 2 bar is advantageous.
- An air separation plant is set up to carry out a method according to one of the preceding claims. It has means which are set up for extracting a liquid fraction with a first, higher oxygen content from a separation column of a distillation column system of the air separation plant, and means which are set up for the same separation column of the distillation column system, a liquid fraction with a second, to remove lower oxygen content and to evaporate in a mixing column at a mixing column pressure against mixing column air.
- FIG. 1 an air separation plant according to an embodiment of the invention is shown schematically.
- the air separation plant has, inter alia, a main heat exchanger E1, a distillation column system S with a High-pressure separation column S1 and a low-pressure separation column S2, a mixing column S3, a subcooler E3 and two expansion machines X1 and X2 designed as expansion turbines.
- the operating parameters specified below, such as the respective operating pressures, are examples of the ranges mentioned above.
- Pre-cleaned air AIR compressed to a pressure of, for example, 10 to 14 bar can be fed into the system via a line a.
- a main compressor, not shown, is used to compress the air AIR; the total air fed in is referred to as "total air”.
- Part of the total air from line a can be fed to a booster C1 via a line b.
- the booster C1 can be coupled to a first expansion turbine X1.
- the air further compressed in the booster C1 can then be cooled in an aftercooler E2 and fed to the main heat exchanger E1 at its warm end.
- This first partial flow can be taken from the main heat exchanger E1 at an intermediate temperature via a line c, expanded in the first expansion turbine X1 to produce cold and work, and then passed through the main heat exchanger E1 again at the cold end.
- Further air from line a can be fed to the main heat exchanger E1 at its warm end via a line d. A part of this can, if necessary, only if necessary, be depressurized via an expansion valve V1. A second part of the air from line d, and thus part of the total air, referred to in this application as the “second partial flow”, can be taken from the main heat exchanger E1 at an intermediate temperature via a line s.
- the air in line s is, as explained below, fed into the mixing column S3.
- the amount of air fed into the mixing column S3 can also be adjusted via the expansion valve V1.
- the first partial flow of air from line a and possibly the air expanded via the expansion valve V1 are each at a temperature close to the condensation temperature of the air at its cold end.
- a corresponding air flow can over a line e can be fed into the high-pressure separation column S1.
- the operating pressure of the high-pressure separation column S1, and thus the pressure in line e, is at the values explained.
- the expansion turbine X1 and the valve V1 are set accordingly.
- the air is pre-separated in the high-pressure separation column S1.
- An oxygen-enriched liquid bottom fraction can be removed from the high-pressure separation column S1 in a lower area or from the sump via a line f, cooled in a subcooler E3 and, after expansion to the operating pressure of the low-pressure separation column S2, fed into the low-pressure separation column S2 via an expansion valve V2 via a line g become.
- a gaseous, nitrogen-rich top fraction can be removed from the top of the high-pressure separation column S1. At least a partial stream of this can be condensed via a line h in a condenser E4 which, during operation, is covered by an oxygen-rich bottom fraction of the low-pressure separation column S2. At least part of the condensate can be fed in as liquid reflux via a line i at the top of the high-pressure separation column S1. Another part of the condensate can be fed to the subcooler E3 via a line k (not shown) and fed into a tank, for example, as a liquid nitrogen product LIN, via a line m.
- a further substream of the gaseous, nitrogen-rich top fraction removed at the top of the high-pressure separation column S1 can be fed via a line 1 to the main heat exchanger E1, heated in this and depressurized via an expansion valve V3.
- a correspondingly obtained nitrogen-rich gaseous fraction can be used, for example, as a sealing gas in the compressors used.
- a nitrogen-enriched fraction can be removed from the high-pressure separation column S1 at a defined height via a line n, cooled in the subcooler E3, and after expansion via an expansion valve V4 via a line o as a liquid nitrogen-rich stream at the top of the low-pressure separation column S2.
- At least part of the oxygen-rich bottom fraction can be removed from the bottom of the low-pressure separation column S2 via a line p and fed to the subcooler E3 via a connection p '.
- This liquid fraction has a high oxygen content, which in the context of this application is referred to as the "first" oxygen content.
- this fraction can be given off an oxygen-rich liquid fraction as a liquid oxygen product LOX via a line q and a valve V5, i.e. it can be discharged from the air separation plant in liquid form.
- a gaseous top fraction can be withdrawn via a line r, heated in the main heat exchanger E1 and discharged via a valve V6.
- This fraction can, for example, be used to regenerate adsorption devices to purify the air to be fed in (AIR).
- the air separation system is designed as a mixing column system.
- at least part of the air from line d (the "second partial flow") can be taken from the main heat exchanger E1 at an intermediate temperature and fed to a second expansion turbine X2 via line s.
- the air can be expanded to a pressure of, for example, 2 to 4 bar, in particular 3 bar.
- the air is then fed in gaseous form into the lower part of a mixing column S3, which is operated at a corresponding pressure.
- an oxygen-enriched fraction is fed into this via a line t, which is withdrawn at a defined height from the low-pressure separation column S2 via a line u in liquid form and with the oxygen content referred to in this application as the "second oxygen content".
- the fraction removed via line u is pumped to a pressure above the pressure of the mixing column S3 via a pump P1, warmed to an intermediate temperature via lines v and w in the subcooler E3 and then in the main heat exchanger E1, and via a valve V7 and the line t is fed into the mixing column S3.
- the gaseous air fed into the lower part of the mixing column S3 is liquefied.
- the liquefied air can be drawn off in a lower area of the mixing column S3 via a line x, cooled to an intermediate temperature in the subcooler E3, and fed ("blown") into the low-pressure separation column S2 via a line y and an expansion valve V8.
- a gaseous oxygen-rich fraction can be taken from the top of the mixing column S3 via a line z, warmed in the main heat exchanger E1 and released as a gaseous oxygen product via a valve V9.
- FIG 2 an air separation plant according to a further embodiment of the invention is shown schematically. This has the essential components of the previously in relation to Figure 1 explained air separation plant and is operated accordingly. A repeated explanation is dispensed with.
- the second partial flow of the air is passed through the cold end of the main heat exchanger E1 after the expansion in the expansion turbine X2, whereas the first partial flow is not.
- Alternative arrangements can, however, also provide corresponding cooling of both partial flows in the main heat exchanger E1.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
Description
Die Erfindung betrifft ein Verfahren zur Erzeugung flüssiger und gasförmiger Sauerstoffprodukte durch Tieftemperaturzerlegung von Luft unter Verwendung einer Mischsäule und eine entsprechende Luftzerlegungsanlage.The invention relates to a method for generating liquid and gaseous oxygen products by the low-temperature decomposition of air using a mixing column and a corresponding air separation plant.
Die Herstellung von Sauerstoff oder sauerstoffreichen Gemischen, nachfolgend als Sauerstoffprodukte bezeichnet, erfolgt üblicherweise durch Tieftemperaturzerlegung von Luft in Luftzerlegungsanlagen mit an sich bekannten Destillationssäulensystemen. Diese können als Zweisäulensysteme, insbesondere als klassische Doppelsäulensysteme, aber auch als Drei- oder Mehrsäulensysteme ausgebildet sein. Ferner können Vorrichtungen zur Gewinnung weiterer Luftkomponenten, insbesondere der Edelgase Krypton, Xenon und/oder Argon, vorgesehen sein.The production of oxygen or oxygen-rich mixtures, hereinafter referred to as oxygen products, is usually carried out by the low-temperature decomposition of air in air separation plants with known distillation column systems. These can be designed as two-pillar systems, in particular as classic double-pillar systems, but also as three-pillar or multi-pillar systems. Furthermore, devices for obtaining further air components, in particular the noble gases krypton, xenon and / or argon, can be provided.
Für eine Reihe von industriellen Anwendungen wird zumindest nicht ausschließlich reiner Sauerstoff benötigt. Dies eröffnet die Möglichkeit, Luftzerlegungsanlagen hinsichtlich ihrer Erstellungs- und Betriebskosten, insbesondere ihres Energieverbrauchs, zu optimieren (siehe beispielsweise
Beispielsweise können hierzu Luftzerlegungsanlagen mit so genannten Mischsäulen eingesetzt werden, wie sie in
Nachteilig an bekannten Anlagen, die mit Mischsäulen arbeiten, ist die eingeschränkte Entnahmemöglichkeit von flüssigen Produkten, weil diese, wie unten erläutert, als reine Gasanlagen ausgebildet sind. So ist die maximale Entnahmemenge von Flüssigstickstoff und Flüssigsauerstoff in Anlagen mit Mischsäulen üblicherweise auf höchstens 0,5% der insgesamt eingesetzten Luftmenge begrenzt.The disadvantage of known systems that work with mixing columns is the limited ability to withdraw liquid products because, as explained below, these are designed as pure gas systems. The maximum withdrawal amount of liquid nitrogen and liquid oxygen in systems with mixing columns is usually limited to a maximum of 0.5% of the total amount of air used.
Bei der in
Vor diesem Hintergrund werden ein Verfahren und eine Vorrichtung zur Erzeugung flüssiger und gasförmiger Sauerstoffprodukte durch Tieftemperaturzerlegung von Luft mit den Merkmalen der unabhängigen Patentansprüche vorgeschlagen. Bevorzugte Ausgestaltungen sind Gegenstand der jeweiligen abhängigen Patentansprüche sowie der nachfolgenden Beschreibung.Against this background, a method and a device for generating liquid and gaseous oxygen products by the low-temperature decomposition of air with the features of the independent claims are proposed. Preferred configurations are the subject matter of the respective dependent claims and of the following description.
Ein erfindungsgemäßes Verfahren dient der Erzeugung eines flüssigen Sauerstoffprodukts und eines gasförmigen Sauerstoffprodukts durch Tieftemperaturzerlegung von Luft. Hierzu wird ein Destillationssäulensystem einer Luftzerlegungsanlage verwendet. Zur Gewinnung des flüssigen Sauerstoffprodukts wird eine Flüssigfraktion mit einem ersten, höheren Sauerstoffgehalt aus der Niederdrucktrennsäule des Destillationssäulensystems entnommen und flüssig aus der Luftzerlegungsanlage herausgeführt. Zur Gewinnung des gasförmigen Sauerstoffprodukts wird eine Flüssigfraktion mit einem zweiten, geringeren Sauerstoffgehalt aus derselben Niederdrucktrennsäule des Destillationssäulensystems entnommen und in einer Mischsäule bei einem Mischsäulendruck gegen Mischsäulenluft verdampft, wie eingangs erläutert. Das gasförmige Sauerstoffprodukt wird ebenfalls, jedoch im gasförmigen Zustand, aus der Luftzerlegungsanlage herausgeführt.A method according to the invention is used to generate a liquid oxygen product and a gaseous oxygen product by the low-temperature decomposition of air. A distillation column system of an air separation plant is used for this. To obtain the liquid oxygen product, a liquid fraction with a first, higher oxygen content is made from the Removed the low pressure separation column of the distillation column system and led out of the air separation plant in liquid form. To obtain the gaseous oxygen product, a liquid fraction with a second, lower oxygen content is taken from the same low-pressure separation column of the distillation column system and evaporated in a mixing column at a mixing column pressure against mixing column air, as explained above. The gaseous oxygen product is also led out of the air separation plant, but in the gaseous state.
Das flüssige Sauerstoffprodukt wird nachfolgend auch als "reiner", das gasförmige Sauerstoffprodukt auch als "unreiner" Sauerstoff bezeichnet, wobei die möglichen Gehalte an Sauerstoff unten angegeben sind. Die Reinheit des "reinen" Sauerstoffprodukts richtet sich nach dem Typ der verwendeten Luftzerlegungsanlage und den Anforderungen der jeweiligen Verbraucher. Die Herstellung "unreiner" gasförmiger Sauerstoffprodukte lässt sich, wie erläutert, mit Mischsäulen energetisch günstig realisieren. Die Begriffe "höherer" und "geringerer" Sauerstoffgehalt beziehen sich aufeinander.The liquid oxygen product is also referred to below as "pure" and the gaseous oxygen product is also referred to as "impure" oxygen, the possible contents of oxygen being given below. The purity of the "pure" oxygen product depends on the type of air separation plant used and the requirements of the respective consumer. As explained, the production of "impure" gaseous oxygen products can be carried out in an energetically favorable manner with mixing columns. The terms "higher" and "lower" oxygen content relate to one another.
Im Rahmen dieser Anmeldung ist von der Gewinnung von Sauerstoff- und Stickstoffprodukten die Rede. Ein "Produkt" verlässt die erläuterte Anlage und wird beispielsweise in einem Tank eingelagert oder verbraucht. Es nimmt also nicht mehr nur ausschließlich an den anlageninternen Kreisläufen teil, kann jedoch vor dem Verlassen der Anlage entsprechend verwendet werden, beispielsweise als Kälteträger in einem Wärmetauscher. Der Begriff "Produkt" umfasst also nicht solche Fraktionen oder Ströme, die in der Anlage selbst verbleiben und ausschließlich dort, beispielsweise als Rücklauf, Kühlmittel oder Spülgas, verwendet werden.In the context of this application, the production of oxygen and nitrogen products is mentioned. A "product" leaves the system explained and is, for example, stored in a tank or consumed. It no longer only takes part in the system-internal circuits, but can be used accordingly before leaving the system, for example as a coolant in a heat exchanger. The term “product” therefore does not include those fractions or streams that remain in the system itself and are used exclusively there, for example as return flow, coolant or flushing gas.
Der Begriff "Produkt" beinhaltet ferner eine Mengenangabe. Ein "Produkt" entspricht mindestens 1%, insbesondere mindestens 2%, beispielsweise mindestens 5% oder mindestens 10% der in einer entsprechenden Anlage eingesetzten Luftmenge. Geringere Mengen auch herkömmlicherweise in ausgesprochenen Gasanlagen anfallender und einer solchen Anlage gegebenenfalls entnehmbarer Flüssigfraktionen stellen damit keine "Produkte" im Sinne dieser Anmeldung dar. Wie nachfolgend erläutert, wird durch die Entnahme von Flüssigprodukten einer Luftzerlegungsanlage eine beträchtliche Kältemenge "entzogen", die sonst durch Verdampfung dieser Flüssigprodukte zum Teil zurückgewonnen werden könnte. Eine derartige Entnahme wirkt sich jedoch erst ab einer bestimmten Entnahmemenge, also erst dann, wenn tatsächlich ein "Produkt" im Sinne der oben getroffenen Definition entnommen wird, aus.The term “product” also includes a quantity. A "product" corresponds to at least 1%, in particular at least 2%, for example at least 5% or at least 10% of the amount of air used in a corresponding system. Smaller amounts of liquid fractions also conventionally occurring in specific gas systems and possibly removable from such a system do not constitute "products" in the sense of this application this Liquid products could be partially recovered. However, such a withdrawal only takes effect from a certain withdrawal quantity, that is, only when a "product" in the sense of the definition given above is actually withdrawn.
Die Anforderungen industrieller Verbraucher an die Produkte von Luftzerlegungsanlagen und deren hierdurch bedingte Konstruktionsprinzipien unterscheiden sich mitunter beträchtlich. So sind für bestimmte Einsatzszenarien ausgesprochene Gasanlagen bekannt, in denen bevorzugt oder ausschließlich gasförmige Produkte, beispielsweise Sauerstoff und/oder Stickstoff, gewonnen werden können. Andere Anwendungen erfordern hingegen Flüssigprodukte und damit ausgesprochene Flüssiganlagen.The demands of industrial consumers on the products of air separation plants and the design principles that result from them differ considerably from time to time. For example, specific gas systems are known for certain application scenarios, in which preferably or exclusively gaseous products, for example oxygen and / or nitrogen, can be obtained. Other applications, on the other hand, require liquid products and thus distinctly liquid systems.
Die Entnahme von Flüssigprodukten aus Gasanlagen ist in der Regel nicht möglich, auch wenn solche Flüssigprodukte dort als Zwischenprodukte, beispielsweise in einer Trennsäule, anfallen. Die dort verwendeten Konstruktionsprinzipien können daher auch nicht ohne weiteres auf Flüssiganlagen übertragen werden. In Gasanlagen können die als Zwischenprodukte gewonnenen kryogenen Flüssigkeiten verdampft und zur Kühlung insbesondere der eingesetzten Luft verwendet werden. Wenn einer Luftzerlegungsanlage jedoch Flüssigprodukte, beispielsweise flüssiger Sauerstoff und/oder Stickstoff, entnommen werden sollen, wird dem System hierdurch diese Kältemenge entzogen. Die in Flüssiganlagen "fehlende" Kälte muss daher zusätzlich erzeugt werden, und zwar letztlich in Form von Verdichterleistung.As a rule, it is not possible to remove liquid products from gas systems, even if such liquid products occur there as intermediate products, for example in a separation column. The construction principles used there can therefore not easily be transferred to liquid systems. The cryogenic liquids obtained as intermediate products can be evaporated in gas systems and used to cool the air used in particular. If, however, liquid products, for example liquid oxygen and / or nitrogen, are to be removed from an air separation plant, this amount of cold is thereby withdrawn from the system. The "missing" cold in liquid systems must therefore also be generated, ultimately in the form of compressor power.
Die Erfindung entfaltet ihre besonderen Vorteile in Anlagen, die dafür verwendet werden, ein gasförmiges Sauerstoffprodukt mit beispielsweise weniger als 98 mol-% (Molprozent) Reinheit und gleichzeitig hierzu größere Mengen eines im hier verwendeten Sinn "reinen" flüssigen Sauerstoffprodukts herzustellen. Das Verfahren erweist sich hierbei als hocheffizient und erlaubt die Gewinnung von 1% bis 5% oder 1% bis 10% der insgesamt der Luftzerlegungsanlage in komprimierter Form zugeführten Luft (im Rahmen dieser Anmeldung als "Gesamtluft" bezeichnet) in Form flüssiger Produkte. Wenngleich diese Anmeldung vornehmlich die Entnahme flüssigen Sauerstoffs beschreibt, kann in entsprechender Weise auch flüssiger Stickstoff gewonnen werden.The invention develops its particular advantages in plants which are used to produce a gaseous oxygen product with, for example, less than 98 mol% (mol%) purity and, at the same time, larger amounts of a "pure" liquid oxygen product in the sense used here. The process proves to be highly efficient and allows 1% to 5% or 1% to 10% of the total air supplied to the air separation plant in compressed form (referred to in this application as "total air") in the form of liquid products. Although this application primarily describes the extraction of liquid oxygen, liquid nitrogen can also be obtained in a corresponding manner.
Dem hier vorgestellten Verfahren kann beispielsweise eine Luftzerlegungsanlage mit einem Doppelsäulensystem zugrunde liegen. Derartige Doppelsäulensysteme umfassen eine Hochdrucktrennsäule und eine Niederdrucktrennsäule zur Trennung von Sauerstoff und Stickstoff. Die Hochdrucktrennsäule arbeitet bei einem Betriebsdruck von beispielsweise 5 bis 7,5 bar, insbesondere von 5,5 bis 6 bar, und die Niederdrucktrennsäule bei einem Betriebsdruck von beispielsweise 1,3 bis 1,8 bar, insbesondere von 1,3 bis 1,6 bar. Hierbei, und bei den nachfolgend angegebenen Drücken, handelt es sich um Absolutdrücke. Die Hochdrucktrennsäule und die Niederdrucktrennsäule können auch zumindest teilweise baulich voneinander getrennt sein. Es handelt sich in diesem Fall um die eingangs erwähnten Zweisäulensysteme. Die Erfindung kann jedoch auch mit Drei- oder Mehrsäulensystemen zur Trennung von Sauerstoff und Stickstoff und/oder mit Destillationssäulensystemen, die zur Gewinnung weiterer Komponenten eingerichtet sind, realisiert werden. In diesem Fall wird im Rahmen dieser Anmeldung die Trennsäule mit dem höchsten Betriebsdruck als "Hochdrucktrennsäule" bezeichnet. Die Trennsäule, der üblicherweise Sauerstoff, beispielsweise ein sauerstoffreicher Strom mit mehr als 99 mol-%, entnommen wird, wird im Sprachgebrauch dieser Anmeldung dann als "Niederdrucktrennsäule" bezeichnet. In bestimmten Fällen kann die Mischsäule auch unter einem höheren Druck als die Hochdrucktrennsäule betrieben werden.The method presented here can, for example, be based on an air separation plant with a double column system. Such double column systems comprise a high pressure separation column and a low pressure separation column for separating oxygen and nitrogen. The high-pressure separation column operates at an operating pressure of, for example, 5 to 7.5 bar, in particular 5.5 to 6 bar, and the low-pressure separation column operates at an operating pressure of, for example, 1.3 to 1.8 bar, in particular 1.3 to 1.6 bar. Here, and the pressures specified below, are absolute pressures. The high-pressure separation column and the low-pressure separation column can also be at least partially structurally separated from one another. In this case, the two-pillar systems mentioned at the beginning are involved. However, the invention can also be implemented with three or multiple column systems for separating oxygen and nitrogen and / or with distillation column systems which are set up to obtain further components. In this case, in the context of this application, the separation column with the highest operating pressure is referred to as the "high-pressure separation column". The separation column, from which oxygen, for example an oxygen-rich stream with more than 99 mol%, is withdrawn, is then referred to in the parlance of this application as the "low-pressure separation column". In certain cases, the mixing column can also be operated under a higher pressure than the high-pressure separation column.
In einem entsprechenden Verfahren wird die Flüssigfraktion mit dem ersten Sauerstoffgehalt aus dem Sumpf der Niederdrucktrennsäule entnommen und die Flüssigfraktion mit dem zweiten Sauerstoffgehalt wird in einer unterschiedlichen Höhe aus der Niederdrucktrennsäule entnommen. Beispielsweise werden die Flüssigfraktion mit dem ersten Sauerstoffgehalt aus dem Sumpf der Niederdrucktrennsäule und die Flüssigfraktion mit dem zweiten Sauerstoffgehalt in einer dem zweiten Sauerstoffgehalt entsprechenden Höhe seitlich aus der Niederdrucktrennsäule entnommen. Die Entnahmehöhe aus der Niederdrucktrennsäule korreliert bekanntermaßen unmittelbar mit dem Sauerstoffgehalt bei den jeweils verwendeten Betriebsbedingungen, so dass der Fachmann eine entsprechende Beziehung unschwer herstellen kann. Die Entnahme seitlich aus der Niederdrucktrennsäule erweist sich energetisch als besonders günstig. Auf diese Weise kann insbesondere vermieden werden, wertvollen "reinen" Sauerstoff unnötigerweise für die Herstellung des unreinen, gasförmigen Sauerstoffprodukts zu verbrauchen. Der beispielsweise aus dem Sumpf der Niederdrucktrennsäule entnommene "reine" Sauerstoff weist beispielsweise 99,6 mol-% Sauerstoffgehalt auf und wurde damit bereits fast vollständig von Argon getrennt. Hierzu wurde eine entsprechende Trennarbeit aufgewandt. Die Flüssigfraktion mit dem zweiten Sauerstoffgehalt, die der Niederdrucktrennsäule seitlich entnommen werden kann, weist hingegen beispielsweise 97 mol-% Sauerstoff und 3 mol-% Argon auf. Die zur Trennung von Sauerstoff und Argon erforderliche Arbeit kann damit eingespart werden. Mit anderen Worten ist es energetisch günstiger, für ein in "unreiner" Form benötigtes gasförmiges Sauerstoffprodukt eine unreine Ausgangsfraktion zu verwenden als eine "reine" Fraktion in einer Mischsäule zu verunreinigen.In a corresponding process, the liquid fraction with the first oxygen content is removed from the bottom of the low-pressure separation column and the liquid fraction with the second oxygen content is removed from the low-pressure separation column at a different level. For example, the liquid fraction with the first oxygen content is withdrawn from the bottom of the low-pressure separation column and the liquid fraction with the second oxygen content is withdrawn from the side of the low-pressure separation column at a height corresponding to the second oxygen content. As is known, the extraction height from the low-pressure separation column correlates directly with the oxygen content under the particular operating conditions used, so that a person skilled in the art can easily establish a corresponding relationship. The removal from the side of the low-pressure separation column proves to be particularly favorable in terms of energy. In this way it is possible in particular to avoid unnecessarily consuming valuable "pure" oxygen for the production of the impure, gaseous oxygen product. For example, from the bottom of the low-pressure separation column "Pure" oxygen withdrawn has, for example, an oxygen content of 99.6 mol% and has thus already been almost completely separated from argon. Corresponding separation work was used for this purpose. The liquid fraction with the second oxygen content, which can be taken from the side of the low-pressure separation column, on the other hand, has, for example, 97 mol% oxygen and 3 mol% argon. The work required to separate oxygen and argon can thus be saved. In other words, it is energetically more favorable to use an impure starting fraction for a gaseous oxygen product required in "impure" form than to contaminate a "pure" fraction in a mixing column.
Der flüssige sauerstoffreiche Strom, der in die Mischsäule eingespeist wird, also jener sauerstoffreiche Strom, der der erfindungsgemäß entnommenen Flüssigfraktion mit dem zweiten, geringeren Sauerstoffgehalt entspricht, weist vorteilhafterweise einen Sauerstoffgehalt von 70 bis 99 mol-%, insbesondere 90 bis 98 mol-%, auf. Der erste Sauerstoffgehalt, der sich in dem flüssigen Sauerstoffprodukt wiederfindet, entspricht vorteilhafterweise wenigstens 99 mol-%, insbesondere wenigstens 99,5 mol-%. Der erste liegt vorteilhafterweise immer über dem zweiten Sauerstoffgehalt.The liquid oxygen-rich stream that is fed into the mixing column, i.e. that oxygen-rich stream which corresponds to the liquid fraction with the second, lower oxygen content withdrawn according to the invention, advantageously has an oxygen content of 70 to 99 mol%, in particular 90 to 98 mol%, on. The first oxygen content found in the liquid oxygen product advantageously corresponds to at least 99 mol%, in particular at least 99.5 mol%. The first is advantageously always above the second oxygen content.
Vorteilhafterweise wird in einem entsprechenden Verfahren die Flüssigfraktion mit dem ersten Sauerstoffgehalt nach der Entnahme aus der Trennsäule des Destillationssäulensystems in einem Wärmetauscher unterkühlt. Dies ermöglicht es, die Flüssigfraktion anschließend sicher in einen Tank zu überführen, ohne dass hierbei zwangsläufig auftretende Wärmeverluste zu einer übermäßigen Verdampfung führen würden.In a corresponding process, the liquid fraction with the first oxygen content is advantageously supercooled in a heat exchanger after it has been removed from the separation column of the distillation column system. This enables the liquid fraction to then be safely transferred to a tank without the inevitable heat losses that would lead to excessive evaporation.
Die Flüssigfraktion mit dem zweiten Sauerstoffgehalt wird ihrerseits nach der Entnahme aus der Trennsäule des Destillationssäulensystems und/oder nach dem Verdampfen in der Mischsäule in einem Wärmetauscher erwärmt. Zur Erwärmung der Flüssigfraktion nach der Entnahme aus dem Destillationssäulensystem kann derselbe Wärmetauscher verwendet werden, der auch zur Unterkühlung der Flüssigfraktion mit dem ersten Sauerstoffgehalt nach der Entnahme aus dem Destillationssäulensystem dient. Vor oder nach dem Verdampfen in der Mischsäule kann die Flüssigfraktion mit dem zweiten Sauerstoffgehalt jedoch auch durch einen Hauptwärmetauscher der Luftzerlegungsanlage geführt und dort weiter erwärmt werden.The liquid fraction with the second oxygen content is in turn heated in a heat exchanger after being removed from the separation column of the distillation column system and / or after evaporation in the mixing column. To heat the liquid fraction after removal from the distillation column system, the same heat exchanger can be used that also serves to subcool the liquid fraction with the first oxygen content after removal from the distillation column system. Before or after evaporation in the mixing column, however, the liquid fraction with the second oxygen content can also be passed through a main heat exchanger of the air separation plant and heated there further.
Vorteilhafterweise wird die Flüssigfraktion mit dem zweiten Sauerstoffgehalt nach der Entnahme aus der Trennsäule des Destillationssäulensystems mittels wenigstens einer Pumpe und wenigstens eines Entspannungsventils kopfseitig in die Mischsäule eingespeist. Der Druck wird dabei auf den Mischsäulendruck erhöht, der oberhalb des Drucks der Niederdrucktrennsäule liegt, der die Flüssigfraktion mit dem zweiten Sauerstoffgehalt vorteilhafterweise entnommen wird.The liquid fraction with the second oxygen content is advantageously fed into the mixing column at the top by means of at least one pump and at least one expansion valve after it has been removed from the separation column of the distillation column system. The pressure is increased to the mixing column pressure, which is above the pressure of the low-pressure separation column from which the liquid fraction with the second oxygen content is advantageously withdrawn.
Das erläuterte Verfahren ist vorteilhafterweise als so genanntes HAP-Verfahren (High Air Pressure) realisiert. Die der Luftzerlegungsanlage insgesamt zugeführte Gesamtluft wird dabei vorteilhafterweise in einem Hauptverdichter auf einen Einspeisedruck von 6 bis 30 bar, insbesondere von 7 bis 20 bar, beispielsweise von 10 bis 14 bar, verdichtet. Vorzugsweise stellt dabei der Hauptverdichter die einzige mit externer Energie angetriebene Maschine zur Verdichtung von Luft dar. Unter einer "einzigen Maschine" wird hier beispielsweise ein einstufiger oder mehrstufiger Verdichter verstanden, dessen Stufen alle mit dem gleichen Antrieb verbunden sind, wobei alle Stufen in demselben Gehäuse untergebracht oder mit demselben Getriebe verbunden sind. In diesem Luftverdichter wird vorzugsweise die Gesamtluft auf einen Druck verdichtet, der beispielsweise deutlich über dem Betriebsdruck der Säule mit dem höchsten Druckniveau liegt. Neben dieser Verdichtung können gleichwohl Teilströme, beispielsweise in Boostern, die mit Expansionsturbinen gekoppelt sind, "nachverdichtet" werden, wozu aber keine externe Energie zugeführt wird.The method explained is advantageously implemented as a so-called HAP method (High Air Pressure). The total air supplied to the air separation plant is advantageously compressed in a main compressor to a feed pressure of 6 to 30 bar, in particular 7 to 20 bar, for example 10 to 14 bar. The main compressor is preferably the only machine driven by external energy for compressing air. A "single machine" is understood here, for example, as a single-stage or multi-stage compressor, the stages of which are all connected to the same drive, all stages in the same housing housed or connected to the same transmission. In this air compressor, the total air is preferably compressed to a pressure which, for example, is significantly higher than the operating pressure of the column with the highest pressure level. In addition to this compression, partial flows, for example in boosters that are coupled to expansion turbines, can also be "re-compressed", but for which no external energy is supplied.
In dem Verfahren kann der Einspeisedruck alternativ oder zusätzlich auch im Verhältnis zum Betriebsdruck der Hochdrucktrennsäule angegeben werden. Dies bedeutet hier, dass die Druckdifferenz zwischen dem Einspeisedruck und dem Betriebsdruck der Hochdrucktrennsäule nicht nur dem natürlichen Druckabfall durch Leitungen, Wärmetauscher und andere Apparate entspricht, sondern mindestens 1 bar, insbesondere mindestens 3 bar, vorzugsweise mindestens 5 bar, beträgt. Die Druckdifferenz zwischen dem Einspeisedruck und dem Betriebsdruck der Hochdrucktrennsäule beträgt beispielsweise 5 bis 25 bar, insbesondere 7 bis 15 bar.In the method, the feed pressure can alternatively or additionally also be specified in relation to the operating pressure of the high-pressure separation column. This means here that the pressure difference between the feed pressure and the operating pressure of the high-pressure separation column not only corresponds to the natural pressure drop through lines, heat exchangers and other apparatus, but is at least 1 bar, in particular at least 3 bar, preferably at least 5 bar. The pressure difference between the feed pressure and the operating pressure of the high-pressure separation column is, for example, 5 to 25 bar, in particular 7 to 15 bar.
Erfindungsgemäß wird ein erster Teilstrom der Gesamtluft in einer ersten Entspannungsmaschine auf den Betriebsdruck der Hochdrucktrennsäule entspannt und in die Hochdrucktrennsäule eingespeist. Hierdurch kann zusätzliche Kälte gewonnen werden.According to the invention, a first partial flow of the total air is expanded in a first expansion machine to the operating pressure of the high-pressure separation column and fed into the high-pressure separation column. This allows additional cold to be gained.
Der erste Teilstrom kann vor der Entspannung in der ersten Entspannungsmaschine in einem mit der ersten Entspannungsmaschine gekoppelten Booster verdichtet und/oder vor und/oder nach der Entspannung in der ersten Entspannungsmaschine abgekühlt werden. Durch eine Abkühlung nach der Verdichtung, z.B. durch Wasserkühlung und/oder durch eine Abkühlung auf eine Zwischentemperatur in einem Hauptwärmetauscher, kann die entstehende Verdichtungswärme abgeführt werden. Wird nach der Entspannung das dann kalte Gas durch das kalte Ende des Hauptwärmetauschers geführt, kann eine weitere Abkühlung bewirkt werden.Before the expansion in the first expansion machine, the first partial flow can be compressed in a booster coupled to the first expansion machine and / or cooled before and / or after the expansion in the first expansion machine. The resulting heat of compression can be dissipated by cooling after compression, e.g. by water cooling and / or by cooling to an intermediate temperature in a main heat exchanger. If, after the expansion, the then cold gas is passed through the cold end of the main heat exchanger, further cooling can be effected.
Als Mischsäulenluft wird erfindungsgemäß ein zweiter Teilstrom der Gesamtluft verwendet, der in einer zweiten Entspannungsmaschine auf den Mischsäulendruck entspannt und in einem unteren Bereich in die Mischsäule eingespeist wird. Auch dies trägt dazu bei, den Kältebedarf der Anlage zu decken. Die beiden Entspannungsmaschinen weisen unterschiedliche Eintrittstemperaturen auf, das heißt die Eintrittstemperatur der zweiten Entspannungsmaschine ist insbesondere mindestens 5 K höher oder niedriger als diejenige der ersten Entspannungsmaschine.According to the invention, a second partial flow of the total air is used as the mixing column air, which is expanded to the mixing column pressure in a second expansion machine and is fed into the mixing column in a lower region. This also helps to cover the cooling requirements of the system. The two expansion machines have different inlet temperatures, that is to say the inlet temperature of the second expansion machine is in particular at least 5 K higher or lower than that of the first expansion machine.
Je nach baulichen oder energetischen Erwägungen kann der erste und/oder der zweite Teilstrom auf unterschiedliche Weise gekühlt werden, so dass sich das Verfahren beispielsweise hinsichtlich kleinerer Volumina für den Hauptwärmetauscher einerseits oder hinsichtlich einer maximalen Energieeinsparung optimieren lässt.Depending on structural or energetic considerations, the first and / or the second partial flow can be cooled in different ways, so that the method can be optimized, for example, with regard to smaller volumes for the main heat exchanger on the one hand or with regard to maximum energy savings.
Auch der zweite Teilstrom kann vor und/oder nach der Entspannung in der zweiten Entspannungsmaschine abgekühlt werden, so dass sich die jeweils gewünschten Temperaturen erzielen lassen.The second partial flow can also be cooled before and / or after the expansion in the second expansion machine, so that the temperatures desired in each case can be achieved.
Eine der beiden Entspannungsmaschinen ist erfindungsgemäß mit einem Booster gekoppelt. Durch diese Kopplung kann die Expansionsarbeit sinnvoll genutzt werden. Vorteilhafterweise wird dabei genau die Luftmenge, die in die mit dem Booster gekoppelte Entspannungsmaschine eingeleitet wird, vorher durch den Booster geführt, der vorteilhafterweise als Warmverdichter ausgebildet ist.According to the invention, one of the two relaxation machines is coupled to a booster. Through this coupling, the expansion work can be put to good use. Advantageously, precisely the amount of air that is introduced into the expansion machine coupled to the booster is previously passed through the booster, which is advantageously designed as a hot compressor.
Die andere der beiden Entspannungsmaschinen wird erfindungsgemäß eine mechanisch mit einem Generator und/oder einer Ölbremse gekoppelt, in dem bzw. der die frei werdende Expansionsarbeit entsprechend umgesetzt werden kann.According to the invention, the other of the two expansion machines is mechanically coupled to a generator and / or an oil brake in which the expansion work that is released can be implemented accordingly.
In dem erläuterten Verfahren wird als Mischsäulendruck vorteilhafterweise ein Druck von 2 bis 6 bar verwendet. Der Mischsäulendruck richtet sich beispielsweise nach dem extern erforderlichen Bereitstellungsdruck für das gasförmige Sauerstoffprodukt oder kann ebenfalls entsprechend energetischer Erwägungen optimiert werden. Im letzteren Fall ist ein Druck von oder nahe bei 2 bar von Vorteil.In the method explained, a pressure of 2 to 6 bar is advantageously used as the mixing column pressure. The mixing column pressure depends, for example, on the externally required supply pressure for the gaseous oxygen product or can likewise be optimized in accordance with energetic considerations. In the latter case, a pressure of or close to 2 bar is advantageous.
Eine erfindungsgemäße Luftzerlegungsanlage ist zur Durchführung eines Verfahrens nach einem der vorstehenden Ansprüche eingerichtet. Sie weist Mittel auf, die dafür eingerichtet sind, zur Gewinnung eines flüssigen Sauerstoffprodukts einer Trennsäule eines Destillationssäulensystems der Luftzerlegungsanlage eine Flüssigfraktion mit einem ersten, höheren Sauerstoffgehalt zu entnehmen, und Mittel, die dafür eingerichtet sind, derselben Trennsäule des Destillationssäulensystems eine Flüssigfraktion mit einem zweiten, geringeren Sauerstoffgehalt zu entnehmen und in einer Mischsäule bei einem Mischsäulendruck gegen Mischsäulenluft zu verdampfen. Die Luftzerlegungsanlage profitiert von den zuvor erläuterten Vorteilen in gleicher Weise, so dass auf diese ausdrücklich verwiesen werden kann.An air separation plant according to the invention is set up to carry out a method according to one of the preceding claims. It has means which are set up for extracting a liquid fraction with a first, higher oxygen content from a separation column of a distillation column system of the air separation plant, and means which are set up for the same separation column of the distillation column system, a liquid fraction with a second, to remove lower oxygen content and to evaporate in a mixing column at a mixing column pressure against mixing column air. The air separation plant benefits from the advantages explained above in the same way, so that express reference can be made to them.
Bevorzugte Ausführungsformen der Erfindung werden unter Bezugnahme auf die beigefügten Zeichnungen weiter erläutert.Preferred embodiments of the invention are explained further with reference to the accompanying drawings.
Kurze Beschreibung der Zeichnungen
-
zeigt eine Luftzerlegungsanlage gemäß einer Ausführungsform der Erfindung.Figur 1 -
zeigt eine Luftzerlegungsanlage gemäß einer Ausführungsform der Erfindung.Figur 2
-
Figure 1 shows an air separation plant according to an embodiment of the invention. -
Figure 2 shows an air separation plant according to an embodiment of the invention.
In
Über eine Leitung a kann vorgereinigte und auf einen Druck von beispielsweise 10 bis 14 bar verdichtete Luft AIR in die Anlage eingespeist werden. Zur Verdichtung der Luft AIR wird ein nicht dargestellter Hauptverdichter verwendet, die insgesamt eingespeiste Luft wird als "Gesamtluft" bezeichnet.Pre-cleaned air AIR compressed to a pressure of, for example, 10 to 14 bar can be fed into the system via a line a. A main compressor, not shown, is used to compress the air AIR; the total air fed in is referred to as "total air".
Ein Teil der Gesamtluft aus Leitung a, im Rahmen dieser Anmeldung als "erster Teilstrom" bezeichnet, kann über eine Leitung b einem Booster C1 zugeführt werden. Der Booster C1 kann mit einer ersten Entspannungsturbine X1 gekoppelt sein. Die in dem Booster C1 weiter verdichtete Luft kann anschließend in einem Nachkühler E2 abgekühlt und dem Hauptwärmetauscher E1 an dessen warmem Ende zugeführt werden. Über eine Leitung c kann dieser erste Teilstrom dem Hauptwärmetauscher E1 bei einer Zwischentemperatur entnommen, in der ersten Entspannungsturbine X1 kälte- und arbeitsleistend entspannt, und anschließend am kalten Ende erneut durch den Hauptwärmetauscher E1 geführt werden.Part of the total air from line a, referred to in this application as the "first partial flow", can be fed to a booster C1 via a line b. The booster C1 can be coupled to a first expansion turbine X1. The air further compressed in the booster C1 can then be cooled in an aftercooler E2 and fed to the main heat exchanger E1 at its warm end. This first partial flow can be taken from the main heat exchanger E1 at an intermediate temperature via a line c, expanded in the first expansion turbine X1 to produce cold and work, and then passed through the main heat exchanger E1 again at the cold end.
Weitere Luft aus Leitung a kann über eine Leitung d dem Hauptwärmetauscher E1 an dessen warmem Ende zugeführt werden. Ein Teil hiervon kann, gegebenenfalls auch nur bei Bedarf, über ein Entspannungsventil V1 entspannt werden. Ein zweiter Teil der Luft aus Leitung d, und damit ein Teil der Gesamtluft, im Rahmen dieser Anmeldung als "zweiter Teilstrom" bezeichnet, kann dem Hauptwärmetauscher E1 bei einer Zwischentemperatur über eine Leitung s entnommen werden. Die Luft in Leitung s wird, wie unten erläutert, in die Mischsäule S3 eingespeist. Die Menge der in die Mischsäule S3 eingespeisten Luft kann auch über das Entspannungsventil V1 eingestellt werden.Further air from line a can be fed to the main heat exchanger E1 at its warm end via a line d. A part of this can, if necessary, only if necessary, be depressurized via an expansion valve V1. A second part of the air from line d, and thus part of the total air, referred to in this application as the “second partial flow”, can be taken from the main heat exchanger E1 at an intermediate temperature via a line s. The air in line s is, as explained below, fed into the mixing column S3. The amount of air fed into the mixing column S3 can also be adjusted via the expansion valve V1.
Der erste Teilstrom der Luft aus Leitung a und gegebenenfalls die über das Entspannungsventil V1 entspannte Luft liegen nach dem Verlassen des Hauptwärmetauschers E1 an dessen kaltem Ende jeweils bei einer Temperatur nahe der Kondensationstemperatur der Luft vor. Ein entsprechender Luftstrom kann über eine Leitung e in die Hochdrucktrennsäule S1 eingespeist werden. Der Betriebsdruck der Hochdrucktrennsäule S1, und damit der Druck in Leitung e, liegt bei den erläuterten Werten. Die Entspannungsturbine X1 bzw. das Ventil V1 sind entsprechend eingestellt.After leaving the main heat exchanger E1, the first partial flow of air from line a and possibly the air expanded via the expansion valve V1 are each at a temperature close to the condensation temperature of the air at its cold end. A corresponding air flow can over a line e can be fed into the high-pressure separation column S1. The operating pressure of the high-pressure separation column S1, and thus the pressure in line e, is at the values explained. The expansion turbine X1 and the valve V1 are set accordingly.
In der Hochdrucktrennsäule S1 erfolgt eine Vortrennung der Luft. Der Hochdrucktrennsäule S1 kann in einem unteren Bereich bzw. aus dem Sumpf über eine Leitung f eine sauerstoffangereicherte flüssige Sumpffraktion entnommen, in einem Unterkühler E3 abgekühlt und nach Entspannung auf den Betriebsdruck der Niederdrucktrennsäule S2 über ein Entspannungsventil V2 über eine Leitung g in die Niederdrucktrennsäule S2 eingespeist werden.The air is pre-separated in the high-pressure separation column S1. An oxygen-enriched liquid bottom fraction can be removed from the high-pressure separation column S1 in a lower area or from the sump via a line f, cooled in a subcooler E3 and, after expansion to the operating pressure of the low-pressure separation column S2, fed into the low-pressure separation column S2 via an expansion valve V2 via a line g become.
Kopfseitig kann der Hochdrucktrennsäule S1 eine gasförmige, stickstoffreiche Kopffraktion entnommen werden. Zumindest ein Teilstrom hiervon kann über eine Leitung h in einem Kondensator E4, der im Betrieb von einer sauerstoffreichen Sumpffraktion der Niederdrucktrennsäule S2 bedeckt ist, kondensiert werden. Zumindest ein Teil des Kondensats kann als flüssiger Rücklauf über eine Leitung i am Kopf der Hochdrucktrennsäule S1 eingespeist werden. Ein weiterer Teil des Kondensats kann über eine Leitung k dem Unterkühler E3 zugeführt (nicht dargestellt) und über eine Leitung m als flüssiges Stickstoffprodukt LIN beispielsweise in einen Tank eingespeist werden.A gaseous, nitrogen-rich top fraction can be removed from the top of the high-pressure separation column S1. At least a partial stream of this can be condensed via a line h in a condenser E4 which, during operation, is covered by an oxygen-rich bottom fraction of the low-pressure separation column S2. At least part of the condensate can be fed in as liquid reflux via a line i at the top of the high-pressure separation column S1. Another part of the condensate can be fed to the subcooler E3 via a line k (not shown) and fed into a tank, for example, as a liquid nitrogen product LIN, via a line m.
Ein weiterer Teilstrom der kopfseitig der Hochdrucktrennsäule S1 entnommenen gasförmigen, stickstoffreichen Kopffraktion kann über eine Leitung l dem Hauptwärmetauscher E1 zugeführt, in diesem erwärmt und über ein Entspannungsventil V3 entspannt werden. Eine entsprechend erhaltene stickstoffreiche gasförmige Fraktion kann beispielsweise als Dichtgas in den verwendeten Verdichtern verwendet werden.A further substream of the gaseous, nitrogen-rich top fraction removed at the top of the high-pressure separation column S1 can be fed via a
Der Hochdrucktrennsäule S1 kann in einer definierten Höhe über eine Leitung n eine stickstoffangereicherte Fraktion entnommen, in dem Unterkühler E3 abgekühlt, und nach Entspannung über ein Entspannungsventil V4 über eine Leitung o als flüssiger stickstoffreicher Strom kopfseitig in die Niederdrucktrennsäule S2 eingespeist werden. Aus dem Sumpf kann der Niederdrucktrennsäule S2 zumindest ein Teil der sauerstoffreichen Sumpffraktion über eine Leitung p entnommen und über einen Anschluss p' dem Unterkühler E3 zugeführt werden. Diese Flüssigfraktion weist einen hohen Sauerstoffgehalt auf, der im Rahmen dieser Anmeldung als "erster" Sauerstoffgehalt bezeichnet wird. Nach der Abkühlung kann diese Fraktion über eine Leitung q und ein Ventil V5 eine sauerstoffreiche flüssige Fraktion als Flüssigsauerstoffprodukt LOX abgegeben, also in flüssiger Form aus der Luftzerlegungsanlage herausgeführt werden.A nitrogen-enriched fraction can be removed from the high-pressure separation column S1 at a defined height via a line n, cooled in the subcooler E3, and after expansion via an expansion valve V4 via a line o as a liquid nitrogen-rich stream at the top of the low-pressure separation column S2. At least part of the oxygen-rich bottom fraction can be removed from the bottom of the low-pressure separation column S2 via a line p and fed to the subcooler E3 via a connection p '. This liquid fraction has a high oxygen content, which in the context of this application is referred to as the "first" oxygen content. After cooling, this fraction can be given off an oxygen-rich liquid fraction as a liquid oxygen product LOX via a line q and a valve V5, i.e. it can be discharged from the air separation plant in liquid form.
Kopfseitig kann der Niederdrucktrennsäule S2 über eine Leitung r eine gasförmige Kopffraktion entnommen, im Hauptwärmetauscher E1 angewärmt und über ein Ventil V6 abgegeben werden. Diese Fraktion kann z.B. zur Regeneration von Adsorptionseinrichtungen zur Aufreinigung der einzuspeisenden Luft AIR verwendet werden.At the top of the low-pressure separation column S2, a gaseous top fraction can be withdrawn via a line r, heated in the main heat exchanger E1 and discharged via a valve V6. This fraction can, for example, be used to regenerate adsorption devices to purify the air to be fed in (AIR).
Die Luftzerlegungsanlage ist als Mischsäulenanlage ausgebildet. Hierzu kann zumindest ein Teil der Luft aus Leitung d (der "zweite Teilstrom") dem Hauptwärmetauscher E1 bei einer Zwischentemperatur entnommen und über die Leitung s einer zweiten Expansionsturbine X2 zugeführt werden. In der zweiten Expansionsturbine X2, die an eine Energiewandlereinheit G, beispielsweise einen Generator oder eine Ölbremse, angebunden ist, kann die Luft auf einen Druck von beispielsweise 2 bis 4 bar, insbesondere 3 bar, entspannt werden. Die Luft wird dann gasförmig in den unteren Teil einer Mischsäule S3 eingespeist, die bei einem entsprechenden Druck betrieben wird.The air separation system is designed as a mixing column system. For this purpose, at least part of the air from line d (the "second partial flow") can be taken from the main heat exchanger E1 at an intermediate temperature and fed to a second expansion turbine X2 via line s. In the second expansion turbine X2, which is connected to an energy converter unit G, for example a generator or an oil brake, the air can be expanded to a pressure of, for example, 2 to 4 bar, in particular 3 bar. The air is then fed in gaseous form into the lower part of a mixing column S3, which is operated at a corresponding pressure.
Kopfseitig der Mischsäule S3 wird in diese über eine Leitung t eine sauerstoffangereicherte Fraktion eingespeist, die in einer definierten Höhe der Niederdrucktrennsäule S2 über eine Leitung u flüssig und mit dem im Rahmen dieser Anmeldung als "zweitem Sauerstoffgehalt" bezeichneten Gehalt an Sauerstoff entnommen wird. Die über die Leitung u entnommene Fraktion wird über eine Pumpe P1 auf einen Druck oberhalb des Drucks der Mischsäule S3 gepumpt, über Leitungen v und w in dem Unterkühler E3 und dann in dem Hauptwärmetauscher E1 jeweils auf eine Zwischentemperatur angewärmt, und über ein Ventil V7 und die Leitung t in die Mischsäule S3 eingespeist.At the top of the mixing column S3, an oxygen-enriched fraction is fed into this via a line t, which is withdrawn at a defined height from the low-pressure separation column S2 via a line u in liquid form and with the oxygen content referred to in this application as the "second oxygen content". The fraction removed via line u is pumped to a pressure above the pressure of the mixing column S3 via a pump P1, warmed to an intermediate temperature via lines v and w in the subcooler E3 and then in the main heat exchanger E1, and via a valve V7 and the line t is fed into the mixing column S3.
Durch den intensiven Kontakt und damit direkten Wärmetausch mit der sauerstoffangereicherten Fraktion aus Leitung t wird die gasförmig in den unteren Teil der Mischsäule S3 eingespeiste Luft verflüssigt. Die verflüssigte Luft kann in einem unteren Bereich der Mischsäule S3 über eine Leitung x abgezogen, in dem Unterkühler E3 auf eine Zwischentemperatur abgekühlt, und über eine Leitung y und ein Entspannungsventil V8 in die Niederdrucktrennsäule S2 eingespeist ("eingeblasen") werden.Due to the intensive contact and thus direct heat exchange with the oxygen-enriched fraction from line t, the gaseous air fed into the lower part of the mixing column S3 is liquefied. The liquefied air can be drawn off in a lower area of the mixing column S3 via a line x, cooled to an intermediate temperature in the subcooler E3, and fed ("blown") into the low-pressure separation column S2 via a line y and an expansion valve V8.
Vom Kopf der Mischsäule S3 kann über eine Leitung z eine gasförmige sauerstoffreiche Fraktion entnommen, in dem Hauptwärmetauscher E1 angewärmt, und über ein Ventil V9 als gasförmiges Sauerstoffprodukt abgegeben werden.A gaseous oxygen-rich fraction can be taken from the top of the mixing column S3 via a line z, warmed in the main heat exchanger E1 and released as a gaseous oxygen product via a valve V9.
In
Abweichend zu der in
Die in den
Claims (10)
- Process for generating a liquid oxygen product (LOX) and a gaseous oxygen product (GOX) by low-temperature separation of air (AIR) in a distillation column system (S) of an air separation facility which has a high-pressure separation column (S1) and a low-pressure separation column (S2) with which, in order to obtain the liquid oxygen product (LOX), a liquid fraction having a first, higher oxygen content is extracted from the low-pressure separation column (S2) of the distillation column system (S) and is discharged in liquid form from the air separation facility and with which, in order to obtain the gaseous oxygen product (GOX), a liquid fraction having a second, lower oxygen content is extracted from the same low-pressure separation column (S2) of the distillation column system (S), is evaporated in a mixing column (S3) against mixing column air, is heated in a main heat exchanger (E1) against feed air to be cooled and is then discharged in gaseous form out of the air separation facility, wherein- the low-pressure separation column (S2) comprises a single condenser (E4) for generating rising gas in the low-pressure separation column (S2),- a first partial flow of the total air is expanded to perform work in a first expansion machine (X1) to the operating pressure of the high-pressure separation column (S1), and is fed into the high-pressure separation column (S1),- a second partial flow of the total air is used as the mixed column air in that- the second partial flow of the total air is expanded to perform work in a second expansion machine (X2) to the mixing column pressure and fed into the mixing column (S3) in a lower region,- the two expansion machines have different inlet temperatures- one (X1; X2) of the two expansion machines is coupled to a booster (C1) in which the air flow, which is then introduced into the expansion machine coupled to the booster, is previously compressed,- the other (X2; X1) of the two expansion machines is mechanically coupled to a generator and/or an oil brake (G),- either the first partial flow or the mixing column air is cooled in indirect heat exchange with a nitrogen-rich fraction (r) from the low-pressure separation column (S2) downstream of the work-performing expansion (X1; X2) in the main heat exchanger (E1),- the sump of the low-pressure separation column (S2) and the head of the high-pressure separation column (S1) are thermally coupled to each other via the condenser (E4),- the low-pressure separating column and the high-pressure separating column have only one such condenser (E4), and- the liquid fraction having the first oxygen content is extracted from the sump of the low-pressure separation column, and the liquid fraction having the second oxygen content is extracted from the low-pressure separation column (2) at a different height.
- Process according to claim 1, with which an oxygen content of at least 99 mole percent, in particular at least 99.5 mole percent, is used as the first oxygen content, and an oxygen content of 70 to 99 mole percent, in particular 90 to 98 mole percent, is used as the second oxygen content.
- Process according to one of the claims 1 to 2, with which a total air supplied to the air separation facility as a whole is compressed in a main compressor to a feed pressure of 6 to 30 bar, in particular from 7 to 20 bar, for example from 10 to 14 bar.
- Process according to one of the preceding claims, with which the first partial flow is cooled upstream of the expansion in the first expansion machine (X1), and/or the second partial flow is cooled upstream of the expansion in the second expansion machine (X2).
- Process according to one of the preceding claims, with which the liquid fraction with the second oxygen content is fed into the mixing column (S3) at the head side by means of at least one pump (P1) and at least one expansion valve (V7) after extraction from the separation column (S2) of the distillation column system (S).
- Process according to one of the preceding claims, with which the mixing column is operated under a mixing column pressure of a pressure of 2 to 6 bar.
- Process according to one of the preceding claims, with which the first expansion machine (X1) in which the first partial flow is expanded to perform work is coupled to the booster (C1), and the second expansion machine (X2) in which the first partial flow is expanded to perform work is coupled to a generator and/or an oil brake (G).
- Process according to claim 7, with which the mixed column air downstream of the work-performing expansion (X2) is cooled in the main heat exchanger (E1) in indirect heat exchange with the nitrogen-rich fraction (r) from the low-pressure separation column (S2).
- Process according to claim 8, with which the partial flow cooled downstream of the work-performing expansion (X1; X2) in the main heat exchanger (E1) in indirect heat exchange with a nitrogen-rich fraction (r) from the low-pressure separation column (S2) is introduced into the main heat exchanger (E1) at a first intermediate temperature, and the fraction (z) evaporated in the mixing column (S3) is introduced into the main heat exchanger (E1) at a second intermediate temperature, extracted again at the warm end of the main heat exchanger (E1) and then discharged in gaseous form from the air separation facility, wherein the second intermediate temperature is greater than or equal to the first intermediate temperature.
- Air separation facility configured to carry out a process according to one of the preceding claims, comprising a distillation column system (S) having a high-pressure separation column (S1), a low-pressure separation column (S2) and a mixing column (S3), with means configured to obtain a liquid fraction having a first, higher oxygen content from the low-pressure separation column (S2) of the distillation column system (S) of the air separation facility for obtaining a liquid oxygen product (LOX), and means configured to extract a liquid fraction having a second, lower oxygen content from the same low-pressure separation column (S2) of the distillation column system (S) and to evaporate it in the mixing column (S3) at a mixing column pressure against the mixing column air, having a main heat exchanger (E1) for heating the fraction (z) evaporated in the mixing column against feed air to be cooled, and having- a first expansion machine (X1) for the work-performing expansion of a first partial flow of the total air to the operating pressure of the high-pressure separation column (S1)- means for introducing the work-performing expanded partial flow into the high-pressure separation column (S1),- a second expansion machine (X2) for the work-performing expansion of a second partial flow of the total air to the mixing column pressure,- means for introducing the work-performing expanded partial flow into a lower region in the mixing column (S3), and- means for providing the two partial flows for the two expansion machines under different inlet temperatures,
wherein- the low-pressure separation column (S2) comprises a single condenser (E4) for generating rising gas in the low-pressure separation column (S2),- one (X1; X2) of the two expansion machines is coupled to a booster (C1) for compressing the air flow upstream of one (X1; X2) of the expansion machine coupled to the booster, and- the other (X2; X1) of the two expansion machines is mechanically coupled to a generator and/or an oil brake (G),
and with- means for cooling either the first partial flow or the second partial flow downstream of the work-performing expansion (X1; X2) in the main heat exchanger (E1) in indirect heat exchange with a nitrogen-rich fraction (r) from the low-pressure separation column (S2), wherein, an addition- the sump of the low-pressure separation column (S2) and the head of the high-pressure separation column (S1) are thermally coupled to each other via the condenser (E4),- the low-pressure separating column and the high-pressure separating column have only one such condenser (E4), and- means are arranged for extracting the liquid fraction having the first oxygen content from the sump of the low-pressure separation column, and means are arranged for extracting the liquid fraction having the second oxygen content at a different height of the low-pressure separation column (2).
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP13755972.0A EP2906889B1 (en) | 2012-09-04 | 2013-08-29 | Process and facility for generating liquid and gaseous oxygen products by low-temperature separation of air |
| PL13755972T PL2906889T3 (en) | 2012-09-04 | 2013-08-29 | Process and facility for generating liquid and gaseous oxygen products by low-temperature separation of air |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102012017484.5A DE102012017484A1 (en) | 2012-09-04 | 2012-09-04 | Process and plant for the production of liquid and gaseous oxygen products by cryogenic separation of air |
| EP12007213.7A EP2703757A1 (en) | 2012-09-04 | 2012-10-18 | Method and plant for creating liquid and gaseous oxygen products by cryogenic decomposition of air |
| PCT/EP2013/002604 WO2014037091A2 (en) | 2012-09-04 | 2013-08-29 | Process and facility for generating liquid and gaseous oxygen products by low-temperature separation of air |
| EP13755972.0A EP2906889B1 (en) | 2012-09-04 | 2013-08-29 | Process and facility for generating liquid and gaseous oxygen products by low-temperature separation of air |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP2906889A2 EP2906889A2 (en) | 2015-08-19 |
| EP2906889B1 true EP2906889B1 (en) | 2021-08-11 |
Family
ID=47142876
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP12007213.7A Withdrawn EP2703757A1 (en) | 2012-09-04 | 2012-10-18 | Method and plant for creating liquid and gaseous oxygen products by cryogenic decomposition of air |
| EP13755972.0A Active EP2906889B1 (en) | 2012-09-04 | 2013-08-29 | Process and facility for generating liquid and gaseous oxygen products by low-temperature separation of air |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP12007213.7A Withdrawn EP2703757A1 (en) | 2012-09-04 | 2012-10-18 | Method and plant for creating liquid and gaseous oxygen products by cryogenic decomposition of air |
Country Status (8)
| Country | Link |
|---|---|
| EP (2) | EP2703757A1 (en) |
| BR (1) | BR112015004726B1 (en) |
| CL (1) | CL2015000527A1 (en) |
| DE (1) | DE102012017484A1 (en) |
| PL (1) | PL2906889T3 (en) |
| RU (1) | RU2647297C2 (en) |
| WO (1) | WO2014037091A2 (en) |
| ZA (1) | ZA201501162B (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3179186A1 (en) | 2015-12-07 | 2017-06-14 | Linde Aktiengesellschaft | Method for obtaining a liquid and a gaseous oxygen-rich air product in an air breakdown apparatus and air breakdown apparatus |
| US20230043513A1 (en) * | 2019-12-23 | 2023-02-09 | Linde Gmbh | Process and plant for provision of oxygen product |
| JP2024013252A (en) * | 2022-07-20 | 2024-02-01 | 大陽日酸株式会社 | Heat exchanger |
Family Cites Families (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2680114B1 (en) | 1991-08-07 | 1994-08-05 | Lair Liquide | METHOD AND INSTALLATION FOR AIR DISTILLATION, AND APPLICATION TO THE GAS SUPPLY OF A STEEL. |
| US5454227A (en) | 1994-08-17 | 1995-10-03 | The Boc Group, Inc. | Air separation method and apparatus |
| US5490391A (en) | 1994-08-25 | 1996-02-13 | The Boc Group, Inc. | Method and apparatus for producing oxygen |
| US5551258A (en) * | 1994-12-15 | 1996-09-03 | The Boc Group Plc | Air separation |
| US5966967A (en) * | 1998-01-22 | 1999-10-19 | Air Products And Chemicals, Inc. | Efficient process to produce oxygen |
| DE19951521A1 (en) | 1999-10-26 | 2001-05-03 | Linde Ag | Recovering pressurized product by low temperature decomposition of air in rectification system comprises cold compressing heat carrier stream before introducing into mixing column |
| DE10015602A1 (en) | 2000-03-29 | 2001-10-04 | Linde Ag | Method and device for obtaining a printed product by low-temperature separation of air |
| DE10139727A1 (en) | 2001-08-13 | 2003-02-27 | Linde Ag | Method and device for obtaining a printed product by low-temperature separation of air |
| DE10209421A1 (en) * | 2002-03-05 | 2003-04-03 | Linde Ag | Process for recovering a compressed product comprises subjecting air to low temperature decomposition in a rectification system consisting of a high pressure column and a low pressure column |
| DE10228111A1 (en) | 2002-06-24 | 2004-01-15 | Linde Ag | Air separation process and plant with mixing column and krypton-xenon extraction |
| FR2865024B3 (en) * | 2004-01-12 | 2006-05-05 | Air Liquide | METHOD AND INSTALLATION OF AIR SEPARATION BY CRYOGENIC DISTILLATION |
| EP1666824A1 (en) * | 2004-12-03 | 2006-06-07 | Linde Aktiengesellschaft | Process and device for the recovery of Argon by cryogenic separation of air |
| FR2895068B1 (en) * | 2005-12-15 | 2014-01-31 | Air Liquide | AIR SEPARATION METHOD BY CRYOGENIC DISTILLATION |
| US7533540B2 (en) * | 2006-03-10 | 2009-05-19 | Praxair Technology, Inc. | Cryogenic air separation system for enhanced liquid production |
-
2012
- 2012-09-04 DE DE102012017484.5A patent/DE102012017484A1/en not_active Withdrawn
- 2012-10-18 EP EP12007213.7A patent/EP2703757A1/en not_active Withdrawn
-
2013
- 2013-08-29 BR BR112015004726-2A patent/BR112015004726B1/en active IP Right Grant
- 2013-08-29 WO PCT/EP2013/002604 patent/WO2014037091A2/en not_active Ceased
- 2013-08-29 EP EP13755972.0A patent/EP2906889B1/en active Active
- 2013-08-29 RU RU2015112309A patent/RU2647297C2/en active
- 2013-08-29 PL PL13755972T patent/PL2906889T3/en unknown
-
2015
- 2015-02-19 ZA ZA2015/01162A patent/ZA201501162B/en unknown
- 2015-03-04 CL CL2015000527A patent/CL2015000527A1/en unknown
Non-Patent Citations (1)
| Title |
|---|
| None * |
Also Published As
| Publication number | Publication date |
|---|---|
| CL2015000527A1 (en) | 2015-06-19 |
| EP2703757A1 (en) | 2014-03-05 |
| RU2647297C2 (en) | 2018-03-15 |
| EP2906889A2 (en) | 2015-08-19 |
| DE102012017484A1 (en) | 2014-03-06 |
| PL2906889T3 (en) | 2021-12-27 |
| BR112015004726A2 (en) | 2017-07-04 |
| RU2015112309A (en) | 2016-10-27 |
| WO2014037091A3 (en) | 2014-12-18 |
| WO2014037091A2 (en) | 2014-03-13 |
| BR112015004726B1 (en) | 2021-07-06 |
| ZA201501162B (en) | 2016-01-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP3164654B1 (en) | Method and device for the low-temperature separation of air at variable energy consumption | |
| EP3175192B1 (en) | Method for the low-temperature decomposition of air and air separation plant | |
| EP3179187B1 (en) | Method for obtaining a liquid and a gaseous oxygen-rich air product in an air breakdown apparatus and air breakdown apparatus | |
| EP3870915B1 (en) | Method and installation for cryogenic decomposition of air | |
| DE102010052545A1 (en) | Method and apparatus for recovering a gaseous product by cryogenic separation of air | |
| EP1074805B1 (en) | Process for producing oxygen under pressure and device therefor | |
| EP2963370B1 (en) | Method and device for the cryogenic decomposition of air | |
| EP2520886A1 (en) | Method and device for creating gaseous oxygen pressurised product by the cryogenic decomposition of air | |
| EP2053331A1 (en) | Method and device for low-temperature air separation | |
| EP2963369B1 (en) | Method and device for the cryogenic decomposition of air | |
| EP3207320B1 (en) | Method and device for variable extraction of argon by cryogenic decomposition of air | |
| EP2906889B1 (en) | Process and facility for generating liquid and gaseous oxygen products by low-temperature separation of air | |
| EP2979051B1 (en) | Method and device for producing gaseous compressed oxygen having variable power consumption | |
| EP2938952A2 (en) | Method and device for low-temperature air separation | |
| EP2551619A1 (en) | Method and device for extracting pressurised oxygen and pressurised nitrogen by cryogenic decomposition of air | |
| EP2914913B1 (en) | Process for the low-temperature separation of air in an air separation plant and air separation plant | |
| DE102013002094A1 (en) | Method for producing liquid and gaseous oxygen by low temperature separation of air in air separation system in industrial application, involves feeding feed air flow to portion in mixed column and to another portion in separating column | |
| EP4065910A1 (en) | Process and plant for low-temperature fractionation of air | |
| DE102017010001A1 (en) | Process and installation for the cryogenic separation of air | |
| EP2369281A1 (en) | Method and device for cryogenic decomposition of air | |
| DE10045128A1 (en) | Method and device for producing high-purity nitrogen by low-temperature air separation | |
| EP3870917B1 (en) | Method and installation for cryogenic separation of air | |
| EP4127583B1 (en) | Process and plant for low-temperature separation of air | |
| EP3620739A1 (en) | Method for the low-temperature decomposition of air and air separation plant | |
| DE10339230A1 (en) | Process for decomposing air at low temperatures in a rectifier system for nitrogen-oxygen removal comprises operating the process in a first time section in a gas operation and in a second time section in a liquid operation |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20150210 |
|
| AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| AX | Request for extension of the european patent |
Extension state: BA ME |
|
| DAX | Request for extension of the european patent (deleted) | ||
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
| 17Q | First examination report despatched |
Effective date: 20200330 |
|
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: LINDE GMBH |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
| INTG | Intention to grant announced |
Effective date: 20201130 |
|
| GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
| INTC | Intention to grant announced (deleted) | ||
| GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
| INTG | Intention to grant announced |
Effective date: 20210310 |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
| INTC | Intention to grant announced (deleted) | ||
| INTG | Intention to grant announced |
Effective date: 20210415 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502013015877 Country of ref document: DE |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN Ref country code: AT Ref legal event code: REF Ref document number: 1419789 Country of ref document: AT Kind code of ref document: T Effective date: 20210915 |
|
| REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
| REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210811 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211111 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211213 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211111 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211112 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 |
|
| REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210831 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210831 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210831 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502013015877 Country of ref document: DE |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210829 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed |
Effective date: 20220512 |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20211111 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210829 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210831 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211011 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211111 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20130829 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210811 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RO Payment date: 20240820 Year of fee payment: 12 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20250819 Year of fee payment: 13 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20250821 Year of fee payment: 13 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20250819 Year of fee payment: 13 |